Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar_demo.zip +3 -0
- lunar_demo/_stable_baselines3_version +1 -0
- lunar_demo/data +94 -0
- lunar_demo/policy.optimizer.pth +3 -0
- lunar_demo/policy.pth +3 -0
- lunar_demo/pytorch_variables.pth +3 -0
- lunar_demo/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -1041.44 +/- 85.81
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06722c1ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06722c1f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06722ca050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06722ca0e0>", "_build": "<function ActorCriticPolicy._build at 0x7f06722ca170>", "forward": "<function ActorCriticPolicy.forward at 0x7f06722ca200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06722ca290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f06722ca320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06722ca3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06722ca440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06722ca4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0672311a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 200, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652113121.350261, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAbOb28Un8/iM9XvoUwTb9UnTE+vvz7PAAAAAAAAAAADikdvyA9GT/o6JW/YEhsv7xFAT8v5rY9AAAAAAAAAAA6UXI+jJNQP4z5Cj9f12e/vBgOvwrobr4AAAAAAAAAAFNyZD6/ksU+oln2PtHol7+SsgK/4rmrvgAAAAAAAAAAGtazvZC2nD94bxi/Ej0ev0jINj7nKpc+AAAAAAAAAADmUVa9H0CxPwh/4b7p5Ue+iwedPQsEMD4AAAAAAAAAAIAjNT5gIUA/c2QiP4Gtjr/YsQq/jdDWvgAAAAAAAAAAzbonPFhMtT/TylM+WSIBPOhlabwePo29AAAAAAAAAADmFzo9vum/Py8Tuj0P4SW+6QdFPln5Aj4AAAAAAAAAAO1IPr6wm6g/+VBKvw05w75KQsI9hNbFOwAAAAAAAAAArV4rPqowhD+mBik/hhNlv5lv+b1AxuM7AAAAAAAAAABAlwu+rfGzPzg21L6rDoa+AeTXPdfepr0AAAAAAAAAAPOr0r73cyk/lYt2vxy7i7/OAno/IBEUPwAAAAAAAAAAM6XCvSZZgD8OnVm+H1cqvwNoFL4LqCK+AAAAAAAAAABgOhE+bkOvPgoqWT7buaa/mbc8vUtK2zwAAAAAAAAAAGb1+rzW9pg/cro5vfVdKL+1SCg+Ktz6uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/b/qyBHbYcCUhpRSlIwBbJRLQ4wBdJRHQEhbhLGrCFd1fZQoaAZoCWgPQwhmahK8IWRmwJSGlFKUaBVLV2gWR0BIaNGd7OVxdX2UKGgGaAloD0MIyTzyBwMUU8CUhpRSlGgVS2hoFkdASG8vM8ox6HV9lChoBmgJaA9DCFx381TH9nbAlIaUUpRoFUtTaBZHQEh0NVBD5TJ1fZQoaAZoCWgPQwipoKLqV9BOwJSGlFKUaBVLSmgWR0BIe8urZJ05dX2UKGgGaAloD0MI8gnZeZtkYcCUhpRSlGgVS1poFkdASHw+hXbM5nV9lChoBmgJaA9DCG+ERUWcTjVAlIaUUpRoFUtUaBZHQEiEk+HJtBR1fZQoaAZoCWgPQwgF/YUeMaxSwJSGlFKUaBVLY2gWR0BIhJokAxSHdX2UKGgGaAloD0MIeJeL+M5AZMCUhpRSlGgVS15oFkdASIdj0+TvA3V9lChoBmgJaA9DCIvfFFYq71nAlIaUUpRoFUtIaBZHQEiM3EyckMV1fZQoaAZoCWgPQwhPWriswo1WwJSGlFKUaBVLU2gWR0BIjeKCQLeAdX2UKGgGaAloD0MILgCN0iUfZ8CUhpRSlGgVS2toFkdASJFBdD6WPnV9lChoBmgJaA9DCB6Jl6ezP3nAlIaUUpRoFUtpaBZHQEiToIv8IiV1fZQoaAZoCWgPQwhf7/54ryxYwJSGlFKUaBVLO2gWR0BIknEETxoadX2UKGgGaAloD0MIhZSfVHvYbsCUhpRSlGgVS2xoFkdASJaOFQEZBXV9lChoBmgJaA9DCAvrxrsjdnnAlIaUUpRoFUtXaBZHQEiYGpuMuOF1fZQoaAZoCWgPQwghH/RsVvNMwJSGlFKUaBVLd2gWR0BInqRU3n6mdX2UKGgGaAloD0MIC2DKwAH/V8CUhpRSlGgVS0NoFkdASKHZVXFLnXV9lChoBmgJaA9DCP1K58Oz22nAlIaUUpRoFUtFaBZHQEiqyRB/qgR1fZQoaAZoCWgPQwgKSzygbApfwJSGlFKUaBVLg2gWR0BIr0IC2c8UdX2UKGgGaAloD0MI0ZSdflCiV8CUhpRSlGgVSzxoFkdASLlyeZof0XV9lChoBmgJaA9DCNGy7h8L5FzAlIaUUpRoFUs9aBZHQEi8HARChOB1fZQoaAZoCWgPQwjI0ocuqBtqwJSGlFKUaBVLcWgWR0BIvJaaCtihdX2UKGgGaAloD0MIlbcjnBYTVsCUhpRSlGgVSz5oFkdASMAjv/io9HV9lChoBmgJaA9DCJqw/WTMznXAlIaUUpRoFUtYaBZHQEjBBppN9IB1fZQoaAZoCWgPQwigUiXK3iBYwJSGlFKUaBVLZWgWR0BIwiWVu76IdX2UKGgGaAloD0MInff/ccJnacCUhpRSlGgVS0FoFkdASMsTg2qDLHV9lChoBmgJaA9DCML8FTJXfi5AlIaUUpRoFUtbaBZHQEjLI3irDIl1fZQoaAZoCWgPQwiJJHoZxfNkwJSGlFKUaBVLZWgWR0BIzSwwCbMHdX2UKGgGaAloD0MIpBthURH8Y8CUhpRSlGgVS1poFkdASNAVymygPHV9lChoBmgJaA9DCHQNMzQe6mLAlIaUUpRoFUtuaBZHQEjRJ9y925h1fZQoaAZoCWgPQwiFQZlGE5twwJSGlFKUaBVLXGgWR0BI1tCAtnPFdX2UKGgGaAloD0MIi2t8JrtBdMCUhpRSlGgVS2xoFkdASNfbypaRp3V9lChoBmgJaA9DCGk6OxkcOHbAlIaUUpRoFUtRaBZHQEjZ/XoTwlV1fZQoaAZoCWgPQwjZzvdT4wdnwJSGlFKUaBVLQ2gWR0BI5v8AJb+tdX2UKGgGaAloD0MIFy1A22rCW8CUhpRSlGgVSz5oFkdASOaqfe1rqXV9lChoBmgJaA9DCMZRuYna93TAlIaUUpRoFUtbaBZHQEjo9RJmNBF1fZQoaAZoCWgPQwgLXvQVpP1bwJSGlFKUaBVLXWgWR0BI7te2NNrTdX2UKGgGaAloD0MIkj6tov/8dsCUhpRSlGgVS0toFkdASPJ13dKujnV9lChoBmgJaA9DCE6XxcRmqWDAlIaUUpRoFUtXaBZHQEj7YkE9t/F1fZQoaAZoCWgPQwjItgw4S112wJSGlFKUaBVLUWgWR0BJA7KRuCPIdX2UKGgGaAloD0MIbhRZa6hRdMCUhpRSlGgVS2NoFkdASQT5bhWHUXV9lChoBmgJaA9DCFovhnJiUXfAlIaUUpRoFUtxaBZHQEkJjGT9sJp1fZQoaAZoCWgPQwjYYrfPKnhZwJSGlFKUaBVLWGgWR0BJC0HQhOgydX2UKGgGaAloD0MIM9yAzw8dcsCUhpRSlGgVS2doFkdASREySFGoaXV9lChoBmgJaA9DCFOXjGMkgHzAlIaUUpRoFUtgaBZHQEkRy6tknTl1fZQoaAZoCWgPQwiuYYbGE1JgwJSGlFKUaBVLamgWR0BJE3aJyhi9dX2UKGgGaAloD0MI7x6g+zLqdcCUhpRSlGgVS1ZoFkdASRJnDiwSrnV9lChoBmgJaA9DCNszSwLUPV7AlIaUUpRoFUtaaBZHQEkT8Sf16E91fZQoaAZoCWgPQwj+fFuwVCNawJSGlFKUaBVLTmgWR0BJHbcO9WZJdX2UKGgGaAloD0MIixcLQ+QTWsCUhpRSlGgVS2doFkdASR7ZQHiWFHV9lChoBmgJaA9DCPJ376gxY2LAlIaUUpRoFUtgaBZHQEkns5XEIgN1fZQoaAZoCWgPQwgIdvwXCJNZwJSGlFKUaBVLRGgWR0BJKV+iJwbVdX2UKGgGaAloD0MIcm2oGGfYYcCUhpRSlGgVS0FoFkdASS9e8f3evnV9lChoBmgJaA9DCIS7s3ZbwWLAlIaUUpRoFUtJaBZHQEk46S1Vo6F1fZQoaAZoCWgPQwjVlGQdjptvwJSGlFKUaBVLe2gWR0BJORFRYRukdX2UKGgGaAloD0MInWUWodiYVsCUhpRSlGgVS0NoFkdASUANTcZccHV9lChoBmgJaA9DCPIJ2XmbIGLAlIaUUpRoFUtKaBZHQElCwKSgXdl1fZQoaAZoCWgPQwjgufdwya1CwJSGlFKUaBVLSWgWR0BJQpwCKaXsdX2UKGgGaAloD0MIOC7jpgbjXMCUhpRSlGgVSz1oFkdASUcAksz2vnV9lChoBmgJaA9DCCBj7lrC13jAlIaUUpRoFUtcaBZHQElInHeaa1F1fZQoaAZoCWgPQwhpAG+BhN9iwJSGlFKUaBVLamgWR0BJSvSc9W6tdX2UKGgGaAloD0MIru/DQYL8dsCUhpRSlGgVS4ZoFkdASU2ObRWtEHV9lChoBmgJaA9DCHrgY7DiZlLAlIaUUpRoFUtLaBZHQElRZK3/gix1fZQoaAZoCWgPQwjKxRhYR1dgwJSGlFKUaBVLnWgWR0BJWK814xDcdX2UKGgGaAloD0MI2A5G7JOBY8CUhpRSlGgVS3RoFkdASV3Bk7Omi3V9lChoBmgJaA9DCOnvpfDgCXTAlIaUUpRoFUtcaBZHQElnEhq0tyx1fZQoaAZoCWgPQwjsM2d9yr1twJSGlFKUaBVLgWgWR0BJaK1G9YfXdX2UKGgGaAloD0MI/ffgtUsiUsCUhpRSlGgVS0loFkdASWrF85S3s3V9lChoBmgJaA9DCAzNdRppSW3AlIaUUpRoFUtoaBZHQEltbSJCSid1fZQoaAZoCWgPQwguVP61vLdfwJSGlFKUaBVLZ2gWR0BJdI4lyBCldX2UKGgGaAloD0MIcjRHVn5YaMCUhpRSlGgVS15oFkdASXiraM72c3V9lChoBmgJaA9DCHP3OT5a0G7AlIaUUpRoFUtYaBZHQEl9EHdGiHt1fZQoaAZoCWgPQwiLwi6KHo5uwJSGlFKUaBVLW2gWR0BJf1YQrc0tdX2UKGgGaAloD0MIIHnnUEaEe8CUhpRSlGgVS29oFkdASYndsSCe3HV9lChoBmgJaA9DCKG8j6M58XjAlIaUUpRoFUtgaBZHQEmNanJkoWp1fZQoaAZoCWgPQwgcQL/vXzdwwJSGlFKUaBVLW2gWR0BJjj/2kBS2dX2UKGgGaAloD0MIXW4w1GGbd8CUhpRSlGgVS2hoFkdASY4Ym9g4O3V9lChoBmgJaA9DCBHHurgNT3fAlIaUUpRoFUtsaBZHQEmTReC04R51fZQoaAZoCWgPQwjKNJpcDLphwJSGlFKUaBVLRGgWR0BJm+a8Yht+dX2UKGgGaAloD0MIhxqFJHP6cMCUhpRSlGgVS1toFkdASZvNke6qbXV9lChoBmgJaA9DCFBUNqwpuWXAlIaUUpRoFUtWaBZHQEmiTxoZhrp1fZQoaAZoCWgPQwh+xK9YQ95xwJSGlFKUaBVLimgWR0BJpHkcS5AhdX2UKGgGaAloD0MIbmx2pPqjUcCUhpRSlGgVSz5oFkdASahNqQA+6nV9lChoBmgJaA9DCGACt+7mQGnAlIaUUpRoFUt/aBZHQEmvZzxPO6d1fZQoaAZoCWgPQwgkRWRYhf9xwJSGlFKUaBVLQGgWR0BJtpnHvMKUdX2UKGgGaAloD0MIAfxTqkTiWMCUhpRSlGgVS3FoFkdASbhQizLOiXV9lChoBmgJaA9DCOOkMO+xOXDAlIaUUpRoFUt0aBZHQEm4XFcY64l1fZQoaAZoCWgPQwjCacGLvlh5wJSGlFKUaBVLZ2gWR0BJwJmukk8idX2UKGgGaAloD0MIujKoNjgbUsCUhpRSlGgVS1RoFkdASclSde6ZpnV9lChoBmgJaA9DCKwfm+THpXDAlIaUUpRoFUt6aBZHQEnKOBDohZB1fZQoaAZoCWgPQwgZV1wclY9GwJSGlFKUaBVLbGgWR0BJyyU1Q66rdX2UKGgGaAloD0MImG4Sg8DOUcCUhpRSlGgVSz5oFkdASc4KSgXdkHV9lChoBmgJaA9DCGuDE9Evi2jAlIaUUpRoFUtfaBZHQEnQiu+yquN1fZQoaAZoCWgPQwjNkCqKVxtgwJSGlFKUaBVLTWgWR0BJ0mnfl6qsdX2UKGgGaAloD0MIDoelgR/Dc8CUhpRSlGgVS2VoFkdASdUgOjIq9XV9lChoBmgJaA9DCOsdbocGaWzAlIaUUpRoFUtfaBZHQEnV225QP7N1fZQoaAZoCWgPQwjpDIy8bBBywJSGlFKUaBVLUGgWR0BJ28Kw6hg3dX2UKGgGaAloD0MI9UcYBizrTsCUhpRSlGgVS19oFkdASd28274BWHV9lChoBmgJaA9DCNU8R+S7Q1rAlIaUUpRoFUs/aBZHQEnh/Lkjopx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_demo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a59bfaf54dbe6aa2487604f2af421a0bb7f13ce720a1c3f00fee2b0da170de
|
3 |
+
size 143895
|
lunar_demo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_demo/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f06722c1ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06722c1f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06722ca050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06722ca0e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f06722ca170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f06722ca200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06722ca290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f06722ca320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06722ca3b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06722ca440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06722ca4d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0672311a20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 32768,
|
46 |
+
"_total_timesteps": 200,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652113121.350261,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAbOb28Un8/iM9XvoUwTb9UnTE+vvz7PAAAAAAAAAAADikdvyA9GT/o6JW/YEhsv7xFAT8v5rY9AAAAAAAAAAA6UXI+jJNQP4z5Cj9f12e/vBgOvwrobr4AAAAAAAAAAFNyZD6/ksU+oln2PtHol7+SsgK/4rmrvgAAAAAAAAAAGtazvZC2nD94bxi/Ej0ev0jINj7nKpc+AAAAAAAAAADmUVa9H0CxPwh/4b7p5Ue+iwedPQsEMD4AAAAAAAAAAIAjNT5gIUA/c2QiP4Gtjr/YsQq/jdDWvgAAAAAAAAAAzbonPFhMtT/TylM+WSIBPOhlabwePo29AAAAAAAAAADmFzo9vum/Py8Tuj0P4SW+6QdFPln5Aj4AAAAAAAAAAO1IPr6wm6g/+VBKvw05w75KQsI9hNbFOwAAAAAAAAAArV4rPqowhD+mBik/hhNlv5lv+b1AxuM7AAAAAAAAAABAlwu+rfGzPzg21L6rDoa+AeTXPdfepr0AAAAAAAAAAPOr0r73cyk/lYt2vxy7i7/OAno/IBEUPwAAAAAAAAAAM6XCvSZZgD8OnVm+H1cqvwNoFL4LqCK+AAAAAAAAAABgOhE+bkOvPgoqWT7buaa/mbc8vUtK2zwAAAAAAAAAAGb1+rzW9pg/cro5vfVdKL+1SCg+Ktz6uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -162.84,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/b/qyBHbYcCUhpRSlIwBbJRLQ4wBdJRHQEhbhLGrCFd1fZQoaAZoCWgPQwhmahK8IWRmwJSGlFKUaBVLV2gWR0BIaNGd7OVxdX2UKGgGaAloD0MIyTzyBwMUU8CUhpRSlGgVS2hoFkdASG8vM8ox6HV9lChoBmgJaA9DCFx381TH9nbAlIaUUpRoFUtTaBZHQEh0NVBD5TJ1fZQoaAZoCWgPQwipoKLqV9BOwJSGlFKUaBVLSmgWR0BIe8urZJ05dX2UKGgGaAloD0MI8gnZeZtkYcCUhpRSlGgVS1poFkdASHw+hXbM5nV9lChoBmgJaA9DCG+ERUWcTjVAlIaUUpRoFUtUaBZHQEiEk+HJtBR1fZQoaAZoCWgPQwgF/YUeMaxSwJSGlFKUaBVLY2gWR0BIhJokAxSHdX2UKGgGaAloD0MIeJeL+M5AZMCUhpRSlGgVS15oFkdASIdj0+TvA3V9lChoBmgJaA9DCIvfFFYq71nAlIaUUpRoFUtIaBZHQEiM3EyckMV1fZQoaAZoCWgPQwhPWriswo1WwJSGlFKUaBVLU2gWR0BIjeKCQLeAdX2UKGgGaAloD0MILgCN0iUfZ8CUhpRSlGgVS2toFkdASJFBdD6WPnV9lChoBmgJaA9DCB6Jl6ezP3nAlIaUUpRoFUtpaBZHQEiToIv8IiV1fZQoaAZoCWgPQwhf7/54ryxYwJSGlFKUaBVLO2gWR0BIknEETxoadX2UKGgGaAloD0MIhZSfVHvYbsCUhpRSlGgVS2xoFkdASJaOFQEZBXV9lChoBmgJaA9DCAvrxrsjdnnAlIaUUpRoFUtXaBZHQEiYGpuMuOF1fZQoaAZoCWgPQwghH/RsVvNMwJSGlFKUaBVLd2gWR0BInqRU3n6mdX2UKGgGaAloD0MIC2DKwAH/V8CUhpRSlGgVS0NoFkdASKHZVXFLnXV9lChoBmgJaA9DCP1K58Oz22nAlIaUUpRoFUtFaBZHQEiqyRB/qgR1fZQoaAZoCWgPQwgKSzygbApfwJSGlFKUaBVLg2gWR0BIr0IC2c8UdX2UKGgGaAloD0MI0ZSdflCiV8CUhpRSlGgVSzxoFkdASLlyeZof0XV9lChoBmgJaA9DCNGy7h8L5FzAlIaUUpRoFUs9aBZHQEi8HARChOB1fZQoaAZoCWgPQwjI0ocuqBtqwJSGlFKUaBVLcWgWR0BIvJaaCtihdX2UKGgGaAloD0MIlbcjnBYTVsCUhpRSlGgVSz5oFkdASMAjv/io9HV9lChoBmgJaA9DCJqw/WTMznXAlIaUUpRoFUtYaBZHQEjBBppN9IB1fZQoaAZoCWgPQwigUiXK3iBYwJSGlFKUaBVLZWgWR0BIwiWVu76IdX2UKGgGaAloD0MInff/ccJnacCUhpRSlGgVS0FoFkdASMsTg2qDLHV9lChoBmgJaA9DCML8FTJXfi5AlIaUUpRoFUtbaBZHQEjLI3irDIl1fZQoaAZoCWgPQwiJJHoZxfNkwJSGlFKUaBVLZWgWR0BIzSwwCbMHdX2UKGgGaAloD0MIpBthURH8Y8CUhpRSlGgVS1poFkdASNAVymygPHV9lChoBmgJaA9DCHQNMzQe6mLAlIaUUpRoFUtuaBZHQEjRJ9y925h1fZQoaAZoCWgPQwiFQZlGE5twwJSGlFKUaBVLXGgWR0BI1tCAtnPFdX2UKGgGaAloD0MIi2t8JrtBdMCUhpRSlGgVS2xoFkdASNfbypaRp3V9lChoBmgJaA9DCGk6OxkcOHbAlIaUUpRoFUtRaBZHQEjZ/XoTwlV1fZQoaAZoCWgPQwjZzvdT4wdnwJSGlFKUaBVLQ2gWR0BI5v8AJb+tdX2UKGgGaAloD0MIFy1A22rCW8CUhpRSlGgVSz5oFkdASOaqfe1rqXV9lChoBmgJaA9DCMZRuYna93TAlIaUUpRoFUtbaBZHQEjo9RJmNBF1fZQoaAZoCWgPQwgLXvQVpP1bwJSGlFKUaBVLXWgWR0BI7te2NNrTdX2UKGgGaAloD0MIkj6tov/8dsCUhpRSlGgVS0toFkdASPJ13dKujnV9lChoBmgJaA9DCE6XxcRmqWDAlIaUUpRoFUtXaBZHQEj7YkE9t/F1fZQoaAZoCWgPQwjItgw4S112wJSGlFKUaBVLUWgWR0BJA7KRuCPIdX2UKGgGaAloD0MIbhRZa6hRdMCUhpRSlGgVS2NoFkdASQT5bhWHUXV9lChoBmgJaA9DCFovhnJiUXfAlIaUUpRoFUtxaBZHQEkJjGT9sJp1fZQoaAZoCWgPQwjYYrfPKnhZwJSGlFKUaBVLWGgWR0BJC0HQhOgydX2UKGgGaAloD0MIM9yAzw8dcsCUhpRSlGgVS2doFkdASREySFGoaXV9lChoBmgJaA9DCFOXjGMkgHzAlIaUUpRoFUtgaBZHQEkRy6tknTl1fZQoaAZoCWgPQwiuYYbGE1JgwJSGlFKUaBVLamgWR0BJE3aJyhi9dX2UKGgGaAloD0MI7x6g+zLqdcCUhpRSlGgVS1ZoFkdASRJnDiwSrnV9lChoBmgJaA9DCNszSwLUPV7AlIaUUpRoFUtaaBZHQEkT8Sf16E91fZQoaAZoCWgPQwj+fFuwVCNawJSGlFKUaBVLTmgWR0BJHbcO9WZJdX2UKGgGaAloD0MIixcLQ+QTWsCUhpRSlGgVS2doFkdASR7ZQHiWFHV9lChoBmgJaA9DCPJ376gxY2LAlIaUUpRoFUtgaBZHQEkns5XEIgN1fZQoaAZoCWgPQwgIdvwXCJNZwJSGlFKUaBVLRGgWR0BJKV+iJwbVdX2UKGgGaAloD0MIcm2oGGfYYcCUhpRSlGgVS0FoFkdASS9e8f3evnV9lChoBmgJaA9DCIS7s3ZbwWLAlIaUUpRoFUtJaBZHQEk46S1Vo6F1fZQoaAZoCWgPQwjVlGQdjptvwJSGlFKUaBVLe2gWR0BJORFRYRukdX2UKGgGaAloD0MInWUWodiYVsCUhpRSlGgVS0NoFkdASUANTcZccHV9lChoBmgJaA9DCPIJ2XmbIGLAlIaUUpRoFUtKaBZHQElCwKSgXdl1fZQoaAZoCWgPQwjgufdwya1CwJSGlFKUaBVLSWgWR0BJQpwCKaXsdX2UKGgGaAloD0MIOC7jpgbjXMCUhpRSlGgVSz1oFkdASUcAksz2vnV9lChoBmgJaA9DCCBj7lrC13jAlIaUUpRoFUtcaBZHQElInHeaa1F1fZQoaAZoCWgPQwhpAG+BhN9iwJSGlFKUaBVLamgWR0BJSvSc9W6tdX2UKGgGaAloD0MIru/DQYL8dsCUhpRSlGgVS4ZoFkdASU2ObRWtEHV9lChoBmgJaA9DCHrgY7DiZlLAlIaUUpRoFUtLaBZHQElRZK3/gix1fZQoaAZoCWgPQwjKxRhYR1dgwJSGlFKUaBVLnWgWR0BJWK814xDcdX2UKGgGaAloD0MI2A5G7JOBY8CUhpRSlGgVS3RoFkdASV3Bk7Omi3V9lChoBmgJaA9DCOnvpfDgCXTAlIaUUpRoFUtcaBZHQElnEhq0tyx1fZQoaAZoCWgPQwjsM2d9yr1twJSGlFKUaBVLgWgWR0BJaK1G9YfXdX2UKGgGaAloD0MI/ffgtUsiUsCUhpRSlGgVS0loFkdASWrF85S3s3V9lChoBmgJaA9DCAzNdRppSW3AlIaUUpRoFUtoaBZHQEltbSJCSid1fZQoaAZoCWgPQwguVP61vLdfwJSGlFKUaBVLZ2gWR0BJdI4lyBCldX2UKGgGaAloD0MIcjRHVn5YaMCUhpRSlGgVS15oFkdASXiraM72c3V9lChoBmgJaA9DCHP3OT5a0G7AlIaUUpRoFUtYaBZHQEl9EHdGiHt1fZQoaAZoCWgPQwiLwi