esahit's picture
Full fine-tuning run with ul2-base-dutch on increased dataset
daf3460 verified
---
library_name: transformers
license: apache-2.0
base_model: yhavinga/ul2-base-dutch
tags:
- generated_from_trainer
model-index:
- name: ul2-base-dutch-finetuned-oba-book-search
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ul2-base-dutch-finetuned-oba-book-search
This model is a fine-tuned version of [yhavinga/ul2-base-dutch](https://huggingface.co/yhavinga/ul2-base-dutch) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5040
- Top-5-accuracy: 0.0597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Top-5-accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------------:|
| 6.7559 | 0.0848 | 500 | 7.0741 | 0.0 |
| 7.3594 | 0.1696 | 1000 | 7.0888 | 0.0 |
| 7.4457 | 0.2544 | 1500 | 6.8574 | 0.0 |
| 7.6522 | 0.3392 | 2000 | 7.2824 | 0.0 |
| 7.4598 | 0.4239 | 2500 | 7.1592 | 0.0 |
| 7.4733 | 0.5087 | 3000 | 6.8309 | 0.0 |
| 7.1533 | 0.5935 | 3500 | 6.3314 | 0.0 |
| 7.1903 | 0.6783 | 4000 | 6.6715 | 0.0 |
| 12.2465 | 0.7631 | 4500 | 7.5477 | 0.0 |
| 7.0061 | 0.8479 | 5000 | 6.7576 | 0.0 |
| 6.7448 | 0.9327 | 5500 | 6.2698 | 0.0 |
| 6.4934 | 1.0175 | 6000 | 6.0520 | 0.0 |
| 6.7022 | 1.1023 | 6500 | 6.4743 | 0.0 |
| 6.6138 | 1.1870 | 7000 | 6.6552 | 0.0 |
| 6.1879 | 1.2718 | 7500 | 5.8394 | 0.0 |
| 6.3701 | 1.3566 | 8000 | 6.2708 | 0.0 |
| 6.0675 | 1.4414 | 8500 | 5.8804 | 0.0 |
| 5.9228 | 1.5262 | 9000 | 5.4786 | 0.0796 |
| 5.8256 | 1.6110 | 9500 | 5.8534 | 0.0 |
| 5.529 | 1.6958 | 10000 | 5.4673 | 0.0796 |
| 5.3783 | 1.7806 | 10500 | 5.1146 | 0.0 |
| 5.3029 | 1.8654 | 11000 | 5.1393 | 0.0 |
| 5.0497 | 1.9501 | 11500 | 4.8904 | 0.0 |
| 4.9395 | 2.0349 | 12000 | 4.7346 | 0.0 |
| 4.6926 | 2.1197 | 12500 | 4.6029 | 0.0 |
| 4.5387 | 2.2045 | 13000 | 4.3546 | 0.1393 |
| 4.3876 | 2.2893 | 13500 | 4.2308 | 0.0597 |
| 4.2131 | 2.3741 | 14000 | 4.1112 | 0.1990 |
| 4.0999 | 2.4589 | 14500 | 3.9334 | 0.0995 |
| 3.9525 | 2.5437 | 15000 | 3.8421 | 0.0 |
| 3.8629 | 2.6285 | 15500 | 3.7120 | 0.1592 |
| 3.7975 | 2.7132 | 16000 | 3.5973 | 0.0796 |
| 3.7205 | 2.7980 | 16500 | 3.5398 | 0.0796 |
| 3.6382 | 2.8828 | 17000 | 3.5131 | 0.2786 |
| 3.5967 | 2.9676 | 17500 | 3.5040 | 0.0597 |
### Framework versions
- Transformers 4.44.2
- Pytorch 1.13.0+cu116
- Datasets 3.0.0
- Tokenizers 0.19.1