score 286
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-Lunar-v2.zip +3 -0
- ppo-Lunar-v2/_stable_baselines3_version +1 -0
- ppo-Lunar-v2/data +95 -0
- ppo-Lunar-v2/policy.optimizer.pth +3 -0
- ppo-Lunar-v2/policy.pth +3 -0
- ppo-Lunar-v2/pytorch_variables.pth +3 -0
- ppo-Lunar-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 290.69 +/- 19.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f08914ca670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08914ca700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08914ca790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08914ca820>", "_build": "<function ActorCriticPolicy._build at 0x7f08914ca8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f08914ca940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f08914ca9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08914caa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f08914caaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08914cab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08914cac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08914caca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f08914c3900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673801101648360255, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN/g7skI+Q9IFvjPBS+xb646z+8bZQPvQAAAAAAAAAAM5XAPH3ocj/BE628PbntvnvFoT39sgW9AAAAAAAAAABN60u9pAqqPvMJ3j0ehMi+igu9PCb63DwAAAAAAAAAAM30aTurzbE/waExPqPu/r7Sdu66uZHCOwAAAAAAAAAAszcAvXaoRLwRspc8nkRzPWaRWz190iC8AACAPwAAgD/zNiC+fEUvPjjyGj8bEaq+vZnGPTlvkz4AAAAAAAAAACb90j1cewy6zuIeumYxTzXBbD+6Pms5OQAAAAAAAIA/zR7dvOG0mbrGJCszPn4yr1YCjDobpc6zAACAPwAAgD/NUGi8yJGEvAsGRj5Q1R88jcDnvXELAD0AAIA/AACAP2Z4OL1Iy4u6WfEjO69BTDfHmM443fwVNQAAAAAAAAAAZuq4u8A4uT+Mdrm9RcwYPoSLmTzbt6g9AAAAAAAAAADQOIA+bSaDP/6zVDsqE9++JDW+PjFJNL4AAAAAAAAAAG1mGr7Sg6c+LqOAPpby6b6aQQy9ShsIPgAAAAAAAAAAQAV1Phf1bD+zYsg9IVYNv65uGj91Vvi9AAAAAAAAAAAa+0++6dcPP0Bdej50Avm+k/gcvs4ZVD4AAAAAAAAAADNbsLwKf0C7FKUoPAX1gjxEQ0G8oqBiPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX9TuVwFMb0CUhpRSlIwBbJRLz4wBdJRHQKgdS2phnap1fZQoaAZoCWgPQwi6vg8HSZ5xQJSGlFKUaBVL3mgWR0CoHWVOKwY+dX2UKGgGaAloD0MIkzZV9winc0CUhpRSlGgVS9hoFkdAqB14mAskIHV9lChoBmgJaA9DCNNp3QY1CXJAlIaUUpRoFUvXaBZHQKgdy3LFGXp1fZQoaAZoCWgPQwh9WkV/6A9wQJSGlFKUaBVLx2gWR0CoHdQqI7/5dX2UKGgGaAloD0MIXk2eshoFbkCUhpRSlGgVS95oFkdAqB33FrEcbXV9lChoBmgJaA9DCNfa+1SVonJAlIaUUpRoFUvAaBZHQKgd+RXfZVZ1fZQoaAZoCWgPQwiPbRlw1h50QJSGlFKUaBVLzmgWR0CoHgscIZ62dX2UKGgGaAloD0MINe84RYcxcUCUhpRSlGgVS9hoFkdAqB4gTZg5R3V9lChoBmgJaA9DCJfl6zI88nJAlIaUUpRoFUvdaBZHQKgem8QI2O11fZQoaAZoCWgPQwghHR7CuNVxQJSGlFKUaBVLzGgWR0CoHspgssg/dX2UKGgGaAloD0MICqLuA5Dyb0CUhpRSlGgVS9RoFkdAqB7acRUWEnV9lChoBmgJaA9DCEQUkzdAW3NAlIaUUpRoFUveaBZHQKge8THKfWd1fZQoaAZoCWgPQwh95xcl6ItyQJSGlFKUaBVL2WgWR0CoHufiHZbqdX2UKGgGaAloD0MIqBq9GiCncECUhpRSlGgVS7toFkdAqB8CnDR+jXV9lChoBmgJaA9DCFCOAkRBCG5AlIaUUpRoFUvPaBZHQKgfBbJOnEV1fZQoaAZoCWgPQwjKMsSxrkBzQJSGlFKUaBVLz2gWR0CoH3JAD7qIdX2UKGgGaAloD0MIbqZCPBLYcECUhpRSlGgVS8RoFkdAqB99b9qDb3V9lChoBmgJaA9DCPZhvVGrjHJAlIaUUpRoFUu6aBZHQKgfvClabF11fZQoaAZoCWgPQwiVmdL6WwBxQJSGlFKUaBVLw2gWR0CoH8x3eN1hdX2UKGgGaAloD0MIuD1BYnvBcUCUhpRSlGgVS75oFkdAqB/p6OYIB3V9lChoBmgJaA9DCHgKuVLPl3NAlIaUUpRoFUv1aBZHQKgf9VZs9B91fZQoaAZoCWgPQwhVM2sp4PpxQJSGlFKUaBVLw2gWR0CoH/h/y5I6dX2UKGgGaAloD0MIqrncYGh4cUCUhpRSlGgVS8BoFkdAqCAB2U0N0HV9lChoBmgJaA9DCEs/4ezWc3FAlIaUUpRoFUvCaBZHQKgglNZeRgZ1fZQoaAZoCWgPQwjXZ8761GVwQJSGlFKUaBVL82gWR0CoIJsQd0aIdX2UKGgGaAloD0MIlZ1+UNcQckCUhpRSlGgVS8doFkdAqCDRFspG4XV9lChoBmgJaA9DCJI9Qs0QDHJAlIaUUpRoFUu9aBZHQKgg3Olfqot1fZQoaAZoCWgPQwhyio7kshVzQJSGlFKUaBVL02gWR0CoODG8M/hVdX2UKGgGaAloD0MIVgxXB0D1b0CUhpRSlGgVS9JoFkdAqDhYhIOH33V9lChoBmgJaA9DCBiyutVzKXFAlIaUUpRoFUvYaBZHQKg4TI+W4Vh1fZQoaAZoCWgPQwiD91W50O1xQJSGlFKUaBVL52gWR0CoOJGNaQmvdX2UKGgGaAloD0MIiljEsIMXc0CUhpRSlGgVS8BoFkdAqDitUVBUrHV9lChoBmgJaA9DCB5tHLGWyHJAlIaUUpRoFUvLaBZHQKg4vr0rbxp1fZQoaAZoCWgPQwijdyrgXnxzQJSGlFKUaBVL0WgWR0CoORzqSowVdX2UKGgGaAloD0MIkX9mEB9xcECUhpRSlGgVS8VoFkdAqDkpFgDzRXV9lChoBmgJaA9DCEp5rYSusHJAlIaUUpRoFUvOaBZHQKg5Mx7AtWd1fZQoaAZoCWgPQwhfYizTLzlzQJSGlFKUaBVLyGgWR0CoOS6tcObzdX2UKGgGaAloD0MIAyfbwB2tb0CUhpRSlGgVS+JoFkdAqDk5YmsvI3V9lChoBmgJaA9DCCgK9Ik8LnJAlIaUUpRoFUvTaBZHQKg5U3HaN+91fZQoaAZoCWgPQwhJnBVRk99wQJSGlFKUaBVLxmgWR0CoOg/336AOdX2UKGgGaAloD0MIpP0PsNa0cUCUhpRSlGgVS95oFkdAqDoRZIQOF3V9lChoBmgJaA9DCGmtaHMc1XFAlIaUUpRoFUvtaBZHQKg6OQLeANJ1fZQoaAZoCWgPQwjrxOV4RcRyQJSGlFKUaBVL2GgWR0CoOj14xDb8dX2UKGgGaAloD0MI0nDK3DyKcECUhpRSlGgVS9RoFkdAqDphZ4fOlnV9lChoBmgJaA9DCNuJkpDIXXFAlIaUUpRoFUvHaBZHQKg6WkRjBmB1fZQoaAZoCWgPQwgipkQSvYpuQJSGlFKUaBVLzmgWR0CoOnlHz6JqdX2UKGgGaAloD0MI6BN5knRdcUCUhpRSlGgVS8doFkdAqDqfOKO1fHV9lChoBmgJaA9DCCekNQadGG9AlIaUUpRoFUvDaBZHQKg6rZHNHH51fZQoaAZoCWgPQwguknajD0lzQJSGlFKUaBVL4mgWR0CoOwyVGCqZdX2UKGgGaAloD0MIt3u5T46YckCUhpRSlGgVS7poFkdAqDsSjQAuI3V9lChoBmgJaA9DCCBj7lrCCnBAlIaUUpRoFUu+aBZHQKg7LeqrBCV1fZQoaAZoCWgPQwjLZ3keXDBzQJSGlFKUaBVL0GgWR0CoO0A62fCidX2UKGgGaAloD0MIM6SK4tXncECUhpRSlGgVS9doFkdAqDtk+iaiK3V9lChoBmgJaA9DCNkJL8GpsnBAlIaUUpRoFUveaBZHQKg7cZF5Oah1fZQoaAZoCWgPQwigbwuW6j5yQJSGlFKUaBVL1WgWR0CoO4NWuHN5dX2UKGgGaAloD0MIhsd+FotAckCUhpRSlGgVS8RoFkdAqDwJ9d/rjnV9lChoBmgJaA9DCNBCAkZX83JAlIaUUpRoFUvsaBZHQKg8fJ8v25B1fZQoaAZoCWgPQwjrjVphehdyQJSGlFKUaBVL32gWR0CoPICv5gw5dX2UKGgGaAloD0MIkq8EUiJJc0CUhpRSlGgVS9RoFkdAqDyG3trsSnV9lChoBmgJaA9DCAucbAO3h3NAlIaUUpRoFUvnaBZHQKg8kyMUAT91fZQoaAZoCWgPQwiiREseT8ZyQJSGlFKUaBVL1WgWR0CoPKAaNuLrdX2UKGgGaAloD0MIlE4kmOo8ckCUhpRSlGgVS91oFkdAqDyWc+aBqnV9lChoBmgJaA9DCNnNjH50PHBAlIaUUpRoFUvbaBZHQKg80VObiId1fZQoaAZoCWgPQwg5uHTMOb1yQJSGlFKUaBVL5WgWR0CoPPcNH6MzdX2UKGgGaAloD0MI7l2DvjRhcUCUhpRSlGgVS8loFkdAqD0RdMTN+3V9lChoBmgJaA9DCPjFpSqtZnBAlIaUUpRoFUvYaBZHQKg9c6zVtoB1fZQoaAZoCWgPQwjEBgsn6d1xQJSGlFKUaBVL3WgWR0CoPW881XNkdX2UKGgGaAloD0MIQdXo1UCIcECUhpRSlGgVS9ZoFkdAqD2XIp6QeXV9lChoBmgJaA9DCE32z9NA2nFAlIaUUpRoFUvQaBZHQKg9qoqkM1F1fZQoaAZoCWgPQwhFSUikLVtyQJSGlFKUaBVL8GgWR0CoPfFMqSX/dX2UKGgGaAloD0MIwtuDEFDFcECUhpRSlGgVS8doFkdAqD4r9bX6InV9lChoBmgJaA9DCJRL4xdeWlBAlIaUUpRoFUuSaBZHQKg+aJKraM91fZQoaAZoCWgPQwjJVSx+E4ZxQJSGlFKUaBVLtWgWR0CoPm7kXDWLdX2UKGgGaAloD0MIXhH8b6X0b0CUhpRSlGgVS8doFkdAqD6//DLr5nV9lChoBmgJaA9DCI//AkEA13BAlIaUUpRoFUvdaBZHQKg+4801qFh1fZQoaAZoCWgPQwiKITmZ+IZxQJSGlFKUaBVL6WgWR0CoPxJA+pwTdX2UKGgGaAloD0MIIGPuWgLZcUCUhpRSlGgVS+9oFkdAqD8zqOcUd3V9lChoBmgJaA9DCNL9nIK8q3JAlIaUUpRoFUvMaBZHQKg/SE12q1h1fZQoaAZoCWgPQwi6hhkaj5hxQJSGlFKUaBVL2GgWR0CoP4SFoL5RdX2UKGgGaAloD0MIcOmY88z2cECUhpRSlGgVS71oFkdAqD/G2PT5PHV9lChoBmgJaA9DCA6ki02rHXJAlIaUUpRoFUvSaBZHQKg/4gElme11fZQoaAZoCWgPQwjo9pLGaPlyQJSGlFKUaBVL0WgWR0CoP9rP2PDHdX2UKGgGaAloD0MIJuSDnk0tcUCUhpRSlGgVS+BoFkdAqEBEsMAmzHV9lChoBmgJaA9DCJcBZynZn3JAlIaUUpRoFUvbaBZHQKhAhvl2eQN1fZQoaAZoCWgPQwhW1cvvdAdzQJSGlFKUaBVL0WgWR0CoQKaI3zczdX2UKGgGaAloD0MIP/7Sor7Yb0CUhpRSlGgVS81oFkdAqEDYTIvJzXV9lChoBmgJaA9DCGE0K9vHEHJAlIaUUpRoFUvPaBZHQKhBO3PzFuN1fZQoaAZoCWgPQwg6WtWSDk9zQJSGlFKUaBVNowFoFkdAqEFvhuO0cHV9lChoBmgJaA9DCHzUX69w0nJAlIaUUpRoFUvGaBZHQKhBdwnYxtZ1fZQoaAZoCWgPQwh40VeQZhlwQJSGlFKUaBVLyGgWR0CoQZ5/0/W2dX2UKGgGaAloD0MIBd80fTZHcUCUhpRSlGgVS/NoFkdAqEHSrDIiknV9lChoBmgJaA9DCCAKZkxBLnJAlIaUUpRoFUvEaBZHQKhCKEoOQQt1fZQoaAZoCWgPQwhpxMw+j+pxQJSGlFKUaBVL2GgWR0CoQicX3xnWdX2UKGgGaAloD0MIYFs//WfpcUCUhpRSlGgVS+xoFkdAqEIjB9Cu2nV9lChoBmgJaA9DCAvxSLy8vXBAlIaUUpRoFUvbaBZHQKhCheIl+mZ1fZQoaAZoCWgPQwj8qfHSjQdzQJSGlFKUaBVL42gWR0CoQpVPN3W4dX2UKGgGaAloD0MIXMzPDc38b0CUhpRSlGgVS9NoFkdAqELKgbp/w3V9lChoBmgJaA9DCDatFAJ5X3BAlIaUUpRoFUvgaBZHQKhDKB8QZoB1fZQoaAZoCWgPQwhBKzBk9YZyQJSGlFKUaBVLzGgWR0CoQzsYEW69dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 765, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-Lunar-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f9dfcbcd6cd31317e1c097c47b5347f58dc8e90b84d2785e41771e9254dd3ed
|
3 |
+
size 147293
|
ppo-Lunar-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-Lunar-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f08914ca670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f08914ca700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f08914ca790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f08914ca820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f08914ca8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f08914ca940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f08914ca9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f08914caa60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f08914caaf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f08914cab80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f08914cac10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f08914caca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f08914c3900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2506752,
|
47 |
+
