Initial commit
Browse files- .gitattributes +1 -0
- README.md +78 -0
- args.yml +79 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- ppo-seals-MountainCar-v0.zip +3 -0
- ppo-seals-MountainCar-v0/_stable_baselines3_version +1 -0
- ppo-seals-MountainCar-v0/data +103 -0
- ppo-seals-MountainCar-v0/policy.optimizer.pth +3 -0
- ppo-seals-MountainCar-v0/policy.pth +3 -0
- ppo-seals-MountainCar-v0/pytorch_variables.pth +3 -0
- ppo-seals-MountainCar-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- seals/MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -100.60 +/- 5.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: seals/MountainCar-v0
|
20 |
+
type: seals/MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **seals/MountainCar-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **seals/MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestumorga -f logs/
|
41 |
+
python enjoy.py --algo ppo --env seals/MountainCar-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
45 |
+
```
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestumorga -f logs/
|
47 |
+
rl_zoo3 enjoy --algo ppo --env seals/MountainCar-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
## Training (with the RL Zoo)
|
51 |
+
```
|
52 |
+
python train.py --algo ppo --env seals/MountainCar-v0 -f logs/
|
53 |
+
# Upload the model and generate video (when possible)
|
54 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga ernestumorga
|
55 |
+
```
|
56 |
+
|
57 |
+
## Hyperparameters
|
58 |
+
```python
|
59 |
+
OrderedDict([('batch_size', 512),
|
60 |
+
('clip_range', 0.2),
|
61 |
+
('ent_coef', 6.4940755116195606e-06),
|
62 |
+
('gae_lambda', 0.98),
|
63 |
+
('gamma', 0.99),
|
64 |
+
('learning_rate', 0.0004476103728105138),
|
65 |
+
('max_grad_norm', 1),
|
66 |
+
('n_envs', 16),
|
67 |
+
('n_epochs', 20),
|
68 |
+
('n_steps', 256),
|
69 |
+
('n_timesteps', 1000000.0),
|
70 |
+
('normalize', 'dict(norm_obs=False, norm_reward=True)'),
|
71 |
+
('policy',
|
72 |
+
'imitation.policies.base.MlpPolicyWithNormalizeFeaturesExtractor'),
|
73 |
+
('policy_kwargs',
|
74 |
+
'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
|
75 |
+
'64])])'),
|
76 |
+
('vf_coef', 0.25988158989488963),
|
77 |
+
('normalize_kwargs', {'norm_obs': False, 'norm_reward': False})])
|
78 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- seals/MountainCar-v0
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- - seals
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- /tmp/NormalizeFeatureExtractorWithZoo
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 3772699530
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- ''
|
62 |
+
- - track
|
63 |
+
- false
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- null
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 512
|
4 |
+
- - clip_range
|
5 |
+
- 0.2
|
6 |
+
- - ent_coef
|
7 |
+
- 6.4940755116195606e-06
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.98
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.0004476103728105138
|
14 |
+
- - max_grad_norm
|
15 |
+
- 1
|
16 |
+
- - n_envs
|
17 |
+
- 16
|
18 |
+
- - n_epochs
|
19 |
+
- 20
|
20 |
+
- - n_steps
|
21 |
+
- 256
|
22 |
+
- - n_timesteps
|
23 |
+
- 1000000.0
|
24 |
+
- - normalize
|
25 |
+
- dict(norm_obs=False, norm_reward=True)
|
26 |
+
- - policy
|
27 |
+
- imitation.policies.base.MlpPolicyWithNormalizeFeaturesExtractor
|
28 |
+
- - policy_kwargs
|
29 |
+
- dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
|
30 |
+
- - vf_coef
|
31 |
+
- 0.25988158989488963
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-seals-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfbcacb6e742fc516977dd67cb70fc46d628094425403ed4180fd8bddf48734c
|
3 |
+
size 135108
|
ppo-seals-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-seals-MountainCar-v0/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRwAAAAAAAACMF2ltaXRhdGlvbi5wb2xpY2llcy5iYXNllIwnTWxwUG9saWN5V2l0aE5vcm1hbGl6ZUZlYXR1cmVzRXh0cmFjdG9ylJOULg==",
|
5 |
+
"__module__": "imitation.policies.base",
|
6 |
+
"__init__": "<function MlpPolicyWithNormalizeFeaturesExtractor.__init__ at 0x7fe3c60d1940>",
|
7 |
+
"__doc__": null,
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe3c6120210>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
|
15 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
16 |
+
"net_arch": [
|
17 |
+
{
|
18 |
+
