erfanzar commited on
Commit
551be21
1 Parent(s): dc1ef22

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  easydel-model.parameters filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  easydel-model.parameters filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - EasyDeL
5
+ - cohere
6
+ ---
7
+ ## [EasyDeL](https://github.com/erfanzar/EasyDeL) model
8
+
9
+ EasyDeL is an open-source framework designed to enhance and streamline the training process of machine learning
10
+ models. With a primary focus on Jax, EasyDeL aims to provide convenient and effective solutions for
11
+ training Flax/Jax models on TPU/GPU for both serving and training purposes.
12
+
13
+ ## Using Example
14
+
15
+ ### Using From EasyDeLState (_*.easy_ files)
16
+
17
+ ```python
18
+ from easydel import EasyDeLState, AutoShardAndGatherFunctions
19
+ from jax import numpy as jnp, lax
20
+
21
+ shard_fns, gather_fns = AutoShardAndGatherFunctions.from_pretrained(
22
+ "REPO_ID", # Pytorch State should be saved to in order to find shard gather fns with no effort, otherwise read docs.
23
+ backend="gpu",
24
+ depth_target=["params", "params"],
25
+ flatten=False
26
+ )
27
+
28
+ state = EasyDeLState.load_state(
29
+ "*.easy",
30
+ dtype=jnp.float16,
31
+ param_dtype=jnp.float16,
32
+ precision=lax.Precision("fastest"),
33
+ verbose=True,
34
+ state_shard_fns=shard_fns
35
+ )
36
+ # State file Ready to use ...
37
+ ```
38
+
39
+ ### Using From AutoEasyDeLModelForCausalLM (_from PyTorch_)
40
+
41
+ ```python
42
+ from easydel import AutoEasyDeLModelForCausalLM
43
+ from jax import numpy as jnp, lax
44
+
45
+
46
+ model, params = AutoEasyDeLModelForCausalLM.from_pretrained(
47
+ "REPO_ID",
48
+ dtype=jnp.float16,
49
+ param_dtype=jnp.float16,
50
+ precision=lax.Precision("fastest"),
51
+ auto_shard_params=True,
52
+ )
53
+ # Model and Parameters Ready to use ...
54
+ ```
55
+
56
+ ### Using From AutoEasyDeLModelForCausalLM (_from EasyDeL_)
57
+
58
+ ```python
59
+ from easydel import AutoEasyDeLModelForCausalLM
60
+ from jax import numpy as jnp, lax
61
+
62
+
63
+ model, params = AutoEasyDeLModelForCausalLM.from_pretrained(
64
+ "REPO_ID/",
65
+ dtype=jnp.float16,
66
+ param_dtype=jnp.float16,
67
+ precision=lax.Precision("fastest"),
68
+ auto_shard_params=True,
69
+ from_torch=False
70
+ )
71
+ # Model and Parameters Ready to use ...
72
+ ```
73
+
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90033108b4a1906ca49f08dbf8f679222c8c3060f00323a1561a9c9c07fa4dd9
3
+ size 4915779696
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1558c3b817c0a425a1ee7ee74620e5d1c18ad16975d6aad5526bd7fd23d8b15d
3
+ size 4915824704
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7c97a4885c0c76cf2ea4841c921e7ea235fc6675bba01a0cb76922a5bc3ede4
3
+ size 4999719592
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73b95dc2d69853e27be20c11e73f72c046dacd4aec7fe338f83459ee46573fd6
3
+ size 3321924072
model.safetensors.index.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18153218048
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
82
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
89
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
105
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
106
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
107
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
111
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
112
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
185
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
186
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
188
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
201
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
202
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
203
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
204
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
205
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
206
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
207
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
208
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
209
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
210
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
211
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
212
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
213
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
214
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
215
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
216
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
234
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
235
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
236
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
263
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
264
+ "model.norm.weight": "model-00004-of-00004.safetensors"
265
+ }
266
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<BOS_TOKEN>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|END_OF_TURN_TOKEN|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|END_OF_TURN_TOKEN|>"
17
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c69a7ea6c0927dfac8c349186ebcf0466a4723c21cbdb2e850cf559f0bee92b8
3
+ size 12777433
tokenizer_config.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<PAD>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<UNK>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<CLS>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<SEP>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<MASK_TOKEN>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<BOS_TOKEN>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<EOS_TOKEN>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<EOP_TOKEN>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "255000": {
71
+ "content": "<|START_OF_TURN_TOKEN|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "255001": {
79
+ "content": "<|END_OF_TURN_TOKEN|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "255002": {
87
+ "content": "<|YES_TOKEN|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "255003": {
95
+ "content": "<|NO_TOKEN|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "255004": {
103
+ "content": "<|GOOD_TOKEN|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "255005": {
111
+ "content": "<|BAD_TOKEN|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "255006": {
119
+ "content": "<|USER_TOKEN|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "255007": {
127
+ "content": "<|CHATBOT_TOKEN|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "255008": {
135
+ "content": "<|SYSTEM_TOKEN|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "255009": {
