--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/Phi-3-mini-4k-instruct model-index: - name: phi-3-mrqa results: [] datasets: - enriquesaou/mrqa-squadded-sample --- [Visualize in Weights & Biases](https://wandb.ai/favcowboy/huggingface/runs/1bcp4hhg) # phi-3-mrqa This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on a MRQA sample. It achieves the following results on the evaluation set: - Loss: 1.7651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7895 | 0.0267 | 100 | 1.8179 | | 1.7531 | 0.0533 | 200 | 1.7730 | | 1.7567 | 0.08 | 300 | 1.7651 | ### Framework versions - PEFT 0.11.2.dev0 - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1