ernestum commited on
Commit
8d95578
·
1 Parent(s): 0d276d3

Initial commit

Browse files
README.md CHANGED
@@ -86,3 +86,8 @@ OrderedDict([('batch_size', 8),
86
  'norm_reward': True},
87
  'norm_reward': False})])
88
  ```
 
 
 
 
 
 
86
  'norm_reward': True},
87
  'norm_reward': False})])
88
  ```
89
+
90
+ # Environment Arguments
91
+ ```python
92
+ {'render_mode': 'rgb_array'}
93
+ ```
env_kwargs.yml CHANGED
@@ -1 +1 @@
1
- {}
 
1
+ render_mode: rgb_array
ppo-seals-Swimmer-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb13217ac894c16de99d2b425d22c644f63cd42cb0294d52971beff390a0b4b4
3
- size 151857
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ad3d0c1fd64563441c0b1dfae27cc868daf3645734a21aa1f3b7fa93f488c0d
3
+ size 151861
ppo-seals-Swimmer-v1/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 2.1.0
 
1
+ 2.2.0a3
ppo-seals-Swimmer-v1/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd8a5aa8040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd8a5aa80d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd8a5aa8160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd8a5aa81f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd8a5aa8280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd8a5aa8310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd8a5aa83a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd8a5aa8430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd8a5aa84c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd8a5aa8550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd8a5aa85e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd8a5aa8670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7fd8a5a85b10>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf27997ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf27997f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf2791b040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf2791b0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdf2791b160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdf2791b1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf2791b280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf2791b310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdf2791b3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf2791b430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf2791b4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf2791b550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fdf27992e10>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
ppo-seals-Swimmer-v1/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
- - Stable-Baselines3: 2.1.0
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
 
1
  - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
  - Python: 3.8.10
3
+ - Stable-Baselines3: 2.2.0a3
4
  - PyTorch: 2.0.1+cu117
5
  - GPU Enabled: False
6
  - Numpy: 1.24.4
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09b4e2b3e5d92f3e13b36e0eec11c200b037afac6f587c5a5a71e8f89efa780f
3
+ size 1356228
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 292.8398477, "std_reward": 3.6935229168772485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:51:08.196384"}
 
1
+ {"mean_reward": 292.8398477, "std_reward": 3.6935229168772485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T09:45:07.644208"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:086cf157caa8b7e74aec16cb2452b8a214ce4b4185fb0f10214b9192baac62e4
3
  size 29934
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6677c60202b3e708825f7b33a5f4572865508ae0631c7f6947f07430b169e82e
3
  size 29934
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c86c31aaa11dcd29aa5125c45a31678d80aad61580c65d7e280b64b74c6196b6
3
- size 1720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f64dfbcdee0879e6ec1c41ea5301e2d3c62379fb63006aee114a9cacf1218616
3
+ size 1731