diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..97765604ac8a074b9e8e623333bd668ed963d3c1 --- /dev/null +++ b/README.md @@ -0,0 +1,80 @@ +--- +tags: +- espnet +- audio +- automatic-speech-recognition +- speech-translation +language: multilingual +datasets: +- owsm_v3.1 +license: cc-by-4.0 +--- + +## OWSM: Open Whisper-style Speech Model + +[OWSM](https://arxiv.org/abs/2309.13876) is an Open Whisper-style Speech Model from [CMU WAVLab](https://www.wavlab.org/). It reproduces Whisper-style training using publicly available data and an open-source toolkit [ESPnet](https://github.com/espnet/espnet). + +Our demo is available [here](https://huggingface.co/spaces/pyf98/OWSM_v3_demo). + +OWSM v3.1 is an improved version of OWSM v3. It significantly outperforms OWSM v3 in almost all evaluation benchmarks. +We do not include any new training data. Instead, we utilize a state-of-the-art speech encoder, [E-Branchformer](https://arxiv.org/abs/2210.00077). + +This is a base size model which has 101M parameters and is trained on 180k hours of public speech data. +Specifically, it supports the following speech-to-text tasks: +- Speech recognition +- Any-to-any-language speech translation +- Utterance-level alignment +- Long-form transcription +- Language identification + + +### Citing OWSM, Branchformers and ESPnet + +```BibTex +@article{peng2023owsm, + title={Reproducing Whisper-Style Training Using an Open-Source Toolkit and Publicly Available Data}, + author={Yifan Peng and Jinchuan Tian and Brian Yan and Dan Berrebbi and Xuankai Chang and Xinjian Li and Jiatong Shi and Siddhant Arora and William Chen and Roshan Sharma and Wangyou Zhang and Yui Sudo and Muhammad Shakeel and Jee-weon Jung and Soumi Maiti and Shinji Watanabe}, + journal={arXiv preprint arXiv:2309.13876}, + year={2023} +} +@inproceedings{peng23b_interspeech, + author={Yifan Peng and Kwangyoun Kim and Felix Wu and Brian Yan and Siddhant Arora and William Chen and Jiyang Tang and Suwon Shon and Prashant Sridhar and Shinji Watanabe}, + title={{A Comparative Study on E-Branchformer vs Conformer in Speech Recognition, Translation, and Understanding Tasks}}, + year=2023, + booktitle={Proc. INTERSPEECH 2023}, + pages={2208--2212}, + doi={10.21437/Interspeech.2023-1194} +} +@inproceedings{kim2023branchformer, + title={E-branchformer: Branchformer with enhanced merging for speech recognition}, + author={Kim, Kwangyoun and Wu, Felix and Peng, Yifan and Pan, Jing and Sridhar, Prashant and Han, Kyu J and Watanabe, Shinji}, + booktitle={2022 IEEE Spoken Language Technology Workshop (SLT)}, + pages={84--91}, + year={2023}, + organization={IEEE} +} +@InProceedings{pmlr-v162-peng22a, + title = {Branchformer: Parallel {MLP}-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding}, + author = {Peng, Yifan and Dalmia, Siddharth and Lane, Ian and Watanabe, Shinji}, + booktitle = {Proceedings of the 39th International Conference on Machine Learning}, + pages = {17627--17643}, + year = {2022}, + editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, + volume = {162}, + series = {Proceedings of Machine Learning Research}, + month = {17--23 Jul}, + publisher = {PMLR}, + pdf = {https://proceedings.mlr.press/v162/peng22a/peng22a.pdf}, + url = {https://proceedings.mlr.press/v162/peng22a.html}, + abstract = {Conformer has proven to be effective in many speech processing tasks. It combines the benefits of extracting local dependencies using convolutions and global dependencies using self-attention. Inspired by this, we propose a more flexible, interpretable and customizable encoder alternative, Branchformer, with parallel branches for modeling various ranged dependencies in end-to-end speech processing. In each encoder layer, one branch employs self-attention or its variant to capture long-range dependencies, while the other branch utilizes an MLP module with convolutional gating (cgMLP) to extract local relationships. We conduct experiments on several speech recognition and spoken language understanding benchmarks. Results show that our model outperforms both Transformer and cgMLP. It also matches with or outperforms state-of-the-art results achieved by Conformer. Furthermore, we show various strategies to reduce computation thanks to the two-branch architecture, including the ability to have variable inference complexity in a single trained model. The weights learned for merging branches indicate how local and global dependencies are utilized in different layers, which benefits model designing.} +} +@inproceedings{watanabe2018espnet, + author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, + title={{ESPnet}: End-to-End Speech Processing Toolkit}, + year={2018}, + booktitle={Proceedings of Interspeech}, + pages={2207--2211}, + doi={10.21437/Interspeech.2018-1456}, + url={http://dx.doi.org/10.21437/Interspeech.2018-1456} +} +``` diff --git a/data/token_list/bpe_unigram50000/bpe.model b/data/token_list/bpe_unigram50000/bpe.model new file mode 100644 index 0000000000000000000000000000000000000000..3f386604ac50541de0d4500913350e158dbce5b8 --- /dev/null +++ b/data/token_list/bpe_unigram50000/bpe.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d6327da127e870bcb8c737dceb3bd47ccbce63da74ddb094f64afe313d68c8c +size 1041297 diff --git a/exp/s2t_stats_raw_bpe50000/train/feats_stats.npz b/exp/s2t_stats_raw_bpe50000/train/feats_stats.npz new file mode 100644 index 0000000000000000000000000000000000000000..4ef154c285deb458cb537da751909790aea294d2 --- /dev/null +++ b/exp/s2t_stats_raw_bpe50000/train/feats_stats.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ef4b5e465110edf32eec024cf2427eedd677f5733bb87d6b2131e6984a6e13f +size 1402 diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/RESULTS.md b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/RESULTS.md new file mode 100644 index 0000000000000000000000000000000000000000..ee95e1ea7d72ebb9b32bc93fd5cc29b0c8d67706 --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/RESULTS.md @@ -0,0 +1,9 @@ + +# RESULTS +## Environments +- date: `Thu Jan 18 13:29:51 CST 2024` +- python version: `3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0]` +- espnet version: `espnet 202308` +- pytorch version: `pytorch 1.13.1` +- Git hash: `e5c058e28bd8db071b19cb45688165b7013c0938` + - Commit date: `Tue Dec 26 21:55:42 2023 -0600` diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0c6a3d53bfbf7429df0f5322b40f8bd8e2ed498b --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml @@ -0,0 +1,50257 @@ +config: conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml +print_config: false +log_level: INFO +drop_last_iter: false +dry_run: false +iterator_type: sequence +valid_iterator_type: null +output_dir: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 +ngpu: 1 +seed: 42 +num_workers: 8 +num_att_plot: 0 +dist_backend: nccl +dist_init_method: file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_2e5d3388-5a62-4d9b-abf3-231f106e2517 +dist_world_size: 16 +dist_rank: 0 +local_rank: 0 +dist_master_addr: null +dist_master_port: null +dist_launcher: slurm +multiprocessing_distributed: true +unused_parameters: false +sharded_ddp: false +cudnn_enabled: true +cudnn_benchmark: false +cudnn_deterministic: true +collect_stats: false +write_collected_feats: false +max_epoch: 45 +patience: null +val_scheduler_criterion: +- valid +- loss +early_stopping_criterion: +- valid +- loss +- min +best_model_criterion: +- - valid + - acc + - max +- - valid + - total_count + - max +keep_nbest_models: 5 +nbest_averaging_interval: 0 +grad_clip: 5.0 +grad_clip_type: 2.0 +grad_noise: false +accum_grad: 1 +no_forward_run: false +resume: true +train_dtype: float32 +use_amp: true +log_interval: null +use_matplotlib: true +use_tensorboard: true +create_graph_in_tensorboard: false +use_wandb: false +wandb_project: null +wandb_id: null +wandb_entity: null +wandb_name: null +wandb_model_log_interval: -1 +detect_anomaly: false +pretrain_path: null +init_param: [] +ignore_init_mismatch: false +freeze_param: [] +num_iters_per_epoch: 15000 +batch_size: 256 +valid_batch_size: null +batch_bins: 1000000 +valid_batch_bins: null +train_shape_file: +- exp/s2t_stats_raw_bpe50000/splits12/speech_shape +- exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe +- exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe +- exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe +valid_shape_file: +- exp/s2t_stats_raw_bpe50000/valid/speech_shape +- exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe +- exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe +- exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe +batch_type: unsorted +valid_batch_type: null +fold_length: +- 80000 +- 150 +- 150 +- 150 +sort_in_batch: descending +shuffle_within_batch: false +sort_batch: descending +multiple_iterator: true +chunk_length: 500 +chunk_shift_ratio: 0.5 +num_cache_chunks: 1024 +chunk_excluded_key_prefixes: [] +train_data_path_and_name_and_type: +- - exp/s2t_stats_raw_bpe50000/splits12/wav.scp + - speech + - kaldi_ark +- - exp/s2t_stats_raw_bpe50000/splits12/text.prev + - text_prev + - text +- - exp/s2t_stats_raw_bpe50000/splits12/text.ctc + - text_ctc + - text +- - exp/s2t_stats_raw_bpe50000/splits12/text + - text + - text +valid_data_path_and_name_and_type: +- - dump/raw/dev_v3/wav.scp + - speech + - kaldi_ark +- - dump/raw/dev_v3/text.prev + - text_prev + - text +- - dump/raw/dev_v3/text.ctc + - text_ctc + - text +- - dump/raw/dev_v3/text + - text + - text +allow_variable_data_keys: false +max_cache_size: 0.0 +max_cache_fd: 32 +valid_max_cache_size: null +exclude_weight_decay: false +exclude_weight_decay_conf: {} +optim: adamw +optim_conf: + lr: 0.001 + betas: + - 0.9 + - 0.98 + eps: 1.0e-06 + weight_decay: 0.0 +scheduler: piecewiselinearwarmuplr +scheduler_conf: + warmup_steps_list: + - 0 + - 30000 + - 60000 + warmup_lr_list: + - 0.0 + - 0.0001 + - 0.001 +token_list: +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +-
+- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- +- <0.00> +- <0.02> +- <0.04> +- <0.06> +- <0.08> +- <0.10> +- <0.12> +- <0.14> +- <0.16> +- <0.18> +- <0.20> +- <0.22> +- <0.24> +- <0.26> +- <0.28> +- <0.30> +- <0.32> +- <0.34> +- <0.36> +- <0.38> +- <0.40> +- <0.42> +- <0.44> +- <0.46> +- <0.48> +- <0.50> +- <0.52> +- <0.54> +- <0.56> +- <0.58> +- <0.60> +- <0.62> +- <0.64> +- <0.66> +- <0.68> +- <0.70> +- <0.72> +- <0.74> +- <0.76> +- <0.78> +- <0.80> +- <0.82> +- <0.84> +- <0.86> +- <0.88> +- <0.90> +- <0.92> +- <0.94> +- <0.96> +- <0.98> +- <1.00> +- <1.02> +- <1.04> +- <1.06> +- <1.08> +- <1.10> +- <1.12> +- <1.14> +- <1.16> +- <1.18> +- <1.20> +- <1.22> +- <1.24> +- <1.26> +- <1.28> +- <1.30> +- <1.32> +- <1.34> +- <1.36> +- <1.38> +- <1.40> +- <1.42> +- <1.44> +- <1.46> +- <1.48> +- <1.50> +- <1.52> +- <1.54> +- <1.56> +- <1.58> +- <1.60> +- <1.62> +- <1.64> +- <1.66> +- <1.68> +- <1.70> +- <1.72> +- <1.74> +- <1.76> +- <1.78> +- <1.80> +- <1.82> +- <1.84> +- <1.86> +- <1.88> +- <1.90> +- <1.92> +- <1.94> +- <1.96> +- <1.98> +- <2.00> +- <2.02> +- <2.04> +- <2.06> +- <2.08> +- <2.10> +- <2.12> +- <2.14> +- <2.16> +- <2.18> +- <2.20> +- <2.22> +- <2.24> +- <2.26> +- <2.28> +- <2.30> +- <2.32> +- <2.34> +- <2.36> +- <2.38> +- <2.40> +- <2.42> +- <2.44> +- <2.46> +- <2.48> +- <2.50> +- <2.52> +- <2.54> +- <2.56> +- <2.58> +- <2.60> +- <2.62> +- <2.64> +- <2.66> +- <2.68> +- <2.70> +- <2.72> +- <2.74> +- <2.76> +- <2.78> +- <2.80> +- <2.82> +- <2.84> +- <2.86> +- <2.88> +- <2.90> +- <2.92> +- <2.94> +- <2.96> +- <2.98> +- <3.00> +- <3.02> +- <3.04> +- <3.06> +- <3.08> +- <3.10> +- <3.12> +- <3.14> +- <3.16> +- <3.18> +- <3.20> +- <3.22> +- <3.24> +- <3.26> +- <3.28> +- <3.30> +- <3.32> +- <3.34> +- <3.36> +- <3.38> +- <3.40> +- <3.42> +- <3.44> +- <3.46> +- <3.48> +- <3.50> +- <3.52> +- <3.54> +- <3.56> +- <3.58> +- <3.60> +- <3.62> +- <3.64> +- <3.66> +- <3.68> +- <3.70> +- <3.72> +- <3.74> +- <3.76> +- <3.78> +- <3.80> +- <3.82> +- <3.84> +- <3.86> +- <3.88> +- <3.90> +- <3.92> +- <3.94> +- <3.96> +- <3.98> +- <4.00> +- <4.02> +- <4.04> +- <4.06> +- <4.08> +- <4.10> +- <4.12> +- <4.14> +- <4.16> +- <4.18> +- <4.20> +- <4.22> +- <4.24> +- <4.26> +- <4.28> +- <4.30> +- <4.32> +- <4.34> +- <4.36> +- <4.38> +- <4.40> +- <4.42> +- <4.44> +- <4.46> +- <4.48> +- <4.50> +- <4.52> +- <4.54> +- <4.56> +- <4.58> +- <4.60> +- <4.62> +- <4.64> +- <4.66> +- <4.68> +- <4.70> +- <4.72> +- <4.74> +- <4.76> +- <4.78> +- <4.80> +- <4.82> +- <4.84> +- <4.86> +- <4.88> +- <4.90> +- <4.92> +- <4.94> +- <4.96> +- <4.98> +- <5.00> +- <5.02> +- <5.04> +- <5.06> +- <5.08> +- <5.10> +- <5.12> +- <5.14> +- <5.16> +- <5.18> +- <5.20> +- <5.22> +- <5.24> +- <5.26> +- <5.28> +- <5.30> +- <5.32> +- <5.34> +- <5.36> +- <5.38> +- <5.40> +- <5.42> +- <5.44> +- <5.46> +- <5.48> +- <5.50> +- <5.52> +- <5.54> +- <5.56> +- <5.58> +- <5.60> +- <5.62> +- <5.64> +- <5.66> +- <5.68> +- <5.70> +- <5.72> +- <5.74> +- <5.76> +- <5.78> +- <5.80> +- <5.82> +- <5.84> +- <5.86> +- <5.88> +- <5.90> +- <5.92> +- <5.94> +- <5.96> +- <5.98> +- <6.00> +- <6.02> +- <6.04> +- <6.06> +- <6.08> +- <6.10> +- <6.12> +- <6.14> +- <6.16> +- <6.18> +- <6.20> +- <6.22> +- <6.24> +- <6.26> +- <6.28> +- <6.30> +- <6.32> +- <6.34> +- <6.36> +- <6.38> +- <6.40> +- <6.42> +- <6.44> +- <6.46> +- <6.48> +- <6.50> +- <6.52> +- <6.54> +- <6.56> +- <6.58> +- <6.60> +- <6.62> +- <6.64> +- <6.66> +- <6.68> +- <6.70> +- <6.72> +- <6.74> +- <6.76> +- <6.78> +- <6.80> +- <6.82> +- <6.84> +- <6.86> +- <6.88> +- <6.90> +- <6.92> +- <6.94> +- <6.96> +- <6.98> +- <7.00> +- <7.02> +- <7.04> +- <7.06> +- <7.08> +- <7.10> +- <7.12> +- <7.14> +- <7.16> +- <7.18> +- <7.20> +- <7.22> +- <7.24> +- <7.26> +- <7.28> +- <7.30> +- <7.32> +- <7.34> +- <7.36> +- <7.38> +- <7.40> +- <7.42> +- <7.44> +- <7.46> +- <7.48> +- <7.50> +- <7.52> +- <7.54> +- <7.56> +- <7.58> +- <7.60> +- <7.62> +- <7.64> +- <7.66> +- <7.68> +- <7.70> +- <7.72> +- <7.74> +- <7.76> +- <7.78> +- <7.80> +- <7.82> +- <7.84> +- <7.86> +- <7.88> +- <7.90> +- <7.92> +- <7.94> +- <7.96> +- <7.98> +- <8.00> +- <8.02> +- <8.04> +- <8.06> +- <8.08> +- <8.10> +- <8.12> +- <8.14> +- <8.16> +- <8.18> +- <8.20> +- <8.22> +- <8.24> +- <8.26> +- <8.28> +- <8.30> +- <8.32> +- <8.34> +- <8.36> +- <8.38> +- <8.40> +- <8.42> +- <8.44> +- <8.46> +- <8.48> +- <8.50> +- <8.52> +- <8.54> +- <8.56> +- <8.58> +- <8.60> +- <8.62> +- <8.64> +- <8.66> +- <8.68> +- <8.70> +- <8.72> +- <8.74> +- <8.76> +- <8.78> +- <8.80> +- <8.82> +- <8.84> +- <8.86> +- <8.88> +- <8.90> +- <8.92> +- <8.94> +- <8.96> +- <8.98> +- <9.00> +- <9.02> +- <9.04> +- <9.06> +- <9.08> +- <9.10> +- <9.12> +- <9.14> +- <9.16> +- <9.18> +- <9.20> +- <9.22> +- <9.24> +- <9.26> +- <9.28> +- <9.30> +- <9.32> +- <9.34> +- <9.36> +- <9.38> +- <9.40> +- <9.42> +- <9.44> +- <9.46> +- <9.48> +- <9.50> +- <9.52> +- <9.54> +- <9.56> +- <9.58> +- <9.60> +- <9.62> +- <9.64> +- <9.66> +- <9.68> +- <9.70> +- <9.72> +- <9.74> +- <9.76> +- <9.78> +- <9.80> +- <9.82> +- <9.84> +- <9.86> +- <9.88> +- <9.90> +- <9.92> +- <9.94> +- <9.96> +- <9.98> +- <10.00> +- <10.02> +- <10.04> +- <10.06> +- <10.08> +- <10.10> +- <10.12> +- <10.14> +- <10.16> +- <10.18> +- <10.20> +- <10.22> +- <10.24> +- <10.26> +- <10.28> +- <10.30> +- <10.32> +- <10.34> +- <10.36> +- <10.38> +- <10.40> +- <10.42> +- <10.44> +- <10.46> +- <10.48> +- <10.50> +- <10.52> +- <10.54> +- <10.56> +- <10.58> +- <10.60> +- <10.62> +- <10.64> +- <10.66> +- <10.68> +- <10.70> +- <10.72> +- <10.74> +- <10.76> +- <10.78> +- <10.80> +- <10.82> +- <10.84> +- <10.86> +- <10.88> +- <10.90> +- <10.92> +- <10.94> +- <10.96> +- <10.98> +- <11.00> +- <11.02> +- <11.04> +- <11.06> +- <11.08> +- <11.10> +- <11.12> +- <11.14> +- <11.16> +- <11.18> +- <11.20> +- <11.22> +- <11.24> +- <11.26> +- <11.28> +- <11.30> +- <11.32> +- <11.34> +- <11.36> +- <11.38> +- <11.40> +- <11.42> +- <11.44> +- <11.46> +- <11.48> +- <11.50> +- <11.52> +- <11.54> +- <11.56> +- <11.58> +- <11.60> +- <11.62> +- <11.64> +- <11.66> +- <11.68> +- <11.70> +- <11.72> +- <11.74> +- <11.76> +- <11.78> +- <11.80> +- <11.82> +- <11.84> +- <11.86> +- <11.88> +- <11.90> +- <11.92> +- <11.94> +- <11.96> +- <11.98> +- <12.00> +- <12.02> +- <12.04> +- <12.06> +- <12.08> +- <12.10> +- <12.12> +- <12.14> +- <12.16> +- <12.18> +- <12.20> +- <12.22> +- <12.24> +- <12.26> +- <12.28> +- <12.30> +- <12.32> +- <12.34> +- <12.36> +- <12.38> +- <12.40> +- <12.42> +- <12.44> +- <12.46> +- <12.48> +- <12.50> +- <12.52> +- <12.54> +- <12.56> +- <12.58> +- <12.60> +- <12.62> +- <12.64> +- <12.66> +- <12.68> +- <12.70> +- <12.72> +- <12.74> +- <12.76> +- <12.78> +- <12.80> +- <12.82> +- <12.84> +- <12.86> +- <12.88> +- <12.90> +- <12.92> +- <12.94> +- <12.96> +- <12.98> +- <13.00> +- <13.02> +- <13.04> +- <13.06> +- <13.08> +- <13.10> +- <13.12> +- <13.14> +- <13.16> +- <13.18> +- <13.20> +- <13.22> +- <13.24> +- <13.26> +- <13.28> +- <13.30> +- <13.32> +- <13.34> +- <13.36> +- <13.38> +- <13.40> +- <13.42> +- <13.44> +- <13.46> +- <13.48> +- <13.50> +- <13.52> +- <13.54> +- <13.56> +- <13.58> +- <13.60> +- <13.62> +- <13.64> +- <13.66> +- <13.68> +- <13.70> +- <13.72> +- <13.74> +- <13.76> +- <13.78> +- <13.80> +- <13.82> +- <13.84> +- <13.86> +- <13.88> +- <13.90> +- <13.92> +- <13.94> +- <13.96> +- <13.98> +- <14.00> +- <14.02> +- <14.04> +- <14.06> +- <14.08> +- <14.10> +- <14.12> +- <14.14> +- <14.16> +- <14.18> +- <14.20> +- <14.22> +- <14.24> +- <14.26> +- <14.28> +- <14.30> +- <14.32> +- <14.34> +- <14.36> +- <14.38> +- <14.40> +- <14.42> +- <14.44> +- <14.46> +- <14.48> +- <14.50> +- <14.52> +- <14.54> +- <14.56> +- <14.58> +- <14.60> +- <14.62> +- <14.64> +- <14.66> +- <14.68> +- <14.70> +- <14.72> +- <14.74> +- <14.76> +- <14.78> +- <14.80> +- <14.82> +- <14.84> +- <14.86> +- <14.88> +- <14.90> +- <14.92> +- <14.94> +- <14.96> +- <14.98> +- <15.00> +- <15.02> +- <15.04> +- <15.06> +- <15.08> +- <15.10> +- <15.12> +- <15.14> +- <15.16> +- <15.18> +- <15.20> +- <15.22> +- <15.24> +- <15.26> +- <15.28> +- <15.30> +- <15.32> +- <15.34> +- <15.36> +- <15.38> +- <15.40> +- <15.42> +- <15.44> +- <15.46> +- <15.48> +- <15.50> +- <15.52> +- <15.54> +- <15.56> +- <15.58> +- <15.60> +- <15.62> +- <15.64> +- <15.66> +- <15.68> +- <15.70> +- <15.72> +- <15.74> +- <15.76> +- <15.78> +- <15.80> +- <15.82> +- <15.84> +- <15.86> +- <15.88> +- <15.90> +- <15.92> +- <15.94> +- <15.96> +- <15.98> +- <16.00> +- <16.02> +- <16.04> +- <16.06> +- <16.08> +- <16.10> +- <16.12> +- <16.14> +- <16.16> +- <16.18> +- <16.20> +- <16.22> +- <16.24> +- <16.26> +- <16.28> +- <16.30> +- <16.32> +- <16.34> +- <16.36> +- <16.38> +- <16.40> +- <16.42> +- <16.44> +- <16.46> +- <16.48> +- <16.50> +- <16.52> +- <16.54> +- <16.56> +- <16.58> +- <16.60> +- <16.62> +- <16.64> +- <16.66> +- <16.68> +- <16.70> +- <16.72> +- <16.74> +- <16.76> +- <16.78> +- <16.80> +- <16.82> +- <16.84> +- <16.86> +- <16.88> +- <16.90> +- <16.92> +- <16.94> +- <16.96> +- <16.98> +- <17.00> +- <17.02> +- <17.04> +- <17.06> +- <17.08> +- <17.10> +- <17.12> +- <17.14> +- <17.16> +- <17.18> +- <17.20> +- <17.22> +- <17.24> +- <17.26> +- <17.28> +- <17.30> +- <17.32> +- <17.34> +- <17.36> +- <17.38> +- <17.40> +- <17.42> +- <17.44> +- <17.46> +- <17.48> +- <17.50> +- <17.52> +- <17.54> +- <17.56> +- <17.58> +- <17.60> +- <17.62> +- <17.64> +- <17.66> +- <17.68> +- <17.70> +- <17.72> +- <17.74> +- <17.76> +- <17.78> +- <17.80> +- <17.82> +- <17.84> +- <17.86> +- <17.88> +- <17.90> +- <17.92> +- <17.94> +- <17.96> +- <17.98> +- <18.00> +- <18.02> +- <18.04> +- <18.06> +- <18.08> +- <18.10> +- <18.12> +- <18.14> +- <18.16> +- <18.18> +- <18.20> +- <18.22> +- <18.24> +- <18.26> +- <18.28> +- <18.30> +- <18.32> +- <18.34> +- <18.36> +- <18.38> +- <18.40> +- <18.42> +- <18.44> +- <18.46> +- <18.48> +- <18.50> +- <18.52> +- <18.54> +- <18.56> +- <18.58> +- <18.60> +- <18.62> +- <18.64> +- <18.66> +- <18.68> +- <18.70> +- <18.72> +- <18.74> +- <18.76> +- <18.78> +- <18.80> +- <18.82> +- <18.84> +- <18.86> +- <18.88> +- <18.90> +- <18.92> +- <18.94> +- <18.96> +- <18.98> +- <19.00> +- <19.02> +- <19.04> +- <19.06> +- <19.08> +- <19.10> +- <19.12> +- <19.14> +- <19.16> +- <19.18> +- <19.20> +- <19.22> +- <19.24> +- <19.26> +- <19.28> +- <19.30> +- <19.32> +- <19.34> +- <19.36> +- <19.38> +- <19.40> +- <19.42> +- <19.44> +- <19.46> +- <19.48> +- <19.50> +- <19.52> +- <19.54> +- <19.56> +- <19.58> +- <19.60> +- <19.62> +- <19.64> +- <19.66> +- <19.68> +- <19.70> +- <19.72> +- <19.74> +- <19.76> +- <19.78> +- <19.80> +- <19.82> +- <19.84> +- <19.86> +- <19.88> +- <19.90> +- <19.92> +- <19.94> +- <19.96> +- <19.98> +- <20.00> +- <20.02> +- <20.04> +- <20.06> +- <20.08> +- <20.10> +- <20.12> +- <20.14> +- <20.16> +- <20.18> +- <20.20> +- <20.22> +- <20.24