esh commited on
Commit
e7cd76b
·
1 Parent(s): 3d9338c

Upload PPO LunarLander-v2 trained agent with 500k epochs

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -639.08 +/- 206.96
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 214.30 +/- 38.61
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06722c1ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06722c1f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06722ca050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06722ca0e0>", "_build": "<function ActorCriticPolicy._build at 0x7f06722ca170>", "forward": "<function ActorCriticPolicy.forward at 0x7f06722ca200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06722ca290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f06722ca320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06722ca3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06722ca440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06722ca4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0672311a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652114622.3152153, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPjl5L7/Eh6+EjmAvzDJAb+rCy69fbeCPwAAAAAAAAAAfXKePlyADD2FK+Q+GgKqvyojcr6yJ42+AAAAAAAAAABAYZE90RdKP6NSiD6sd4a/fOClvpZ3nL4AAAAAAAAAAE12hb2xpKE/RkR+vlFYyr7WbKA90IK+PQAAAAAAAAAAjSt0PrByGj/Qo6E+JPqOv2D1DT6LEuA9AAAAAAAAAADjbNc+PX41Og/Igj1Vfq68MxgQv+KzNj8AAIA/AAAAAGZDJ70CR7Q/docsv9M8ZL1vGhw9ggC2PQAAAAAAAAAAHcePvn+9SD+ilBq/NJBbv23Z9D6swbs9AAAAAAAAAADTzbS+SICrP4ZtN7/1ege/hfXkPhL1kz4AAAAAAAAAAAi2nb7N/io/CiAZv1mgkL8dIcg+MrJZvAAAAAAAAAAAinaHPu4XjT9T13o/I7Mpv7AZx76r75u+AAAAAAAAAAA9kw2/e/mvP32LYr9QZTO/6P4rP4wFlD4AAAAAAAAAADMxUr0Hjmw/gS4SvuYSSb8yhZC9E4BVPQAAAAAAAAAA+u+0Pk3I873CxCI/h828v9GFV77GFhq/AAAAAAAAgD9aNRo+tASGP17Soj4NPCW/W0QfvvbaoL0AAAAAAAAAAGZBZz77VSU/APzQPp+yjb/b6c++cPG8PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.5536, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT85Q3PHnY8CUhpRSlIwBbJRLSYwBdJRHQJg23nMdLg51fZQoaAZoCWgPQwhivrwA+0BwwJSGlFKUaBVLbGgWR0CYNuxNqQA/dX2UKGgGaAloD0MISaEsfH2PS8CUhpRSlGgVS29oFkdAmDcGZ/kNnXV9lChoBmgJaA9DCKaBH9XwgXHAlIaUUpRoFUtdaBZHQJg3OB06o2p1fZQoaAZoCWgPQwg25QrvcoxSwJSGlFKUaBVLTGgWR0CYN0ksjFAFdX2UKGgGaAloD0MIwxGkUuwyV8CUhpRSlGgVS2BoFkdAmDdhhQWN3nV9lChoBmgJaA9DCBvZlZYR0WPAlIaUUpRoFUtIaBZHQJg3bmeUY9B1fZQoaAZoCWgPQwgiHLPsSR9fwJSGlFKUaBVLS2gWR0CYN4SEDhcadX2UKGgGaAloD0MIhQmjWVl3Z8CUhpRSlGgVS3loFkdAmDeWn889wHV9lChoBmgJaA9DCL71Yb1RnWDAlIaUUpRoFUtKaBZHQJg3y7pV0cR1fZQoaAZoCWgPQwhtqBjnb4dbwJSGlFKUaBVLbmgWR0CYN8VeKKpDdX2UKGgGaAloD0MIipElcyw5bMCUhpRSlGgVS2ZoFkdAmDgjhxYJV3V9lChoBmgJaA9DCFG9NbBVy2fAlIaUUpRoFUtRaBZHQJg4WtQsPJ91fZQoaAZoCWgPQwggYK3aNShZwJSGlFKUaBVLX2gWR0CYOG/qgRK6dX2UKGgGaAloD0MIT+eKUkLuX8CUhpRSlGgVS19oFkdAmDidiUgSvnV9lChoBmgJaA9DCMSY9PcSbnrAlIaUUpRoFUtfaBZHQJg41L5AQg91fZQoaAZoCWgPQwj2fThIiJZdwJSGlFKUaBVLVWgWR0CYON20iQkpdX2UKGgGaAloD0MIjsu4qYHMVcCUhpRSlGgVS0toFkdAmDj+yzHCGnV9lChoBmgJaA9DCNEDH4OVinDAlIaUUpRoFUthaBZHQJg4+A2AG0N1fZQoaAZoCWgPQwj4b16c+ABRwJSGlFKUaBVLPmgWR0CYOSNOuaF3dX2UKGgGaAloD0MIH54lyAi9XcCUhpRSlGgVSz5oFkdAmDkcYZVGTnV9lChoBmgJaA9DCGXggJauUkjAlIaUUpRoFUtpaBZHQJg5NS5y2hJ1fZQoaAZoCWgPQwjHndLB+tFSwJSGlFKUaBVLU2gWR0CYOVKzRhMKdX2UKGgGaAloD0MIUd7H0RwLSsCUhpRSlGgVS0FoFkdAmDmHvQWvbHV9lChoBmgJaA9DCGOzI9X3UGXAlIaUUpRoFUtsaBZHQJg5jt4RmK91fZQoaAZoCWgPQwiGBIwuL3l0wJSGlFKUaBVLbWgWR0CYOaQdCE6DdX2UKGgGaAloD0MIArovZ7YTbsCUhpRSlGgVS2toFkdAmDnsx0uDjHV9lChoBmgJaA9DCHR5c7hW917AlIaUUpRoFUtJaBZHQJg6CQ9zOop1fZQoaAZoCWgPQwgwoYLDi3RwwJSGlFKUaBVLU2gWR0CYOivDxb0OdX2UKGgGaAloD0MIvr9Be/Wfc8CUhpRSlGgVS4JoFkdAmDpEiILw4XV9lChoBmgJaA9DCEYGuYswZ1fAlIaUUpRoFUtCaBZHQJg6aelKsdV1fZQoaAZoCWgPQwjF46JaxDdkwJSGlFKUaBVLWmgWR0CYOsbfxc3VdX2UKGgGaAloD0MIhEiGHFuQcMCUhpRSlGgVS2doFkdAmDrWz4UN8XV9lChoBmgJaA9DCEXaxp+onl7AlIaUUpRoFUtRaBZHQJg622tuDSR1fZQoaAZoCWgPQwjZ7h6g+51bwJSGlFKUaBVLZ2gWR0CYOxPatcOcdX2UKGgGaAloD0MI9dpsrMTmUMCUhpRSlGgVS0poFkdAmDs6YJE6UHV9lChoBmgJaA9DCKKakqzDtVPAlIaUUpRoFUs9aBZHQJg7UR7JGON1fZQoaAZoCWgPQwhsX0Av3JVWwJSGlFKUaBVLcmgWR0CYO3RnezlcdX2UKGgGaAloD0MITiuFQC4TXcCUhpRSlGgVS25oFkdAmDuHAIppe3V9lChoBmgJaA9DCGJM+nspVWTAlIaUUpRoFUtaaBZHQJg7g97ngYR1fZQoaAZoCWgPQwg6BfnZCMJ3wJSGlFKUaBVLcmgWR0CYO6jy4FzNdX2UKGgGaAloD0MID5iHTPkFX8CUhpRSlGgVS2xoFkdAmDumlyimEXV9lChoBmgJaA9DCCO6Z13jMHvAlIaUUpRoFUtjaBZHQJg7rV2A5Jd1fZQoaAZoCWgPQwhgWz/9JxpwwJSGlFKUaBVLZWgWR0CYPA1qFh5PdX2UKGgGaAloD0MIgPRNmobmcMCUhpRSlGgVS2hoFkdAmDxaFEiMYXV9lChoBmgJaA9DCJiIt87/yXTAlIaUUpRoFUtoaBZHQJg8cjUutfZ1fZQoaAZoCWgPQwjGpwAYz7ZmwJSGlFKUaBVLa2gWR0CYPKpIMBp6dX2UKGgGaAloD0MI0sd8QKAuXMCUhpRSlGgVS1doFkdAmDyyzTnaFnV9lChoBmgJaA9DCKIJFLGIJFzAlIaUUpRoFUtkaBZHQJg8+z7di2F1fZQoaAZoCWgPQwjFILByaHU0wJSGlFKUaBVLW2gWR0CYPQoAGSpzdX2UKGgGaAloD0MIKeeLvRddccCUhpRSlGgVS2poFkdAmD0Oc+aBqnV9lChoBmgJaA9DCJiiXBq/JmfAlIaUUpRoFUtOaBZHQJg9L1g6U7l1fZQoaAZoCWgPQwiHwmfrIBpxwJSGlFKUaBVLW2gWR0CYPTVOsT37dX2UKGgGaAloD0MIVryReeRpacCUhpRSlGgVS19oFkdAmD1foRqXW3V9lChoBmgJaA9DCKneGtgqzFbAlIaUUpRoFUteaBZHQJg9rJQtSQ51fZQoaAZoCWgPQwjm6PF7m7tWwJSGlFKUaBVLS2gWR0CYPbEyckMTdX2UKGgGaAloD0MI6gQ0EbZpYMCUhpRSlGgVS2poFkdAmD3KmCROlHV9lChoBmgJaA9DCLuYZrqX8nPAlIaUUpRoFUtlaBZHQJg94HgP3BZ1fZQoaAZoCWgPQwihTKPJRch4wJSGlFKUaBVLdWgWR0CYPgDziCJ5dX2UKGgGaAloD0MISnuDL4ypcsCUhpRSlGgVS3JoFkdAmD4b/CIk7nV9lChoBmgJaA9DCPORlPQw+lfAlIaUUpRoFUtCaBZHQJg+Il4TsY51fZQoaAZoCWgPQwg+rg0V4ww3wJSGlFKUaBVLUmgWR0CYPkA/cFhYdX2UKGgGaAloD0MIIXU7+8qzSMCUhpRSlGgVS0RoFkdAmD6BV+7UX3V9lChoBmgJaA9DCEs6ysFsqFrAlIaUUpRoFUtpaBZHQJg+oFvAGjd1fZQoaAZoCWgPQwi9pgcF5QN4wJSGlFKUaBVLWGgWR0CYPuYvFm4BdX2UKGgGaAloD0MIwOeHEUIFcMCUhpRSlGgVS2xoFkdAmD8DqrzXjHV9lChoBmgJaA9DCI6QgTy7X1fAlIaUUpRoFUtYaBZHQJg/DeKsMiN1fZQoaAZoCWgPQwgrvqHwWTlgwJSGlFKUaBVLaGgWR0CYPzBQemvXdX2UKGgGaAloD0MI81Zdh2oCecCUhpRSlGgVS15oFkdAmD8pF1B+nnV9lChoBmgJaA9DCOP6d33mhF7AlIaUUpRoFUtQaBZHQJg/WH446wN1fZQoaAZoCWgPQwjAstKkFG1kwJSGlFKUaBVLVGgWR0CYP4n7YTTOdX2UKGgGaAloD0MIucK7XMRkcMCUhpRSlGgVS0loFkdAmD+h/NJOFnV9lChoBmgJaA9DCDS/mgMEQlPAlIaUUpRoFUs9aBZHQJg/5FPSDyx1fZQoaAZoCWgPQwiyLm6jAbtuwJSGlFKUaBVLYmgWR0CYP+LW7OE/dX2UKGgGaAloD0MIRs7CnnZ8V8CUhpRSlGgVS31oFkdAmD//uogmq3V9lChoBmgJaA9DCJ4j8l0KbXPAlIaUUpRoFUtXaBZHQJhADZVXFLp1fZQoaAZoCWgPQwg5nWSryw9VwJSGlFKUaBVLYWgWR0CYQB4HoouxdX2UKGgGaAloD0MIRkCFIwhCdcCUhpRSlGgVS2loFkdAmEAsCo0hvHV9lChoBmgJaA9DCErwhjQq3GTAlIaUUpRoFUuAaBZHQJhAYa6z3RJ1fZQoaAZoCWgPQwj6uaEpe5N9wJSGlFKUaBVLVGgWR0CYQKsKb8WLdX2UKGgGaAloD0MIJ92WyAW+VsCUhpRSlGgVS0xoFkdAmEDARChN/XV9lChoBmgJaA9DCBTObi2T+ULAlIaUUpRoFUtPaBZHQJhA2Gzru6V1fZQoaAZoCWgPQwibr5KP3ZltwJSGlFKUaBVLQ2gWR0CYQU/EfkmydX2UKGgGaAloD0MI4BKAf0rSXMCUhpRSlGgVS0JoFkdAmEFzgEU0vXV9lChoBmgJaA9DCNpyLsVVJfy/lIaUUpRoFUuQaBZHQJhBjtOVPep1fZQoaAZoCWgPQwhvnuqQGwdpwJSGlFKUaBVLZmgWR0CYQbz7uUlidX2UKGgGaAloD0MIr+sX7IZcXcCUhpRSlGgVS31oFkdAmEG6bnX/YXV9lChoBmgJaA9DCBVwz/PnjXLAlIaUUpRoFUthaBZHQJhBul3yI551fZQoaAZoCWgPQwjGpwAYTxhxwJSGlFKUaBVLcWgWR0CYQchOgxrSdX2UKGgGaAloD0MIFa3cC0zhaMCUhpRSlGgVS4VoFkdAmEHgFcIJJHV9lChoBmgJaA9DCKRQFr6+nHHAlIaUUpRoFUtTaBZHQJhCBKK508x1fZQoaAZoCWgPQwgi/fZ14KBbwJSGlFKUaBVLS2gWR0CYQg5pJwsHdX2UKGgGaAloD0MIzPEKRE80WMCUhpRSlGgVS15oFkdAmEIUiQkonnV9lChoBmgJaA9DCMQFoFG6CFnAlIaUUpRoFUtAaBZHQJhCHo3aSLZ1fZQoaAZoCWgPQwg50ENtG/lrwJSGlFKUaBVLYmgWR0CYQkNxlxwRdX2UKGgGaAloD0MIf2snSkIfWsCUhpRSlGgVS1FoFkdAmEKgIyCWeHV9lChoBmgJaA9DCJVgcTjzZ1nAlIaUUpRoFUt+aBZHQJhCnjKgZjx1fZQoaAZoCWgPQwjXEvJBz89bwJSGlFKUaBVLQWgWR0CYQsEkjX4CdX2UKGgGaAloD0MICeBm8eKBdcCUhpRSlGgVS1poFkdAmEK64Ds+mnV9lChoBmgJaA9DCLXEymjkE17AlIaUUpRoFUtBaBZHQJhDQelsP8R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35f8134d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35f8134dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35f8134e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35f8134ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f35f8134f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f35f813a050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35f813a0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f35f813a170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35f813a200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35f813a290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35f813a320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f35f8177c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652166340.2794888, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMQcD5/348/qiy7Psv16L6wfWs+fczOPAAAAAAAAAAAQxNOvmHmgjviHcW5VekYN9lIMr19SOo4AACAPwAAgD8ADZo8cS0ZuQCeiLrHVUS2Xv6IuazWuDUAAIA/AACAP2b3Ub32zGO62yeWt+8GM7JiuvS5BvqrNgAAgD8AAIA/zeKEPY+SRLrmHdc6mj14NniMuDs7Yvi5AACAPwAAgD9zssq94fClurLE9DmSJhs1xw0VuiTgBzQAAIA/AACAP6ZMqb37D7o///4zvySVIz16EYW7QPhMvgAAAAAAAAAANTIVv1M8ab6la228oK68PH44AD44io67AACAPwAAgD/NUtc9pDArOK7DartH/oS2FKclPL5BADYAAIA/AACAP7O9Jb3hDIS6ETa6O1cC9DfchDu76gtpNgAAgD8AAIA/M1tlvdhfpj4P4IM90F8xvsaGdD0ycAA9AAAAAAAAAAAzgYQ8KTgSuogiwzrNzoM1c5PXub7A3bkAAIA/AACAP83Majuulb26ExVVOksPcbZiIXy5WgByuQAAgD8AAIA/YD4gPjEFpz7yD/m8/UI/voBrt7zmcbk2AAAAAAAAAADduXS+bFj3PMLay7oklps5qa2Ivg8CFToAAIA/AACAP/Nwbz6kT2A8gzXXuqR9Crm+GPg98EYCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKpFEL6NBYUCUhpRSlIwBbJRN6AOMAXSUR0CKZr+0gKWtdX2UKGgGaAloD0MISYEFMGXkXkCUhpRSlGgVTegDaBZHQIpnfh4t6HF1fZQoaAZoCWgPQwgx0/avrBpeQJSGlFKUaBVN6ANoFkdAimjZh8Yyf3V9lChoBmgJaA9DCL9/8+LEOF5AlIaUUpRoFU3oA2gWR0CKcHUG3WnTdX2UKGgGaAloD0MISMK+ncTUYECUhpRSlGgVTegDaBZHQIqIfctXgcd1fZQoaAZoCWgPQwjbNLbXgr4gQJSGlFKUaBVL+WgWR0CKl6sKb8WLdX2UKGgGaAloD0MIy2Wjc/5qYkCUhpRSlGgVTegDaBZHQIqrPNzKcNJ1fZQoaAZoCWgPQwh8Q+Gz9eBgQJSGlFKUaBVN6ANoFkdAiq6FzdUKiXV9lChoBmgJaA9DCFqfckwWmllAlIaUUpRoFU3oA2gWR0CKsz2TPjXGdX2UKGgGaAloD0MIwqIiTidXYECUhpRSlGgVTegDaBZHQIrFmsJY1YR1fZQoaAZoCWgPQwjPSIRGMPpjQJSGlFKUaBVN6ANoFkdAiskDNpudgHV9lChoBmgJaA9DCH/3jhoT9V5AlIaUUpRoFU3oA2gWR0CKyqC1Z1V6dX2UKGgGaAloD0MIO4xJfy+cYECUhpRSlGgVTegDaBZHQIrZs/nnuAt1fZQoaAZoCWgPQwg25nXEIYJdQJSGlFKUaBVN6ANoFkdAiunCLuQZGnV9lChoBmgJaA9DCMn/5O/eN1xAlIaUUpRoFU3oA2gWR0CK9dO+IuXedX2UKGgGaAloD0MInE6y1eUOXUCUhpRSlGgVTegDaBZHQIr/ELUkOZt1fZQoaAZoCWgPQwjdtu9R/xtlQJSGlFKUaBVN6ANoFkdAiwXXV09yLnV9lChoBmgJaA9DCNNnB1xXLmJAlIaUUpRoFU3oA2gWR0CLBqYE4ecQdX2UKGgGaAloD0MIEMr7OBqRYECUhpRSlGgVTegDaBZHQIsHW9eyAx11fZQoaAZoCWgPQwh8taM4RxBgQJSGlFKUaBVN6ANoFkdAiwitwiqyW3V9lChoBmgJaA9DCD5eSIcHTWJAlIaUUpRoFU3oA2gWR0CLJ30voNd7dX2UKGgGaAloD0MIm6vmOaL5ZECUhpRSlGgVTegDaBZHQIs2Yf+0gKZ1fZQoaAZoCWgPQwhGelG7X65gQJSGlFKUaBVN6ANoFkdAi0h7ah6By3V9lChoBmgJaA9DCCMT8GskJF1AlIaUUpRoFU3oA2gWR0CLS32VVxS6dX2UKGgGaAloD0MIcm4T7pUEYkCUhpRSlGgVTegDaBZHQItQF9v0h/11fZQoaAZoCWgPQwh5sTBEzoBiQJSGlFKUaBVN6ANoFkdAi2GgpSaVlnV9lChoBmgJaA9DCNXKhF/q5F5AlIaUUpRoFU3oA2gWR0CLZNa0QbuMdX2UKGgGaAloD0MI68cm+RF8YECUhpRSlGgVTegDaBZHQItmYi5d4V11fZQoaAZoCWgPQwh7vJAOD3taQJSGlFKUaBVN6ANoFkdAi3TaJIlMRHV9lChoBmgJaA9DCKadmssN22FAlIaUUpRoFU3oA2gWR0CMkNgk1MufdX2UKGgGaAloD0MI61Ij9DOVJkCUhpRSlGgVTQ0BaBZHQIyWwTIvJzV1fZQoaAZoCWgPQwi4V+atun1ZQJSGlFKUaBVN6ANoFkdAjJwod+5OJ3V9lChoBmgJaA9DCIicvp6vuVJAlIaUUpRoFU3oA2gWR0CMpNRm9QGfdX2UKGgGaAloD0MImpZYGY2CXECUhpRSlGgVTegDaBZHQIyrKBPKuCB1fZQoaAZoCWgPQwhqh78m659gQJSGlFKUaBVN6ANoFkdAjKv544ZMtnV9lChoBmgJaA9DCBuDTgid+mJAlIaUUpRoFU3oA2gWR0CMrJ9LpRoAdX2UKGgGaAloD0MIByl4Crl1XUCUhpRSlGgVTegDaBZHQIyt1ShrWRR1fZQoaAZoCWgPQwgUsB2M2CfQv5SGlFKUaBVL7mgWR0CMvAhA4XGfdX2UKGgGaAloD0MI96xrtJySYECUhpRSlGgVTegDaBZHQIzJ47q6e5F1fZQoaAZoCWgPQwhlAKjiRo5jQJSGlFKUaBVN6ANoFkdAjNdz0pVjqnV9lChoBmgJaA9DCAIOoUrNtGdAlIaUUpRoFU0OA2gWR0CM4eDFId2gdX2UKGgGaAloD0MIbJbLRmcPYECUhpRSlGgVTegDaBZHQIznnarWAgB1fZQoaAZoCWgPQwgFMjuL3o9iQJSGlFKUaBVN6ANoFkdAjOoxRuTA33V9lChoBmgJaA9DCClauReYTGRAlIaUUpRoFU3oA2gWR0CM7d7qIJqqdX2UKGgGaAloD0MIMj7MXjZFZECUhpRSlGgVTWQCaBZHQIz5o7Pppvh1fZQoaAZoCWgPQwiRJt4BntNbQJSGlFKUaBVN6ANoFkdAjQDkXDWK/HV9lChoBmgJaA9DCAzlRLsKPWJAlIaUUpRoFU3oA2gWR0CNDrJfYzzmdX2UKGgGaAloD0MIVWe1wB6eW0CUhpRSlGgVTegDaBZHQI0dZw84gih1fZQoaAZoCWgPQwiWXpuNlbhbQJSGlFKUaBVN6ANoFkdAjSMwBo24u3V9lChoBmgJaA9DCPHVjuKcBmBAlIaUUpRoFU3oA2gWR0CNN8/X5FgEdX2UKGgGaAloD0MIM+AsJUsdYkCUhpRSlGgVTegDaBZHQI04jAN5MUR1fZQoaAZoCWgPQwiDFhIwOjdjQJSGlFKUaBVN6ANoFkdAjTk98JD3NHV9lChoBmgJaA9DCEoJwap622NAlIaUUpRoFU3oA2gWR0CNOowQlKK6dX2UKGgGaAloD0MIZmt9kdAYXUCUhpRSlGgVTegDaBZHQI1JWz0HyEt1fZQoaAZoCWgPQwhwCisVVEBhQJSGlFKUaBVNFwNoFkdAjVAY3FUADXV9lChoBmgJaA9DCCDSb18Hb2FAlIaUUpRoFU3oA2gWR0CNVrSThYNidX2UKGgGaAloD0MIc2cmGM6fYUCUhpRSlGgVTegDaBZHQI1ig0fozN51fZQoaAZoCWgPQwgbLQd6qMdjQJSGlFKUaBVN6ANoFkdAjXFuTJQtSXV9lChoBmgJaA9DCML8FTJXtVFAlIaUUpRoFU3oA2gWR0CNdBvrGBFvdX2UKGgGaAloD0MId2ouNxgNWUCUhpRSlGgVTegDaBZHQI14C+N96Tp1fZQoaAZoCWgPQwjQKcjPRq9iQJSGlFKUaBVN6ANoFkdAjYSyBbwBo3V9lChoBmgJaA9DCD6XqUnwjmFAlIaUUpRoFU3oA2gWR0CNjMUM5OrRdX2UKGgGaAloD0MIoGzKFd5hVkCUhpRSlGgVTegDaBZHQI2chIJ7b+N1fZQoaAZoCWgPQwiFevoI/MBgQJSGlFKUaBVN6ANoFkdAjaz0eU6gd3V9lChoBmgJaA9DCDT3kPC9019AlIaUUpRoFU3oA2gWR0COxEx0uDjBdX2UKGgGaAloD0MIluzYCMQiaECUhpRSlGgVTU4CaBZHQI7NUJSiudR1fZQoaAZoCWgPQwjAl8KD5jNvQJSGlFKUaBVNOQFoFkdAjtBPrfLs8nV9lChoBmgJaA9DCE890uC2S1JAlIaUUpRoFU3oA2gWR0CO2io86mwadX2UKGgGaAloD0MIKnCyDVy+YkCUhpRSlGgVTegDaBZHQI7a8SK3uu11fZQoaAZoCWgPQwgArmTHRsBgQJSGlFKUaBVN6ANoFkdAjtumJvYOD3V9lChoBmgJaA9DCJ5i1SBMoWBAlIaUUpRoFU3oA2gWR0CO3PicXm/4dX2UKGgGaAloD0MIZ5jaUgcIXkCUhpRSlGgVTT4CaBZHQI7dcep4rz51fZQoaAZoCWgPQwhv8fCeA9tdQJSGlFKUaBVN6ANoFkdAjupHVG0/nnV9lChoBmgJaA9DCEs+dhcoWl9AlIaUUpRoFU3oA2gWR0CO8HUZvUBodX2UKGgGaAloD0MILV+X4T89QUCUhpRSlGgVTQcBaBZHQI7yJ3iaRZF1fZQoaAZoCWgPQwjxhF5/EuZgQJSGlFKUaBVN6ANoFkdAjva3UQTVUnV9lChoBmgJaA9DCHS0qiUdp2NAlIaUUpRoFU3oA2gWR0CPEjOMVDa5dX2UKGgGaAloD0MI+Db92Y/NXECUhpRSlGgVTegDaBZHQI8ZdVrAP/d1fZQoaAZoCWgPQwhhGoaPCA5iQJSGlFKUaBVN6ANoFkdAjydcZtNzsHV9lChoBmgJaA9DCK1p3nGKz2JAlIaUUpRoFU3oA2gWR0CPP2PPLPlddX2UKGgGaAloD0MImdamsb1pbkCUhpRSlGgVTR8DaBZHQI9M6RKYiPh1fZQoaAZoCWgPQwi3Xz5Zse9gQJSGlFKUaBVN6ANoFkdAj0603Ov+wXV9lChoBmgJaA9DCP5kjA8zGWZAlIaUUpRoFU3oA2gWR0CPVDN6gM+edX2UKGgGaAloD0MIs193unOzYUCUhpRSlGgVTegDaBZHQI9cQOe8PFx1fZQoaAZoCWgPQwjgu80bJ4ZkQJSGlFKUaBVN6ANoFkdAj2hC04R283V9lChoBmgJaA9DCJIjnYERF2BAlIaUUpRoFU3oA2gWR0CPaPrgwXZXdX2UKGgGaAloD0MInznrU46HX0CUhpRSlGgVTegDaBZHQI9rAxesxPB1fZQoaAZoCWgPQwjEWnwKgBRTQJSGlFKUaBVN6ANoFkdAj2uAmiQDFXV9lChoBmgJaA9DCHYb1H5rt2JAlIaUUpRoFU3oA2gWR0CPeO5aNdZ8dX2UKGgGaAloD0MIKLUX0XbxXUCUhpRSlGgVTegDaBZHQI9/kdLg4wR1fZQoaAZoCWgPQwiE1sOXiftcQJSGlFKUaBVN6ANoFkdAj4E3lr/KhnV9lChoBmgJaA9DCIvFbwqrgGFAlIaUUpRoFU3oA2gWR0CPhaIC2c8UdX2UKGgGaAloD0MI2pJVEW6ASUCUhpRSlGgVS/NoFkdAj4mNMwlByHV9lChoBmgJaA9DCH0geedQAV1AlIaUUpRoFU3oA2gWR0CPoK3R5TqCdX2UKGgGaAloD0MIOzQsRl03X0CUhpRSlGgVTegDaBZHQI+nvOW0JF91fZQoaAZoCWgPQwhAahMn96ldQJSGlFKUaBVN6ANoFkdAj7YwqZtvXXV9lChoBmgJaA9DCNyfi4aM+2VAlIaUUpRoFU1tA2gWR0CPys+t8uzydX2UKGgGaAloD0MIIGKDhZNQYECUhpRSlGgVTegDaBZHQI/Qr+PzWf91fZQoaAZoCWgPQwiI1R9hGC9lQJSGlFKUaBVN6ANoFkdAj+Bji4rjHXV9lChoBmgJaA9DCOKQDaSLwmBAlIaUUpRoFU3oA2gWR0CP5ldu5z5odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_demo.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d10bc599b7e7fe5a201c1dff8ee22d447b465b083aca22b5d92f024fcde91f0f
3
- size 143897
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4075063eb7d88f01e49ada4488ec8a803e616ba33b74da464ff0b3f0cb809663
3
+ size 144106
