epinnock commited on
Commit
ba94ecb
1 Parent(s): b459148

commit for readme

Browse files
Files changed (1) hide show
  1. README.md +97 -1
README.md CHANGED
@@ -4,4 +4,100 @@ datasets:
4
  - nickrosh/Evol-Instruct-Code-80k-v1
5
  language:
6
  - en
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - nickrosh/Evol-Instruct-Code-80k-v1
5
  language:
6
  - en
7
+ ---
8
+
9
+
10
+
11
+ # epinnock/WizardCoder-1B-merged
12
+
13
+ ## Table of Contents
14
+
15
+ 1. [Model Summary](##model-summary)
16
+ 2. [Use](##use)
17
+ 3. [Limitations](##limitations)
18
+ 4. [Training](##training)
19
+ 5. [License](##license)
20
+
21
+
22
+ ## Model Summary
23
+
24
+
25
+ 1B version of [StarCoderBase](https://huggingface.co/bigcode/starcoderbase). LoRa finetuned on Evol-Instruct-Code-80k-v1 dataset generated using the [Evol-Teacher](https://github.com/nickrosh/evol-teacher) repo.
26
+ Based on Previous works of @WizardLM
27
+
28
+ - **Training Report:** [wandb](https://wandb.ai/aetherfoundry/huggingface/reports/Training-Report--Vmlldzo1MDUwOTcx)
29
+ - **Repository:** [bigcode/Starcoder](https://github.com/bigcode-project/starcoder)
30
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
31
+
32
+
33
+ ## Use
34
+
35
+ ### Generation
36
+ ```python
37
+ # pip install -q transformers
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ checkpoint = "epinnock/wizardcoder1b-merged"
41
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
44
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
45
+
46
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
47
+ outputs = model.generate(inputs)
48
+ print(tokenizer.decode(outputs[0]))
49
+ ```
50
+
51
+ ### Fill-in-the-middle
52
+ Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
53
+
54
+ ```python
55
+ input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
56
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
57
+ outputs = model.generate(inputs)
58
+ print(tokenizer.decode(outputs[0]))
59
+ ```
60
+
61
+ ### Attribution & Other Requirements
62
+
63
+ The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
64
+
65
+ # Limitations
66
+
67
+ The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations.
68
+
69
+ # Training
70
+
71
+
72
+ starcoder/finetune/finetune.py
73
+ --model_path=bigcode/starcoderbase-1b
74
+ --dataset_name=nickrosh/Evol-Instruct-Code-80k-v1
75
+ --split=train
76
+ --size_valid_set 5000
77
+ --streaming
78
+ --seq_length 2048
79
+ --max_steps 2400
80
+ --batch_size 6
81
+ --input_column_name=instruction
82
+ --gradient_accumulation_steps 16
83
+ --learning_rate 1e-4
84
+ --lr_scheduler_type=cosine
85
+ --num_warmup_steps 100
86
+ --weight_decay 0.05
87
+
88
+ ## Model
89
+
90
+ - **Architecture:** StarCoder GPT-2 model with multi-query attention and Fill-in-the-Middle objective with LoRA layers merged
91
+ - **Fintune steps:** 2400
92
+ - **Pretraining tokens:** 1 trillion
93
+ - **Precision:** bfloat16
94
+
95
+ ## Hardware
96
+
97
+ - **GPUs:** 8 A5000
98
+ - **Training time:** 2 days
99
+
100
+
101
+
102
+ # License
103
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).