--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-IDMGSP-danish results: [] datasets: - ernlavr/IDMGSP-danish language: - da library_name: transformers --- # bert-base-multilingual-cased-IDMGSP-danish This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the on the [ernlavr/IDMGSP-danish](https://huggingface.co/datasets/ernlavr/IDMGSP-danish) dataset. It achieves the following results on the evaluation set: - Loss: 1.0123 - Accuracy: {'accuracy': 0.8289043068464459} - F1: {'f1': 0.842473183078221} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| | 0.4692 | 1.0 | 480 | 0.3779 | {'accuracy': 0.8519439717240477} | {'f1': 0.84845236500067} | | 0.3267 | 2.0 | 960 | 0.5350 | {'accuracy': 0.7896321508050792} | {'f1': 0.8138538167496815} | | 0.5149 | 3.0 | 1440 | 0.7051 | {'accuracy': 0.7510145306977353} | {'f1': 0.7911267296288161} | | 0.2823 | 4.0 | 1920 | 0.6520 | {'accuracy': 0.7317711742374656} | {'f1': 0.7837010450754776} | | 0.2107 | 5.0 | 2400 | 0.3335 | {'accuracy': 0.8785181306453724} | {'f1': 0.8759689922480619} | | 0.1868 | 6.0 | 2880 | 0.8269 | {'accuracy': 0.8175153815944496} | {'f1': 0.8349123638086214} | | 0.0969 | 7.0 | 3360 | 0.4585 | {'accuracy': 0.877470873150936} | {'f1': 0.872200983069361} | | 0.1116 | 8.0 | 3840 | 1.0309 | {'accuracy': 0.7993192826286163} | {'f1': 0.8236106316879531} | | 0.0386 | 9.0 | 4320 | 0.9517 | {'accuracy': 0.8294279355936641} | {'f1': 0.8426898466739103} | | 0.0204 | 10.0 | 4800 | 1.0123 | {'accuracy': 0.8289043068464459} | {'f1': 0.842473183078221} | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1 - Datasets 2.14.6 - Tokenizers 0.14.1