# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViT GMML (masked autoencoder) model.""" import collections.abc import math from copy import deepcopy from dataclasses import dataclass from typing import Optional, Set, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutput from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from transformers.utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from configuration_gmml import ViTGMMLConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViTGMMLConfig" _CHECKPOINT_FOR_DOC = "erow/vit-gmml-base" VIT_GMML_PRETRAINED_MODEL_ARCHIVE_LIST = [ "erow/vit-gmml-base", # See all ViTGMML models at https://huggingface.co/models?filter=vit_gmml ] @dataclass class ViTGMMLModelOutput(ModelOutput): """ Class for ViTGMMLModel's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None noise: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ViTGMMLForPreTrainingOutput(ModelOutput): """ Class for ViTGMMLForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Tensor containing the original index of the (shuffled) masked patches. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None noise: torch.LongTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False): """ Create 2D sin/cos positional embeddings. Args: embed_dim (`int`): Embedding dimension. grid_size (`int`): The grid height and width. add_cls_token (`bool`, *optional*, defaults to `False`): Whether or not to add a classification (CLS) token. Returns: (`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the position embeddings (with or without classification token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if add_cls_token: pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be even") omega = np.arange(embed_dim // 2, dtype=float) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class ViTGMMLEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ViTGMMLPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # fixed sin-cos embedding self.position_embeddings = nn.Parameter( torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False ) self.config = config self.initialize_weights() def initialize_weights(self): # initialize (and freeze) position embeddings by sin-cos embedding pos_embed = get_2d_sincos_pos_embed( self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True ) self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # initialize patch_embeddings like nn.Linear (instead of nn.Conv2d) w = self.patch_embeddings.projection.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.) torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range) def forward(self, pixel_values, noise=None): batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values) # add position embeddings w/o cls token embeddings = embeddings + self.position_embeddings[:, 1:, :] # append cls token cls_token = self.cls_token + self.position_embeddings[:, :1, :] cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) return embeddings class ViTGMMLPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention ViT->ViTGMML class ViTGMMLSelfAttention(nn.Module): def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTGMML class ViTGMMLSelfOutput(nn.Module): """ The residual connection is defined in ViTGMMLLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTGMML class ViTGMMLAttention(nn.Module): def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() self.attention = ViTGMMLSelfAttention(config) self.output = ViTGMMLSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->ViTGMML class ViTGMMLIntermediate(nn.Module): def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->ViTGMML class ViTGMMLOutput(nn.Module): def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTGMML class ViTGMMLLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViTGMMLAttention(config) self.intermediate = ViTGMMLIntermediate(config) self.output = ViTGMMLOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTGMML, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViTGMML, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTGMML class ViTGMMLEncoder(nn.Module): def __init__(self, config: ViTGMMLConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTGMMLLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViTGMMLPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTGMMLConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VIT_GMML_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTGMMLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_GMML_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViTGMML Model transformer outputting raw hidden-states without any specific head on top.", VIT_GMML_START_DOCSTRING, ) class ViTGMMLModel(ViTGMMLPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ViTGMMLEmbeddings(config) self.encoder = ViTGMMLEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTGMMLModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ViTGMMLModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTGMMLModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base") >>> model = ViTGMMLModel.from_pretrained("erow/vit-gmml-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, noise=noise) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output, ) + encoder_outputs[1:] return ViTGMMLModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class GMMLDecoder(nn.Module): def __init__(self, in_dim, in_chans=3, patch_size=16): super().__init__() layers = [nn.Linear(in_dim, in_dim)] layers.append(nn.GELU()) layers.append(nn.Linear(in_dim, in_dim)) layers.append(nn.GELU()) layers.append(nn.Linear(in_dim, in_dim)) layers.append(nn.GELU()) self.mlp = nn.Sequential(*layers) self.apply(self._init_weights) self.convTrans = nn.ConvTranspose2d(in_dim, in_chans, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size)) def _init_weights(self, m): if isinstance(m, nn.Linear): torch.nn.init.normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) x_rec = x.transpose(1, 2) out_sz = tuple( ( int(math.sqrt(x_rec.size()[2])) , int(math.sqrt(x_rec.size()[2])) ) ) x_rec = self.convTrans(x_rec.unflatten(2, out_sz)) return x_rec @add_start_docstrings( """The ViTGMML Model transformer with the decoder on top for self-supervised pre-training. Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). """, VIT_GMML_START_DOCSTRING, ) class ViTGMMLForPreTraining(ViTGMMLPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.vit = ViTGMMLModel(config) self.decoder = GMMLDecoder(config.hidden_size, config.num_channels, config.patch_size) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.vit.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def patchify(self, pixel_values): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Returns: `torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels # sanity checks if (pixel_values.shape[2] != pixel_values.shape[3]) or (pixel_values.shape[2] % patch_size != 0): raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size") if pixel_values.shape[1] != num_channels: raise ValueError( "Make sure the number of channels of the pixel values is equal to the one set in the configuration" ) # patchify batch_size = pixel_values.shape[0] num_patches_one_direction = pixel_values.shape[2] // patch_size patchified_pixel_values = pixel_values.reshape( batch_size, num_channels, num_patches_one_direction, patch_size, num_patches_one_direction, patch_size ) patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values) patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_one_direction * num_patches_one_direction, patch_size**2 * num_channels ) return patchified_pixel_values def unpatchify(self, patchified_pixel_values): """ Args: patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Patchified pixel values. Returns: `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: Pixel values. """ patch_size, num_channels = self.config.patch_size, self.config.num_channels num_patches_one_direction = int(patchified_pixel_values.shape[1] ** 0.5) # sanity check if num_patches_one_direction**2 != patchified_pixel_values.shape[1]: raise ValueError("Make sure that the number of patches can be squared") # unpatchify batch_size = patchified_pixel_values.shape[0] patchified_pixel_values = patchified_pixel_values.reshape( batch_size, num_patches_one_direction, num_patches_one_direction, patch_size, patch_size, num_channels, ) patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values) pixel_values = patchified_pixel_values.reshape( batch_size, num_channels, num_patches_one_direction * patch_size, num_patches_one_direction * patch_size, ) return pixel_values def forward_loss(self, pixel_values, pred, mask): """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: Predicted pixel values. mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Tensor indicating which patches are masked (1) and which are not (0). Returns: `torch.FloatTensor`: Pixel reconstruction loss. """ target = pixel_values pred = self.unpatchify(pred) loss = (pred - target) ** 2 loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss @add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ViTGMMLForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, noise: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ViTGMMLForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTGMMLForPreTraining >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base") >>> model = ViTGMMLForPreTraining.from_pretrained("erow/vit-gmml-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss >>> mask = outputs.mask >>> ids_restore = outputs.ids_restore ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) latent = outputs.last_hidden_state logits = self.decoder(latent) # shape (batch_size, num_patches, patch_size*patch_size*num_channels) loss = self.forward_loss(pixel_values, logits, noise) if not return_dict: output = (logits, ) + outputs[2:] return ((loss,) + output) if loss is not None else output return ViTGMMLForPreTrainingOutput( loss=loss, logits=logits, noise=noise, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) if __name__=="__main__": # Initializing a ViT MAE vit-mae-base style configuration configuration = ViTGMMLConfig() # Initializing a model (with random weights) from the vit-mae-base style configuration model = ViTGMMLModel(configuration) # Accessing the model configuration configuration = model.config x = torch.randn(1, 3, 224, 224) output = model(x)