"pi": [
|
19 |
+
64,
|
20 |
+
64
|
21 |
+
],
|
22 |
+
"vf": [
|
23 |
+
64,
|
24 |
+
64
|
25 |
+
]
|
26 |
+
}
|
27 |
+
]
|
28 |
+
},
|
29 |
+
"observation_space": {
|
30 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
31 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
32 |
+
"dtype": "float32",
|
33 |
+
"_shape": [
|
34 |
+
2
|
35 |
+
],
|
36 |
+
"low": "[-1.2 -0.07]",
|
37 |
+
"high": "[0.6 0.07]",
|
38 |
+
"bounded_below": "[ True True]",
|
39 |
+
"bounded_above": "[ True True]",
|
40 |
+
"_np_random": null
|
41 |
+
},
|
42 |
+
"action_space": {
|
43 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
44 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
45 |
+
"n": 3,
|
46 |
+
"_shape": [],
|
47 |
+
"dtype": "int64",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 1003520,
|
52 |
+
"_total_timesteps": 1000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1668605875971638501,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
60 |
+
},
|
61 |
+
"tensorboard_log": null,
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO1R7L4AAAAAlsbyvgAAAADYL9y+AAAAAKDsA78AAAAAlzz/vgAAAAC9sOS+AAAAAO9l1L4AAAAAhC34vgAAAAAbswC/AAAAAFFqDr8AAAAAzP3rvgAAAACjAAK/AAAAAAlJ0r4AAAAAE5zdvgAAAAAs6PK+AAAAAIq06L4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFmAAAAAAACMAWyUS8iMAXSUR0B2INQ0oBq9dX2UKGgGR8BYAAAAAAAAaAdLyGgIR0B2IM4WDYh/dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2IMhV2icodX2UKGgGR8BagAAAAAAAaAdLyGgIR0B2IMK4QSSNdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2NOX4TK1YdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2NN/axoqTdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2NNd0JWvKdX2UKGgGR8BWAAAAAAAAaAdLyGgIR0B2NM2sJY1YdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0B2NMLThHbzdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2NLq8lHBldX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2NLF6zE75dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2NKelKsdUdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2NJ9KEnLJdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B2NJZA6dUbdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2NJA1NxlydX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2NIuBczIndX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2NIM4LkS3dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B2NHzqbBoFdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2NHcHnlnzdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2NHFVDKHPdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2U0OkLx7RdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2Uz4XXRPXdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2UzYEnssydX2UKGgGR8BZAAAAAAAAaAdLyGgIR0B2UyyJKraNdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2UyH+IdlvdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2Uxog3cYZdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2UxEXtShrdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2Uwd92HLzdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2Uv9l2/zrdX2UKGgGR8BZAAAAAAAAaAdLyGgIR0B2UvaVUuL8dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2UvDDTBqLdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2UuxRl6JJdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B2UuRKYiPidX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2Ut4t6HCXdX2UKGgGR8BagAAAAAAAaAdLyGgIR0B2UtiG34KydX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2UtMIu5BkdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2Z3P7el9CdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2Z23vx6OYdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2Z2WNWEK3dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2Z1vJiiItdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B2Z1DzAeq8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2Z0jW07bMdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2Zz+YMOPOdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2ZzXEqDsddX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2Zy1qnFYMdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2ZyRjjJdTdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2Zx5Z8rqddX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2ZxmoR7JGdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0B2ZxFhG6PKdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2ZwsNDtw8dX2UKGgGR8BYwAAAAAAAaAdLyGgIR0B2ZwUqQRwqdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