File size: 3,869 Bytes
daf3460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: transformers
license: apache-2.0
base_model: yhavinga/ul2-base-dutch
tags:
- generated_from_trainer
model-index:
- name: ul2-base-dutch-finetuned-oba-book-search
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ul2-base-dutch-finetuned-oba-book-search

This model is a fine-tuned version of [yhavinga/ul2-base-dutch](https://huggingface.co/yhavinga/ul2-base-dutch) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5040
- Top-5-accuracy: 0.0597

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Top-5-accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------------:|
| 6.7559        | 0.0848 | 500   | 7.0741          | 0.0            |
| 7.3594        | 0.1696 | 1000  | 7.0888          | 0.0            |
| 7.4457        | 0.2544 | 1500  | 6.8574          | 0.0            |
| 7.6522        | 0.3392 | 2000  | 7.2824          | 0.0            |
| 7.4598        | 0.4239 | 2500  | 7.1592          | 0.0            |
| 7.4733        | 0.5087 | 3000  | 6.8309          | 0.0            |
| 7.1533        | 0.5935 | 3500  | 6.3314          | 0.0            |
| 7.1903        | 0.6783 | 4000  | 6.6715          | 0.0            |
| 12.2465       | 0.7631 | 4500  | 7.5477          | 0.0            |
| 7.0061        | 0.8479 | 5000  | 6.7576          | 0.0            |
| 6.7448        | 0.9327 | 5500  | 6.2698          | 0.0            |
| 6.4934        | 1.0175 | 6000  | 6.0520          | 0.0            |
| 6.7022        | 1.1023 | 6500  | 6.4743          | 0.0            |
| 6.6138        | 1.1870 | 7000  | 6.6552          | 0.0            |
| 6.1879        | 1.2718 | 7500  | 5.8394          | 0.0            |
| 6.3701        | 1.3566 | 8000  | 6.2708          | 0.0            |
| 6.0675        | 1.4414 | 8500  | 5.8804          | 0.0            |
| 5.9228        | 1.5262 | 9000  | 5.4786          | 0.0796         |
| 5.8256        | 1.6110 | 9500  | 5.8534          | 0.0            |
| 5.529         | 1.6958 | 10000 | 5.4673          | 0.0796         |
| 5.3783        | 1.7806 | 10500 | 5.1146          | 0.0            |
| 5.3029        | 1.8654 | 11000 | 5.1393          | 0.0            |
| 5.0497        | 1.9501 | 11500 | 4.8904          | 0.0            |
| 4.9395        | 2.0349 | 12000 | 4.7346          | 0.0            |
| 4.6926        | 2.1197 | 12500 | 4.6029          | 0.0            |
| 4.5387        | 2.2045 | 13000 | 4.3546          | 0.1393         |
| 4.3876        | 2.2893 | 13500 | 4.2308          | 0.0597         |
| 4.2131        | 2.3741 | 14000 | 4.1112          | 0.1990         |
| 4.0999        | 2.4589 | 14500 | 3.9334          | 0.0995         |
| 3.9525        | 2.5437 | 15000 | 3.8421          | 0.0            |
| 3.8629        | 2.6285 | 15500 | 3.7120          | 0.1592         |
| 3.7975        | 2.7132 | 16000 | 3.5973          | 0.0796         |
| 3.7205        | 2.7980 | 16500 | 3.5398          | 0.0796         |
| 3.6382        | 2.8828 | 17000 | 3.5131          | 0.2786         |
| 3.5967        | 2.9676 | 17500 | 3.5040          | 0.0597         |


### Framework versions

- Transformers 4.44.2
- Pytorch 1.13.0+cu116
- Datasets 3.0.0
- Tokenizers 0.19.1