File size: 14,606 Bytes
ca2f2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f08914ca670>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08914ca700>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08914ca790>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08914ca820>",
        "_build": "<function ActorCriticPolicy._build at 0x7f08914ca8b0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f08914ca940>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f08914ca9d0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08914caa60>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f08914caaf0>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08914cab80>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08914cac10>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08914caca0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f08914c3900>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 2506752,
    "_total_timesteps": 2500000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1673801101648360255,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN/g7skI+Q9IFvjPBS+xb646z+8bZQPvQAAAAAAAAAAM5XAPH3ocj/BE628PbntvnvFoT39sgW9AAAAAAAAAABN60u9pAqqPvMJ3j0ehMi+igu9PCb63DwAAAAAAAAAAM30aTurzbE/waExPqPu/r7Sdu66uZHCOwAAAAAAAAAAszcAvXaoRLwRspc8nkRzPWaRWz190iC8AACAPwAAgD/zNiC+fEUvPjjyGj8bEaq+vZnGPTlvkz4AAAAAAAAAACb90j1cewy6zuIeumYxTzXBbD+6Pms5OQAAAAAAAIA/zR7dvOG0mbrGJCszPn4yr1YCjDobpc6zAACAPwAAgD/NUGi8yJGEvAsGRj5Q1R88jcDnvXELAD0AAIA/AACAP2Z4OL1Iy4u6WfEjO69BTDfHmM443fwVNQAAAAAAAAAAZuq4u8A4uT+Mdrm9RcwYPoSLmTzbt6g9AAAAAAAAAADQOIA+bSaDP/6zVDsqE9++JDW+PjFJNL4AAAAAAAAAAG1mGr7Sg6c+LqOAPpby6b6aQQy9ShsIPgAAAAAAAAAAQAV1Phf1bD+zYsg9IVYNv65uGj91Vvi9AAAAAAAAAAAa+0++6dcPP0Bdej50Avm+k/gcvs4ZVD4AAAAAAAAAADNbsLwKf0C7FKUoPAX1gjxEQ0G8oqBiPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.0027007999999999477,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX9TuVwFMb0CUhpRSlIwBbJRLz4wBdJRHQKgdS2phnap1fZQoaAZoCWgPQwi6vg8HSZ5xQJSGlFKUaBVL3mgWR0CoHWVOKwY+dX2UKGgGaAloD0MIkzZV9winc0CUhpRSlGgVS9hoFkdAqB14mAskIHV9lChoBmgJaA9DCNNp3QY1CXJAlIaUUpRoFUvXaBZHQKgdy3LFGXp1fZQoaAZoCWgPQwh9WkV/6A9wQJSGlFKUaBVLx2gWR0CoHdQqI7/5dX2UKGgGaAloD0MIXk2eshoFbkCUhpRSlGgVS95oFkdAqB33FrEcbXV9lChoBmgJaA9DCNfa+1SVonJAlIaUUpRoFUvAaBZHQKgd+RXfZVZ1fZQoaAZoCWgPQwiPbRlw1h50QJSGlFKUaBVLzmgWR0CoHgscIZ62dX2UKGgGaAloD0MINe84RYcxcUCUhpRSlGgVS9hoFkdAqB4gTZg5R3V9lChoBmgJaA9DCJfl6zI88nJAlIaUUpRoFUvdaBZHQKgem8QI2O11fZQoaAZoCWgPQwghHR7CuNVxQJSGlFKUaBVLzGgWR0CoHspgssg/dX2UKGgGaAloD0MICqLuA5Dyb0CUhpRSlGgVS9RoFkdAqB7acRUWEnV9lChoBmgJaA9DCEQUkzdAW3NAlIaUUpRoFUveaBZHQKge8THKfWd1fZQoaAZoCWgPQwh95xcl6ItyQJSGlFKUaBVL2WgWR0CoHufiHZbqdX2UKGgGaAloD0MIqBq9GiCncECUhpRSlGgVS7toFkdAqB8CnDR+jXV9lChoBmgJaA9DCFCOAkRBCG5AlIaUUpRoFUvPaBZHQKgfBbJOnEV1fZQoaAZoCWgPQwjKMsSxrkBzQJSGlFKUaBVLz2gWR0CoH3JAD7qIdX2UKGgGaAloD0MIbqZCPBLYcECUhpRSlGgVS8RoFkdAqB99b9qDb3V9lChoBmgJaA9DCPZhvVGrjHJAlIaUUpRoFUu6aBZHQKgfvClabF11fZQoaAZoCWgPQwiVmdL6WwBxQJSGlFKUaBVLw2gWR0CoH8x3eN1hdX2UKGgGaAloD0MIuD1BYnvBcUCUhpRSlGgVS75oFkdAqB/p6OYIB3V9lChoBmgJaA9DCHgKuVLPl3NAlIaUUpRoFUv1aBZHQKgf9VZs9B91fZQoaAZoCWgPQwhVM2sp4PpxQJSGlFKUaBVLw2gWR0CoH/h/y5I6dX2UKGgGaAloD0MIqrncYGh4cUCUhpRSlGgVS8BoFkdAqCAB2U0N0HV9lChoBmgJaA9DCEs/4ezWc3FAlIaUUpRoFUvCaBZHQKgglNZeRgZ1fZQoaAZoCWgPQwjXZ8761GVwQJSGlFKUaBVL82gWR0CoIJsQd0aIdX2UKGgGaAloD0MIlZ1+UNcQckCUhpRSlGgVS8doFkdAqCDRFspG4XV9lChoBmgJaA9DCJI9Qs0QDHJAlIaUUpRoFUu9aBZHQKgg3Olfqot1fZQoaAZoCWgPQwhyio7kshVzQJSGlFKUaBVL02gWR0CoODG8M/hVdX2UKGgGaAloD0MIVgxXB0D1b0CUhpRSlGgVS9JoFkdAqDhYhIOH33V9lChoBmgJaA9DCBiyutVzKXFAlIaUUpRoFUvYaBZHQKg4TI+W4Vh1fZQoaAZoCWgPQwiD91W50O1xQJSGlFKUaBVL52gWR0CoOJGNaQmvdX2UKGgGaAloD0MIiljEsIMXc0CUhpRSlGgVS8BoFkdAqDitUVBUrHV9lChoBmgJaA9DCB5tHLGWyHJAlIaUUpRoFUvLaBZHQKg4vr0rbxp1fZQoaAZoCWgPQwijdyrgXnxzQJSGlFKUaBVL0WgWR0CoORzqSowVdX2UKGgGaAloD0MIkX9mEB9xcECUhpRSlGgVS8VoFkdAqDkpFgDzRXV9lChoBmgJaA9DCEp5rYSusHJAlIaUUpRoFUvOaBZHQKg5Mx7AtWd1fZQoaAZoCWgPQwhfYizTLzlzQJSGlFKUaBVLyGgWR0CoOS6tcObzdX2UKGgGaAloD0MIAyfbwB2tb0CUhpRSlGgVS+JoFkdAqDk5YmsvI3V9lChoBmgJaA9DCCgK9Ik8LnJAlIaUUpRoFUvTaBZHQKg5U3HaN+91fZQoaAZoCWgPQwhJnBVRk99wQJSGlFKUaBVLxmgWR0CoOg/336AOdX2UKGgGaAloD0MIpP0PsNa0cUCUhpRSlGgVS95oFkdAqDoRZIQOF3V9lChoBmgJaA9DCGmtaHMc1XFAlIaUUpRoFUvtaBZHQKg6OQLeANJ1fZQoaAZoCWgPQwjrxOV4RcRyQJSGlFKUaBVL2GgWR0CoOj14xDb8dX2UKGgGaAloD0MI0nDK3DyKcECUhpRSlGgVS9RoFkdAqDphZ4fOlnV9lChoBmgJaA9DCNuJkpDIXXFAlIaUUpRoFUvHaBZHQKg6WkRjBmB1fZQoaAZoCWgPQwgipkQSvYpuQJSGlFKUaBVLzmgWR0CoOnlHz6JqdX2UKGgGaAloD0MI6BN5knRdcUCUhpRSlGgVS8doFkdAqDqfOKO1fHV9lChoBmgJaA9DCCekNQadGG9AlIaUUpRoFUvDaBZHQKg6rZHNHH51fZQoaAZoCWgPQwguknajD0lzQJSGlFKUaBVL4mgWR0CoOwyVGCqZdX2UKGgGaAloD0MIt3u5T46YckCUhpRSlGgVS7poFkdAqDsSjQAuI3V9lChoBmgJaA9DCCBj7lrCCnBAlIaUUpRoFUu+aBZHQKg7LeqrBCV1fZQoaAZoCWgPQwjLZ3keXDBzQJSGlFKUaBVL0GgWR0CoO0A62fCidX2UKGgGaAloD0MIM6SK4tXncECUhpRSlGgVS9doFkdAqDtk+iaiK3V9lChoBmgJaA9DCNkJL8GpsnBAlIaUUpRoFUveaBZHQKg7cZF5Oah1fZQoaAZoCWgPQwigbwuW6j5yQJSGlFKUaBVL1WgWR0CoO4NWuHN5dX2UKGgGaAloD0MIhsd+FotAckCUhpRSlGgVS8RoFkdAqDwJ9d/rjnV9lChoBmgJaA9DCNBCAkZX83JAlIaUUpRoFUvsaBZHQKg8fJ8v25B1fZQoaAZoCWgPQwjrjVphehdyQJSGlFKUaBVL32gWR0CoPICv5gw5dX2UKGgGaAloD0MIkq8EUiJJc0CUhpRSlGgVS9RoFkdAqDyG3trsSnV9lChoBmgJaA9DCAucbAO3h3NAlIaUUpRoFUvnaBZHQKg8kyMUAT91fZQoaAZoCWgPQwiiREseT8ZyQJSGlFKUaBVL1WgWR0CoPKAaNuLrdX2UKGgGaAloD0MIlE4kmOo8ckCUhpRSlGgVS91oFkdAqDyWc+aBqnV9lChoBmgJaA9DCNnNjH50PHBAlIaUUpRoFUvbaBZHQKg80VObiId1fZQoaAZoCWgPQwg5uHTMOb1yQJSGlFKUaBVL5WgWR0CoPPcNH6MzdX2UKGgGaAloD0MI7l2DvjRhcUCUhpRSlGgVS8loFkdAqD0RdMTN+3V9lChoBmgJaA9DCPjFpSqtZnBAlIaUUpRoFUvYaBZHQKg9c6zVtoB1fZQoaAZoCWgPQwjEBgsn6d1xQJSGlFKUaBVL3WgWR0CoPW881XNkdX2UKGgGaAloD0MIQdXo1UCIcECUhpRSlGgVS9ZoFkdAqD2XIp6QeXV9lChoBmgJaA9DCE32z9NA2nFAlIaUUpRoFUvQaBZHQKg9qoqkM1F1fZQoaAZoCWgPQwhFSUikLVtyQJSGlFKUaBVL8GgWR0CoPfFMqSX/dX2UKGgGaAloD0MIwtuDEFDFcECUhpRSlGgVS8doFkdAqD4r9bX6InV9lChoBmgJaA9DCJRL4xdeWlBAlIaUUpRoFUuSaBZHQKg+aJKraM91fZQoaAZoCWgPQwjJVSx+E4ZxQJSGlFKUaBVLtWgWR0CoPm7kXDWLdX2UKGgGaAloD0MIXhH8b6X0b0CUhpRSlGgVS8doFkdAqD6//DLr5nV9lChoBmgJaA9DCI//AkEA13BAlIaUUpRoFUvdaBZHQKg+4801qFh1fZQoaAZoCWgPQwiKITmZ+IZxQJSGlFKUaBVL6WgWR0CoPxJA+pwTdX2UKGgGaAloD0MIIGPuWgLZcUCUhpRSlGgVS+9oFkdAqD8zqOcUd3V9lChoBmgJaA9DCNL9nIK8q3JAlIaUUpRoFUvMaBZHQKg/SE12q1h1fZQoaAZoCWgPQwi6hhkaj5hxQJSGlFKUaBVL2GgWR0CoP4SFoL5RdX2UKGgGaAloD0MIcOmY88z2cECUhpRSlGgVS71oFkdAqD/G2PT5PHV9lChoBmgJaA9DCA6ki02rHXJAlIaUUpRoFUvSaBZHQKg/4gElme11fZQoaAZoCWgPQwjo9pLGaPlyQJSGlFKUaBVL0WgWR0CoP9rP2PDHdX2UKGgGaAloD0MIJuSDnk0tcUCUhpRSlGgVS+BoFkdAqEBEsMAmzHV9lChoBmgJaA9DCJcBZynZn3JAlIaUUpRoFUvbaBZHQKhAhvl2eQN1fZQoaAZoCWgPQwhW1cvvdAdzQJSGlFKUaBVL0WgWR0CoQKaI3zczdX2UKGgGaAloD0MIP/7Sor7Yb0CUhpRSlGgVS81oFkdAqEDYTIvJzXV9lChoBmgJaA9DCGE0K9vHEHJAlIaUUpRoFUvPaBZHQKhBO3PzFuN1fZQoaAZoCWgPQwg6WtWSDk9zQJSGlFKUaBVNowFoFkdAqEFvhuO0cHV9lChoBmgJaA9DCHzUX69w0nJAlIaUUpRoFUvGaBZHQKhBdwnYxtZ1fZQoaAZoCWgPQwh40VeQZhlwQJSGlFKUaBVLyGgWR0CoQZ5/0/W2dX2UKGgGaAloD0MIBd80fTZHcUCUhpRSlGgVS/NoFkdAqEHSrDIiknV9lChoBmgJaA9DCCAKZkxBLnJAlIaUUpRoFUvEaBZHQKhCKEoOQQt1fZQoaAZoCWgPQwhpxMw+j+pxQJSGlFKUaBVL2GgWR0CoQicX3xnWdX2UKGgGaAloD0MIYFs//WfpcUCUhpRSlGgVS+xoFkdAqEIjB9Cu2nV9lChoBmgJaA9DCAvxSLy8vXBAlIaUUpRoFUvbaBZHQKhCheIl+mZ1fZQoaAZoCWgPQwj8qfHSjQdzQJSGlFKUaBVL42gWR0CoQpVPN3W4dX2UKGgGaAloD0MIXMzPDc38b0CUhpRSlGgVS9NoFkdAqELKgbp/w3V9lChoBmgJaA9DCDatFAJ5X3BAlIaUUpRoFUvgaBZHQKhDKB8QZoB1fZQoaAZoCWgPQwhBKzBk9YZyQJSGlFKUaBVLzGgWR0CoQzsYEW69dWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 765,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 32,
    "n_epochs": 5,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}