{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0672311a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 200, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652113121.350261, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAbOb28Un8/iM9XvoUwTb9UnTE+vvz7PAAAAAAAAAAADikdvyA9GT/o6JW/YEhsv7xFAT8v5rY9AAAAAAAAAAA6UXI+jJNQP4z5Cj9f12e/vBgOvwrobr4AAAAAAAAAAFNyZD6/ksU+oln2PtHol7+SsgK/4rmrvgAAAAAAAAAAGtazvZC2nD94bxi/Ej0ev0jINj7nKpc+AAAAAAAAAADmUVa9H0CxPwh/4b7p5Ue+iwedPQsEMD4AAAAAAAAAAIAjNT5gIUA/c2QiP4Gtjr/YsQq/jdDWvgAAAAAAAAAAzbonPFhMtT/TylM+WSIBPOhlabwePo29AAAAAAAAAADmFzo9vum/Py8Tuj0P4SW+6QdFPln5Aj4AAAAAAAAAAO1IPr6wm6g/+VBKvw05w75KQsI9hNbFOwAAAAAAAAAArV4rPqowhD+mBik/hhNlv5lv+b1AxuM7AAAAAAAAAABAlwu+rfGzPzg21L6rDoa+AeTXPdfepr0AAAAAAAAAAPOr0r73cyk/lYt2vxy7i7/OAno/IBEUPwAAAAAAAAAAM6XCvSZZgD8OnVm+H1cqvwNoFL4LqCK+AAAAAAAAAABgOhE+bkOvPgoqWT7buaa/mbc8vUtK2zwAAAAAAAAAAGb1+rzW9pg/cro5vfVdKL+1SCg+Ktz6uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/b/qyBHbYcCUhpRSlIwBbJRLQ4wBdJRHQEhbhLGrCFd1fZQoaAZoCWgPQwhmahK8IWRmwJSGlFKUaBVLV2gWR0BIaNGd7OVxdX2UKGgGaAloD0MIyTzyBwMUU8CUhpRSlGgVS2hoFkdASG8vM8ox6HV9lChoBmgJaA9DCFx381TH9nbAlIaUUpRoFUtTaBZHQEh0NVBD5TJ1fZQoaAZoCWgPQwipoKLqV9BOwJSGlFKUaBVLSmgWR0BIe8urZJ05dX2UKGgGaAloD0MI8gnZeZtkYcCUhpRSlGgVS1poFkdASHw+hXbM5nV9lChoBmgJaA9DCG+ERUWcTjVAlIaUUpRoFUtUaBZHQEiEk+HJtBR1fZQoaAZoCWgPQwgF/YUeMaxSwJSGlFKUaBVLY2gWR0BIhJokAxSHdX2UKGgGaAloD0MIeJeL+M5AZMCUhpRSlGgVS15oFkdASIdj0+TvA3V9lChoBmgJaA9DCIvfFFYq71nAlIaUUpRoFUtIaBZHQEiM3EyckMV1fZQoaAZoCWgPQwhPWriswo1WwJSGlFKUaBVLU2gWR0BIjeKCQLeAdX2UKGgGaAloD0MILgCN0iUfZ8CUhpRSlGgVS2toFkdASJFBdD6WPnV9lChoBmgJaA9DCB6Jl6ezP3nAlIaUUpRoFUtpaBZHQEiToIv8IiV1fZQoaAZoCWgPQwhf7/54ryxYwJSGlFKUaBVLO2gWR0BIknEETxoadX2UKGgGaAloD0MIhZSfVHvYbsCUhpRSlGgVS2xoFkdASJaOFQEZBXV9lChoBmgJaA9DCAvrxrsjdnnAlIaUUpRoFUtXaBZHQEiYGpuMuOF1fZQoaAZoCWgPQwghH/RsVvNMwJSGlFKUaBVLd2gWR0BInqRU3n6mdX2UKGgGaAloD0MIC2DKwAH/V8CUhpRSlGgVS0NoFkdASKHZVXFLnXV9lChoBmgJaA9DCP1K58Oz22nAlIaUUpRoFUtFaBZHQEiqyRB/qgR1fZQoaAZoCWgPQwgKSzygbApfwJSGlFKUaBVLg2gWR0BIr0IC2c8UdX2UKGgGaAloD0MI0ZSdflCiV8CUhpRSlGgVSzxoFkdASLlyeZof0XV9lChoBmgJaA9DCNGy7h8L5FzAlIaUUpRoFUs9