> +- <20.26> +- <20.28> +- <20.30> +- <20.32> +- <20.34> +- <20.36> +- <20.38> +- <20.40> +- <20.42> +- <20.44> +- <20.46> +- <20.48> +- <20.50> +- <20.52> +- <20.54> +- <20.56> +- <20.58> +- <20.60> +- <20.62> +- <20.64> +- <20.66> +- <20.68> +- <20.70> +- <20.72> +- <20.74> +- <20.76> +- <20.78> +- <20.80> +- <20.82> +- <20.84> +- <20.86> +- <20.88> +- <20.90> +- <20.92> +- <20.94> +- <20.96> +- <20.98> +- <21.00> +- <21.02> +- <21.04> +- <21.06> +- <21.08> +- <21.10> +- <21.12> +- <21.14> +- <21.16> +- <21.18> +- <21.20> +- <21.22> +- <21.24> +- <21.26> +- <21.28> +- <21.30> +- <21.32> +- <21.34> +- <21.36> +- <21.38> +- <21.40> +- <21.42> +- <21.44> +- <21.46> +- <21.48> +- <21.50> +- <21.52> +- <21.54> +- <21.56> +- <21.58> +- <21.60> +- <21.62> +- <21.64> +- <21.66> +- <21.68> +- <21.70> +- <21.72> +- <21.74> +- <21.76> +- <21.78> +- <21.80> +- <21.82> +- <21.84> +- <21.86> +- <21.88> +- <21.90> +- <21.92> +- <21.94> +- <21.96> +- <21.98> +- <22.00> +- <22.02> +- <22.04> +- <22.06> +- <22.08> +- <22.10> +- <22.12> +- <22.14> +- <22.16> +- <22.18> +- <22.20> +- <22.22> +- <22.24> +- <22.26> +- <22.28> +- <22.30> +- <22.32> +- <22.34> +- <22.36> +- <22.38> +- <22.40> +- <22.42> +- <22.44> +- <22.46> +- <22.48> +- <22.50> +- <22.52> +- <22.54> +- <22.56> +- <22.58> +- <22.60> +- <22.62> +- <22.64> +- <22.66> +- <22.68> +- <22.70> +- <22.72> +- <22.74> +- <22.76> +- <22.78> +- <22.80> +- <22.82> +- <22.84> +- <22.86> +- <22.88> +- <22.90> +- <22.92> +- <22.94> +- <22.96> +- <22.98> +- <23.00> +- <23.02> +- <23.04> +- <23.06> +- <23.08> +- <23.10> +- <23.12> +- <23.14> +- <23.16> +- <23.18> +- <23.20> +- <23.22> +- <23.24> +- <23.26> +- <23.28> +- <23.30> +- <23.32> +- <23.34> +- <23.36> +- <23.38> +- <23.40> +- <23.42> +- <23.44> +- <23.46> +- <23.48> +- <23.50> +- <23.52> +- <23.54> +- <23.56> +- <23.58> +- <23.60> +- <23.62> +- <23.64> +- <23.66> +- <23.68> +- <23.70> +- <23.72> +- <23.74> +- <23.76> +- <23.78> +- <23.80> +- <23.82> +- <23.84> +- <23.86> +- <23.88> +- <23.90> +- <23.92> +- <23.94> +- <23.96> +- <23.98> +- <24.00> +- <24.02> +- <24.04> +- <24.06> +- <24.08> +- <24.10> +- <24.12> +- <24.14> +- <24.16> +- <24.18> +- <24.20> +- <24.22> +- <24.24> +- <24.26> +- <24.28> +- <24.30> +- <24.32> +- <24.34> +- <24.36> +- <24.38> +- <24.40> +- <24.42> +- <24.44> +- <24.46> +- <24.48> +- <24.50> +- <24.52> +- <24.54> +- <24.56> +- <24.58> +- <24.60> +- <24.62> +- <24.64> +- <24.66> +- <24.68> +- <24.70> +- <24.72> +- <24.74> +- <24.76> +- <24.78> +- <24.80> +- <24.82> +- <24.84> +- <24.86> +- <24.88> +- <24.90> +- <24.92> +- <24.94> +- <24.96> +- <24.98> +- <25.00> +- <25.02> +- <25.04> +- <25.06> +- <25.08> +- <25.10> +- <25.12> +- <25.14> +- <25.16> +- <25.18> +- <25.20> +- <25.22> +- <25.24> +- <25.26> +- <25.28> +- <25.30> +- <25.32> +- <25.34> +- <25.36> +- <25.38> +- <25.40> +- <25.42> +- <25.44> +- <25.46> +- <25.48> +- <25.50> +- <25.52> +- <25.54> +- <25.56> +- <25.58> +- <25.60> +- <25.62> +- <25.64> +- <25.66> +- <25.68> +- <25.70> +- <25.72> +- <25.74> +- <25.76> +- <25.78> +- <25.80> +- <25.82> +- <25.84> +- <25.86> +- <25.88> +- <25.90> +- <25.92> +- <25.94> +- <25.96> +- <25.98> +- <26.00> +- <26.02> +- <26.04> +- <26.06> +- <26.08> +- <26.10> +- <26.12> +- <26.14> +- <26.16> +- <26.18> +- <26.20> +- <26.22> +- <26.24> +- <26.26> +- <26.28> +- <26.30> +- <26.32> +- <26.34> +- <26.36> +- <26.38> +- <26.40> +- <26.42> +- <26.44> +- <26.46> +- <26.48> +- <26.50> +- <26.52> +- <26.54> +- <26.56> +- <26.58> +- <26.60> +- <26.62> +- <26.64> +- <26.66> +- <26.68> +- <26.70> +- <26.72> +- <26.74> +- <26.76> +- <26.78> +- <26.80> +- <26.82> +- <26.84> +- <26.86> +- <26.88> +- <26.90> +- <26.92> +- <26.94> +- <26.96> +- <26.98> +- <27.00> +- <27.02> +- <27.04> +- <27.06> +- <27.08> +- <27.10> +- <27.12> +- <27.14> +- <27.16> +- <27.18> +- <27.20> +- <27.22> +- <27.24> +- <27.26> +- <27.28> +- <27.30> +- <27.32> +- <27.34> +- <27.36> +- <27.38> +- <27.40> +- <27.42> +- <27.44> +- <27.46> +- <27.48> +- <27.50> +- <27.52> +- <27.54> +- <27.56> +- <27.58> +- <27.60> +- <27.62> +- <27.64> +- <27.66> +- <27.68> +- <27.70> +- <27.72> +- <27.74> +- <27.76> +- <27.78> +- <27.80> +- <27.82> +- <27.84> +- <27.86> +- <27.88> +- <27.90> +- <27.92> +- <27.94> +- <27.96> +- <27.98> +- <28.00> +- <28.02> +- <28.04> +- <28.06> +- <28.08> +- <28.10> +- <28.12> +- <28.14> +- <28.16> +- <28.18> +- <28.20> +- <28.22> +- <28.24> +- <28.26> +- <28.28> +- <28.30> +- <28.32> +- <28.34> +- <28.36> +- <28.38> +- <28.40> +- <28.42> +- <28.44> +- <28.46> +- <28.48> +- <28.50> +- <28.52> +- <28.54> +- <28.56> +- <28.58> +- <28.60> +- <28.62> +- <28.64> +- <28.66> +- <28.68> +- <28.70> +- <28.72> +- <28.74> +- <28.76> +- <28.78> +- <28.80> +- <28.82> +- <28.84> +- <28.86> +- <28.88> +- <28.90> +- <28.92> +- <28.94> +- <28.96> +- <28.98> +- <29.00> +- <29.02> +- <29.04> +- <29.06> +- <29.08> +- <29.10> +- <29.12> +- <29.14> +- <29.16> +- <29.18> +- <29.20> +- <29.22> +- <29.24> +- <29.26> +- <29.28> +- <29.30> +- <29.32> +- <29.34> +- <29.36> +- <29.38> +- <29.40> +- <29.42> +- <29.44> +- <29.46> +- <29.48> +- <29.50> +- <29.52> +- <29.54> +- <29.56> +- <29.58> +- <29.60> +- <29.62> +- <29.64> +- <29.66> +- <29.68> +- <29.70> +- <29.72> +- <29.74> +- <29.76> +- <29.78> +- <29.80> +- <29.82> +- <29.84> +- <29.86> +- <29.88> +- <29.90> +- <29.92> +- <29.94> +- <29.96> +- <29.98> +- <30.00> +- ▁ +- ',' +- ▁the +- . +- s +- ▁and +- ▁of +- ▁to +- ▁a +- 。 +- ▁in +- '''' +- ▁that +- ▁i +- ▁it +- ▁was +- en +- e +- t +- ▁you +- ▁he +- ▁is +- 的 +- '-' +- ▁for +- ▁de +- ▁with +- ▁be +- n +- d +- ▁as +- ▁his +- ▁we +- の +- ▁on +- 、 +- ▁die +- ▁had +- a +- ▁but +- ▁so +- '?' +- o +- ▁not +- ▁at +- ▁have +- ▁this +- ▁und +- er +- ▁her +- i +- ▁they +- m +- ed +- re +- ▁she +- ▁an +- ▁by +- ▁der +- ing +- ▁all +- ▁are +- ▁la +- が +- を +- ▁from +- ▁me +- ▁which +- ▁my +- es +- ▁one +- は +- ▁no +- ▁there +- 了 +- ▁him +- ▁or +- ▁were +- に +- y +- ▁do +- ▁what +- r +- ▁zu +- ▁our +- u +- ▁if +- ly +- ▁ist +- ▁would +- ▁when +- ▁their +- ▁will +- ▁said +- で +- ▁es +- ▁like +- ▁das +- ▁Sie +- ▁them +- 在 +- ▁can +- ▁who +- ▁out +- ▁know +- te +- ▁been +- ▁ich +- ▁about +- ▁up +- ▁I +- '!' +- ▁more +- ▁man +- ve +- 我 +- ▁que +- ▁un +- 是 +- ▁sie +- 和 +- ▁then +- ▁your +- ▁ein +- ▁some +- ▁den +- а +- ▁now +- 你 +- ▁von +- ▁nicht +- ▁very +- と +- ▁has +- ▁into +- in +- ▁time +- ▁в +- ar +- ▁just +- ▁не +- ▁um +- k +- ▁could +- ▁dass +- ▁Und +- 人 +- ▁think +- ▁auf +- al +- de +- ▁и +- ▁war +- ▁eine +- ▁over +- ▁mit +- ▁well +- も +- 他 +- ▁see +- ▁also +- ▁wir +- ▁other +- ▁des +- le +- ▁how +- ll +- ▁than +- 不 +- 啊 +- ▁these +- ▁little +- ▁sich +- ▁" +- ten +- c +- an +- ▁us +- 上 +- ▁l +- ▁two +- ▁any +- 有 +- ▁don +- ▁go +- ▁did +- ▁people +- ▁only +- е +- na +- ▁good +- l +- st +- ▁where +- ▁на +- ▁el +- ▁se +- z +- to +- 中 +- ▁first +- g +- ta +- ▁na +- ▁di +- ▁als +- is +- ▁come +- ▁Ich +- ▁much +- ▁für +- ne +- ▁с +- 我们 +- 大 +- ▁get +- ▁here +- ▁down +- у +- ▁du +- ▁le +- ▁что +- から +- ▁way +- h +- ▁y +- ▁wie +- ▁should +- ▁before +- ▁am +- ▁made +- ▁those +- ▁after +- 一 +- 'on' +- ▁upon +- ▁because +- ▁back +- ▁right +- ▁haben +- se +- ▁great +- 他们 +- ▁say +- ▁going +- です +- 这个 +- ▁dem +- и +- 就 +- f +- ▁по +- ▁make +- ra +- 来 +- ▁The +- م +- ▁er +- ▁its +- ▁such +- ▁ver +- ▁may +- w +- ge +- ▁even +- la +- ▁men +- 说 +- ':' +- ▁new +- ▁im +- 地 +- é +- da +- ch +- ▁through +- 呢 +- ▁long +- な +- me +- ▁never +- ▁most +- ▁Es +- as +- il +- p +- ▁A +- ▁must +- '"' +- ▁sind +- ▁day +- し +- 一个 +- ▁really +- ▁per +- b +- ▁came +- ▁con +- '1' +- 这 +- man +- ▁And +- ▁life +- ▁many +- м +- ▁old +- est +- я +- j +- ▁я +- ▁yeah +- 'no' +- ro +- ▁again +- т +- ▁things +- ▁La +- ▁hat +- be +- ma +- ▁mu +- ▁own +- 她 +- den +- ▁take +- ci +- ▁et +- ▁aus +- ▁being +- ▁je +- ga +- os +- 它 +- ni +- we +- ▁mr +- ▁still +- ir +- ▁我 +- '2' +- ▁last +- か +- 小 +- ▁too +- ▁les +- ▁might +- 会 +- ▁work +- us +- ▁у +- ce +- や +- ▁every +- un +- ▁We +- 子 +- ▁ku +- ▁al +- 去 +- ▁за +- ▁So +- ы +- at +- ▁want +- る +- ی +- ▁Die +- 到 +- it +- ▁went +- ▁look +- ▁über +- х +- ▁In +- ti +- ▁years +- 对 +- ’ +- 吗 +- ▁это +- ▁same +- ▁three +- ▁something +- ▁da +- do +- li +- ▁werden +- ▁let +- ▁thought +- ▁himself +- ▁ne +- й +- ▁ah +- 被 +- ▁van +- って +- ▁got +- ▁ge +- д +- ▁world +- ね +- い +- ▁wenn +- va +- 好 +- ▁einen +- 要 +- ▁thing +- ▁while +- ▁à +- ▁part +- 都 +- ه +- с +- 着 +- ▁year +- el +- ▁del +- ▁oh +- ▁away +- ▁hand +- ▁Er +- em +- et +- ho +- 下 +- た +- ▁Das +- ▁auch +- ka +- ▁ya +- ter +- ▁kind +- ▁without +- ▁place +- ж +- ▁put +- 出 +- lo +- ba +- ment +- ▁oder +- ▁under +- 没有 +- した +- л +- ▁вы +- ▁una +- ▁off +- th +- ▁то +- ri +- 里 +- ▁yet +- ze +- н +- する +- ▁diese +- ▁another +- ers +- ▁why +- je +- ▁found +- 从 +- 时 +- ko +- 就是 +- sa +- ng +- ▁S +- ▁shall +- ▁aber +- ▁sein +- or +- ▁а +- 点 +- '3' +- ur +- ка +- ▁tell +- ▁god +- お +- ▁و +- ▁Aber +- ke +- ness +- 也 +- ▁far +- able +- ▁give +- si +- して +- ▁though +- ▁nothing +- mo +- ▁eyes +- 手 +- ▁once +- 家 +- x +- ver +- ▁always +- ▁het +- 日 +- ▁saw +- ▁house +- men +- 用 +- di +- ▁ha +- この +- ja +- go +- ▁wird +- ▁ever +- ▁een +- ▁face +- о +- ) +- ▁vor +- ▁你 +- 年 +- ▁love +- am +- 想 +- ung +- ent +- ▁uns +- ▁home +- he +- на +- ▁habe +- ation +- ▁head +- ▁nach +- ли +- ▁nur +- mi +- ▁few +- zi +- ▁young +- но +- ن +- て +- ▁mean +- ▁mich +- ki +- ▁better +- ▁each +- ▁einem +- ▁find +- ha +- ▁si +- ▁business +- ш +- ت +- では +- ▁left +- ▁both +- ton +- ▁It +- ▁v +- der +- v +- ▁einer +- 那 +- 为 +- wa +- ▁night +- · +- 过 +- ▁took +- ▁( +- ▁können +- ▁mind +- ▁— +- ya +- ▁father +- ▁mir +- ▁moment +- ▁done +- 得 +- ▁va +- ca +- د +- 水 +- ▁su +- 」 +- ▁against +- ▁need +- ry +- 吧 +- 的人 +- ▁end +- ▁yes +- sch +- ▁lot +- ity +- という +- um +- ▁course +- co +- ▁dat +- ▁half +- ▁between +- 高 +- ▁Wir +- ▁من +- ant +- り +- ▁next +- ste +- 当 +- ▁noch +- ▁pro +- ▁He +- 多 +- 做 +- ▁E +- gen +- 本 +- 这些 +- 事 +- でも +- ▁می +- ▁door +- к +- ▁called +- ted +- son +- ▁looked +- za +- ▁ja +- ul +- 前 +- tu +- ▁ko +- ▁wurde +- ye +- ス +- ، +- 什么 +- ▁por +- ▁kann +- ▁los +- ▁asked +- ش +- ▁seen +- ▁как +- 回 +- ла +- 「 +- ▁дробь +- ▁улица +- 心 +- ▁side +- ▁told +- ▁does +- ら +- '4' +- 者 +- lu +- ▁son +- ▁having +- 生 +- ▁water +- 分 +- ol +- 三 +- ▁sehr +- ▁quite +- ▁hatte +- 看 +- ▁El +- ▁heard +- ▁whole +- ▁heart +- ▁believe +- '".' +- ▁te +- ▁met +- ч +- 打 +- 与 +- ▁name +- ▁uh +- 的时候 +- ▁ni +- 而 +- ▁mother +- ▁در +- ▁ال +- vo +- 把 +- ▁bei +- land +- 能 +- ▁ob +- ▁knew +- ▁о +- ▁op +- ▁ma +- ▁different +- ▁around +- ▁best +- ▁به +- ▁call +- 可以 +- ▁mi +- ▁enough +- ▁il +- ▁second +- ▁para +- く +- 行 +- 自己 +- ▁par +- 性 +- ie +- ▁point +- ▁seemed +- ю +- ます +- 后 +- ▁ba +- ▁set +- ▁four +- 所 +- ました +- ة +- ▁pas +- ▁mrs +- so +- には +- ▁woman +- ia +- ven +- ▁room +- ▁да +- 山 +- ting +- その +- ・ +- bo +- S +- ▁five +- ▁che +- ion +- 이 +- ▁high +- 走 +- ▁所以 +- ▁sure +- ▁但是 +- ▁durch +- 还 +- '5' +- ▁hundred +- ▁country +- ▁light +- ▁sir +- та +- ▁use +- ▁hier +- ▁anything +- ▁sa +- г +- ▁к +- ▁actually +- 现在 +- ad +- by +- ▁bir +- ku +- ▁он +- ▁quarter +- ▁wa +- ▁po +- ó +- ▁при +- ▁almost +- ▁про +- ▁days +- ▁от +- ▁他 +- 天 +- ken +- ▁help +- 最 +- ▁care +- ▁sort +- ر +- 您 +- ▁dieser +- ▁Der +- po +- 特 +- id +- 新 +- ▁L +- ▁ab +- ですね +- ▁gibt +- ▁soon +- ler +- 国 +- ▁com +- ▁з +- ▁Be +- 我的 +- ▁white +- ▁alle +- ▁dann +- du +- ling +- ▁small +- 力 +- ي +- less +- ▁together +- ▁fact +- im +- ▁since +- ▁money +- ak +- ▁мы +- 很 +- à +- 个 +- 你的 +- ▁qui +- ▁doing +- さん +- hi +- 更 +- ▁until +- 给 +- ine +- 斯 +- ▁talk +- ▁question +- ▁nor +- 老 +- き +- ty +- ▁twenty +- ▁didn +- ▁used +- ik +- vi +- ▁bit +- ▁hard +- ▁miss +- zu +- ▁big +- ▁full +- ▁Le +- ▁Re +- ▁yn +- ▁De +- ist +- よ +- 非常 +- au +- ▁gave +- 不是 +- ▁morning +- さ +- з +- ▁mehr +- ов +- 将 +- ку +- ▁keep +- pa +- ut +- 可能 +- ▁lord +- ▁rest +- ▁number +- ▁An +- que +- ▁real +- 가 +- ▁words +- ▁began +- and +- ки +- 呀 +- ▁ik +- ▁immer +- ▁however +- ▁hands +- ▁open +- ▁king +- 头 +- ▁bin +- ▁ب +- A +- ▁lo +- bi +- ▁looking +- ▁раз +- ▁pe +- led +- ل +- ▁па +- ▁c +- п +- ig +- р +- ▁turned +- ▁feel +- ▁En +- 那个 +- ▁waren +- 可 +- lar +- ic +- ▁і +- ▁felt +- ▁так +- 比 +- ▁zum +- ▁bu +- ها +- 再 +- ▁في +- ▁wirklich +- 像 +- в +- 外 +- ▁etwas +- 开始 +- 已经 +- 长 +- ちょっと +- ▁poor +- ▁pour +- ▁D +- ▁power +- 或 +- 名 +- ▁word +- ▁among +- gi +- 度 +- ▁myself +- ▁children +- ▁during +- ا +- ▁whom +- ▁ka +- しました +- ▁这 +- ▁lady +- ▁large +- ▁matter +- ▁death +- ▁Ver +- ▁Ja +- ▁vi +- pe +- ▁true +- '6' +- ▁certain +- ate +- ом +- kan +- nt +- ▁state +- ▁pa +- 并 +- ь +- ▁till +- ▁که +- ▁dans +- ▁person +- 月 +- 金 +- ▁present +- ▁general +- les +- ▁tun +- ▁O +- tion +- ă +- 向 +- ▁boy +- 因为 +- ▁live +- ▁case +- ▁est +- ▁brought +- 以 +- ▁black +- 成 +- 又 +- 你们 +- ek +- ▁order +- ▁dis +- oj +- ▁rather +- mu +- だ +- ▁Se +- 太 +- ▁voice +- ▁w +- ▁все +- ▁taken +- zo +- 道 +- ▁Menschen +- 先 +- jo +- ть +- ▁Wenn +- 让 +- ▁perhaps +- ▁given +- ない +- 内 +- ▁hear +- ▁already +- ju +- 所以 +- ся +- ▁une +- dy +- ▁important +- ▁girl +- ▁human +- ▁show +- 发 +- ▁вот +- 这种 +- ▁ihre +- ▁را +- ▁C +- wi +- ▁hij +- á +- ▁ihr +- ▁B +- ▁qu +- ▁ihn +- ▁K +- ▁company +- lan +- ▁meine +- ▁strong +- ren +- ▁thousand +- the +- った +- га +- ▁seine +- す +- ▁air +- ▁coming +- ▁But +- 面 +- ▁friend +- ▁-- +- ben +- ▁within +- ▁round +- 海 +- 方 +- ▁Li +- ▁change +- ва +- ji +- ard +- ▁six +- み +- 二 +- ai +- ▁often +- ▁everything +- ▁sea +- ع +- 没 +- ▁along +- nie +- ▁sent +- ▁Ein +- ▁whether +- 他的 +- '7' +- ▁wissen +- 无 +- う +- 这是 +- とか +- 尔 +- per +- ▁estas +- 但 +- ▁но +- ieren +- ▁This +- ▁car +- ive +- ▁themselves +- ب +- 车 +- 口 +- ▁forward +- 入 +- 学 +- ▁co +- ▁N +- ado +- ▁Na +- 西 +- 何 +- ▁others +- ▁za +- í +- つ +- го +- ▁我们 +- ▁idea +- 开 +- ▁keur +- س +- ▁across +- ▁dear +- ▁stood +- ▁school +- ▁那 +- ▁understand +- ▁sagte +- ▁making +- ▁dan +- ck +- bu +- ▁family +- ▁fire +- ▁nature +- ▁near +- ▁из +- 于 +- ем +- もう +- ▁times +- да +- ▁herself +- ▁public +- ▁niet +- ▁b +- ▁Zeit +- ▁read +- ▁cannot +- ▁pre +- ▁hope +- 花 +- ▁turn +- ▁city +- ル +- ▁این +- cu +- ▁würde +- è +- ▁است +- ▁zijn +- ger +- 死 +- ▁از +- sta +- ны +- ▁viel +- ▁li +- ner +- ▁women +- ▁gone +- ▁sagen +- ster +- ▁non +- ▁sur +- 听 +- ▁然后 +- fe +- ▁ser +- ▁means +- ▁thus +- いい +- ▁tu +- ▁child +- ▁least +- ق +- ▁sehen +- ▁T +- ▁nu +- 化 +- ▁pretty +- aba +- ▁ki +- ты +- ▁sense +- ▁says +- ada +- ▁أ +- fa +- 工作 +- ので +- ▁reason +- 这样 +- ▁einfach +- ▁keine +- ▁behind +- 日本 +- ▁この +- ▁wife +- ▁Il +- T +- E +- いた +- che +- ▁voor +- ▁short +- ▁bi +- 一些 +- ▁body +- ▁indeed +- 先生 +- ▁ce +- ▁feet +- wo +- 一样 +- '8' +- ▁M +- 就像 +- ▁wo +- 还是 +- 德 +- نا +- ▁до +- ▁Ma +- ▁sat +- ▁continue +- ま +- ts +- ▁unter +- age +- q +- ▁ask +- 儿 +- ▁U +- ▁close +- ить +- ம் +- ▁several +- 放 +- ▁won +- ▁om +- ية +- ▁whose +- не +- ▁market +- 之 +- ▁red +- ▁possible +- C +- up +- 你知道 +- ▁amb +- イ +- わ +- 部 +- ▁leave +- tes +- など +- 는 +- として +- ▁less +- ile +- ク +- ▁become +- ля +- ▁later +- 重 +- 拉 +- ان +- 吃 +- ▁known +- ▁Un +- ف +- ▁growth +- zen +- ä +- P +- ft +- ▁Ge +- ▁friends +- و +- lich +- ▁either +- ny +- gu +- ▁story +- ▁probably +- 体 +- ous +- ana +- ▁ihm +- ー +- ▁Sch +- ▁able +- ▁thou +- ▁else +- ▁wieder +- io +- 白 +- ц +- 跟 +- 万 +- ▁run +- 光 +- 位 +- ▁diesem +- ▁bad +- б +- ▁alone +- 但是 +- ات +- ▁そして +- ▁gut +- ز +- ▁start +- 法 +- ▁past +- 路 +- ▁itself +- iert +- aj +- ▁în +- š +- ▁Art +- ле +- ▁jetzt +- I +- ran +- і +- ▁therefore +- ア +- ▁free +- ▁sometimes +- ▁passed +- ў +- ▁speak +- mos +- 数 +- 问题 +- yo +- ▁book +- ▁line +- ▁andere +- ▁mal +- chen +- ми +- ▁Bu +- ▁above +- ▁became +- ▁Al +- bar +- 我们的 +- ▁wanted +- des +- ال +- way +- 利 +- era +- ك +- ▁bo +- ▁Je +- ▁cried +- '9' +- ban +- ▁today +- tro +- ▁au +- 今 +- 고 +- ▁getting +- 别 +- ▁okay +- ley +- ▁kaj +- ham +- 马 +- ん +- fer +- sten +- 지 +- ▁saying +- ▁No +- ▁bring +- ▁zwei +- 四 +- ated +- 需要 +- ▁p +- 田 +- ح +- ▁weil +- ▁las +- ▁z +- mer +- gel +- ▁és +- 世界 +- '10' +- ber +- 孩子 +- んだ +- ет +- end +- 都是 +- ▁ta +- ▁그 +- だった +- 王 +- リ +- ▁form +- ▁dead +- ▁hour +- ▁future +- ма +- ▁bis +- ▁machen +- 物 +- پ +- лі +- ▁earth +- ▁zur +- 自 +- nd +- ful +- カ +- ▁là +- ▁government +- ▁Do +- 钱 +- ▁، +- му +- nu +- ▁play +- ▁remember +- ▁land +- ▁bed +- ▁vous +- ere +- ▁plus +- 知道 +- 两 +- 带 +- 真 +- ▁fast +- ish +- ning +- 快 +- 身 +- ▁fell +- ▁dark +- ▁held +- 时间 +- rs +- 定 +- им +- ▁As +- ▁started +- ▁lost +- op +- 主 +- ▁hi +- ▁como +- 爱 +- ▁ت +- ▁answer +- ▁Was +- 一下 +- ▁bar +- ▁один +- tor +- します +- gan +- ▁cost +- ная +- ▁fa +- nya +- ang +- ▁сто +- ой +- ▁early +- ari +- min +- ご +- ▁müssen +- su +- ▁ground +- lin +- ▁answered +- ▁ago +- red +- ▁anderen +- ▁lay +- 明 +- ▁Vi +- ▁ў +- ▁Ba +- con +- ▁stand +- 正 +- ▁但 +- 安 +- 知 +- 加 +- ▁под +- 合 +- ▁selbst +- 谁 +- 起 +- han +- ▁они +- ▁em +- ра +- ▁Ha +- ç +- ']' +- tt +- vu +- 五 +- ▁truth +- ▁Ka +- 美 +- ▁mar +- ot +- ド +- ▁мне +- 看到 +- ▁alles +- 流 +- ▁denke +- ▁try +- ac +- iz +- ait +- 人们 +- ker +- cy +- ru +- ▁clear +- ко +- 同 +- ▁Leute +- ▁working +- 克 +- ▁Ne +- ▁front +- ▁towards +- ▁replied +- ト +- port +- ▁taking +- ▁Ihnen +- ▁viele +- 火 +- 然后 +- ▁же +- 怎么 +- her +- え +- র +- ▁further +- 等 +- 那么 +- day +- 的话 +- ин +- 叫 +- ▁Dinge +- ▁fine +- ▁ad +- 市 +- வ +- ▁kon +- ▁ну +- ам +- 只是 +- om +- ▁zurück +- ▁trying +- ." +- tan +- ism +- ▁law +- O +- ▁town +- ▁было +- ▁для +- 感 +- ▁fear +- ff +- ▁Da +- 门 +- lle +- ez +- B +- 全 +- 气 +- これ +- にも +- ▁его +- ini +- ern +- まで +- ire +- 目 +- ▁ты +- 真的 +- ラ +- ; +- ▁thank +- ▁со +- ▁table +- are +- ▁ye +- ؟ +- ▁Y +- 使用 +- 中国 +- ▁есть +- ▁third +- ▁church +- ▁dieses +- ▁expect +- ú +- 作 +- います +- ex +- ▁Du +- ▁art +- 平 +- ▁Sa +- ▁diesen +- ный +- ▁sun +- ▁doubt +- ▁бы +- ▁return +- qui +- ▁system +- ▁pay +- ap +- ▁sin +- ▁era +- ▁[ +- ü +- ance +- のは +- ▁plan +- 도 +- め +- ▁maybe +- ▁soul +- ர் +- コ +- 野 +- ▁dr +- ita +- tre +- ina +- ло +- ▁muss +- ▁الم +- sen +- 通 +- ▁aan +- 请 +- ▁sound +- ring +- ▁거 +- ند +- one +- ▁Wie +- 南 +- ▁beautiful +- ▁seems +- 見 +- ах +- ▁week +- ▁brother +- ▁два +- ▁با +- ▁kept +- sha +- 時 +- elle +- あ +- ary +- gar +- ▁certainly +- ▁continued +- ▁comes +- ▁P +- ▁top +- ▁position +- ча +- 어 +- '20' +- sto +- ▁там +- ит +- ▁gu +- ▁нас +- K +- ▁suddenly +- ▁seven +- ▁thinking +- ▁А +- している +- 에 +- ab +- ▁wish +- ▁talking +- ▁ready +- ▁Mi +- ▁master +- F +- ▁service +- 自己的 +- ন +- ▁evening +- しています +- ▁view +- ▁cap +- ▁thy +- 那些 +- ▁nie +- ک +- ▁ما +- sel +- ▁subject +- 通过 +- ▁Per +- '...' +- 应该 +- ▁Ta +- ▁eines +- ▁cold +- ure +- és +- pi +- ▁dé +- 文 +- ▁longer +- ▁letter +- ▁cause +- ▁Ro +- ▁happened +- kin +- 生活 +- ды +- ▁deep +- ▁nous +- ▁если +- dan +- ▁common +- ding +- 立 +- 使 +- ▁happy +- ▁post +- van +- ▁zij +- bel +- でした +- ン +- tar +- ▁дом +- ▁ca +- んで +- ▁low +- ▁arm +- 区 +- ▁gi +- ▁cu +- 动 +- ▁pass +- ти +- ни +- то +- ble +- ▁interest +- ▁dit +- 格 +- ah +- ▁schon +- cia +- ix +- 这么 +- ê +- igen +- ▁ihnen +- 只 +- ▁john +- 米 +- une +- ▁Ihre +- ▁manner +- ▁living +- ies +- ▁To +- 它们 +- 声 +- து +- ama +- ▁natural +- ある +- 送 +- いて +- ▁hold +- ▁thirty +- ▁eight +- ▁「 +- ▁б +- ▁Welt +- mp +- 研究 +- ▁spirit +- fi +- ▁months +- された +- ▁river +- ▁அ +- ين +- ▁unsere +- 出来 +- ▁husband +- ▁watch +- G +- ক +- ▁capital +- ite +- sh +- 店 +- 不会 +- mal +- ris +- 问 +- ▁road +- 意 +- 住 +- ▁rose +- ▁fi +- los +- ▁guess +- val +- 总 +- ▁Ab +- 的是 +- ▁seeing +- ▁support +- 喜欢 +- ня +- ной +- ▁result +- ub +- ▁Ni +- 有一个 +- 我想 +- 原 +- ▁You +- ▁value +- во +- ط +- ▁deal +- ▁meet +- ▁results +- 号 +- ▁wurden +- 長 +- bra +- 今天 +- tic +- 木 +- 不能 +- ▁street +- 次 +- 希望 +- ▁vol +- 情 +- 给我 +- ▁green +- ар +- ▁denn +- ▁social +- ▁hours +- 或者 +- 科 +- ▁returned +- ▁cut +- ил +- ▁experience +- vis +- ian +- ون +- len +- ▁sub +- ungen +- ▁strange +- ud +- 元 +- ▁werde +- 戦 +- кі +- いる +- ая +- 是的 +- ▁whatever +- ▁einige +- ▁sight +- 之前 +- ▁mein +- 公司 +- 半 +- 的事情 +- ▁drei +- 言 +- ▁doesn +- 公 +- ischen +- car +- ▁その +- ▁Aus +- ей +- те +- 也是 +- 是一个 +- ▁să +- ▁fair +- ▁У +- ▁terms +- ▁food +- 気 +- ▁minutes +- ef +- 的东西 +- ▁seiner +- ▁아 +- 能够 +- ль +- خ +- ▁ex +- ons +- sche +- ▁Te +- ▁court +- ▁process +- ナ +- tel +- ▁account +- 发现 +- 该 +- 品 +- 林 +- ▁received +- ▁blood +- ▁меня +- ных +- ence +- ag +- D +- ▁followed +- ▁Ra +- ▁ho +- ▁Mo +- 干 +- ▁pri +- ロ +- 张 +- がある +- ò +- ▁feeling +- ну +- ici +- ▁Co +- 州 +- 觉得 +- ▁particular +- las +- ல் +- マ +- ▁Di +- ▁makes +- ні +- lie +- ▁はい +- ▁yo +- ▁due +- 他们的 +- ▁move +- ▁یک +- ▁english +- 第 +- line +- ā +- 女 +- ▁أن +- ▁mais +- ▁seem +- 讲 +- 代 +- 八 +- ▁Vor +- ende +- ▁damit +- ما +- 线 +- ▁act +- ▁beyond +- ria +- れ +- nen +- ▁captain +- zer +- ▁single +- ▁hair +- ▁об +- té +- ▁arms +- ▁spoke +- ▁They +- tra +- ▁suppose +- ▁có +- tas +- க் +- ர +- ▁self +- ▁Also +- ▁information +- ▁data +- ▁simple +- وا +- ста +- 之后 +- ша +- ▁wild +- ▁horse +- ige +- ▁R +- 还有 +- 一点 +- M +- king +- ▁tried +- ▁sleep +- č +- 