lunar_demo/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06722c1ef0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06722c1f80>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06722ca050>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06722ca0e0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f06722ca170>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f06722ca200>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06722ca290>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f06722ca320>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06722ca3b0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06722ca440>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06722ca4d0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f0672311a20>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 32768,
46
- "_total_timesteps": 5000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652114622.3152153,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPjl5L7/Eh6+EjmAvzDJAb+rCy69fbeCPwAAAAAAAAAAfXKePlyADD2FK+Q+GgKqvyojcr6yJ42+AAAAAAAAAABAYZE90RdKP6NSiD6sd4a/fOClvpZ3nL4AAAAAAAAAAE12hb2xpKE/RkR+vlFYyr7WbKA90IK+PQAAAAAAAAAAjSt0PrByGj/Qo6E+JPqOv2D1DT6LEuA9AAAAAAAAAADjbNc+PX41Og/Igj1Vfq68MxgQv+KzNj8AAIA/AAAAAGZDJ70CR7Q/docsv9M8ZL1vGhw9ggC2PQAAAAAAAAAAHcePvn+9SD+ilBq/NJBbv23Z9D6swbs9AAAAAAAAAADTzbS+SICrP4ZtN7/1ege/hfXkPhL1kz4AAAAAAAAAAAi2nb7N/io/CiAZv1mgkL8dIcg+MrJZvAAAAAAAAAAAinaHPu4XjT9T13o/I7Mpv7AZx76r75u+AAAAAAAAAAA9kw2/e/mvP32LYr9QZTO/6P4rP4wFlD4AAAAAAAAAADMxUr0Hjmw/gS4SvuYSSb8yhZC9E4BVPQAAAAAAAAAA+u+0Pk3I873CxCI/h828v9GFV77GFhq/AAAAAAAAgD9aNRo+tASGP17Soj4NPCW/W0QfvvbaoL0AAAAAAAAAAGZBZz77VSU/APzQPp+yjb/b6c++cPG8PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -5.5536,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIT85Q3PHnY8CUhpRSlIwBbJRLSYwBdJRHQJg23nMdLg51fZQoaAZoCWgPQwhivrwA+0BwwJSGlFKUaBVLbGgWR0CYNuxNqQA/dX2UKGgGaAloD0MISaEsfH2PS8CUhpRSlGgVS29oFkdAmDcGZ/kNnXV9lChoBmgJaA9DCKaBH9XwgXHAlIaUUpRoFUtdaBZHQJg3OB06o2p1fZQoaAZoCWgPQwg25QrvcoxSwJSGlFKUaBVLTGgWR0CYN0ksjFAFdX2UKGgGaAloD0MIwxGkUuwyV8CUhpRSlGgVS2BoFkdAmDdhhQWN3nV9lChoBmgJaA9DCBvZlZYR0WPAlIaUUpRoFUtIaBZHQJg3bmeUY9B1fZQoaAZoCWgPQwgiHLPsSR9fwJSGlFKUaBVLS2gWR0CYN4SEDhcadX2UKGgGaAloD0MIhQmjWVl3Z8CUhpRSlGgVS3loFkdAmDeWn889wHV9lChoBmgJaA9DCL71Yb1RnWDAlIaUUpRoFUtKaBZHQJg3y7pV0cR1fZQoaAZoCWgPQwhtqBjnb4dbwJSGlFKUaBVLbmgWR0CYN8VeKKpDdX2UKGgGaAloD0MIipElcyw5bMCUhpRSlGgVS2ZoFkdAmDgjhxYJV3V9lChoBmgJaA9DCFG9NbBVy2fAlIaUUpRoFUtRaBZHQJg4WtQsPJ91fZQoaAZoCWgPQwggYK3aNShZwJSGlFKUaBVLX2gWR0CYOG/qgRK6dX2UKGgGaAloD0MIT+eKUkLuX8CUhpRSlGgVS19oFkdAmDidiUgSvnV9lChoBmgJaA9DCMSY9PcSbnrAlIaUUpRoFUtfaBZHQJg41L5AQg91fZQoaAZoCWgPQwj2fThIiJZdwJSGlFKUaBVLVWgWR0CYON20iQkpdX2UKGgGaAloD0MIjsu4qYHMVcCUhpRSlGgVS0toFkdAmDj+yzHCGnV9lChoBmgJaA9DCNEDH4OVinDAlIaUUpRoFUthaBZHQJg4+A2AG0N1fZQoaAZoCWgPQwj4b16c+ABRwJSGlFKUaBVLPmgWR0CYOSNOuaF3dX2UKGgGaAloD0MIH54lyAi9XcCUhpRSlGgVSz5oFkdAmDkcYZVGTnV9lChoBmgJaA9DCGXggJauUkjAlIaUUpRoFUtpaBZHQJg5NS5y2hJ1fZQoaAZoCWgPQwjHndLB+tFSwJSGlFKUaBVLU2gWR0CYOVKzRhMKdX2UKGgGaAloD0MIUd7H0RwLSsCUhpRSlGgVS0FoFkdAmDmHvQWvbHV9lChoBmgJaA9DCGOzI9X3UGXAlIaUUpRoFUtsaBZHQJg5jt4RmK91fZQoaAZoCWgPQwiGBIwuL3l0wJSGlFKUaBVLbWgWR0CYOaQdCE6DdX2UKGgGaAloD0MIArovZ7YTbsCUhpRSlGgVS2toFkdAmDnsx0uDjHV9lChoBmgJaA9DCHR5c7hW917AlIaUUpRoFUtJaBZHQJg6CQ9zOop1fZQoaAZoCWgPQwgwoYLDi3RwwJSGlFKUaBVLU2gWR0CYOivDxb0OdX2UKGgGaAloD0MIvr9Be/Wfc8CUhpRSlGgVS4JoFkdAmDpEiILw4XV9lChoBmgJaA9DCEYGuYswZ1fAlIaUUpRoFUtCaBZHQJg6aelKsdV1fZQoaAZoCWgPQwjF46JaxDdkwJSGlFKUaBVLWmgWR0CYOsbfxc3VdX2UKGgGaAloD0MIhEiGHFuQcMCUhpRSlGgVS2doFkdAmDrWz4UN8XV9lChoBmgJaA9DCEXaxp+onl7AlIaUUpRoFUtRaBZHQJg622tuDSR1fZQoaAZoCWgPQwjZ7h6g+51bwJSGlFKUaBVLZ2gWR0CYOxPatcOcdX2UKGgGaAloD0MI9dpsrMTmUMCUhpRSlGgVS0poFkdAmDs6YJE6UHV9lChoBmgJaA9DCKKakqzDtVPAlIaUUpRoFUs9aBZHQJg7UR7JGON1fZQoaAZoCWgPQwhsX0Av3JVWwJSGlFKUaBVLcmgWR0CYO3RnezlcdX2UKGgGaAloD0MITiuFQC4TXcCUhpRSlGgVS25oFkdAmDuHAIppe3V9lChoBmgJaA9DCGJM+nspVWTAlIaUUpRoFUtaaBZHQJg7g97ngYR1fZQoaAZoCWgPQwg6BfnZCMJ3wJSGlFKUaBVLcmgWR0CYO6jy4FzNdX2UKGgGaAloD0MID5iHTPkFX8CUhpRSlGgVS2xoFkdAmDumlyimEXV9lChoBmgJaA9DCCO6Z13jMHvAlIaUUpRoFUtjaBZHQJg7rV2A5Jd1fZQoaAZoCWgPQwhgWz/9JxpwwJSGlFKUaBVLZWgWR0CYPA1qFh5PdX2UKGgGaAloD0MIgPRNmobmcMCUhpRSlGgVS2hoFkdAmDxaFEiMYXV9lChoBmgJaA9DCJiIt87/yXTAlIaUUpRoFUtoaBZHQJg8cjUutfZ1fZQoaAZoCWgPQwjGpwAYz7ZmwJSGlFKUaBVLa2gWR0CYPKpIMBp6dX2UKGgGaAloD0MI0sd8QKAuXMCUhpRSlGgVS1doFkdAmDyyzTnaFnV9lChoBmgJaA9DCKIJFLGIJFzAlIaUUpRoFUtkaBZHQJg8+z7di2F1fZQoaAZoCWgPQwjFILByaHU0wJSGlFKUaBVLW2gWR0CYPQoAGSpzdX2UKGgGaAloD0MIKeeLvRddccCUhpRSlGgVS2poFkdAmD0Oc+aBqnV9lChoBmgJaA9DCJiiXBq/JmfAlIaUUpRoFUtOaBZHQJg9L1g6U7l1fZQoaAZoCWgPQwiHwmfrIBpxwJSGlFKUaBVLW2gWR0CYPTVOsT37dX2UKGgGaAloD0MIVryReeRpacCUhpRSlGgVS19oFkdAmD1foRqXW3V9lChoBmgJaA9DCKneGtgqzFbAlIaUUpRoFUteaBZHQJg9rJQtSQ51fZQoaAZoCWgPQwjm6PF7m7tWwJSGlFKUaBVLS2gWR0CYPbEyckMTdX2UKGgGaAloD0MI6gQ0EbZpYMCUhpRSlGgVS2poFkdAmD3KmCROlHV9lChoBmgJaA9DCLuYZrqX8nPAlIaUUpRoFUtlaBZHQJg94HgP3BZ1fZQoaAZoCWgPQwihTKPJRch4wJSGlFKUaBVLdWgWR0CYPgDziCJ5dX2UKGgGaAloD0MISnuDL4ypcsCUhpRSlGgVS3JoFkdAmD4b/CIk7nV9lChoBmgJaA9DCPORlPQw+lfAlIaUUpRoFUtCaBZHQJg+Il4TsY51fZQoaAZoCWgPQwg+rg0V4ww3wJSGlFKUaBVLUmgWR0CYPkA/cFhYdX2UKGgGaAloD0MIIXU7+8qzSMCUhpRSlGgVS0RoFkdAmD6BV+7UX3V9lChoBmgJaA9DCEs6ysFsqFrAlIaUUpRoFUtpaBZHQJg+oFvAGjd1fZQoaAZoCWgPQwi9pgcF5QN4wJSGlFKUaBVLWGgWR0CYPuYvFm4BdX2UKGgGaAloD0MIwOeHEUIFcMCUhpRSlGgVS2xoFkdAmD8DqrzXjHV9lChoBmgJaA9DCI6QgTy7X1fAlIaUUpRoFUtYaBZHQJg/DeKsMiN1fZQoaAZoCWgPQwgrvqHwWTlgwJSGlFKUaBVLaGgWR0CYPzBQemvXdX2UKGgGaAloD0MI81Zdh2oCecCUhpRSlGgVS15oFkdAmD8pF1B+nnV9lChoBmgJaA9DCOP6d33mhF7AlIaUUpRoFUtQaBZHQJg/WH446wN1fZQoaAZoCWgPQwjAstKkFG1kwJSGlFKUaBVLVGgWR0CYP4n7YTTOdX2UKGgGaAloD0MIucK7XMRkcMCUhpRSlGgVS0loFkdAmD+h/NJOFnV9lChoBmgJaA9DCDS/mgMEQlPAlIaUUpRoFUs9aBZHQJg/5FPSDyx1fZQoaAZoCWgPQwiyLm6jAbtuwJSGlFKUaBVLYmgWR0CYP+LW7OE/dX2UKGgGaAloD0MIRs7CnnZ8V8CUhpRSlGgVS31oFkdAmD//uogmq3V9lChoBmgJaA9DCJ4j8l0KbXPAlIaUUpRoFUtXaBZHQJhADZVXFLp1fZQoaAZoCWgPQwg5nWSryw9VwJSGlFKUaBVLYWgWR0CYQB4HoouxdX2UKGgGaAloD0MIRkCFIwhCdcCUhpRSlGgVS2loFkdAmEAsCo0hvHV9lChoBmgJaA9DCErwhjQq3GTAlIaUUpRoFUuAaBZHQJhAYa6z3RJ1fZQoaAZoCWgPQwj6uaEpe5N9wJSGlFKUaBVLVGgWR0CYQKsKb8WLdX2UKGgGaAloD0MIJ92WyAW+VsCUhpRSlGgVS0xoFkdAmEDARChN/XV9lChoBmgJaA9DCBTObi2T+ULAlIaUUpRoFUtPaBZHQJhA2Gzru6V1fZQoaAZoCWgPQwibr5KP3ZltwJSGlFKUaBVLQ2gWR0CYQU/EfkmydX2UKGgGaAloD0MI4BKAf0rSXMCUhpRSlGgVS0JoFkdAmEFzgEU0vXV9lChoBmgJaA9DCNpyLsVVJfy/lIaUUpRoFUuQaBZHQJhBjtOVPep1fZQoaAZoCWgPQwhvnuqQGwdpwJSGlFKUaBVLZmgWR0CYQbz7uUlidX2UKGgGaAloD0MIr+sX7IZcXcCUhpRSlGgVS31oFkdAmEG6bnX/YXV9lChoBmgJaA9DCBVwz/PnjXLAlIaUUpRoFUthaBZHQJhBul3yI551fZQoaAZoCWgPQwjGpwAYTxhxwJSGlFKUaBVLcWgWR0CYQchOgxrSdX2UKGgGaAloD0MIFa3cC0zhaMCUhpRSlGgVS4VoFkdAmEHgFcIJJHV9lChoBmgJaA9DCKRQFr6+nHHAlIaUUpRoFUtTaBZHQJhCBKK508x1fZQoaAZoCWgPQwgi/fZ14KBbwJSGlFKUaBVLS2gWR0CYQg5pJwsHdX2UKGgGaAloD0MIzPEKRE80WMCUhpRSlGgVS15oFkdAmEIUiQkonnV9lChoBmgJaA9DCMQFoFG6CFnAlIaUUpRoFUtAaBZHQJhCHo3aSLZ1fZQoaAZoCWgPQwg50ENtG/lrwJSGlFKUaBVLYmgWR0CYQkNxlxwRdX2UKGgGaAloD0MIf2snSkIfWsCUhpRSlGgVS1FoFkdAmEKgIyCWeHV9lChoBmgJaA9DCJVgcTjzZ1nAlIaUUpRoFUt+aBZHQJhCnjKgZjx1fZQoaAZoCWgPQwjXEvJBz89bwJSGlFKUaBVLQWgWR0CYQsEkjX4CdX2UKGgGaAloD0MICeBm8eKBdcCUhpRSlGgVS1poFkdAmEK64Ds+mnV9lChoBmgJaA9DCLXEymjkE17AlIaUUpRoFUtBaBZHQJhDQelsP8R1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 10,
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35f8134d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35f8134dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35f8134e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35f8134ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f35f8134f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f35f813a050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35f813a0e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f35f813a170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35f813a200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35f813a290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35f813a320>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f35f8177c30>