aBZHQEi8HARChOB1fZQoaAZoCWgPQwjI0ocuqBtqwJSGlFKUaBVLcWgWR0BIvJaaCtihdX2UKGgGaAloD0MIlbcjnBYTVsCUhpRSlGgVSz5oFkdASMAjv/io9HV9lChoBmgJaA9DCJqw/WTMznXAlIaUUpRoFUtYaBZHQEjBBppN9IB1fZQoaAZoCWgPQwigUiXK3iBYwJSGlFKUaBVLZWgWR0BIwiWVu76IdX2UKGgGaAloD0MInff/ccJnacCUhpRSlGgVS0FoFkdASMsTg2qDLHV9lChoBmgJaA9DCML8FTJXfi5AlIaUUpRoFUtbaBZHQEjLI3irDIl1fZQoaAZoCWgPQwiJJHoZxfNkwJSGlFKUaBVLZWgWR0BIzSwwCbMHdX2UKGgGaAloD0MIpBthURH8Y8CUhpRSlGgVS1poFkdASNAVymygPHV9lChoBmgJaA9DCHQNMzQe6mLAlIaUUpRoFUtuaBZHQEjRJ9y925h1fZQoaAZoCWgPQwiFQZlGE5twwJSGlFKUaBVLXGgWR0BI1tCAtnPFdX2UKGgGaAloD0MIi2t8JrtBdMCUhpRSlGgVS2xoFkdASNfbypaRp3V9lChoBmgJaA9DCGk6OxkcOHbAlIaUUpRoFUtRaBZHQEjZ/XoTwlV1fZQoaAZoCWgPQwjZzvdT4wdnwJSGlFKUaBVLQ2gWR0BI5v8AJb+tdX2UKGgGaAloD0MIFy1A22rCW8CUhpRSlGgVSz5oFkdASOaqfe1rqXV9lChoBmgJaA9DCMZRuYna93TAlIaUUpRoFUtbaBZHQEjo9RJmNBF1fZQoaAZoCWgPQwgLXvQVpP1bwJSGlFKUaBVLXWgWR0BI7te2NNrTdX2UKGgGaAloD0MIkj6tov/8dsCUhpRSlGgVS0toFkdASPJ13dKujnV9lChoBmgJaA9DCE6XxcRmqWDAlIaUUpRoFUtXaBZHQEj7YkE9t/F1fZQoaAZoCWgPQwjItgw4S112wJSGlFKUaBVLUWgWR0BJA7KRuCPIdX2UKGgGaAloD0MIbhRZa6hRdMCUhpRSlGgVS2NoFkdASQT5bhWHUXV9lChoBmgJaA9DCFovhnJiUXfAlIaUUpRoFUtxaBZHQEkJjGT9sJp1fZQoaAZoCWgPQwjYYrfPKnhZwJSGlFKUaBVLWGgWR0BJC0HQhOgydX2UKGgGaAloD0MIM9yAzw8dcsCUhpRSlGgVS2doFkdASREySFGoaXV9lChoBmgJaA9DCFOXjGMkgHzAlIaUUpRoFUtgaBZHQEkRy6tknTl1fZQoaAZoCWgPQwiuYYbGE1JgwJSGlFKUaBVLamgWR0BJE3aJyhi9dX2UKGgGaAloD0MI7x6g+zLqdcCUhpRSlGgVS1ZoFkdASRJnDiwSrnV9lChoBmgJaA9DCNszSwLUPV7AlIaUUpRoFUtaaBZHQEkT8Sf16E91fZQoaAZoCWgPQwj+fFuwVCNawJSGlFKUaBVLTmgWR0BJHbcO9WZJdX2UKGgGaAloD0MIixcLQ+QTWsCUhpRSlGgVS2doFkdASR7ZQHiWFHV9lChoBmgJaA9DCPJ376gxY2LAlIaUUpRoFUtgaBZHQEkns5XEIgN1fZQoaAZoCWgPQwgIdvwXCJNZwJSGlFKUaBVLRGgWR0BJKV+iJwbVdX2UKGgGaAloD0MIcm2oGGfYYcCUhpRSlGgVS0FoFkdASS9e8f3evnV9lChoBmgJaA9DCIS7s3ZbwWLAlIaUUpRoFUtJaBZHQEk46S1Vo6F1fZQoaAZoCWgPQwjVlGQdjptvwJSGlFKUaBVLe2gWR0BJORFRYRukdX2UKGgGaAloD0MInWUWodiYVsCUhpRSlGgVS0NoFkdASUANTcZccHV9lChoBmgJaA9DCPIJ2XmbIGLAlIaUUpRoFUtKaBZHQElCwKSgXdl1fZQoaAZoCWgPQwjgufdwya1CwJSGlFKUaBVLSWgWR0BJQpwCKaXsdX2UKGgGaAloD0MIOC7jpgbjXMCUhpRSlGgVSz1oFkdASUcAksz2vnV9lChoBmgJaA9DCCBj7lrC13jAlIaUUpRoFUtcaBZHQElInHeaa1F1fZQoaAZoCWgPQwhpAG+