FrozenLake_PPO / config.json
eshwarprasadS's picture
Push PPO Agent for FrozenLakev1
312b768
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f295855bd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f295855bdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f295855be50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f295855bee0>", "_build": "<function ActorCriticPolicy._build at 0x7f295855bf70>", "forward": "<function ActorCriticPolicy.forward at 0x7f2958561040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f29585610d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2958561160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f29585611f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2958561280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2958561310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f29585613a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f295855f0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 16, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 10, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675720624062949812, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVwwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAAAgAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAkAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSyyMAXSUR0CX220NBnjAdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0CX22kQf6oEdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CX23d8Rcu8dX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0CX232HLzPKdX2UKGgGRwAAAAAAAAAAaAdLF2gIR0CX232mYSg5dX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CX24m7aqS6dX2UKGgGRwAAAAAAAAAAaAdLCGgIR0CX24dKNAC5dX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CX24ZKWcBmdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CX25FglWwNdX2UKGgGRz/wAAAAAAAAaAdLMGgIR0CX25I3zcyndX2UKGgGRwAAAAAAAAAAaAdLHmgIR0CX25x7RfF8dX2UKGgGRz/wAAAAAAAAaAdLQmgIR0CX26I/Z/TcdX2UKGgGRz/wAAAAAAAAaAdLQ2gIR0CX26jghr31dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0CX26s+mm+CdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0CX27ZnctXgdX2UKGgGRz/wAAAAAAAAaAdLImgIR0CX27PuG9HudX2UKGgGRz/wAAAAAAAAaAdLJmgIR0CX28AxSHdodX2UKGgGRwAAAAAAAAAAaAdLDGgIR0CX28UJfICEdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CX271Tzd1udX2UKGgGRz/wAAAAAAAAaAdLHWgIR0CX28YbKifydX2UKGgGRz/wAAAAAAAAaAdLMGgIR0CX28LOiWVvdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CX28uPFNtZdX2UKGgGRwAAAAAAAAAAaAdLK2gIR0CX28cpLEk0dX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CX28QGfPHDdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CX29vvjOs1dX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CX29sE7nxKdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CX296Z6UqydX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CX2+fQa72+dX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CX2+V3EAHWdX2UKGgGRwAAAAAAAAAAaAdLHWgIR0CX2+fsNUfgdX2UKGgGRz/wAAAAAAAAaAdLMGgIR0CX2+9UCJXRdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CX2/5Xlr/LdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0CX3AJ7b+LndX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CX3Af3vhIfdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CX3AHww0wbdX2UKGgGRwAAAAAAAAAAaAdLH2gIR0CX3A7Wd3B6dX2UKGgGRwAAAAAAAAAAaAdLEGgIR0CX3BJUo8ZDdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CX3A0WuX/pdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0CX3BWtEG7jdX2UKGgGRwAAAAAAAAAAaAdLD2gIR0CX3CKgqVhTdX2UKGgGRz/wAAAAAAAAaAdLSmgIR0CX3Ci4rjHXdX2UKGgGRwAAAAAAAAAAaAdLG2gIR0CX3CWKMvRJdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CX3DY5ksjFdX2UKGgGRwAAAAAAAAAAaAdLHmgIR0CX3DiVjZtfdX2UKGgGRwAAAAAAAAAAaAdLPGgIR0CX3DEqUeMidX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CX3DNp/PPcdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CX3DAk9lmOdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CX3DhR64UfdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CX3EKu0TlDdX2UKGgGRwAAAAAAAAAAaAdLDWgIR0CX3EZr56+ndX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CX3Ev+wTufdX2UKGgGRwAAAAAAAAAAaAdLDWgIR0CX3FKYiPhidX2UKGgGRwAAAAAAAAAAaAdLGWgIR0CX3E/47A+IdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CX3FOwgTysdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CX3GPdVNpNdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CX3GLOiWVvdX2UKGgGRz/wAAAAAAAAaAdLMGgIR0CX3GDdxhlUdX2UKGgGRwAAAAAAAAAAaAdLSmgIR0CX3GUwi7kGdX2UKGgGRwAAAAAAAAAAaAdLCWgIR0CX3F8HObAldX2UKGgGRwAAAAAAAAAAaAdLCmgIR0CX3G9gWrOrdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CX3GfBvaUSdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0CX3HG6PKdQdX2UKGgGRwAAAAAAAAAAaAdLF2gIR0CX3G9fkWAPdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CX3G8yN4qxdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CX3HQ4jrzHdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CX3IHPNVzZdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CX3IHCGetkdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CX3H8qFyq/dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CX3Iu5z5oHdX2UKGgGRz/wAAAAAAAAaAdLLWgIR0CX3IQE6kqMdX2UKGgGRwAAAAAAAAAAaAdLD2gIR0CX3IbdJrckdX2UKGgGRz/wAAAAAAAAaAdLImgIR0CX3I9du5z6dX2UKGgGRwAAAAAAAAAAaAdLCWgIR0CX3JbGFSKndX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CX3JbhWHUMdX2UKGgGRwAAAAAAAAAAaAdLF2gIR0CX3J6Hj6vadX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CX3KcAR02cdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0CX3J078vVWdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CX3KUgjhUBdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CX3Kv0h/y5dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CX3LQyAQQMdX2UKGgGRz/wAAAAAAAAaAdLQmgIR0CX3LFUhmoSdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0CX3Lq2jO9ndX2UKGgGRz/wAAAAAAAAaAdLLmgIR0CX3L2eg+QmdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CX3ME6T4cndX2UKGgGRwAAAAAAAAAAaAdLI2gIR0CX3NOoYNy6dX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CX3NX/YJ3QdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0CX3NxcVxjsdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CX3OCwKSgXdX2UKGgGRz/wAAAAAAAAaAdLNWgIR0CX3N/lyR0VdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CX3OfEXLvDdX2UKGgGRz/wAAAAAAAAaAdLF2gIR0CX3O/ViF0xdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CX3PR6F/QTdX2UKGgGRwAAAAAAAAAAaAdLCWgIR0CX3PMbFS88dX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CX3PApKBd2dX2UKGgGRz/wAAAAAAAAaAdLUGgIR0CX3PtPYWcjdX2UKGgGRwAAAAAAAAAAaAdLH2gIR0CX3QLVWjoIdX2UKGgGRz/wAAAAAAAAaAdLPWgIR0CX3P3Qla8pdX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CX3QfFJg9edX2UKGgGRwAAAAAAAAAAaAdLEWgIR0CX3Qh60IC2dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0CX3RR0lqrSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 392, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}