File size: 7,464 Bytes
428a689
68199bd
 
 
 
 
 
428a689
a937b2a
68199bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a937b2a
68199bd
a937b2a
68199bd
a937b2a
68199bd
 
 
 
 
 
 
 
 
 
 
 
 
a937b2a
68199bd
a937b2a
68199bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a937b2a
 
68199bd
a937b2a
68199bd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
base_model: eryk-mazus/tinyllama-with-custom-tokenizer
tags:
- generated_from_trainer
model-index:
- name: workspace/tmp/
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: eryk-mazus/tinyllama-with-custom-tokenizer

model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: eryk-mazus/polka-pretrain-en-pl-v1
    type: completion # format from earlier
    field: text # Optional[str] default: text, field to use for completion data

dataset_prepared_path:
val_set_size: 0.05
output_dir: /workspace/tmp/

sequence_len: 2048
sample_packing: false

adapter: 
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: polka
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
lr_scheduler:
learning_rate: 0.00005

optimizer: adamw_torch
adam_beta1: 0.9 
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

warmup_steps: 0
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

eval_steps: 1000
save_steps: 1000
save_total_limit: 2

debug:
deepspeed:
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# workspace/tmp/

This model is a fine-tuned version of [eryk-mazus/tinyllama-with-custom-tokenizer](https://huggingface.co/eryk-mazus/tinyllama-with-custom-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8795

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.0469        | 0.01  | 1000  | 3.0497          |
| 2.664         | 0.02  | 2000  | 2.6586          |
| 2.5018        | 0.04  | 3000  | 2.4944          |
| 2.5955        | 0.05  | 4000  | 2.3988          |
| 2.2783        | 0.06  | 5000  | 2.3338          |
| 2.3171        | 0.07  | 6000  | 2.2852          |
| 2.189         | 0.08  | 7000  | 2.2459          |
| 2.3594        | 0.09  | 8000  | 2.2153          |
| 2.1882        | 0.11  | 9000  | 2.1882          |
| 2.2699        | 0.12  | 10000 | 2.1659          |
| 2.1273        | 0.13  | 11000 | 2.1469          |
| 2.1041        | 0.14  | 12000 | 2.1291          |
| 2.1698        | 0.15  | 13000 | 2.1138          |
| 2.2126        | 0.16  | 14000 | 2.1004          |
| 2.1065        | 0.18  | 15000 | 2.0886          |
| 2.0589        | 0.19  | 16000 | 2.0764          |
| 2.0537        | 0.2   | 17000 | 2.0663          |
| 1.9746        | 0.21  | 18000 | 2.0569          |
| 2.2128        | 0.22  | 19000 | 2.0477          |
| 2.1342        | 0.23  | 20000 | 2.0393          |
| 2.0643        | 0.25  | 21000 | 2.0312          |
| 2.2776        | 0.26  | 22000 | 2.0240          |
| 1.94          | 0.27  | 23000 | 2.0173          |
| 1.8249        | 0.28  | 24000 | 2.0111          |
| 1.966         | 0.29  | 25000 | 2.0049          |
| 1.9351        | 0.31  | 26000 | 1.9994          |
| 1.9563        | 0.32  | 27000 | 1.9947          |
| 1.9496        | 0.33  | 28000 | 1.9878          |
| 2.0127        | 0.34  | 29000 | 1.9835          |
| 2.0043        | 0.35  | 30000 | 1.9794          |
| 2.0227        | 0.36  | 31000 | 1.9748          |
| 1.9308        | 0.38  | 32000 | 1.9704          |
| 1.9183        | 0.39  | 33000 | 1.9655          |
| 1.9919        | 0.4   | 34000 | 1.9620          |
| 1.9351        | 0.41  | 35000 | 1.9580          |
| 1.9103        | 0.42  | 36000 | 1.9537          |
| 1.7521        | 0.43  | 37000 | 1.9512          |
| 1.9567        | 0.45  | 38000 | 1.9454          |
| 2.022         | 0.46  | 39000 | 1.9426          |
| 1.8526        | 0.47  | 40000 | 1.9398          |
| 1.8912        | 0.48  | 41000 | 1.9370          |
| 2.0546        | 0.49  | 42000 | 1.9334          |
| 2.0607        | 0.5   | 43000 | 1.9308          |
| 2.0078        | 0.52  | 44000 | 1.9279          |
| 1.889         | 0.53  | 45000 | 1.9253          |
| 1.8587        | 0.54  | 46000 | 1.9222          |
| 1.8571        | 0.55  | 47000 | 1.9199          |
| 1.8806        | 0.56  | 48000 | 1.9178          |
| 1.8483        | 0.58  | 49000 | 1.9150          |
| 1.7862        | 0.59  | 50000 | 1.9130          |
| 1.8989        | 0.6   | 51000 | 1.9102          |
| 1.9389        | 0.61  | 52000 | 1.9083          |
| 1.9301        | 0.62  | 53000 | 1.9065          |
| 1.9522        | 0.63  | 54000 | 1.9046          |
| 1.883         | 0.65  | 55000 | 1.9027          |
| 1.9647        | 0.66  | 56000 | 1.9002          |
| 1.9284        | 0.67  | 57000 | 1.8988          |
| 1.8836        | 0.68  | 58000 | 1.8974          |
| 1.8472        | 0.69  | 59000 | 1.8956          |
| 2.1232        | 0.7   | 60000 | 1.8945          |
| 1.8571        | 0.72  | 61000 | 1.8933          |
| 1.8043        | 0.73  | 62000 | 1.8918          |
| 1.9468        | 0.74  | 63000 | 1.8906          |
| 1.9173        | 0.75  | 64000 | 1.8896          |
| 1.7762        | 0.76  | 65000 | 1.8880          |
| 2.032         | 0.77  | 66000 | 1.8876          |
| 1.9362        | 0.79  | 67000 | 1.8867          |
| 1.8308        | 0.8   | 68000 | 1.8854          |
| 1.9289        | 0.81  | 69000 | 1.8847          |
| 1.9467        | 0.82  | 70000 | 1.8841          |
| 1.8798        | 0.83  | 71000 | 1.8835          |
| 1.8868        | 0.84  | 72000 | 1.8828          |
| 1.8905        | 0.86  | 73000 | 1.8820          |
| 1.9508        | 0.87  | 74000 | 1.8816          |
| 1.7983        | 0.88  | 75000 | 1.8813          |
| 1.7693        | 0.89  | 76000 | 1.8806          |
| 1.7371        | 0.9   | 77000 | 1.8804          |
| 1.8705        | 0.92  | 78000 | 1.8802          |
| 1.8707        | 0.93  | 79000 | 1.8799          |
| 1.9113        | 0.94  | 80000 | 1.8799          |
| 2.1314        | 0.95  | 81000 | 1.8797          |
| 1.9132        | 0.96  | 82000 | 1.8795          |
| 2.0349        | 0.97  | 83000 | 1.8796          |
| 1.7939        | 0.99  | 84000 | 1.8795          |
| 1.8357        | 1.0   | 85000 | 1.8795          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0