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652166340.2794888,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMQcD5/348/qiy7Psv16L6wfWs+fczOPAAAAAAAAAAAQxNOvmHmgjviHcW5VekYN9lIMr19SOo4AACAPwAAgD8ADZo8cS0ZuQCeiLrHVUS2Xv6IuazWuDUAAIA/AACAP2b3Ub32zGO62yeWt+8GM7JiuvS5BvqrNgAAgD8AAIA/zeKEPY+SRLrmHdc6mj14NniMuDs7Yvi5AACAPwAAgD9zssq94fClurLE9DmSJhs1xw0VuiTgBzQAAIA/AACAP6ZMqb37D7o///4zvySVIz16EYW7QPhMvgAAAAAAAAAANTIVv1M8ab6la228oK68PH44AD44io67AACAPwAAgD/NUtc9pDArOK7DartH/oS2FKclPL5BADYAAIA/AACAP7O9Jb3hDIS6ETa6O1cC9DfchDu76gtpNgAAgD8AAIA/M1tlvdhfpj4P4IM90F8xvsaGdD0ycAA9AAAAAAAAAAAzgYQ8KTgSuogiwzrNzoM1c5PXub7A3bkAAIA/AACAP83Majuulb26ExVVOksPcbZiIXy5WgByuQAAgD8AAIA/YD4gPjEFpz7yD/m8/UI/voBrt7zmcbk2AAAAAAAAAADduXS+bFj3PMLay7oklps5qa2Ivg8CFToAAIA/AACAP/Nwbz6kT2A8gzXXuqR9Crm+GPg98EYCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKpFEL6NBYUCUhpRSlIwBbJRN6AOMAXSUR0CKZr+0gKWtdX2UKGgGaAloD0MISYEFMGXkXkCUhpRSlGgVTegDaBZHQIpnfh4t6HF1fZQoaAZoCWgPQwgx0/avrBpeQJSGlFKUaBVN6ANoFkdAimjZh8Yyf3V9lChoBmgJaA9DCL9/8+LEOF5AlIaUUpRoFU3oA2gWR0CKcHUG3WnTdX2UKGgGaAloD0MISMK+ncTUYECUhpRSlGgVTegDaBZHQIqIfctXgcd1fZQoaAZoCWgPQwjbNLbXgr4gQJSGlFKUaBVL+WgWR0CKl6sKb8WLdX2UKGgGaAloD0MIy2Wjc/5qYkCUhpRSlGgVTegDaBZHQIqrPNzKcNJ1fZQoaAZoCWgPQwh8Q+Gz9eBgQJSGlFKUaBVN6ANoFkdAiq6FzdUKiXV9lChoBmgJaA9DCFqfckwWmllAlIaUUpRoFU3oA2gWR0CKsz2TPjXGdX2UKGgGaAloD0MIwqIiTidXYECUhpRSlGgVTegDaBZHQIrFmsJY1YR1fZQoaAZoCWgPQwjPSIRGMPpjQJSGlFKUaBVN6ANoFkdAiskDNpudgHV9lChoBmgJaA9DCH/3jhoT9V5AlIaUUpRoFU3oA2gWR0CKyqC1Z1V6dX2UKGgGaAloD0MIO4xJfy+cYECUhpRSlGgVTegDaBZHQIrZs/nnuAt1fZQoaAZoCWgPQwg25nXEIYJdQJSGlFKUaBVN6ANoFkdAiunCLuQZGnV9lChoBmgJaA9DCMn/5O/eN1xAlIaUUpRoFU3oA2gWR0CK9dO+IuXedX2UKGgGaAloD0MInE6y1eUOXUCUhpRSlGgVTegDaBZHQIr/ELUkOZt1fZQoaAZoCWgPQwjdtu9R/xtlQJSGlFKUaBVN6ANoFkdAiwXXV09yLnV9lChoBmgJaA9DCNNnB1xXLmJAlIaUUpRoFU3oA2gWR0CLBqYE4ecQdX2UKGgGaAloD0MIEMr7OBqRYECUhpRSlGgVTegDaBZHQIsHW9eyAx11fZQoaAZoCWgPQwh8taM4RxBgQJSGlFKUaBVN6ANoFkdAiwitwiqyW3V9lChoBmgJaA9DCD5eSIcHTWJAlIaUUpRoFU3oA2gWR0CLJ30voNd7dX2UKGgGaAloD0MIm6vmOaL5ZECUhpRSlGgVTegDaBZHQIs2Yf+0gKZ1fZQoaAZoCWgPQwhGelG7X65gQJSGlFKUaBVN6ANoFkdAi0h7ah6By3V9lChoBmgJaA9DCCMT8GskJF1AlIaUUpRoFU3oA2gWR0CLS32VVxS6dX2UKGgGaAloD0MIcm4T7pUEYkCUhpRSlGgVTegDaBZHQItQF9v0h/11fZQoaAZoCWgPQwh5sTBEzoBiQJSGlFKUaBVN6ANoFkdAi2GgpSaVlnV9lChoBmgJaA9DCNXKhF/q5F5AlIaUUpRoFU3oA2gWR0CLZNa0QbuMdX2UKGgGaAloD0MI68cm+RF8YECUhpRSlGgVTegDaBZHQItmYi5d4V11fZQoaAZoCWgPQwh7vJAOD3taQJSGlFKUaBVN6ANoFkdAi3TaJIlMRHV9lChoBmgJaA9DCKadmssN22FAlIaUUpRoFU3oA2gWR0CMkNgk1MufdX2UKGgGaAloD0MI61Ij9DOVJkCUhpRSlGgVTQ0BaBZHQIyWwTIvJzV1fZQoaAZoCWgPQwi4V+atun1ZQJSGlFKUaBVN6ANoFkdAjJwod+5OJ3V9lChoBmgJaA9DCIicvp6vuVJAlIaUUpRoFU3oA2gWR0CMpNRm9QGfdX2UKGgGaAloD0MImpZYGY2CXECUhpRSlGgVTegDaBZHQIyrKBPKuCB1fZQoaAZoCWgPQwhqh78m659gQJSGlFKUaBVN6ANoFkdAjKv544ZMtnV9lChoBmgJaA9DCBuDTgid+mJAlIaUUpRoFU3oA2gWR0CMrJ9LpRoAdX2UKGgGaAloD0MIByl4Crl1XUCUhpRSlGgVTegDaBZHQIyt1ShrWRR1fZQoaAZoCWgPQwgUsB2M2CfQv5SGlFKUaBVL7mgWR0CMvAhA4XGfdX2UKGgGaAloD0MI96xrtJySYECUhpRSlGgVTegDaBZHQIzJ47q6e5F1fZQoaAZoCWgPQwhlAKjiRo5jQJSGlFKUaBVN6ANoFkdAjNdz0pVjqnV9lChoBmgJaA9DCAIOoUrNtGdAlIaUUpRoFU0OA2gWR0CM4eDFId2gdX2UKGgGaAloD0MIbJbLRmcPYECUhpRSlGgVTegDaBZHQIznnarWAgB1fZQoaAZoCWgPQwgFMjuL3o9iQJSGlFKUaBVN6ANoFkdAjOoxRuTA33V9lChoBmgJaA9DCClauReYTGRAlIaUUpRoFU3oA2gWR0CM7d7qIJqqdX2UKGgGaAloD0MIMj7MXjZFZECUhpRSlGgVTWQCaBZHQIz5o7Pppvh1fZQoaAZoCWgPQwiRJt4BntNbQJSGlFKUaBVN6ANoFkdAjQDkXDWK/HV9lChoBmgJaA9DCAzlRLsKPWJAlIaUUpRoFU3oA2gWR0CNDrJfYzzmdX2UKGgGaAloD0MIVWe1wB6eW0CUhpRSlGgVTegDaBZHQI0dZw84gih1fZQoaAZoCWgPQwiWXpuNlbhbQJSGlFKUaBVN6ANoFkdAjSMwBo24u3V9lChoBmgJaA9DCPHVjuKcBmBAlIaUUpRoFU3oA2gWR0CNN8/X5FgEdX2UKGgGaAloD0MIM+AsJUsdYkCUhpRSlGgVTegDaBZHQI04jAN5MUR1fZQoaAZoCWgPQwiDFhIwOjdjQJSGlFKUaBVN6ANoFkdAjTk98JD3NHV9lChoBmgJaA9DCEoJwap622NAlIaUUpRoFU3oA2gWR0CNOowQlKK6dX2UKGgGaAloD0MIZmt9kdAYXUCUhpRSlGgVTegDaBZHQI1JWz0HyEt1fZQoaAZoCWgPQwhwCisVVEBhQJSGlFKUaBVNFwNoFkdAjVAY3FUADXV9lChoBmgJaA9DCCDSb18Hb2FAlIaUUpRoFU3oA2gWR0CNVrSThYNidX2UKGgGaAloD0MIc2cmGM6fYUCUhpRSlGgVTegDaBZHQI1ig0fozN51fZQoaAZoCWgPQwgbLQd6qMdjQJSGlFKUaBVN6ANoFkdAjXFuTJQtSXV9lChoBmgJaA9DCML8FTJXtVFAlIaUUpRoFU3oA2gWR0CNdBvrGBFvdX2UKGgGaAloD0MId2ouNxgNWUCUhpRSlGgVTegDaBZHQI14C+N96Tp1fZQoaAZoCWgPQwjQKcjPRq9iQJSGlFKUaBVN6ANoFkdAjYSyBbwBo3V9lChoBmgJaA9DCD6XqUnwjmFAlIaUUpRoFU3oA2gWR0CNjMUM5OrRdX2UKGgGaAloD0MIoGzKFd5hVkCUhpRSlGgVTegDaBZHQI2chIJ7b+N1fZQoaAZoCWgPQwiFevoI/MBgQJSGlFKUaBVN6ANoFkdAjaz0eU6gd3V9lChoBmgJaA9DCDT3kPC9019AlIaUUpRoFU3oA2gWR0COxEx0uDjBdX2UKGgGaAloD0MIluzYCMQiaECUhpRSlGgVTU4CaBZHQI7NUJSiudR1fZQoaAZoCWgPQwjAl8KD5jNvQJSGlFKUaBVNOQFoFkdAjtBPrfLs8nV9lChoBmgJaA9DCE890uC2S1JAlIaUUpRoFU3oA2gWR0CO2io86mwadX2UKGgGaAloD0MIKnCyDVy+YkCUhpRSlGgVTegDaBZHQI7a8SK3uu11fZQoaAZoCWgPQwgArmTHRsBgQJSGlFKUaBVN6ANoFkdAjtumJvYOD3V9lChoBmgJaA9DCJ5i1SBMoWBAlIaUUpRoFU3oA2gWR0CO3PicXm/4dX2UKGgGaAloD0MIZ5jaUgcIXkCUhpRSlGgVTT4CaBZHQI7dcep4rz51fZQoaAZoCWgPQwhv8fCeA9tdQJSGlFKUaBVN6ANoFkdAjupHVG0/nnV9lChoBmgJaA9DCEs+dhcoWl9AlIaUUpRoFU3oA2gWR0CO8HUZvUBodX2UKGgGaAloD0MILV+X4T89QUCUhpRSlGgVTQcBaBZHQI7yJ3iaRZF1fZQoaAZoCWgPQwjxhF5/EuZgQJSGlFKUaBVN6ANoFkdAjva3UQTVUnV9lChoBmgJaA9DCHS0qiUdp2NAlIaUUpRoFU3oA2gWR0CPEjOMVDa5dX2UKGgGaAloD0MI+Db92Y/NXECUhpRSlGgVTegDaBZHQI8ZdVrAP/d1fZQoaAZoCWgPQwhhGoaPCA5iQJSGlFKUaBVN6ANoFkdAjydcZtNzsHV9lChoBmgJaA9DCK1p3nGKz2JAlIaUUpRoFU3oA2gWR0CPP2PPLPlddX2UKGgGaAloD0MImdamsb1pbkCUhpRSlGgVTR8DaBZHQI9M6RKYiPh1fZQoaAZoCWgPQwi3Xz5Zse9gQJSGlFKUaBVN6ANoFkdAj0603Ov+wXV9lChoBmgJaA9DCP5kjA8zGWZAlIaUUpRoFU3oA2gWR0CPVDN6gM+edX2UKGgGaAloD0MIs193unOzYUCUhpRSlGgVTegDaBZHQI9cQOe8PFx1fZQoaAZoCWgPQwjgu80bJ4ZkQJSGlFKUaBVN6ANoFkdAj2hC04R283V9lChoBmgJaA9DCJIjnYERF2BAlIaUUpRoFU3oA2gWR0CPaPrgwXZXdX2UKGgGaAloD0MInznrU46HX0CUhpRSlGgVTegDaBZHQI9rAxesxPB1fZQoaAZoCWgPQwjEWnwKgBRTQJSGlFKUaBVN6ANoFkdAj2uAmiQDFXV9lChoBmgJaA9DCHYb1H5rt2JAlIaUUpRoFU3oA2gWR0CPeO5aNdZ8dX2UKGgGaAloD0MIKLUX0XbxXUCUhpRSlGgVTegDaBZHQI9/kdLg4wR1fZQoaAZoCWgPQwiE1sOXiftcQJSGlFKUaBVN6ANoFkdAj4E3lr/KhnV9lChoBmgJaA9DCIvFbwqrgGFAlIaUUpRoFU3oA2gWR0CPhaIC2c8UdX2UKGgGaAloD0MI2pJVEW6ASUCUhpRSlGgVS/NoFkdAj4mNMwlByHV9lChoBmgJaA9DCH0geedQAV1AlIaUUpRoFU3oA2gWR0CPoK3R5TqCdX2UKGgGaAloD0MIOzQsRl03X0CUhpRSlGgVTegDaBZHQI+nvOW0JF91fZQoaAZoCWgPQwhAahMn96ldQJSGlFKUaBVN6ANoFkdAj7YwqZtvXXV9lChoBmgJaA9DCNyfi4aM+2VAlIaUUpRoFU1tA2gWR0CPys+t8uzydX2UKGgGaAloD0MIIGKDhZNQYECUhpRSlGgVTegDaBZHQI/Qr+PzWf91fZQoaAZoCWgPQwiI1R9hGC9lQJSGlFKUaBVN6ANoFkdAj+Bji4rjHXV9lChoBmgJaA9DCOKQDaSLwmBAlIaUUpRoFU3oA2gWR0CP5ldu5z5odWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 160,
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
lunar_demo/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ce1e63ff9a4fc5f1703eafedbf2418563360aadba5128ea539c09d76285c1de8
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:133a485073590672679c052e6c4bb2ba465b9f2b89719545747ecbd530d25292
3
+ size 84893
lunar_demo/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:100da24fdcd809586f2b1f270ea0207bae85d51fec84984b602bcd87a342affe
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3938d926fc081dc449402267a63caf477cc49889d7951a083490c0f34c44763
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:903c64027acf5baa6a6dcdee48b0b9481df39300f64130f47c00c1a2084fde98
3
- size 155832
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:537669af0349b67ac2a332c942564a80f2123d8a8d628eb4db64db10122516ef
3
+ size 228592
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -639.0771142674901, "std_reward": 206.96012480390624, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T16:45:23.062320"}
 
1
+ {"mean_reward": 214.29935608208166, "std_reward": 38.60942947362992, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T07:24:47.354289"}