|
|
|
import joblib |
|
|
|
from sklearn.datasets import fetch_openml |
|
|
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder |
|
from sklearn.compose import make_column_transformer |
|
|
|
from sklearn.pipeline import make_pipeline |
|
|
|
from sklearn.model_selection import train_test_split, RandomizedSearchCV |
|
|
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import accuracy_score, classification_report |
|
|
|
dataset = fetch_openml(data_id=42890, as_frame=True, parser="auto") |
|
|
|
data_df = dataset.data |
|
|
|
target = 'Machine failure' |
|
numeric_features = [ |
|
'Air temperature [K]', |
|
'Process temperature [K]', |
|
'Rotational speed [rpm]', |
|
'Torque [Nm]', |
|
'Tool wear [min]' |
|
] |
|
categorical_features = ['Type'] |
|
|
|
print("Creating data subsets") |
|
|
|
X = data_df[numeric_features + categorical_features] |
|
y = data_df[target] |
|
|
|
Xtrain, Xtest, ytrain, ytest = train_test_split( |
|
X, y, |
|
test_size=0.2, |
|
random_state=42 |
|
) |
|
|
|
preprocessor = make_column_transformer( |
|
(StandardScaler(), numeric_features), |
|
(OneHotEncoder(handle_unknown='ignore'), categorical_features) |
|
) |
|
|
|
model_logistic_regression = LogisticRegression(n_jobs=-1) |
|
|
|
print("Estimating Best Model Pipeline") |
|
|
|
model_pipeline = make_pipeline( |
|
preprocessor, |
|
model_logistic_regression |
|
) |
|
|
|
param_distribution = { |
|
"logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1, 5, 10] |
|
} |
|
|
|
rand_search_cv = RandomizedSearchCV( |
|
model_pipeline, |
|
param_distribution, |
|
n_iter=3, |
|
cv=3, |
|
random_state=42 |
|
) |
|
|
|
rand_search_cv.fit(Xtrain, ytrain) |
|
|
|
print("Logging Metrics") |
|
print(f"Accuracy: {rand_search_cv.best_score_}") |
|
|
|
print("Serializing Model") |
|
|
|
saved_model_path = "model.joblib" |
|
|
|
joblib.dump(rand_search_cv.best_estimator_, saved_model_path) |
|
|