143
+ "content": "<|USER_0_TOKEN|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "255010": {
151
+ "content": "<|USER_1_TOKEN|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "255011": {
159
+ "content": "<|USER_2_TOKEN|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "255012": {
167
+ "content": "<|USER_3_TOKEN|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "255013": {
175
+ "content": "<|USER_4_TOKEN|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "255014": {
183
+ "content": "<|USER_5_TOKEN|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "255015": {
191
+ "content": "<|USER_6_TOKEN|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "255016": {
199
+ "content": "<|USER_7_TOKEN|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "255017": {
207
+ "content": "<|USER_8_TOKEN|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "255018": {
215
+ "content": "<|USER_9_TOKEN|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "255019": {
223
+ "content": "<|EXTRA_0_TOKEN|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": false
229
+ },
230
+ "255020": {
231
+ "content": "<|EXTRA_1_TOKEN|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": false
237
+ },
238
+ "255021": {
239
+ "content": "<|EXTRA_2_TOKEN|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": false
245
+ },
246
+ "255022": {
247
+ "content": "<|EXTRA_3_TOKEN|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": false
253
+ },
254
+ "255023": {
255
+ "content": "<|EXTRA_4_TOKEN|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": false
261
+ },
262
+ "255024": {
263
+ "content": "<|EXTRA_5_TOKEN|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": false
269
+ },
270
+ "255025": {
271
+ "content": "<|EXTRA_6_TOKEN|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": false
277
+ },
278
+ "255026": {
279
+ "content": "<|EXTRA_7_TOKEN|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": false
285
+ },
286
+ "255027": {
287
+ "content": "<|EXTRA_8_TOKEN|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": false
293
+ },
294
+ "255028": {
295
+ "content": "<|EXTRA_9_TOKEN|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": false
301
+ }
302
+ },
303
+ "bos_token": "<BOS_TOKEN>",
304
+ "chat_template": [
305
+ {
306
+ "name": "default",
307
+ "template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
308
+ },
309
+ {
310
+ "name": "tool_use",
311
+ "template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '## Task and Context\\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user\\'s needs as best you can, which will be wide-ranging.\\n\\n## Style Guide\\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.' %}{% endif %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ '# Safety Preamble' }}{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}{{ '\n\n# System Preamble' }}{{ '\n## Basic Rules' }}{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}{{ '\n\n# User Preamble' }}{{ '\n' + system_message }}{{'\n\n## Available Tools\nHere is a list of tools that you have available to you:\n\n'}}{% for tool in tools %}{% if loop.index0 != 0 %}{{ '\n\n'}}{% endif %}{{'```python\ndef ' + tool.name + '('}}{% for param_name, param_fields in tool.parameter_definitions.items() %}{% if loop.index0 != 0 %}{{ ', '}}{% endif %}{{param_name}}: {% if not param_fields.required %}{{'Optional[' + param_fields.type + '] = None'}}{% else %}{{ param_fields.type }}{% endif %}{% endfor %}{{ ') -> List[Dict]:\n \"\"\"'}}{{ tool.description }}{% if tool.parameter_definitions|length != 0 %}{{ '\n\n Args:\n '}}{% for param_name, param_fields in tool.parameter_definitions.items() %}{% if loop.index0 != 0 %}{{ '\n ' }}{% endif %}{{ param_name + ' ('}}{% if not param_fields.required %}{{'Optional[' + param_fields.type + ']'}}{% else %}{{ param_fields.type }}{% endif %}{{ '): ' + param_fields.description }}{% endfor %}{% endif %}{{ '\n \"\"\"\n pass\n```' }}{% endfor %}{{ '<|END_OF_TURN_TOKEN|>'}}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{{'<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write \\'Action:\\' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user\\'s last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:\n```json\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]```<|END_OF_TURN_TOKEN|>'}}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
312
+ },
313
+ {
314
+ "name": "rag",
315
+ "template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '## Task and Context\\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user\\'s needs as best you can, which will be wide-ranging.\\n\\n## Style Guide\\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.' %}{% endif %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ '# Safety Preamble' }}{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}{{ '\n\n# System Preamble' }}{{ '\n## Basic Rules' }}{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}{{ '\n\n# User Preamble' }}{{ '\n' + system_message }}{{ '<|END_OF_TURN_TOKEN|>'}}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>'}}{{ '<results>' }}{% for document in documents %}{{ '\nDocument: ' }}{{ loop.index0 }}\n{% for key, value in document.items() %}{{ key }}: {{value}}\n{% endfor %}{% endfor %}{{ '</results>'}}{{ '<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}{{ 'Carefully perform the following instructions, in order, starting each with a new line.\n' }}{{ 'Firstly, Decide which of the retrieved documents are relevant to the user\\'s last input by writing \\'Relevant Documents:\\' followed by comma-separated list of document numbers. If none are relevant, you should instead write \\'None\\'.\n' }}{{ 'Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user\\'s last input by writing \\'Cited Documents:\\' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write \\'None\\'.\n' }}{% if citation_mode=='accurate' %}{{ 'Thirdly, Write \\'Answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.\n' }}{% endif %}{{ 'Finally, Write \\'Grounded answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.' }}{{ '<|END_OF_TURN_TOKEN|>' }}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
316
+ }
317
+ ],
318
+ "clean_up_tokenization_spaces": false,
319
+ "eos_token": "<|END_OF_TURN_TOKEN|>",
320
+ "legacy": true,
321
+ "merges_file": null,
322
+ "model_max_length": 1000000000000000019884624838656,
323
+ "pad_token": "<|END_OF_TURN_TOKEN|>",
324
+ "sp_model_kwargs": {},
325
+ "spaces_between_special_tokens": false,
326
+ "tokenizer_class": "CohereTokenizer",
327
+ "unk_token": null,
328
+ "use_default_system_prompt": false,
329
+ "vocab_file": null
330
+ }