"_total_timesteps": 2500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673801101648360255,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN/g7skI+Q9IFvjPBS+xb646z+8bZQPvQAAAAAAAAAAM5XAPH3ocj/BE628PbntvnvFoT39sgW9AAAAAAAAAABN60u9pAqqPvMJ3j0ehMi+igu9PCb63DwAAAAAAAAAAM30aTurzbE/waExPqPu/r7Sdu66uZHCOwAAAAAAAAAAszcAvXaoRLwRspc8nkRzPWaRWz190iC8AACAPwAAgD/zNiC+fEUvPjjyGj8bEaq+vZnGPTlvkz4AAAAAAAAAACb90j1cewy6zuIeumYxTzXBbD+6Pms5OQAAAAAAAIA/zR7dvOG0mbrGJCszPn4yr1YCjDobpc6zAACAPwAAgD/NUGi8yJGEvAsGRj5Q1R88jcDnvXELAD0AAIA/AACAP2Z4OL1Iy4u6WfEjO69BTDfHmM443fwVNQAAAAAAAAAAZuq4u8A4uT+Mdrm9RcwYPoSLmTzbt6g9AAAAAAAAAADQOIA+bSaDP/6zVDsqE9++JDW+PjFJNL4AAAAAAAAAAG1mGr7Sg6c+LqOAPpby6b6aQQy9ShsIPgAAAAAAAAAAQAV1Phf1bD+zYsg9IVYNv65uGj91Vvi9AAAAAAAAAAAa+0++6dcPP0Bdej50Avm+k/gcvs4ZVD4AAAAAAAAAADNbsLwKf0C7FKUoPAX1gjxEQ0G8oqBiPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX9TuVwFMb0CUhpRSlIwBbJRLz4wBdJRHQKgdS2phnap1fZQoaAZoCWgPQwi6vg8HSZ5xQJSGlFKUaBVL3mgWR0CoHWVOKwY+dX2UKGgGaAloD0MIkzZV9winc0CUhpRSlGgVS9hoFkdAqB14mAskIHV9lChoBmgJaA9DCNNp3QY1CXJAlIaUUpRoFUvXaBZHQKgdy3LFGXp1fZQoaAZoCWgPQwh9WkV/6A9wQJSGlFKUaBVLx2gWR0CoHdQqI7/5dX2UKGgGaAloD0MIXk2eshoFbkCUhpRSlGgVS95oFkdAqB33FrEcbXV9lChoBmgJaA9DCNfa+1SVonJAlIaUUpRoFUvAaBZHQKgd+RXfZVZ1fZQoaAZoCWgPQwiPbRlw1h50QJSGlFKUaBVLzmgWR0CoHgscIZ62dX2UKGgGaAloD0MINe84RYcxcUCUhpRSlGgVS9hoFkdAqB4gTZg5R3V9lChoBmgJaA9DCJfl6zI88nJAlIaUUpRoFUvdaBZHQKgem8QI2O11fZQoaAZoCWgPQwghHR7CuNVxQJSGlFKUaBVLzGgWR0CoHspgssg/dX2UKGgGaAloD0MICqLuA5Dyb0CUhpRSlGgVS9RoFkdAqB7acRUWEnV9lChoBmgJaA9DCEQUkzdAW3NAlIaUUpRoFUveaBZHQKge8THKfWd1fZQoaAZoCWgPQwh95xcl6ItyQJSGlFKUaBVL2WgWR0CoHufiHZbqdX2UKGgGaAloD0MIqBq9GiCncECUhpRSlGgVS7toFkdAqB8CnDR+jXV9lChoBmgJaA9DCFCOAkRBCG5AlIaUUpRoFUvPaBZHQKgfBbJOnEV1fZQoaAZoCWgPQwjKMsSxrkBzQJSGlFKUaBVLz2gWR0CoH3JAD7qIdX2UKGgGaAloD0MIbqZCPBLYcECUhpRSlGgVS8RoFkdAqB99b9qDb3V9lChoBmgJaA9DCPZhvVGrjHJAlIaUUpRoFUu6aBZHQKgfvClabF11fZQoaAZoCWgPQwiVmdL6WwBxQJSGlFKUaBVLw2gWR0CoH8x3eN1hdX2UKGgGaAloD0MIuD1BYnvBcUCUhpRSlGgVS75oFkdAqB/p6OYIB3V9lChoBmgJaA9DCHgKuVLPl3NAlIaUUpRoFUv1aBZHQKgf9VZs9B91fZQoaAZoCWgPQwhVM2sp4PpxQJSGlFKUaBVLw2gWR0CoH/h/y5I6dX2UKGgGaAloD0MIqrncYGh4cUCUhpRSlGgVS8BoFkdAqCAB2U0N0HV9lChoBmgJaA9DCEs/4ezWc3FAlIaUUpRoFUvCaBZHQKgglNZeRgZ1fZQoaAZoCWgPQwjXZ8761GVwQJSGlFKUaBVL82gWR0CoIJsQd0aIdX2UKGgGaAloD0MIlZ1+UNcQckCUhpRSlGgVS8doFkdAqCDRFspG4XV9lChoBmgJaA9DCJI9Qs0QDHJAlIaUUpRoFUu9aBZHQKgg3Olfqot1fZQoaAZoCWgPQwhyio7kshVzQJSGlFKUaBVL02gWR0CoODG8M/hVdX2UKGgGaAloD0MIVgxXB0D1b0CUhpRSlGgVS9JoFkdAqDhYhIOH33V9lChoBmgJaA9DCBiyutVzKXFAlIaUUpRoFUvYaBZHQKg4TI+W4Vh1fZQoaAZoCWgPQwiD91W50O1xQJSGlFKUaBVL52gWR0CoOJGNaQmvdX2UKGgGaAloD0MIiljEsIMXc0CUhpRSlGgVS8BoFkdAqDitUVBUrHV9lChoBmgJaA9DCB5tHLGWyHJAlIaUUpRoFUvLaBZHQKg4vr0rbxp1fZQoaAZoCWgPQwijdyrgXnxzQJSGlFKUaBVL0WgWR0CoORzqSowVdX2UKGgGaAloD0MIkX9mEB9xcECUhpRSlGgVS8VoFkdAqDkpFgDzRXV9lChoBmgJaA9DCEp5rYSusHJAlIaUUpRoFUvOaBZHQKg5Mx7AtWd1fZQoaAZoCWgPQwhfYizTLzlzQJSGlFKUaBVLyGgWR0CoOS6tcObzdX2UKGgGaAloD0MIAyfbwB2tb0CUhpRSlGgVS+JoFkdAqDk5YmsvI3V9lChoBmgJaA9DCCgK9Ik8LnJAlIaUUpRoFUvTaBZHQKg5U3HaN+91fZQoaAZoCWgPQwhJnBVRk99wQJSGlFKUaBVLxmgWR0CoOg/336AOdX2UKGgGaAloD0MIpP0PsNa0cUCUhpRSlGgVS95oFkdAqDoRZIQOF3V9lChoBmgJaA9DCGmtaHMc1XFAlIaUUpRoFUvtaBZHQKg6OQLeANJ1fZQoaAZoCWgPQwjrxOV4RcRyQJSGlFKUaBVL2GgWR0CoOj14xDb8dX2UKGgGaAloD0MI0nDK3DyKcECUhpRSlGgVS9RoFkdAqDphZ4fOlnV9lChoBmgJaA9DCNuJkpDIXXFAlIaUUpRoFUvHaBZHQKg6WkRjBmB1fZQoaAZoCWgPQwgipkQSvYpuQJSGlFKUaBVLzmgWR0CoOnlHz6JqdX2UKGgGaAloD0MI6BN5knRdcUCUhpRSlGgVS8doFkdAqDqfOKO1fHV9lChoBmgJaA9DCCekNQadGG9AlIaUUpRoFUvDaBZHQKg6rZHNHH51fZQoaAZoCWgPQwguknajD0lzQJSGlFKUaBVL4mgWR0CoOwyVGCqZdX2UKGgGaAloD0MIt3u5T46YckCUhpRSlGgVS7poFkdAqDsSjQAuI3V9lChoBmgJaA9DCCBj7lrCCnBAlIaUUpRoFUu+aBZHQKg7LeqrBCV1fZQoaAZoCWgPQwjLZ3keXDBzQJSGlFKUaBVL0GgWR0CoO0A62fCidX2UKGgGaAloD0MIM6SK4tXncECUhpRSlGgVS9doFkdAqDtk+iaiK3V9lChoBmgJaA9DCNkJL8GpsnBAlIaUUpRoFUveaBZHQKg7cZF5Oah1fZQoaAZoCWgPQwigbwuW6j5yQJSGlFKUaBVL1WgWR0CoO4NWuHN5dX2UKGgGaAloD0MIhsd+FotAckCUhpRSlGgVS8RoFkdAqDwJ9d/rjnV9lChoBmgJaA9DCNBCAkZX83JAlIaUUpRoFUvsaBZHQKg8fJ8v25B1fZQoaAZoCWgPQwjrjVphehdyQJSGlFKUaBVL32gWR0CoPICv5gw5dX2UKGgGaAloD0MIkq8EUiJJc0CUhpRSlGgVS9RoFkdAqDyG3trsSnV9lChoBmgJaA9DCAucbAO3h3NAlIaUUpRoFUvnaBZHQKg8kyMUAT91fZQoaAZoCWgPQwiiREseT8ZyQJSGlFKUaBVL1WgWR0CoPKAaNuLrdX2UKGgGaAloD0MIlE4kmOo8ckCUhpRSlGgVS91oFkdAqDyWc+aBqnV9lChoBmgJaA9DCNnNjH50PHBAlIaUUpRoFUvbaBZHQKg80VObiId1fZQoaAZoCWgPQwg5uHTMOb1yQJSGlFKUaBVL5WgWR0CoPPcNH6MzdX2UKGgGaAloD0MI7l2DvjRhcUCUhpRSlGgVS8loFkdAqD0RdMTN+3V9lChoBmgJaA9DCPjFpSqtZnBAlIaUUpRoFUvYaBZHQKg9c6zVtoB1fZQoaAZoCWgPQwjEBgsn6d1xQJSGlFKUaBVL3WgWR0CoPW881XNkdX2UKGgGaAloD0MIQdXo1UCIcECUhpRSlGgVS9ZoFkdAqD2XIp6QeXV9lChoBmgJaA9DCE32z9NA2nFAlIaUUpRoFUvQaBZHQKg9qoqkM1F1fZQoaAZoCWgPQwhFSUikLVtyQJSGlFKUaBVL8GgWR0CoPfFMqSX/dX2UKGgGaAloD0MIwtuDEFDFcECUhpRSlGgVS8doFkdAqD4r9bX6InV9lChoBmgJaA9DCJRL4xdeWlBAlIaUUpRoFUuSaBZHQKg+