2Zv93r2QGdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2bNet0V8DdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2bNGQSzw+dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2bMkmhM8HdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B2bL9ehPCVdX2UKGgGR8BlQAAAAAAAaAdLyGgIR0B2bLSE12q2dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2bKxqwhW6dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2bKMsH0K7dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2bJlWfbsXdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2bJD7ZWaMdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2bIfyPMjedX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2bIHmig01dX2UKGgGR8BXwAAAAAAAaAdLyGgIR0B2bH0yxiXqdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2bHTpgTh6dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2bG6UaAFxdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2bGiudPLxdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0B2bGL4vexfdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B2gAevIOpbdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0B2gAHLRrrPdX2UKGgGR8BawAAAAAAAaAdLyGgIR0B2f/mJWNm2dX2UKGgGR8BXwAAAAAAAaAdLyGgIR0B2f+/JvHcUdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2f+T9sJpndX2UKGgGR8BbAAAAAAAAaAdLyGgIR0B2f9zijtXxdX2UKGgGR8BXwAAAAAAAaAdLyGgIR0B2f9Oi35N5dX2UKGgGR8BagAAAAAAAaAdLyGgIR0B2f8nWrfcfdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2f8F9roGIdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2f7h3qzJIdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2f7JtBOYZdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0B2f627Wd3CdX2UKGgGR8BkYAAAAAAAaAdLyGgIR0B2f6V8kUsWdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2f58ohIOIdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2f5lFtsN2dX2UKGgGR8BWwAAAAAAAaAdLyGgIR0B2f5OXVsk6dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2nZQhwEQodX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nY4bS7XhdX2UKGgGR8BZQAAAAAAAaAdLyGgIR0B2nYXO4XoDdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2nXwRXfZVdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2nXFCLMs6dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0B2nWk56t1ZdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nWAAhje9dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nVZFG5MDdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0B2nU3xWkrPdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0B2nUT4+KTCdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nT8CPp6hdX2UKGgGR8BVgAAAAAAAaAdLyGgIR0B2nTpljEvTdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nTIuGsV+dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0B2nSvcJtzkdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nSX7cfvGdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0B2nSBMBZIQdWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 4900,
|
88 |
+
"n_steps": 256,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.98,
|
91 |
+
"ent_coef": 6.4940755116195606e-06,
|
92 |
+
"vf_coef": 0.25988158989488963,
|
93 |
+
"max_grad_norm": 1,
|
94 |
+
"batch_size": 512,
|
95 |
+
"n_epochs": 20,
|
96 |
+
"clip_range": {
|
97 |
+
":type:": "<class 'function'>",
|
98 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
99 |
+
},
|
100 |
+
"clip_range_vf": null,
|
101 |
+
"normalize_advantage": true,
|
102 |
+
"target_kl": null
|
103 |
+
}
|
ppo-seals-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af142545489c0c1e8eb4fced66b9e825aeb8442bfb08037205419fe27b62787
|
3 |
+
size 77917
|
ppo-seals-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0de8b79d79fde519e4ff74566851a2281011d2c34e20863b7657be0e17e1dcc3
|
3 |
+
size 40760
|
ppo-seals-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-seals-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.29 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7498e1b3541890d80e000267d7a20c12fba0dcb51f1f87c832e91213ed015eb8
|
3 |
+
size 158163
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -100.6, "std_reward": 5.748043145279966, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-16T15:00:28.926124"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90cad502c706185677bac5df7fc8d963aa07a0e5e2cba43090537c46134092be
|
3 |
+
size 119103
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:336b1e182957d2e4556003c56c7b7dd141caeefe59090a92e01bd4fced5654f5
|
3 |
+
size 3961
|