enoriega commited on
Commit
a9ee4a6
1 Parent(s): 77f00d4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: rule_learning_margin_1mm_many_negatives_spanpred_attention
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # rule_learning_margin_1mm_many_negatives_spanpred_attention
13
+
14
+ This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.2363
17
+ - Margin Accuracy: 0.8921
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 5e-05
37
+ - train_batch_size: 4
38
+ - eval_batch_size: 4
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 2000
41
+ - total_train_batch_size: 8000
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 3.0
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy |
50
+ |:-------------:|:-----:|:----:|:---------------:|:---------------:|
51
+ | 0.3814 | 0.16 | 20 | 0.3909 | 0.8317 |
52
+ | 0.349 | 0.32 | 40 | 0.3335 | 0.8463 |
53
+ | 0.3196 | 0.48 | 60 | 0.3101 | 0.8587 |
54
+ | 0.3083 | 0.64 | 80 | 0.3010 | 0.8645 |
55
+ | 0.2828 | 0.8 | 100 | 0.2871 | 0.8686 |
56
+ | 0.294 | 0.96 | 120 | 0.2800 | 0.8715 |
57
+ | 0.2711 | 1.12 | 140 | 0.2708 | 0.8741 |
58
+ | 0.2663 | 1.28 | 160 | 0.2671 | 0.8767 |
59
+ | 0.2656 | 1.44 | 180 | 0.2612 | 0.8822 |
60
+ | 0.2645 | 1.6 | 200 | 0.2537 | 0.8851 |
61
+ | 0.2625 | 1.76 | 220 | 0.2483 | 0.8878 |
62
+ | 0.2651 | 1.92 | 240 | 0.2471 | 0.8898 |
63
+ | 0.2407 | 2.08 | 260 | 0.2438 | 0.8905 |
64
+ | 0.2315 | 2.24 | 280 | 0.2408 | 0.8909 |
65
+ | 0.2461 | 2.4 | 300 | 0.2390 | 0.8918 |
66
+ | 0.2491 | 2.56 | 320 | 0.2390 | 0.8921 |
67
+ | 0.2511 | 2.72 | 340 | 0.2369 | 0.8918 |
68
+ | 0.2341 | 2.88 | 360 | 0.2363 | 0.8921 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.19.2
74
+ - Pytorch 1.11.0
75
+ - Datasets 2.2.1
76
+ - Tokenizers 0.12.1