aJKraM91fZQoaAZoCWgPQwjJVSx+E4ZxQJSGlFKUaBVLtWgWR0CoPm7kXDWLdX2UKGgGaAloD0MIXhH8b6X0b0CUhpRSlGgVS8doFkdAqD6//DLr5nV9lChoBmgJaA9DCI//AkEA13BAlIaUUpRoFUvdaBZHQKg+4801qFh1fZQoaAZoCWgPQwiKITmZ+IZxQJSGlFKUaBVL6WgWR0CoPxJA+pwTdX2UKGgGaAloD0MIIGPuWgLZcUCUhpRSlGgVS+9oFkdAqD8zqOcUd3V9lChoBmgJaA9DCNL9nIK8q3JAlIaUUpRoFUvMaBZHQKg/SE12q1h1fZQoaAZoCWgPQwi6hhkaj5hxQJSGlFKUaBVL2GgWR0CoP4SFoL5RdX2UKGgGaAloD0MIcOmY88z2cECUhpRSlGgVS71oFkdAqD/G2PT5PHV9lChoBmgJaA9DCA6ki02rHXJAlIaUUpRoFUvSaBZHQKg/4gElme11fZQoaAZoCWgPQwjo9pLGaPlyQJSGlFKUaBVL0WgWR0CoP9rP2PDHdX2UKGgGaAloD0MIJuSDnk0tcUCUhpRSlGgVS+BoFkdAqEBEsMAmzHV9lChoBmgJaA9DCJcBZynZn3JAlIaUUpRoFUvbaBZHQKhAhvl2eQN1fZQoaAZoCWgPQwhW1cvvdAdzQJSGlFKUaBVL0WgWR0CoQKaI3zczdX2UKGgGaAloD0MIP/7Sor7Yb0CUhpRSlGgVS81oFkdAqEDYTIvJzXV9lChoBmgJaA9DCGE0K9vHEHJAlIaUUpRoFUvPaBZHQKhBO3PzFuN1fZQoaAZoCWgPQwg6WtWSDk9zQJSGlFKUaBVNowFoFkdAqEFvhuO0cHV9lChoBmgJaA9DCHzUX69w0nJAlIaUUpRoFUvGaBZHQKhBdwnYxtZ1fZQoaAZoCWgPQwh40VeQZhlwQJSGlFKUaBVLyGgWR0CoQZ5/0/W2dX2UKGgGaAloD0MIBd80fTZHcUCUhpRSlGgVS/NoFkdAqEHSrDIiknV9lChoBmgJaA9DCCAKZkxBLnJAlIaUUpRoFUvEaBZHQKhCKEoOQQt1fZQoaAZoCWgPQwhpxMw+j+pxQJSGlFKUaBVL2GgWR0CoQicX3xnWdX2UKGgGaAloD0MIYFs//WfpcUCUhpRSlGgVS+xoFkdAqEIjB9Cu2nV9lChoBmgJaA9DCAvxSLy8vXBAlIaUUpRoFUvbaBZHQKhCheIl+mZ1fZQoaAZoCWgPQwj8qfHSjQdzQJSGlFKUaBVL42gWR0CoQpVPN3W4dX2UKGgGaAloD0MIXMzPDc38b0CUhpRSlGgVS9NoFkdAqELKgbp/w3V9lChoBmgJaA9DCDatFAJ5X3BAlIaUUpRoFUvgaBZHQKhDKB8QZoB1fZQoaAZoCWgPQwhBKzBk9YZyQJSGlFKUaBVLzGgWR0CoQzsYEW69dWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 765,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 5,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-Lunar-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:475cd95a08b89b17c972da2917ab257a4414257ce397d7fa5062710893540301
|
3 |
+
size 87929
|
ppo-Lunar-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:248d49c66ee6fd5c80d9a7c116f2d20113b82d8501ed28facb658d5b31fe0865
|
3 |
+
size 43393
|
ppo-Lunar-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Lunar-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (187 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 290.6893330317994, "std_reward": 19.134836383535383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T17:44:21.660722"}
|