BhN9iwJSGlFKUaBVLamgWR0BJSvSc9W6tdX2UKGgGaAloD0MIru/DQYL8dsCUhpRSlGgVS4ZoFkdASU2ObRWtEHV9lChoBmgJaA9DCHrgY7DiZlLAlIaUUpRoFUtLaBZHQElRZK3/gix1fZQoaAZoCWgPQwjKxRhYR1dgwJSGlFKUaBVLnWgWR0BJWK814xDcdX2UKGgGaAloD0MI2A5G7JOBY8CUhpRSlGgVS3RoFkdASV3Bk7Omi3V9lChoBmgJaA9DCOnvpfDgCXTAlIaUUpRoFUtcaBZHQElnEhq0tyx1fZQoaAZoCWgPQwjsM2d9yr1twJSGlFKUaBVLgWgWR0BJaK1G9YfXdX2UKGgGaAloD0MI/ffgtUsiUsCUhpRSlGgVS0loFkdASWrF85S3s3V9lChoBmgJaA9DCAzNdRppSW3AlIaUUpRoFUtoaBZHQEltbSJCSid1fZQoaAZoCWgPQwguVP61vLdfwJSGlFKUaBVLZ2gWR0BJdI4lyBCldX2UKGgGaAloD0MIcjRHVn5YaMCUhpRSlGgVS15oFkdASXiraM72c3V9lChoBmgJaA9DCHP3OT5a0G7AlIaUUpRoFUtYaBZHQEl9EHdGiHt1fZQoaAZoCWgPQwiLwi6KHo5uwJSGlFKUaBVLW2gWR0BJf1YQrc0tdX2UKGgGaAloD0MIIHnnUEaEe8CUhpRSlGgVS29oFkdASYndsSCe3HV9lChoBmgJaA9DCKG8j6M58XjAlIaUUpRoFUtgaBZHQEmNanJkoWp1fZQoaAZoCWgPQwgcQL/vXzdwwJSGlFKUaBVLW2gWR0BJjj/2kBS2dX2UKGgGaAloD0MIXW4w1GGbd8CUhpRSlGgVS2hoFkdASY4Ym9g4O3V9lChoBmgJaA9DCBHHurgNT3fAlIaUUpRoFUtsaBZHQEmTReC04R51fZQoaAZoCWgPQwjKNJpcDLphwJSGlFKUaBVLRGgWR0BJm+a8Yht+dX2UKGgGaAloD0MIhxqFJHP6cMCUhpRSlGgVS1toFkdASZvNke6qbXV9lChoBmgJaA9DCFBUNqwpuWXAlIaUUpRoFUtWaBZHQEmiTxoZhrp1fZQoaAZoCWgPQwh+xK9YQ95xwJSGlFKUaBVLimgWR0BJpHkcS5AhdX2UKGgGaAloD0MIbmx2pPqjUcCUhpRSlGgVSz5oFkdASahNqQA+6nV9lChoBmgJaA9DCGACt+7mQGnAlIaUUpRoFUt/aBZHQEmvZzxPO6d1fZQoaAZoCWgPQwgkRWRYhf9xwJSGlFKUaBVLQGgWR0BJtpnHvMKUdX2UKGgGaAloD0MIAfxTqkTiWMCUhpRSlGgVS3FoFkdASbhQizLOiXV9lChoBmgJaA9DCOOkMO+xOXDAlIaUUpRoFUt0aBZHQEm4XFcY64l1fZQoaAZoCWgPQwjCacGLvlh5wJSGlFKUaBVLZ2gWR0BJwJmukk8idX2UKGgGaAloD0MIujKoNjgbUsCUhpRSlGgVS1RoFkdASclSde6ZpnV9lChoBmgJaA9DCKwfm+THpXDAlIaUUpRoFUt6aBZHQEnKOBDohZB1fZQoaAZoCWgPQwgZV1wclY9GwJSGlFKUaBVLbGgWR0BJyyU1Q66rdX2UKGgGaAloD0MImG4Sg8DOUcCUhpRSlGgVSz5oFkdASc4KSgXdkHV9lChoBmgJaA9DCGuDE9Evi2jAlIaUUpRoFUtfaBZHQEnQiu+yquN1fZQoaAZoCWgPQwjNkCqKVxtgwJSGlFKUaBVLTWgWR0BJ0mnfl6qsdX2UKGgGaAloD0MIDoelgR/Dc8CUhpRSlGgVS2VoFkdASdUgOjIq9XV9lChoBmgJaA9DCOsdbocGaWzAlIaUUpRoFUtfaBZHQEnV225QP7N1fZQoaAZoCWgPQwjpDIy8bBBywJSGlFKUaBVLUGgWR0BJ28Kw6hg3dX2UKGgGaAloD0MI9UcYBizrTsCUhpRSlGgVS19oFkdASd28274BWHV9lChoBmgJaA9DCNU8R+S7Q1rAlIaUUpRoFUs/aBZHQEnh/Lkjopx1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}