--- language: - en tags: - esc datasets: - chime4 --- To reproduce this run, execute: ```python #!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="esc-benchmark/esc-datasets" \ --dataset_config_name="chime4" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --max_steps="100000" \ --output_dir="./" \ --run_name="conformer-rnnt-chime4" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="4" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_train \ --do_eval \ --do_predict \ --use_auth_token ```