6KHo5uwJSGlFKUaBVLW2gWR0BJf1YQrc0tdX2UKGgGaAloD0MIIHnnUEaEe8CUhpRSlGgVS29oFkdASYndsSCe3HV9lChoBmgJaA9DCKG8j6M58XjAlIaUUpRoFUtgaBZHQEmNanJkoWp1fZQoaAZoCWgPQwgcQL/vXzdwwJSGlFKUaBVLW2gWR0BJjj/2kBS2dX2UKGgGaAloD0MIXW4w1GGbd8CUhpRSlGgVS2hoFkdASY4Ym9g4O3V9lChoBmgJaA9DCBHHurgNT3fAlIaUUpRoFUtsaBZHQEmTReC04R51fZQoaAZoCWgPQwjKNJpcDLphwJSGlFKUaBVLRGgWR0BJm+a8Yht+dX2UKGgGaAloD0MIhxqFJHP6cMCUhpRSlGgVS1toFkdASZvNke6qbXV9lChoBmgJaA9DCFBUNqwpuWXAlIaUUpRoFUtWaBZHQEmiTxoZhrp1fZQoaAZoCWgPQwh+xK9YQ95xwJSGlFKUaBVLimgWR0BJpHkcS5AhdX2UKGgGaAloD0MIbmx2pPqjUcCUhpRSlGgVSz5oFkdASahNqQA+6nV9lChoBmgJaA9DCGACt+7mQGnAlIaUUpRoFUt/aBZHQEmvZzxPO6d1fZQoaAZoCWgPQwgkRWRYhf9xwJSGlFKUaBVLQGgWR0BJtpnHvMKUdX2UKGgGaAloD0MIAfxTqkTiWMCUhpRSlGgVS3FoFkdASbhQizLOiXV9lChoBmgJaA9DCOOkMO+xOXDAlIaUUpRoFUt0aBZHQEm4XFcY64l1fZQoaAZoCWgPQwjCacGLvlh5wJSGlFKUaBVLZ2gWR0BJwJmukk8idX2UKGgGaAloD0MIujKoNjgbUsCUhpRSlGgVS1RoFkdASclSde6ZpnV9lChoBmgJaA9DCKwfm+THpXDAlIaUUpRoFUt6aBZHQEnKOBDohZB1fZQoaAZoCWgPQwgZV1wclY9GwJSGlFKUaBVLbGgWR0BJyyU1Q66rdX2UKGgGaAloD0MImG4Sg8DOUcCUhpRSlGgVSz5oFkdASc4KSgXdkHV9lChoBmgJaA9DCGuDE9Evi2jAlIaUUpRoFUtfaBZHQEnQiu+yquN1fZQoaAZoCWgPQwjNkCqKVxtgwJSGlFKUaBVLTWgWR0BJ0mnfl6qsdX2UKGgGaAloD0MIDoelgR/Dc8CUhpRSlGgVS2VoFkdASdUgOjIq9XV9lChoBmgJaA9DCOsdbocGaWzAlIaUUpRoFUtfaBZHQEnV225QP7N1fZQoaAZoCWgPQwjpDIy8bBBywJSGlFKUaBVLUGgWR0BJ28Kw6hg3dX2UKGgGaAloD0MI9UcYBizrTsCUhpRSlGgVS19oFkdASd28274BWHV9lChoBmgJaA9DCNU8R+S7Q1rAlIaUUpRoFUs/aBZHQEnh/Lkjopx1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 10,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_demo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d92f6dd3b10e0984a1fb5ffecdb8d0b18a923fcba1fd0fe17ffd863d9915105
|
3 |
+
size 84829
|
lunar_demo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e41ea1b197910cc3b0d40888160035a1539f65676536f59a1b521fa3654377d7
|
3 |
+
size 43201
|
lunar_demo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_demo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c01226e2540202ef0d0b1e02736e30314a55a90798d78fb900dbc2f294b31a3
|
3 |
+
size 142139
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1041.4414795964665, "std_reward": 85.81249982464695, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T16:42:16.512852"}
|