update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: rule_learning_margin_3mm_many_negatives_spanpred_attention
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# rule_learning_margin_3mm_many_negatives_spanpred_attention
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.2192
|
17 |
+
- Margin Accuracy: 0.8968
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 4
|
38 |
+
- eval_batch_size: 4
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 2000
|
41 |
+
- total_train_batch_size: 8000
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 3.0
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Margin Accuracy |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------:|
|
51 |
+
| 0.3149 | 0.16 | 60 | 0.3098 | 0.8608 |
|
52 |
+
| 0.2754 | 0.32 | 120 | 0.2725 | 0.8733 |
|
53 |
+
| 0.2619 | 0.48 | 180 | 0.2512 | 0.8872 |
|
54 |
+
| 0.2378 | 0.64 | 240 | 0.2391 | 0.8925 |
|
55 |
+
| 0.2451 | 0.8 | 300 | 0.2305 | 0.8943 |
|
56 |
+
| 0.2357 | 0.96 | 360 | 0.2292 | 0.8949 |
|
57 |
+
| 0.2335 | 1.12 | 420 | 0.2269 | 0.8952 |
|
58 |
+
| 0.2403 | 1.28 | 480 | 0.2213 | 0.8957 |
|
59 |
+
| 0.2302 | 1.44 | 540 | 0.2227 | 0.8963 |
|
60 |
+
| 0.2353 | 1.6 | 600 | 0.2222 | 0.8961 |
|
61 |
+
| 0.2271 | 1.76 | 660 | 0.2207 | 0.8964 |
|
62 |
+
| 0.228 | 1.92 | 720 | 0.2218 | 0.8967 |
|
63 |
+
| 0.2231 | 2.08 | 780 | 0.2201 | 0.8967 |
|
64 |
+
| 0.2128 | 2.24 | 840 | 0.2219 | 0.8967 |
|
65 |
+
| 0.2186 | 2.4 | 900 | 0.2202 | 0.8967 |
|
66 |
+
| 0.2245 | 2.56 | 960 | 0.2205 | 0.8969 |
|
67 |
+
| 0.2158 | 2.72 | 1020 | 0.2196 | 0.8969 |
|
68 |
+
| 0.2106 | 2.88 | 1080 | 0.2192 | 0.8968 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.19.2
|
74 |
+
- Pytorch 1.11.0
|
75 |
+
- Datasets 2.2.1
|
76 |
+
- Tokenizers 0.12.1
|