File size: 1,107 Bytes
021a57b eae9898 021a57b 4365789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
language:
- en
thumbnail: TBD
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
datasets:
- ChristophSchuhmann/improved_aesthetics_6plus
---
# Mini Stable Diffusion (miniSD)
MiniSD is a latent text-to-image diffusion model that has been conditionned on 256x256 images through finetuning.
## Examples
WIP
## Usage
```
!pip install diffusers==0.3.0
!pip install transformers scipy ftfy
```
```
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast
# TODO: change model_id to "lambdalabs/miniSD"
pipe = StableDiffusionPipeline.from_pretrained("eolecvk/model-test", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Yoda"
scale = 10
n_samples = 4
# Sometimes the nsfw checker is confused, you can disable it at your own risk here
disable_safety = False
if disable_safety:
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
with autocast("cuda"):
images = pipe(n_samples*[prompt], guidance_scale=scale).images
for idx, im in enumerate(images):
im.save(f"{idx:06}.png")
```
|