File size: 2,712 Bytes
318b165
 
 
5657f71
 
318b165
 
 
 
 
 
 
 
 
 
5657f71
318b165
5657f71
 
318b165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- generated_from_trainer
datasets:
- enoriega/odinsynth_dataset
model-index:
- name: rule_learning_margin_1mm_spanpred_nospec
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rule_learning_margin_1mm_spanpred_nospec

This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3972
- Margin Accuracy: 0.8136

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2000
- total_train_batch_size: 8000
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Margin Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|
| 0.5864        | 0.16  | 20   | 0.5454          | 0.7564          |
| 0.4995        | 0.32  | 40   | 0.4761          | 0.7867          |
| 0.4866        | 0.48  | 60   | 0.4353          | 0.8057          |
| 0.4568        | 0.64  | 80   | 0.4229          | 0.8098          |
| 0.4409        | 0.8   | 100  | 0.4136          | 0.8140          |
| 0.4369        | 0.96  | 120  | 0.4124          | 0.8118          |
| 0.4172        | 1.12  | 140  | 0.4043          | 0.8118          |
| 0.4208        | 1.28  | 160  | 0.4072          | 0.8119          |
| 0.4256        | 1.44  | 180  | 0.4041          | 0.8124          |
| 0.4201        | 1.6   | 200  | 0.4041          | 0.8127          |
| 0.4159        | 1.76  | 220  | 0.4006          | 0.8125          |
| 0.4103        | 1.92  | 240  | 0.4004          | 0.8131          |
| 0.4282        | 2.08  | 260  | 0.3999          | 0.8138          |
| 0.4169        | 2.24  | 280  | 0.4006          | 0.8136          |
| 0.4263        | 2.4   | 300  | 0.3962          | 0.8133          |
| 0.4252        | 2.56  | 320  | 0.3994          | 0.8137          |
| 0.4202        | 2.72  | 340  | 0.3965          | 0.8137          |
| 0.4146        | 2.88  | 360  | 0.3967          | 0.8139          |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.1
- Tokenizers 0.12.1