相 +- ▁mine +- 을 +- 石 +- ée +- 社会 +- ndo +- 色 +- _ +- mes +- 量 +- 人が +- 神 +- ▁wrong +- 大家 +- ▁effect +- ▁wind +- ▁history +- ▁sit +- ▁yourself +- ور +- 才 +- 集 +- ▁eye +- 球 +- 理 +- ▁walk +- ▁fifty +- ブ +- ▁states +- 军 +- cer +- ▁foot +- ▁Um +- 们 +- レ +- hu +- cht +- ▁очень +- 台 +- だけ +- じ +- 形 +- ▁inter +- ▁Les +- ▁problem +- gri +- ▁although +- ▁fer +- ▁maar +- こ +- 空 +- ме +- 不要 +- ▁gold +- ische +- N +- 找 +- ▁G +- ▁mo +- fu +- ▁这是 +- ura +- mente +- ally +- ▁F +- 关于 +- 北 +- if +- 很多 +- î +- ▁space +- ست +- ▁когда +- ▁period +- なかった +- ▁ei +- 所有 +- ▁könnte +- ています +- んです +- ▁glad +- こと +- タ +- ▁weiß +- 六 +- ▁example +- ▁двадцать +- ▁stop +- ▁stuff +- 私 +- ▁els +- ron +- ▁reached +- 认为 +- ▁doctor +- ę +- 政府 +- 让我 +- ▁none +- nde +- ano +- ම +- ▁daughter +- ▁send +- ▁force +- のか +- use +- 进 +- tter +- ▁chance +- ras +- ▁attention +- че +- 见 +- ▁W +- 买 +- ▁fall +- ▁pot +- 教 +- ম +- room +- ▁Man +- ş +- について +- ▁она +- ▁blue +- ▁exactly +- ale +- 如果 +- ▁New +- 东西 +- né +- ▁dir +- 時間 +- ▁Ku +- ▁camp +- ▁stay +- wer +- ▁party +- ▁Si +- ▁especially +- ض +- 完全 +- 川 +- wn +- af +- ando +- fen +- ди +- ▁character +- ▁dich +- ▁except +- вер +- 布 +- ▁please +- my +- ок +- ▁Pa +- そう +- ▁Als +- ▁share +- ▁hatten +- ия +- フ +- 事情 +- ▁Leben +- ▁higher +- ▁tôi +- 阿 +- 何か +- ement +- 受 +- になる +- ▁mis +- ▁outside +- ▁following +- ▁hu +- ▁level +- ▁Me +- ные +- ▁geht +- 信 +- ру +- ▁couple +- ▁lui +- ▁necessary +- ok +- ▁Auf +- ele +- 器 +- 给你 +- 卡 +- 味 +- やっぱり +- 起来 +- це +- 话 +- ▁instead +- ▁và +- ▁opportunity +- ▁carried +- ▁nun +- eg +- nk +- ▁appeared +- ▁toward +- 食 +- 如何 +- ▁gab +- cho +- ▁respect +- 风 +- ati +- ▁south +- ▁Teil +- 美国 +- シ +- ▁added +- ž +- ▁window +- ▁如果 +- nda +- 正在 +- ▁او +- är +- ன் +- ö +- ▁control +- ating +- もの +- ▁england +- ор +- ф +- за +- ▁seinen +- ▁пере +- ▁nine +- па +- ▁questions +- ই +- 成为 +- 越 +- オ +- ▁ought +- 期 +- ▁más +- ▁save +- 九 +- 朝 +- del +- ць +- ▁Mu +- ▁late +- ▁lower +- ▁нь +- 民 +- ira +- 以后 +- ▁lived +- ▁health +- ▁knowledge +- ▁ke +- ▁Lo +- 写 +- ▁што +- ns +- ▁нет +- ▁现在 +- res +- са +- ▁customers +- ▁tra +- он +- 嘛 +- ▁dollars +- ый +- ё +- ▁Mae +- ▁Bo +- ▁gehen +- cha +- ▁wat +- ▁Po +- र +- 歌 +- ▁opened +- ks +- ار +- 取 +- ▁Im +- chi +- ▁miles +- ▁grand +- eth +- let +- また +- 少 +- ▁haar +- ている +- ▁pen +- ▁wall +- ach +- க்க +- ▁è +- 学校 +- 选择 +- ▁comp +- ▁eighteen +- ▁step +- ▁easy +- tur +- 哪 +- heit +- ば +- ▁quickly +- don +- ▁Mal +- mar +- ▁wait +- ging +- 书 +- っていう +- ky +- 回来 +- 员 +- eur +- ба +- ▁Pro +- 城 +- ▁Bi +- ien +- ▁neither +- ▁уже +- ре +- tal +- ▁fellow +- ise +- ▁group +- ▁product +- lla +- ▁Ri +- ام +- 人の +- ▁building +- ▁чтобы +- ide +- ▁因为 +- ▁goes +- ▁north +- ▁chi +- ▁jeung +- ▁Z +- ▁vielleicht +- ▁music +- ு +- 一种 +- ▁main +- ▁три +- una +- ▁paper +- 周 +- ри +- ▁bright +- ▁beginning +- க +- ным +- out +- ▁V +- ры +- tin +- 几 +- ▁hall +- L +- ▁ningal +- ▁wonder +- ▁diwawancara +- ▁forth +- ▁olohok +- ▁office +- ▁christ +- ▁sweet +- ▁möchte +- ミ +- 後 +- ذ +- ▁wollen +- stre +- stand +- ▁ihren +- ities +- H +- ned +- yi +- ▁var +- ▁wäre +- ▁figure +- ▁mhm +- ▁Ki +- 为什么 +- ▁entre +- ▁nearly +- ▁ran +- ▁dipoto +- ன +- ▁wartawan +- ▁avec +- ▁forty +- 任何 +- 制 +- ▁пра +- 十 +- kt +- 在这里 +- ке +- ▁team +- ali +- time +- ▁mon +- ida +- 夜 +- 清 +- bre +- 进行 +- ▁Mann +- lor +- med +- 的一个 +- ▁ganz +- ج +- دا +- 由 +- ▁bien +- 机 +- 本当に +- 拿 +- と思います +- 近 +- ▁Con +- 大学 +- ▁kam +- ğ +- ges +- wy +- ▁rich +- 直 +- ийн +- ▁interesting +- 的な +- ▁Mit +- ду +- ▁There +- ▁local +- ▁konnte +- или +- ▁sollte +- 急 +- ▁Am +- 波 +- 特别 +- ▁purpose +- 其他 +- 倒 +- mon +- ▁este +- ▁lives +- ல +- ということです +- ▁будет +- ан +- ▁daß +- 的地方 +- ▁Ad +- ту +- ville +- ▁key +- kel +- pan +- ص +- 巴 +- ▁một +- 村 +- 得到 +- 表 +- od +- ert +- ▁heute +- けど +- ল +- ▁Com +- ▁근데 +- ça +- 解 +- ▁game +- 接 +- ▁news +- ▁peace +- ▁weiter +- ய +- ▁pleasure +- sti +- ▁darüber +- for +- ▁situation +- ▁learn +- ▁ou +- ▁ihrer +- 局 +- 笑 +- ▁lie +- ▁안 +- バ +- 是什么 +- tie +- ▁على +- ▁silence +- ▁grow +- R +- 是不是 +- '30' +- ▁sister +- tri +- ▁sei +- 安全 +- ther +- த +- ▁class +- ید +- 音 +- 派 +- 甚至 +- ▁zoo +- ▁pan +- ▁moved +- ▁strength +- ib +- ili +- ▁sta +- ということで +- ▁modern +- ▁success +- ante +- side +- 雪 +- ▁secret +- log +- ▁Va +- ł +- 君 +- 初 +- 哥 +- ▁dog +- ▁follow +- 指 +- ani +- cher +- се +- 船 +- 切 +- 继续 +- ▁board +- 男 +- ▁comme +- ▁ru +- ▁mag +- 提供 +- ▁뭐 +- vel +- 古 +- nes +- U +- ▁och +- ▁davon +- 다 +- 中的 +- 国家 +- 雨 +- 来说 +- ▁french +- ッ +- 早 +- ▁gegen +- ро +- mit +- lichen +- ▁middle +- 两个 +- ▁project +- ▁С +- lang +- ▁uit +- ▁afraid +- どう +- ía +- ▁eat +- ▁expected +- ▁dar +- cal +- への +- ▁bear +- む +- 实际上 +- 管 +- غ +- nce +- 落 +- ▁Я +- よく +- ▁performance +- ▁Arbeit +- っ +- 难 +- ца +- ▁wouldn +- ▁ara +- tte +- ▁army +- こう +- ▁entered +- uri +- 到了 +- mas +- 字 +- ▁spring +- ▁fit +- ▁Ho +- mor +- ize +- 如此 +- ier +- ▁impact +- ▁object +- 七 +- 帮助 +- ▁national +- can +- ▁drive +- rea +- ▁cool +- ▁private +- 片 +- ” +- ▁difficult +- 在一起 +- 咱们 +- 土 +- 曲 +- ▁joy +- ized +- ப் +- ү +- ▁standing +- 其实 +- ▁progress +- ▁trouble +- 低 +- ▁floor +- tres +- ▁pu +- 選手 +- ▁только +- 東京 +- ▁ship +- ▁Nun +- かな +- 哈 +- ▁Su +- ▁break +- чи +- 一直 +- 命 +- form +- ▁mai +- ول +- ▁zusammen +- ئ +- ple +- ▁av +- ▁cho +- エ +- ズ +- ▁provide +- 救 +- pen +- ▁She +- ами +- ▁happen +- ving +- 病 +- ▁din +- 感じ +- 作为 +- zeit +- 活 +- になって +- ▁nice +- ウ +- ▁ways +- ▁american +- ▁everybody +- ▁special +- ▁smile +- же +- ▁major +- 率 +- ▁ju +- sse +- ▁chief +- ▁hem +- 理解 +- 一起 +- およそ +- 处 +- ▁sont +- ত +- ▁distance +- 罗 +- ▁И +- 看看 +- чы +- 电 +- ció +- vin +- ▁prince +- ▁dies +- ▁sign +- لا +- ▁fight +- ▁greater +- ▁That +- ен +- ▁mouth +- 朋友 +- ▁Jahren +- dig +- ido +- ▁kein +- ▁consider +- ▁demand +- ව +- 反 +- ▁sitting +- ого +- ▁written +- ▁lang +- ▁oku +- ▁Wa +- ní +- cla +- ▁remain +- ▁couldn +- 李 +- art +- dd +- ▁Eine +- 은 +- 街 +- 场 +- ▁design +- ▁spot +- ▁потому +- house +- cken +- 不知道 +- ▁vom +- すると +- ▁length +- nis +- win +- ▁ба +- 〉 +- ▁job +- ▁пять +- すごい +- ship +- 岁 +- hen +- ▁heaven +- де +- ა +- san +- 必须 +- 河 +- ▁books +- 条 +- ▁final +- of +- ▁grew +- ▁base +- 一次 +- ие +- ▁walked +- ▁isn +- ▁increase +- 官 +- ▁просто +- 奥 +- ▁society +- ▁amount +- ▁On +- 断 +- ero +- cur +- гу +- ▁trees +- ▁program +- ▁これ +- ې +- ▁был +- न +- 有点 +- ى +- ▁ம +- ations +- â +- iza +- ▁faith +- vor +- ▁heavy +- ▁immediately +- ▁battle +- ▁president +- ین +- ▁financial +- ▁What +- ▁〈 +- のが +- ▁dort +- ▁четыре +- ▁running +- ▁begin +- ▁рас +- par +- 間 +- サ +- ▁personal +- へ +- ▁action +- ха +- wan +- ▁cor +- ▁тридцать +- sie +- ▁places +- ▁development +- ▁visit +- ▁во +- ▁train +- ▁eu +- ▁mary +- ▁learned +- ▁không +- ▁write +- ▁cre +- ▁ohne +- ですよね +- ▁Gu +- ст +- 一个人 +- 东 +- 最近 +- 首 +- ется +- ▁darauf +- nas +- ▁hot +- さんが +- ▁died +- 地方 +- 支持 +- ую +- ▁laid +- ▁perfect +- 她的 +- ces +- ries +- ▁queen +- 工 +- 却 +- そして +- ▁Ar +- 决定 +- できる +- ▁einmal +- 서 +- 足 +- ▁command +- ▁safe +- ии +- yu +- される +- ▁slowly +- 连 +- dra +- ә +- ▁price +- ▁Ti +- ▁super +- 玩 +- ı +- ▁Mar +- ий +- ▁quick +- ▁wood +- ▁glaube +- ▁сейчас +- ▁add +- 女性 +- ram +- ndi +- ▁estis +- liche +- ▁build +- 只有 +- 实 +- っている +- ▁sales +- ▁nga +- ▁Zu +- ▁stopped +- ą +- 队 +- dro +- ▁sobre +- キ +- 森 +- ▁嗯 +- ▁finally +- 红 +- 思 +- nia +- ▁various +- ▁conversation +- 差 +- 当然 +- ▁color +- ▁changed +- ▁age +- 推 +- ө +- цы +- ▁married +- 远 +- ▁west +- ▁caught +- mm +- 酒 +- ▁gentleman +- vid +- 深 +- mus +- ▁més +- ▁cette +- lik +- 战 +- ▁hast +- clock +- uch +- 所有的 +- 强 +- ве +- ▁или +- ▁film +- ▁desire +- shi +- mel +- ▁straight +- ▁study +- ins +- メ +- ▁pi +- isi +- ▁может +- вы +- ▁model +- ▁warm +- ▁ging +- rie +- sion +- ▁которые +- ▁tree +- 当时 +- ▁ill +- த்த +- ▁cross +- ▁hay +- ▁ад +- dem +- ▁built +- ▁Land +- ▁science +- ▁бол +- ▁J +- ▁bra +- ட +- ans +- 亚 +- ところ +- ▁danger +- 商 +- 努力 +- ska +- ▁kwa +- 啦 +- 每 +- ▁talked +- ▁remained +- 部分 +- 老师 +- 士 +- 室 +- 变 +- sis +- 番 +- ▁paar +- schen +- ▁giving +- gang +- 話 +- そうです +- ▁gonna +- ▁All +- pp +- ité +- ▁quiet +- 让我们 +- ▁rate +- ного +- 转 +- ▁york +- ▁meiner +- 热 +- ▁их +- rus +- チ +- ▁الأ +- ɣ +- ▁tre +- 我是 +- 事件 +- ▁wrote +- ▁picture +- ▁loved +- ip +- yan +- аў +- ▁Diese +- ps +- 整个 +- ▁Ur +- ▁tr +- ▁Ko +- ▁snow +- ▁gemacht +- ▁waiting +- ▁uncle +- ث +- tive +- ▁семь +- 肉 +- ▁那么 +- ▁fort +- ▁yang +- ▁race +- ito +- 失 +- ▁nichts +- ▁For +- ▁london +- ▁кто +- мо +- ▁これは +- ▁minute +- ать +- ino +- ▁boys +- 报 +- ski +- бы +- 千 +- ▁dinner +- til +- ▁gar +- ▁march +- ය +- хо +- 房 +- ▁fourth +- rem +- 边 +- ▁works +- ▁sprechen +- ▁broken +- tus +- 关 +- ▁tatsächlich +- ち +- ▁below +- 有什么 +- ▁đ +- ties +- 感觉 +- ona +- ▁piece +- xi +- ▁similar +- より +- ▁according +- 保 +- ▁simply +- 最后 +- ▁trust +- 往 +- 达 +- なく +- ம +- ▁seinem +- ḥ +- ▁regard +- ug +- ▁hardly +- 如果你 +- ▁zwischen +- ▁direction +- ▁seu +- ▁drew +- 世 +- lä +- ▁mil +- сан +- ▁brain +- ▁corner +- 真正 +- cle +- 种 +- 以上 +- 关系 +- ▁using +- 这里 +- ▁summer +- اس +- ▁buy +- ich +- ▁language +- ▁Ke +- ▁impossible +- ▁sus +- 不同 +- چ +- ше +- eren +- ▁Tu +- ▁bon +- 权 +- ▁hätte +- ade +- ▁Tag +- ▁beauty +- ▁lips +- ue +- 画 +- 第一 +- ▁evil +- ▁Now +- õ +- 单 +- ▁france +- ▁garden +- ▁بود +- ▁month +- bil +- ▁station +- ec +- さんの +- ev +- 进入 +- ▁lead +- ré +- int +- 包 +- 県 +- sco +- 기 +- ▁Ga +- gehen +- ▁denen +- ▁presence +- amente +- ▁girls +- ▁opinion +- ▁touch +- dia +- そういう +- ▁gran +- 的问题 +- ▁fresh +- ▁آن +- 过去 +- ▁united +- 系统 +- field +- ▁Hu +- gra +- 야 +- rit +- ▁mas +- ▁political +- ▁showed +- とは +- ят +- fo +- یم +- ▁ма +- ▁г +- ser +- ▁looks +- ться +- 眼 +- ず +- ▁Frage +- 以及 +- را +- ▁vier +- ▁나 +- ▁гэта +- ▁placed +- ney +- パ +- pu +- ▁brown +- 冷 +- 発 +- ▁сорок +- ал +- cra +- 根 +- met +- ▁Pe +- ato +- ▁我想 +- 星 +- ava +- ción +- ▁growing +- ei +- ions +- 省 +- ▁risk +- 了一个 +- ▁că +- ▁В +- ▁sick +- ツ +- ▁bank +- ▁переулок +- ▁current +- ▁decided +- ▁soft +- ▁village +- 板 +- ですが +- 夫 +- 我就 +- 今年 +- ব +- ▁filled +- cent +- 青 +- 好的 +- ▁hit +- 実 +- ▁еще +- ▁speaking +- nh +- ih +- ют +- ▁dazu +- ice +- گ +- 其 +- 图 +- ral +- น +- V +- ▁вас +- ර +- ▁hin +- ▁Hi +- ▁Ca +- ▁led +- 来了 +- kon +- ▁ஆ +- ou +- ▁برای +- 装 +- schaft +- ▁wasn +- ▁cent +- ▁har +- ▁muri +- iti +- эр +- ▁weeks +- 上的 +- 找到 +- ▁zich +- ▁pero +- 非 +- well +- ▁inside +- ial +- like +- ▁Sta +- ▁Ihr +- ▁writing +- berg +- ▁mentioned +- 在那里 +- ▁expression +- 出去 +- ▁trade +- 脚 +- ▁born +- fin +- ▁pain +- ▁á +- ▁worked +- ika +- 風 +- ament +- 比较 +- 交 +- ▁twelve +- 这样的 +- ▁type +- ▁cy +- ده +- ▁kan +- ▁Jahre +- ▁revenue +- nte +- ▁rain +- ▁serve +- ова +- ute +- ▁reach +- よね +- ▁H +- oli +- ▁meant +- ▁würden +- har +- 妈妈 +- ▁direct +- ▁இ +- ң +- やって +- ▁plain +- ▁för +- ▁Ru +- ▁pleased +- ▁win +- ▁winter +- ▁influence +- ▁parts +- ▁doch +- isch +- kat +- uk +- ▁mij +- ▁Lu +- 車 +- 你可以 +- ▁naar +- ▁worth +- via +- 这一 +- ▁community +- ▁thoughts +- 突然 +- 》 +- 包括 +- ▁kommen +- hin +- ▁しかし +- ▁raised +- ▁wide +- ▁col +- ▁große +- ▁của +- дзе +- eb +- 传 +- リー +- ▁haven +- ▁chair +- ▁bri +- ▁field +- fall +- 亲 +- ▁umu +- 松 +- 里面 +- wood +- 存在 +- 让你 +- 皮 +- 零 +- ▁boat +- ▁forget +- bro +- ▁exclaimed +- 代表 +- uka +- ded +- 听到 +- '11' +- 血 +- ут +- ▁carry +- ▁chúng +- mmer +- mis +- das +- 华 +- 别人 +- ió +- ▁Geschichte +- ford +- bb +- ▁broad +- ▁od +- ▁paid +- ▁likely +- ▁condition +- ▁ersten +- ▁afternoon +- 以前 +- ▁someone +- ▁grave +- ▁și +- put +- ای +- ▁genau +- 々 +- ▁dream +- сы +- ▁Fa +- ых +- න +- ▁мо +- ▁На +- 说话 +- ком +- ▁ourselves +- ▁waar +- ô +- 草 +- ▁band +- 我觉得 +- ▁content +- ▁wenig +- ora +- 自然 +- 家庭 +- 方面 +- ে +- 黑 +- ▁imp +- ▁industry +- ▁terrible +- dos +- 尼 +- ым +- rig +- ▁report +- ▁somebody +- 要求 +- ▁allowed +- さんは +- ▁path +- rá +- ▁pale +- 那里 +- ▁appearance +- ssen +- ▁mark +- ▁worden +- umu +- よう +- 学生 +- ments +- мен +- 院 +- ▁க +- أ +- sur +- 円 +- ▁journey +- жа +- ▁usually +- ▁دو +- 卖 +- ную +- ves +- ите +- gli +- 的方式 +- だと +- 调 +- ▁listen +- 警察 +- び +- wen +- ▁Frau +- 兰 +- tik +- グ +- ī +- 温 +- '50' +- 線 +- んですよ +- ▁vast +- يا +- ▁anar +- ▁material +- ە +- ▁generally +- ට +- ▁fait +- ▁enemy +- пер +- ▁area +- ▁struck +- dar +- aient +- 重要 +- tir +- ▁rock +- ような +- 喝 +- 的に +- ▁shot +- ると +- ▁finden +- ▁sorry +- ▁gra +- ▁evidence +- ▁آ +- া +- ний +- 我认为 +- ход +- ula +- sam +- 了解 +- ▁daran +- wu +- uma +- ▁Gi +- ▁Nach +- いました +- ков +- ▁easily +- 件 +- ▁individual +- 节 +- ▁duty +- 座 +- ▁tout +- mie +- 过来 +- ▁những +- ▁unless +- まだ +- 它的 +- ু +- ros +- ▁bill +- ▁fifteen +- heid +- mann +- ▁Her +- lt +- 成功 +- iv +- pri +- اد +- iya +- それ +- lia +- ▁laughed +- ▁шесть +- ▁надо +- ▁clean +- ▁normal +- sar +- ▁ن +- ▁tea +- ala +- ▁kar +- ami +- var +- ながら +- 恩 +- oc +- ▁gesagt +- llen +- 是否 +- ▁meeting +- 纳 +- ▁create +- ▁ஒரு +- ҡ +- ▁Dann +- ▁ré +- ▁products +- ▁Et +- ▁вам +- tis +- ▁fun +- ▁während +- 了吗 +- ▁focus +- ses +- あの +- ▁fond +- ▁sí +- んですけど +- あと +- ▁star +- ▁Weise +- 健康 +- ▁considered +- َ +- ▁não +- 油 +- स +- せ +- んですね +- ▁Weg +- ▁broke +- stra +- ▁moving +- ▁sah +- set +- ▁быть +- 此 +- ▁leaving +- ▁supposed +- stan +- ぶ +- ▁million +- ▁services +- ひ +- ▁charge +- ▁ber +- ▁drink +- ▁test +- ская +- ▁enter +- ▁gerade +- 技术 +- ▁sudden +- 式 +- wr +- ги +- ista +- ▁wonderful +- त +- ▁season +- ▁어 +- '",' +- ▁difference +- ▁jo +- ▁আ +- 未 +- اء +- ▁knows +- ▁geben +- ▁rep +- きました +- ified +- 为了 +- leg +- iri +- ▁mad +- ▁positive +- ▁grace +- ▁пры +- dri +- ▁stone +- なんか +- ▁spent +- 我在 +- ▁everyone +- W +- als +- られる +- ē +- ▁bat +- ▁Kinder +- 修 +- 方法 +- э +- ▁principal +- 怎么样 +- ▁sagt +- ▁iron +- dor +- pt +- ▁том +- ก +- 坐 +- ▁Ve +- アメリカ +- ▁ball +- ▁fünf +- ▁Jo +- ▁Fall +- ped +- ▁energy +- ▁sixty +- ▁honor +- 雷 +- ius +- لی +- ▁min +- رو +- ジ +- ▁ganze +- ▁بر +- というのは +- 间 +- чу +- ▁ப +- ▁imagine +- zar +- ţi +- ▁covered +- ▁exist +- 人的 +- ▁latter +- ▁receive +- ▁wollte +- ▁cast +- 任 +- ▁daar +- 不同的 +- nor +- ▁moral +- vers +- ▁global +- ▁fo +- ▁esta +- pro +- 強 +- eu +- ように +- たい +- تر +- ▁natürlich +- ぐらい +- bed +- сти +- uru +- ▁allow +- ே +- ▁closed +- ▁cases +- 离 +- nos +- ▁bound +- ஸ் +- but +- 把它 +- ▁kun +- ▁shut +- 左 +- ▁dafür +- ▁arrived +- ▁huge +- pf +- ▁technology +- ▁besides +- ▁term +- ா +- ット +- ことが +- ph +- 自由 +- 改变 +- ▁Kon +- 服务 +- 二十 +- ニ +- 许多 +- 注意 +- ろ +- ay +- ▁At +- cin +- ▁entirely +- ▁tears +- ですか +- ojn +- 教育 +- ▁particularly +- ▁pod +- ▁девять +- 有人 +- ey +- ▁hill +- 直接 +- 试图 +- ▁ل +- ▁großen +- ão +- ▁Ze +- ▁而且 +- ella +- ▁actual +- looking +- ata +- bli +- по +- のです +- all +- ▁І +- 方式 +- 状況 +- ants +- ▁anti +- pre +- ▁Our +- ▁turning +- ació +- しか +- هم +- 学习 +- ▁ко +- 一天 +- 步 +- yn +- ▁lassen +- んですが +- rt +- yon +- 准备 +- ビ +- 维 +- 药 +- ▁cat +- ward +- ▁percent +- ▁ahead +- ▁notice +- spe +- 离开 +- 人类 +- ▁justice +- ▁sollten +- iga +- ▁spend +- pul +- ▁significant +- ▁fest +- ▁ي +- ▁needs +- 收 +- hand +- ай +- ical +- ▁sand +- だから +- ட் +- лю +- ▁sky +- ▁killed +- 语 +- ▁dos +- ▁bak +- nder +- eva +- 를 +- ▁Beispiel +- rà +- лу +- 留 +- 考え +- ▁holy +- 宝 +- 百 +- ▁Dr +- ▁Pi +- ▁Go +- ส +- ▁europe +- ▁rise +- ▁animal +- های +- 完 +- ▁macht +- ение +- ▁jeder +- ▁labor +- ▁бо +- ▁John +- ▁deux +- 参加 +- ▁island +- ▁kids +- ▁size +- ▁occasion +- cio +- ▁beside +- ぎ +- iki +- ▁park +- ул +- illa +- ви +- og +- 中心 +- され +- 福 +- board +- 島 +- ▁jack +- ▁complete +- 提 +- ▁east +- ▁religion +- ▁note +- ein +- ▁usual +- ture +- ▁horses +- ▁police +- ▁youth +- ▁unserer +- vil +- ▁uma +- ▁wise +- 短 +- ハ +- ón +- ola +- 角 +- tru +- ▁crowd +- ▁george +- ▁welche +- ▁пред +- ḍ +- ▁gute +- ▁silent +- 吉 +- 兵 +- 跑 +- していた +- 影响 +- ム +- qu +- ▁пятьдесят +- 查 +- ▁opportunities +- hr +- ▁tend +- lon +- ▁peter +- av +- になった +- ima +- 师 +- ▁education +- 見て +- 好好 +- ▁К +- ▁« +- лен +- bert +- ți +- ▁countries +- ボ +- ably +- ▁sam +- ability +- ▁нам +- 你会 +- கள் +- ▁blind +- ど +- ▁trans +- '40' +- ▁восемь +- ▁former +- ▁مع +- vy +- nan +- ▁ただ +- ▁molt +- ▁tut +- ▁су +- ▁“ +- 完成 +- ▁sicher +- ▁prop +- ▁noble +- ▁ubu +- ▁tax +- ▁della +- ▁meinen +- lé +- mun +- 案 +- mba +- 客 +- ▁ziemlich +- เ +- тор +- ▁Hand +- ▁warum +- ▁lange +- ман +- ▁letters +- ▁была +- ▁reading +- ▁Denn +- ▁parents +- 演 +- 配 +- ▁Car +- rei +- ▁attack +- ▁чем +- лся +- teil +- ▁surprise +- 来自 +- にある +- 破 +- ▁heraus +- pon +- 文化 +- 走了 +- ▁aunt +- ▁needed +- ▁ngo +- ▁slow +- low +- 数据 +- ▁offer +- といいます +- 至 +- ▁pleasant +- ▁list +- ett +- arbeit +- 罪 +- ▁entire +- ৰ +- 无法 +- uta +- ▁lines +- sent +- ▁Dies +- 만 +- ▁merely +- ▁cry +- ▁está +- ▁ac +- ierte +- iro +- tha +- mbo +- ▁worse +- ▁pra +- 待 +- kla +- ▁cha +- 另一个 +- huh +- tag +- ▁unto +- があります +- ▁absolutely +- ▁marriage +- tim +- 跳 +- ened +- ▁п +- sia +- 算 +- ▁gesehen +- ▁ни +- ▁original +- ▁этом +- nou +- ▁tall +- ネ +- ▁based +- aka +- ร +- ov +- 管理 +- 似乎 +- ▁ideas +- ador +- mut +- bla +- ▁этого +- 我会 +- ые +- نی +- ▁هو +- ▁store +- 取り +- 全部 +- 也不 +- ▁kandi +- 获得 +- ▁somewhat +- 대 +- ▁kleine +- ▁watching +- 我要 +- 经济 +- ▁forest +- 原因 +- ▁weak +- kommen +- ats +- 問題 +- ▁takes +- шы +- 总是 +- தி +- سی +- ▁steps +- ▁nog +- ▁всё +- rat +- 利用 +- ▁mà +- 一定 +- 政治 +- ▁Or +- ▁đó +- ▁members +- ▁silver +- ▁discovered +- 你在 +- ге +- án +- ▁ع +- 割 +- า +- 好了 +- ▁including +- 科学 +- ский +- tta +- эл +- ▁tan +- ▁property +- тер +- ▁bow +- け +- ▁appear +- 计划 +- gal +- itat +- 通常 +- ▁draw +- 飞 +- 守 +- 掉 +- 谷 +- 未来 +- ▁serious +- ▁bottom +- ils +- rn +- night +- ▁circumstances +- ▁是的 +- vre +- ▁Geld +- اب +- ▁escape +- ▁chapter +- ét +- ▁movement +- J +- ▁proud +- ell +- “ +- ▁fortune +- ▁customer +- そ +- nden +- tung +- ▁iz +- лы +- ▁breath +- ů +- ▁san +- 满 +- ▁ph +- ▁Jahr +- werk +- 发生 +- 好像 +- ▁Wo +- ▁وال +- ▁thick +- ▁mountain +- 党 +- tz +- 可能会 +- ū +- ▁changes +- ения +- ав +- ▁sondern +- 故事 +- бо +- ი +- ந்த +- ケ +- ▁prepared +- ▁sad +- ▁Stadt +- ▁completely +- 母 +- 感染 +- 迪 +- ▁fish +- dis +- ▁mort +- ete +- до +- ▁points +- 击 +- ▁besser +- ▁gw +- oni +- rwa +- ▁dels +- oma +- ев +- ▁increased +- ▁bij +- ▁america +- ▁Herr +- । +- ▁instant +- ica +- ▁Moment +- ▁Über +- ▁где +- rin +- ▁erste +- ▁named +- ரி +- 如 +- モ +- ▁conditions +- 停 +- ▁guard +- 리 +- lic +- ▁здесь +- ▁Ya +- bit +- ис +- ස +- 共 +- tek +- 夏 +- ep +- ын +- ُ +- ▁mijn +- これは +- ظ +- 几乎 +- ட்ட +- 精 +- ▁effort +- ▁judge +- 仍然 +- ▁habit +- ▁credit +- sim +- 牛 +- ▁jesus +- 江 +- ▁тем +- ▁afterwards +- ม +- ▁ok +- lung +- 信息 +- 追 +- ▁cal +- най +- ▁sono +- 皆さん +- ное +- ▁gives +- aga +- 忙 +- '12' +- ▁advantage +- ně +- rum +- 谈论 +- itu +- ray +- 毛 +- 素 +- ret +- ▁research +- ▁meaning +- ator +- ▁zou +- ці +- lay +- ック +- ▁Grund +- ▁glass +- ▁nobody +- ▁video +- kle +- ▁Ende +- gy +- 程 +- 感到 +- イン +- 养 +- හ +- ▁Ort +- ▁cash +- hir +- ▁count +- ▁inform +- ▁また +- ▁neue +- encia +- 歳 +- lü +- ▁taste +- ▁porque +- ▁box +- ▁fin +- ற +- ことを +- ân +- ▁watched +- ▁college +- ▁막 +- ▁York +- ▁того +- ▁storm +- ▁mass +- みんな +- 约 +- 我们在 +- ▁weather +- 拍 +- े +- å +- 排 +- ▁scene +- ▁laugh +- ▁dry +- ▁total +- 确实 +- ということ +- zin +- 对于 +- ▁beiden +- ▁memory +- ▁się +- ▁Els +- ▁madame +- 其中 +- '15' +- তা +- mak +- ▁events +- 'off' +- ▁greatest +- тай +- ▁aba +- 界 +- ping +- 型 +- press +- ▁Sache +- ▁speech +- ▁pick +- ados +- ▁played +- ▁companies +- idad +- ▁passage +- 下来 +- こんな +- ▁weg +- ▁benefit +- ▁alt +- ▁War +- 退 +- light +- 视 +- ▁economic +- ▁тут +- ▁edge +- ▁international +- gue +- net +- 晚上 +- 照 +- 医生 +- ▁Bar +- ева +- ▁record +- bol +- ロシア +- zel +- 屋 +- ▁fallen +- ▁tak +- ▁animals +- 超 +- ż +- ほど +- ▁تا +- odd +- ▁我是 +- ▁kill +- 菜 +- ක +- ille +- ación +- ს +- 今日 +- ▁app +- ▁tone +- cos +- ▁shore +- ▁balance +- abo +- ▁إلى +- ▁dia +- ▁solid +- ın +- 香 +- 勝 +- 思い +- wed +- ো +- 肯定 +- zy +- ری +- ぐ +- ▁denken +- ux +- rang +- kul +- äh +- ▁spread +- kar +- ノ +- ily +- table +- ▁moon +- 班 +- 娘 +- 端 +- ад +- over +- ua +- эн +- じゃない +- 昨日 +- なら +- wing +- 服 +- die +- ще +- 因 +- ▁için +- ▁sharp +- tem +- いく +- ▁без +- ▁jeden +- sk +- 苦 +- vad +- eta +- fre +- 시 +- ▁comfort +- ப +- mb +- ɛ +- ран +- 云 +- 回到 +- ▁understood +- 機 +- ▁الت +- ▁Haus +- 称 +- 树 +- ガ +- ▁ihrem +- ▁های +- ▁можно +- ▁search +- iko +- тра +- vé +- 费 +- ▁bag +- られた +- ▁honour +- 经常 +- ▁tom +- ría +- டி +- 無 +- ▁casa +- 洗 +- テ +- ▁bekommen +- ▁shape +- 必要 +- rent +- 望 +- ▁fla +- 非常に +- ▁cover +- ▁даже +- 井 +- 員 +- 换 +- ▁kommt +- ved +- ちゃん +- 武 +- 是个 +- ▁exp +- ▁interested +- ▁prove +- 나 +- qua +- ▁ben +- 全国 +- ▁believed +- ▁fixed +- म +- ▁brave +- law +- ▁surface +- рэ +- ▁double +- ▁reply +- 場 +- प +- dir +- ني +- ▁Daten +- ▁dress +- ▁Gefühl +- от +- pped +- 的时间 +- ▁song +- some +- ▁sau +- ▁stock +- ▁If +- मा +- ▁nó +- ara +- ย +- ▁laws +- ▁square +- ▁bru +- ير +- ここ +- ▁gehört +- ▁professor +- ▁emp +- ▁excited +- ▁لل +- ▁Unternehmen +- stone +- 玉 +- 市场 +- ▁finding +- ▁sing +- ith +- ▁environment +- gg +- ▁schnell +- enden +- gera +- 最终 +- 刘 +- ▁popular +- ▁ont +- ▁ancient +- স +- 联系 +- asi +- 帮 +- ▁royal +- 右 +- ▁pie +- став +- 身上 +- ▁leben +- стра +- ▁seventy +- ▁parte +- 个人 +- ▁throughout +- ▁Fi +- ▁いや +- ▁ces +- 大きな +- ер +- ▁smoke +- 求 +- bri +- 基 +- ນ +- டு +- ▁markets +- ▁These +- ため +- ▁lake +- '0' +- ▁bal +- ▁mere +- 接受 +- ▁driven +- 密 +- 登 +- 之间 +- ▁persons +- ▁người +- ▁explain +- ▁seat +- ▁putting +- ▁af +- 鱼 +- мы +- imi +- ார் +- ▁pos +- ▁telling +- ▁час +- ▁其实 +- ▁بال +- 龙 +- ▁region +- ▁center +- ▁Ĝi +- 系 +- ▁walls +- ▁century +- ▁mor +- ▁mid +- ว +- ▁club +- nel +- 便 +- ▁pat +- ▁range +- ▁determined +- ering +- ▁Han +- ▁prevent +- ▁author +- ப்ப +- ▁sold +- 呃 +- ▁எ +- 音乐 +- ▁civil +- ▁bas +- com +- aŭ +- 黄 +- ▁accept +- ▁stage +- din +- ▁narrow +- ▁foreign +- ob +- ▁neck +- 害 +- ▁رو +- ▁issue +- hor +- 解决 +- 发展 +- tig +- ▁production +- ▁yellow +- ▁soll +- 证 +- ▁ladies +- ▁hurt +- ▁perfectly +- ▁fill +- und +- 各 +- tant +- 法律 +- 就会 +- jen +- 杀 +- ол +- 告 +- их +- ▁german +- ▁你知道 +- tura +- 跟我 +- 付 +- ▁plant +- 頭 +- ▁wel +- ина +- 想要 +- 大会 +- ِ +- мі +- вед +- ▁approach +- recht +- gas +- ▁access +- ▁St +- ▁familiar +- ▁Ce +- 去了 +- ▁proper +- 常 +- ▁tri +- との +- ▁hotel +- 伤 +- শ +- ▁Dar +- ▁learning +- ▁Ju +- 塔 +- ▁numbers +- ▁fan +- ▁bla +- bin +- ast +- とも +- rar +- 有很多 +- ▁stick +- ual +- ▁hebben +- gestellt +- ▁因此 +- ী +- pin +- ත +- ▁students +- 対 +- lli +- 站 +- りました +- 投 +- ▁wished +- ▁paris +- ▁iki +- ▁offered +- ▁19 +- 关注 +- ▁cloud +- тар +- ▁grass +- 城市 +- سا +- rec +- ур +- war +- ▁observed +- ▁هم +- ▁tam +- ii +- 之一 +- ▁favor +- れば +- ▁meinem +- 乱 +- ته +- ▁confidence +- ▁agree +- 父 +- 女人 +- cour +- ?" +- でしょう +- 少し +- ▁som +- twa +- osa +- ea +- ▁keinen +- له +- ▁degree +- ▁который +- ▁beneath +- 秋 +- ▁était +- فر +- ▁mental +- ▁Problem +- work +- 場所 +- tā +- eux +- biri +- ▁marry +- 微 +- ün +- ged +- ▁quality +- ▁Seite +- ła +- 结果 +- лись +- ▁firm +- ▁baby +- 奇 +- ları +- rah +- ▁clearly +- ▁oil +- 做的 +- ▁promise +- ▁roman +- ▁한 +- gin +- lid +- 伊 +- チーム +- れる +- '100' +- ද +- ▁farm +- ▁человек +- ▁finished +- ًا +- ▁darkness +- ego +- leri +- lum +- ▁clothes +- ্ +- '60' +- 死亡 +- 久 +- مان +- цца +- 保持 +- っと +- 迷 +- 俺 +- ▁produce +- ▁happiness +- ▁Elle +- ▁rule +- ▁کار +- 是我 +- みたいな +- ▁playing +- ▁gas +- 列 +- ▁шестьдесят +- 节目 +- たら +- tet +- uz +- ane +- ▁تو +- وم +- को +- 家族 +- ▁golden +- ▁あっ +- 相信 +- ▁உ +- ▁rein +- 选 +- ▁scarcely +- ▁seit +- 你就 +- 几个 +- 友 +- 一般 +- ▁equal +- ▁knowing +- 回家 +- tern +- ▁Ex +- ச +- 役 +- 回答 +- 果 +- ▁management +- ▁lose +- ール +- ná +- ▁brand +- ▁sal +- 啥 +- ▁könnten +- ▁可是 +- зна +- ▁opening +- 試合 +- ター +- 人生 +- morrow +- ▁drawing +- デ +- ▁operating +- ▁bạn +- ▁profit +- ▁Gra +- ▁paul +- 让他 +- rak +- оч +- glo +- ette +- ß +- ▁loss +- ▁stories +- ▁wine +- ▁sell +- があった +- 电话 +- hm +- 脸 +- ▁attempt +- ▁address +- ▁bay +- uku +- 町 +- ▁leaves +- ▁courage +- spir +- ▁media +- ▁leading +- ▁schwer +- ▁ses +- 的小 +- ▁efforts +- ▁soldiers +- ▁surely +- ▁San +- hel +- lip +- rü +- iger +- ▁Hier +- ві +- pot +- 电影 +- ▁är +- ▁passiert +- ▁Але +- än +- ▁etwa +- 他在 +- 春 +- ow +- non +- ▁produced +- ▁flowers +- ▁valley +- ▁earlier +- ▁Ik +- cie +- 人は +- ▁holding +- ▁eigenen +- 理由 +- لي +- ▁Mr +- ▁sword +- ▁supply +- bot +- ▁được +- ▁weight +- 副 +- ▁さあ +- 주 +- 网 +- 视频 +- 妈 +- ி +- ▁check +- ▁walking +- ▁flu +- 連 +- 告诉我 +- ▁Europe +- 枪 +- ▁additional +- 这一点 +- ls +- ▁pla +- ிய +- 助 +- pit +- ▁fra +- 因为我 +- ena +- ification +- eau +- ako +- ▁choice +- による +- 骨 +- бу +- ▁vain +- 自分の +- ▁decision +- cing +- ▁如果你 +- 背 +- ▁Б +- ▁gro +- 라 +- ▁powerful +- 弱 +- 地区 +- лан +- 陈 +- きた +- 拥有 +- 東 +- 这样做 +- ▁welcome +- ▁recent +- lam +- 残 +- ▁happens +- ▁structure +- 在这个 +- fan +- lit +- وی +- ▁formed +- ▁han +- ▁speed +- ddy +- zione +- ▁meisten +- ా +- 是在 +- '14' +- 狗 +- lí +- 로 +- ▁gli +- ▁seek +- 一番 +- 组织 +- rio +- ▁nation +- tat +- ▁houses +- ▁travel +- ▁uz +- ▁тоже +- ▁bird +- ▁passion +- ▁directly +- 去年 +- ▁그냥 +- である +- ious +- lı +- mul +- вод +- ▁basis +- 明天 +- прав +- ▁Can +- ▁platform +- ▁як +- aire +- どんな +- 的这个 +- cker +- The +- ists +- 治 +- gna +- serv +- ▁threw +- ▁dropped +- ▁divine +- ▁deze +- ▁그런 +- 这次 +- んですか +- 读 +- ▁flat +- ง +- ▁Buch +- 考 +- ир +- uza +- 考虑 +- dol +- න් +- ▁deliver +- ак +- vá +- かった +- 는데 +- ▁شد +- スト +- 」。 +- mat +- fully +- ugu +- hör +- ▁military +- ▁letzten +- 睡 +- ▁birds +- ▁sake +- ▁lying +- ください +- ▁Fe +- жи +- ▁required +- ▁existence +- ▁ничего +- ▁addition +- 横 +- 気持ち +- ▁contract +- 爸爸 +- ् +- ள +- バー +- stu +- из +- bie +- бе +- ▁passing +- 不了 +- try +- 若 +- ▁ibi +- ▁declared +- セ +- 唱 +- ▁Par +- уч +- ▁конечно +- ▁эти +- ▁anybody +- 身体 +- ▁coast +- aux +- tum +- きょう +- си +- ▁cri +- কে +- ▁내가 +- ныя +- ▁available +- rich +- क +- 建 +- '18' +- ▁glance +- ▁track +- ▁unser +- 尽 +- ▁page +- بر +- ること +- bl +- 良 +- chten +- mic +- ▁understanding +- ▁orders +- ▁practice +- 源 +- су +- 带着 +- ▁seva +- ▁wichtig +- vas +- sin +- 三个 +- bau +- zwe +- ole +- kuru +- 愿 +- 人家 +- stat +- mond +- こちら +- she +- ▁你们 +- ▁william +- ▁caused +- stein +- ▁christian +- ible +- ient +- ▁Mas +- ▁catch +- cas +- ▁Wasser +- ▁guy +- ction +- 時に +- ▁uno +- ▁vint +- 脱 +- 轻 +- ▁eighty +- ▁allen +- 封 +- ▁şi +- ▁host +- ▁fly +- ▁– +- rate +- rick +- ▁Д +- gil +- uko +- ▁bedeutet +- ▁hung +- ▁ears +- ▁prison +- ▁più +- ▁ф +- ▁двести +- more +- 例 +- ▁muy +- 前に +- ▁text +- ▁centre +- ▁presently +- 熱 +- 情况 +- ▁wahrscheinlich +- gle +- ポイント +- によって +- ▁Augen +- вал +- genommen +- 普 +- อ +- chan +- gre +- 社区 +- ▁že +- ▁này +- 托 +- ▁curious +- になります +- ön +- 해 +- ▁larger +- jar +- ▁этот +- ▁pel +- ін +- ▁shows +- ▁voi +- 新的 +- つの +- geben +- 类 +- 夫人 +- 处理 +- ket +- ▁instance +- ▁colonel +- ▁Okay +- quer +- ungs +- ▁net +- ▁indi +- 比如 +- 年前 +- thi +- 错 +- ▁ре +- すごく +- nne +- 第二 +- ▁hath +- 자 +- க்கு +- 及 +- ▁pr +- 这是一个 +- 首先 +- igkeit +- ▁population +- 면 +- ▁pentru +- 了我 +- cen +- ▁vision +- 的事 +- ▁accident +- じゃ +- ▁matters +- ▁elle +- 解释 +- 返 +- ▁richtig +- 也许 +- 群 +- व +- 极 +- ▁spoken +- ▁indian +- ▁kwi +- ▁coat +- ▁hearing +- っています +- ▁gets +- ざ +- nic +- 级 +- ▁shown +- ▁هذا +- ▁hospital +- kes +- での +- би +- ロー +- ी +- ▁officers +- ▁port +- ais +- 一切 +- ग +- ▁kleinen +- ▁statements +- 回去 +- ▁cro +- 刚 +- ▁Bei +- 데 +- ative +- ▁gre +- ним +- '19' +- 不好 +- 办 +- 乐 +- 沙 +- ▁shadow +- ہ +- ▁fool +- 团 +- ▁今天 +- vert +- ▁calm +- 担心 +- bye +- ▁motion +- stru +- プ +- 現在 +- ▁ook +- ▁faire +- ▁aux +- ▁thin +- ▁basically +- まして +- ▁shook +- 事故 +- 保护 +- গ +- ▁henry +- ▁member +- lis +- ▁thanks +- ▁aware +- ▁время +- あります +- されました +- eri +- ▁opposite +- ო +- ▁pocket +- ▁task +- ▁willing +- ▁successful +- فت +- 秒 +- ▁bread +- uw +- চ +- ▁ama +- 变得 +- ▁tem +- なので +- ▁trong +- ▁extra +- ▁religious +- ▁люди +- ▁strategy +- ▁Har +- یه +- ▁remains +- ▁cousin +- ус +- ▁إ +- 票 +- 挺 +- などの +- 不用 +- ぞ +- ▁fre +- ですよ +- ‘ +- 游戏 +- ▁beat +- ese +- dde +- 而不是 +- 苏 +- ▁guys +- ▁Aba +- ▁central +- 最高 +- それを +- ches +- jan +- 容 +- ▁officer +- pic +- ▁wants +- ched +- ▁related +- ▁bw +- ふ +- ▁noise +- 杰 +- ▁possession +- 開 +- lat +- ▁pure +- そんな +- ▁Person +- 造 +- ▁nti +- 語 +- ▁otherwise +- ▁gray +- ▁carefully +- ▁sogar +- 産 +- вид +- 一年 +- 项目 +- ண +- ග +- ▁thể +- kom +- ние +- ด +- 個 +- ▁daily +- 衣 +- ▁comment +- ▁我觉得 +- mek +- ෙ +- ors +- 咱 +- ▁10 +- 穿 +- bat +- ▁areas +- mme +- vol +- ś +- ▁pres +- ▁sum +- 防 +- cause +- ですから +- ற்ற +- ▁stream +- ▁今 +- ▁были +- 手机 +- 段 +- igi +- ▁ear +- ▁scale +- ▁activity +- ▁drawn +- uh +- ▁smiled +- ▁Oder +- 出现 +- 控制 +- pat +- ▁conduct +- られ +- istic +- ▁ninety +- ston +- ▁surprised +- ▁са +- ▁cas +- ▁engaged +- pie +- ▁你说 +- ▁Ent +- nc +- ▁fate +- 動 +- 相当 +- ▁policy +- 你想 +- ▁Form +- ▁شما +- あった +- ரு +- ▁aid +- ▁bur +- nar +- ▁repeated +- ▁jedoch +- 休 +- ▁throw +- 给他 +- 才能 +- ▁excellent +- 結構 +- plo +- ▁event +- ▁Ben +- ign +- 我们可以 +- ▁семьдесят +- دي +- ▁больше +- 渡 +- eh +- ▁apart +- 快乐 +- али +- 改 +- ▁neu +- ▁district +- ij +- sed +- 男人 +- ▁gun +- kte +- lem +- ▁versch +- 应 +- ▁এ +- يد +- 《 +- ▁ay +- мер +- 様 +- ▁Ye +- 层 +- ▁fue +- dat +- 饭 +- ismus +- kä +- ▁spite +- ▁dire +- ▁skin +- ▁castle +- sz +- hl +- ▁خ +- ▁bil +- ▁My +- lig +- ▁digital +- 已 +- ▁dick +- ும் +- ▁monsieur +- ▁species +- ▁О +- iku +- ▁machine +- 愛 +- ▁reform +- ▁gentlemen +- ▁fur +- '16' +- ▁regular +- ши +- far +- ु +- ▁mountains +- ▁fat +- ć +- ас +- ▁på +- ▁fruit +- ierung +- ▁correct +- 直到 +- 分享 +- ▁difficulty +- ▁نه +- こちらの +- ি +- ▁Spiel +- ▁image +- setzen +- ▁review +- ▁todo +- ▁getan +- 楼 +- об +- heim +- ım +- ▁hoe +- ï +- ດ +- вар +- ▁advance +- 放在 +- dic +- 底 +- ▁reality +- 根据 +- ▁portion +- 強い +- sor +- ска +- ▁ausge +- ▁commercial +- ▁created +- ▁spa +- 不想 +- tí +- če +- ▁还有 +- ela +- ном +- ▁temple +- 同じ +- ポ +- ▁anyone +- 姐 +- ▁보 +- 持 +- ▁keeping +- udi +- ▁message +- 看着 +- ල +- 数字 +- row +- یت +- ▁später +- isa +- 并不 +- 上帝 +- ▁crime +- ▁forced +- ▁noticed +- ▁tired +- ▁choose +- ▁pieces +- ▁đã +- 想象 +- ソ +- place +- 活动 +- ▁creature +- dom +- ▁union +- 茶 +- 父母 +- 更多的 +- 兄弟 +- legen +- ▁wahr +- '25' +- 初めて +- кой +- fra +- ques +- anya +- 我说 +- ник +- 没事 +- ずっと +- ▁proved +- ▁plans +- gh +- ▁legal +- 每个 +- ▁improve +- لو +- ▁pride +- ▁bevor +- 午後 +- 组 +- ▁erhalten +- ▁знаю +- ゴ +- hy +- ▁عن +- ▁ту +- ▁كان +- 아 +- 大人 +- nem +- ▁suffering +- rad +- 楽 +- ▁Well +- ▁кон +- ▁duke +- ダ +- ▁served +- ▁sol +- ša +- пи +- 我可以 +- ys +- ạ +- yle +- 小姐 +- ▁dachte +- fel +- ▁obviously +- 再次 +- ▁suit +- ▁fully +- ▁frank +- 作品 +- ▁Kar +- ピ +- 性的 +- kim +- 双 +- こういう +- ▁bridge +- pus +- mont +- ▁eh +- 除 +- ▁res +- ▁mention +- ▁sounds +- されている +- ێ +- 有些 +- 限 +- 情報 +- ▁لا +- its +- ▁blow +- 精神 +- 做了 +- ▁été +- ▁然而 +- ▁だから +- nye +- kwa +- ▁peculiar +- ore +- ▁burst +- ▁planet +- ▁faint +- ▁jemand +- 样 +- сто +- 伯 +- ▁nineteen +- ▁tur +- ▁asking +- ▁pounds +- ▁bringen +- んですよね +- ▁allem +- 的工作 +- bona +- ري +- ▁starting +- 明白 +- ヤ +- ▁press +- 款 +- ▁avait +- ▁pray +- 圣 +- 可能性 +- ▁gij +- 紧 +- ▁height +- 女孩 +- 告诉 +- nova +- kir +- eɣ +- 梅 +- parti +- ▁bereits +- ▁att +- ▁අ +- wel +- ▁david +- ▁Thank +- ▁measure +- ▁date +- ▁진짜 +- ▁nom +- fru +- 痛 +- stro +- gt +- 引 +- てる +- hood +- নি +- dal +- ▁forma +- 我也 +- 余 +- ิ +- ▁servant +- 结 +- ங்க +- fle +- ▁stranger +- ву +- wana +- '17' +- ▁Frauen +- ▁blo +- ric +- ▁Tom +- auf +- ней +- ▁enjoy +- 料 +- 書 +- 한 +- してる +- ▁Unter +- ▁moi +- wie +- nni +- 他说 +- ▁Nu +- ▁names +- ult +- ▁provided +- ▁breast +- vez +- 政策 +- ▁palace +- となる +- 大约 +- ल +- লে +- ▁costs +- ▁tap +- тан +- amu +- 男性 +- 而且 +- ▁devil +- ▁freedom +- ▁charles +- ھ +- 存 +- ▁authority +- bone +- mble +- ▁defend +- ▁hoch +- pens +- ▁бар +- ▁reasons +- しい +- 业 +- ▁Sam +- ▁sechs +- ません +- ▁fancy +- ▁fashion +- 毒 +- ос +- ▁intention +- ▁alive +- 倍 +- py +- 静 +- 今回 +- ▁pair +- 设计 +- ▁impression +- 儿子 +- ör +- ▁sex +- 伦 +- ellen +- ▁cyane +- ▁desert +- ▁gentle +- 认识 +- ▁bell +- ۆ +- 잖아 +- ала +- 多少 +- 压 +- 都有 +- ▁style +- ṛ +- ▁forms +- ▁anxious +- ▁teach +- 哦 +- 词 +- ▁Pu +- 更多 +- vent +- 的生活 +- ▁genug +- 怕 +- 很好 +- род +- voll +- ▁sup +- ▁Menge +- 假 +- 方向 +- mark +- ▁circle +- ▁weit +- ▁тебя +- ddi +- cul +- 自分 +- ▁twice +- তে +- 政 +- قا +- ▁ordered +- ▁gla +- ▁mer +- ▁honest +- ▁сказал +- のお +- ▁Zi +- ▁stra +- ▁possibly +- ▁angry +- ▁س +- ▁council +- sol +- loo +- dam +- ▁vida +- 能力 +- gara +- ši +- ▁brief +- ▁کرد +- eln +- 基本 +- ▁лет +- ró +- 打开 +- ▁20 +- 犯 +- nik +- br +- ▁leur +- ▁gy +- mine +- ration +- uli +- ▁ocean +- ▁origin +- ▁Sant +- ▁З +- ▁geen +- icht +- 英国 +- ▁patient +- ▁ordinary +- ▁bent +- ැ +- ▁british +- alt +- ▁ای +- ▁importance +- ▁qua +- ▁són +- 喜 +- vie +- ▁яго +- 多くの +- ▁legs +- ство +- ния +- kins +- ▁university +- long +- ▁вопрос +- ▁eigentlich +- ▁юм +- ▁hören +- 好吧 +- shed +- lijk +- rag +- 姆 +- 令人 +- 인 +- 结婚 +- ▁rising +- дер +- leid +- ▁Vater +- ▁culture +- ▁或者 +- ▁tongue +- ▁murder +- els +- はい +- '200' +- 当中 +- ▁Kopf +- arm +- ▁somewhere +- ▁volume +- ▁heads +- ega +- ▁qual +- ▁với +- گر +- nnen +- 清楚 +- ▁safety +- halt +- ▁ganzen +- কা +- ▁zo +- ades +- 支 +- pend +- 同时 +- 嗯 +- 스 +- ▁Mutter +- 激 +- 選 +- تی +- сть +- ví +- pet +- ▁problems +- ▁agreed +- ▁physical +- ▁investment +- 内容 +- ▁truly +- gus +- wal +- ▁row +- わけ +- ि +- ▁security +- iĝis +- hab +- ээ +- ▁fe +- ▁тебе +- ology +- ▁hate +- ▁shoulder +- ▁forgotten +- ord +- ▁breakfast +- ▁rode +- пла +- ▁seventeen +- ▁那你 +- ▁taught +- ▁ему +- 你是 +- ▁roof +- vir +- ▁aim +- ▁cook +- 迫 +- tä +- ▁med +- ▁mistake +- ▁promised +- ▁много +- ▁dance +- 运动 +- ▁сам +- ▁Cha +- されています +- pun +- ود +- ▁China +- ыш +- ▁join +- še +- geb +- 感谢 +- ▁versuchen +- ▁waited +- elijk +- ▁exercise +- ▁roll +- ight +- uda +- ▁ability +- ▁anne +- rou +- ▁altogether +- ▁dare +- izi +- ▁remembered +- plan +- 息 +- нов +- 氏 +- гүй +- люб +- 主要 +- ▁Jetzt +- ▁kor +- ▁би +- ▁calling +- fl +- ▁làm +- ▁Ch +- lent +- ▁fingers +- ▁dangerous +- சி +- ▁weniger +- ▁hart +- 不可 +- ▁feelings +- аль +- ▁Tra +- ▁kuri +- ▁target +- வா +- ていた +- ▁потом +- old +- 三十 +- ▁tent +- ▁salt +- part +- 质 +- jn +- けれども +- ▁failed +- 这不是 +- ▁glory +- ule +- 每天 +- از +- ▁восемьдесят +- 永远 +- ▁chose +- uit +- ▁そう +- اق +- ▁бу +- 曾经 +- ▁streets +- 汉 +- கி +- ▁specific +- nje +- ▁wil +- раз +- 関係 +- any +- を見 +- ▁вообще +- tch +- ▁terror +- tausend +- すること +- 一位 +- 税 +- ▁bist +- ға +- 跟你 +- ▁empty +- lief +- 景 +- ▁helped +- ▁method +- ▁james +- 刚刚 +- ▁vielen +- zon +- uni +- bili +- jā +- stellen +- ▁rot +- ▁quietly +- bon +- ねえ +- ▁famous +- pping +- パー +- rim +- 社 +- gor +- ▁drop +- 一条 +- ▁fil +- ▁auto +- 调查 +- urs +- ▁express +- zig +- ▁grant +- ziehen +- ▁active +- 都会 +- 消 +- ▁wear +- ▁после +- bal +- 婚 +- 亮 +- ▁байна +- iye +- ▁пре +- য় +- ▁princess +- ▁limit +- 后来 +- 万円 +- ld +- ▁ха +- ło +- ▁wij +- 生命 +- keit +- の中で +- ائ +- ▁ச +- ▁bul +- 探 +- ▁Für +- ▁kingdom +- cke +- ▁series +- ▁sufficient +- 越来越 +- ▁busy +- ▁grown +- бор +- '13' +- 有一些 +- ▁Мы +- ▁aussi +- tika +- 企业 +- ▁các +- 行动 +- ▁issues +- wert +- bus +- ▁rapid +- зы +- 告诉你 +- ூ +- ▁Za +- ▁شده +- ▁такой +- 赛 +- eli +- もある +- rz +- ▁delight +- ▁sang +- なんです +- ▁struggle +- 堂 +- 在我 +- ▁online +- ▁그거 +- tori +- ▁explained +- ño +- 軍 +- про +- ▁fault +- aw +- ▁deg +- প +- ім +- rom +- ▁ended +- ▁guide +- 目前 +- ート +- ▁signal +- ▁heat +- či +- ▁flow +- 日本の +- ▁そうですね +- phy +- nin +- 念 +- 旧 +- tto +- ▁aside +- ▁gr +- û +- ium +- ▁그래서 +- ▁liegt +- 散 +- ▁És +- ▁potential +- ▁yesterday +- ▁rights +- ▁девяносто +- ▁false +- gia +- 医 +- يل +- nze +- 違う +- ▁pré +- ▁sorrow +- ▁highest +- 医院 +- sp +- されて +- ▁hinter +- ▁Wer +- kā +- ▁extremely +- ▁Dia +- ▁experiment +- Laughter +- иться +- ▁judgment +- 网络 +- ▁exact +- ▁сегодня +- اف +- ▁fel +- ▁hell +- 你说 +- aya +- 绝对 +- ▁dev +- ▁verstehen +- 駅 +- ▁listening +- おいしい +- 第一次 +- 的孩子 +- ▁strike +- ▁connection +- ▁sentence +- ▁income +- 赤 +- 居 +- ล +- ▁European +- ▁kuba +- ▁pou +- ▁greatly +- ▁Па +- 房子 +- ▁described +- ского +- したい +- ກ +- ▁klar +- ▁recently +- 萨 +- ▁priest +- 旅行 +- ి +- ▁margin +- ое +- ▁pressure +- ▁touched +- ▁trial +- haus +- ▁separate +- ▁network +- ▁refer +- وي +- était +- tle +- ▁fix +- ▁previous +- ▁sides +- 요 +- 出了 +- 降 +- ▁companion +- uf +- uff +- спе +- 洛 +- dio +- ▁때 +- ▁Fragen +- 真是 +- ▁vers +- ▁де +- 那种 +- ▁older +- ▁disease +- ▁почему +- 大的 +- ▁angel +- lá +- нем +- ▁zehn +- ▁beim +- 進 +- ▁settled +- হ +- oso +- ude +- ▁gay +- rung +- ▁ride +- 合作 +- ▁grande +- ются +- horn +- cies +- ▁becomes +- ym +- 剧 +- pla +- 置 +- からの +- দ +- tom +- 你要 +- ▁eleven +- ▁When +- bs +- ▁людей +- ▁meer +- یا +- ْ +- ▁map +- ▁gleich +- ▁apparently +- ▁naturally +- ства +- ҙ +- 那是 +- gun +- دی +- 很难 +- 来的 +- ▁sage +- ime +- ▁onder +- 英 +- ▁гор +- ▁Prozent +- 致 +- ming +- ▁superior +- aus +- tă +- ▁имени +- sem +- 游 +- ウクライナ +- ▁Lebens +- 即使 +- ▁hun +- ▁intended +- ▁philip +- lio +- ▁sixteen +- сон +- ▁involved +- ыя +- эд +- ился +- ▁liked +- ▁capacity +- 诺 +- まず +- 轮 +- ▁vie +- ▁Ci +- iste +- wand +- ана +- ▁interview +- ▁troops +- ▁Auto +- eye +- antes +- лась +- ▁même +- ées +- ▁belief +- ້ +- 一家 +- gem +- cara +- າ +- nal +- ▁него +- ▁title +- nge +- 我们将 +- 参与 +- 你能 +- 机会 +- 除了 +- 产 +- amos +- ▁bald +- ▁release +- ▁corn +- 谈 +- 粉 +- 创造 +- 親 +- 冲 +- でしょうか +- ▁ice +- ▁مت +- ▁driving +- ▁stars +- щ +- rry +- ▁student +- hundert +- ▁highly +- 展示 +- 止 +- ▁vote +- ▁shop +- ht +- nehmen +- ande +- нд +- ▁operations +- eller +- inde +- ash +- ек +- lot +- ruh +- ա +- ▁career +- ct +- ▁definitely +- ▁chamber +- ▁argument +- ▁happening +- tier +- fr +- phi +- bes +- 晚 +- гийн +- ▁sans +- 讨论 +- ono +- ▁admit +- 抓 +- ましょう +- olo +- zwa +- 料理 +- ila +- ▁ap +- той +- 収 +- ε +- ▁avoid +- burg +- ▁thrown +- vä +- 実は +- 校 +- ив +- によりますと +- ▁todos +- ▁contra +- 架 +- ▁aller +- 整 +- やはり +- ▁flo +- 富 +- ▁suffer +- ▁shoulders +- 认 +- ▁minister +- ▁Th +- gro +- ès +- ▁match +- ▁ந +- tud +- 滑 +- ▁bereit +- spiel +- tür +- 俩 +- 期待 +- ▁concerned +- 弄 +- ▁windows +- 一定要 +- ийг +- ▁harm +- ▁cup +- ori +- hora +- 末 +- বে +- ज +- ario +- ▁thousands +- ▁kennen +- тур +- লা +- ▁pointed +- ▁nay +- ▁His +- get +- ▁ideal +- 下去 +- 它是 +- ži +- 箱 +- sing +- rd +- '80' +- ▁fairly +- ▁standard +- ▁ее +- 只能 +- ▁nose +- 的故事 +- lus +- kal +- iamo +- ▁spiritual +- ▁해 +- ▁Pri +- 田さん +- dale +- ▁carriage +- яв +- رس +- ▁verwenden +- ▁kinds +- 要是 +- ▁Gott +- 呼 +- tten +- 块 +- ▁loud +- ▁helfen +- ▁joined +- ▁себя +- ▁bro +- 吃饭 +- ▁kid +- 索 +- 하는 +- 报告 +- vit +- 可能是 +- ▁novel +- tain +- 县 +- 不管 +- ▁weitere +- gam +- ejo +- anza +- stri +- ▁claim +- reich +- ▁excuse +- த் +- வு +- 复 +- 叶 +- 就在 +- ▁fighting +- ▁mari +- пу +- ▁ones +- ▁temps +- 猫 +- ▁affairs +- gwa +- ust +- kana +- ▁wealth +- 症 +- 重新 +- ▁useful +- dé +- 百分之 +- ▁presented +- ▁flight +- 鲁 +- kam +- 灯 +- ▁grey +- cut +- ▁пад +- 记 +- 每个人都 +- cz +- ▁papa +- ique +- ▁fri +- rik +- できない +- ▁mix +- lock +- ▁loose +- ность +- fort +- ▁Cor +- بي +- ▁niemand +- ян +- ▁cuando +- ▁prayer +- ▁faces +- pad +- bare +- 歳の +- ▁debt +- ▁evidently +- abi +- ▁unseren +- ▁möglich +- まあ +- ▁suggest +- 付け +- pha +- ща +- 动物 +- ▁woods +- का +- 你不 +- ▁Х +- vien +- ▁pull +- ▁develop +- 当你 +- ▁cruel +- ▁そんな +- ità +- igung +- 借 +- したら +- ▁anders +- ▁ف +- بل +- மா +- 令 +- dus +- 因此 +- 市の +- になりました +- ▁indem +- ▁Regierung +- ▁الح +- ▁average +- 时代 +- شر +- ▁native +- 速 +- ked +- ▁ange +- ▁خود +- ▁X +- ▁아니 +- ▁tin +- ි +- tü +- 梦 +- hau +- ила +- тал +- 愿意 +- ▁worst +- por +- வி +- じゃないですか +- 続いて +- თ +- bwa +- wick +- ssa +- ▁lack +- 表示 +- ▁considerable +- ▁нужно +- olu +- hn +- 志 +- ▁trail +- ace +- rup +- ▁dogs +- 勒 +- ath +- ▁suggested +- ▁torn +- パン +- ▁nos +- ▁pal +- 程度 +- 也有 +- ify +- ▁bid +- mwe +- eix +- 慢 +- ▁raz +- ụ +- 都在 +- tent +- ▁пока +- 父亲 +- 贵 +- haft +- 条件 +- ск +- र् +- ▁Dan +- 注目 +- ▁arbeiten +- lichkeit +- 是谁 +- bas +- ▁gate +- ▁மற்றும் +- ▁male +- uel +- нь +- ▁dabei +- ▁sought +- ▁raise +- ters +- elles +- ▁какой +- それで +- ▁이제 +- ▁gain +- 的想法 +- ▁bodies +- book +- ▁wohl +- ▁それは +- ゆ +- hind +- ыр +- ▁constant +- 明日 +- ▁heb +- ▁好吧 +- 威 +- 心里 +- وت +- ▁sacrifice +- 然 +- ▁Männer +- 普通 +- ▁labour +- 产品 +- ете +- ▁bekannt +- 分析 +- 込み +- 看起来 +- とき +- 莫 +- ▁refused +- 占 +- gé +- 顿 +- comp +- しない +- ▁slightly +- ▁хорошо +- 道路 +- ▁fail +- しっかり +- ▁sheet +- 招 +- ▁source +- ▁Meinung +- ▁dot +- ▁Dank +- 经 +- sign +- 是你 +- ening +- ум +- ▁birth +- ▁també +- bury +- コン +- ▁hills +- 顔 +- ui +- ▁rapidly +- ▁pur +- ▁becoming +- 我知道 +- 谢谢 +- 盘 +- ▁saved +- kken +- hang +- ▁поэтому +- ▁bringing +- 谢谢你 +- ▁Nicht +- mia +- ▁tender +- ▁showing +- дел +- える +- 以来 +- pal +- 也没有 +- ской +- ▁computer +- নে +- ギ +- ▁virtue +- 曼 +- ▁nehmen +- ره +- 硬 +- ▁unknown +- ▁tradition +- fon +- cr +- ws +- なる +- ▁finger +- ▁advanced +- inte +- мат +- 句 +- сэн +- ▁Film +- 到底 +- avi +- ▁papers +- ▁governor +- trag +- ▁upper +- 就可以 +- ▁じゃあ +- cé +- produ +- кам +- ▁Post +- ▁audience +- たち +- anga +- 切り +- با +- ▁extent +- ▁peut +- ▁pin +- なぜ +- halten +- ▁solche +- ▁gift +- ▁э +- endo +- 側 +- ▁neuen +- லை +- ▁pity +- ▁theory +- sal +- 提出 +- ▁Em +- ▁¿ +- ▁alte +- 場合 +- ▁division +- 历史 +- ▁everywhere +- iva +- '70' +- ▁Bir +- 들 +- なって +- pli +- 北京 +- ization +- 沉 +- ▁çok +- ▁praise +- ▁cities +- term +- yer +- ▁Des +- ▁Vo +- ▁portfolio +- ▁Tre +- これから +- று +- 会社 +- 价 +- ▁первый +- ▁dressed +- ▁Auch +- punkt +- ел +- 教授 +- ▁servants +- 建立 +- ▁charm +- ▁nächsten +- ▁cell +- ▁System +- ベ +- 靠 +- 育 +- зи +- стр +- cept +- хи +- ▁See +- ▁talent +- ▁Idee +- wir +- ▁où +- 你有 +- right +- ál +- 魔 +- ▁кор +- 射 +- ▁trip +- ▁established +- ül +- ▁sua +- ▁features +- ▁الس +- ▁distant +- 至少 +- ▁rome +- ▁Punkt +- ▁kitchen +- ced +- ets +- 都不 +- stellung +- ▁wake +- yl +- 具 +- ецца +- ▁advice +- ешь +- xa +- 国内 +- なんて +- ▁quarters +- 坏 +- ibi +- না +- 折 +- 一百 +- ▁gewesen +- ▁occurred +- esa +- эх +- ▁Hause +- kus +- 結果 +- 刀 +- ér +- ▁respond +- 満 +- ▁reflect +- phe +- ( +- ır +- ▁moments +- ▁Park +- isten +- ワ +- ේ +- ▁yr +- ▁beg +- ▁аб +- کن +- ▁mode +- ▁ذلك +- jou +- ▁forces +- 家里 +- ised +- ▁committed +- ▁hy +- ▁Г +- 是如何 +- ña +- zza +- 判断 +- mber +- その後 +- ▁announced +- ▁Tri +- ▁quatre +- ▁bought +- дар +- уд +- ности +- 空间 +- 立ち +- cro +- 核 +- 怪 +- 刚才 +- ▁думаю +- ständig +- main +- ▁robert +- ▁discover +- ара +- ▁pace +- ▁guidance +- раб +- ▁include +- 業 +- ▁kiss +- mbe +- 藤 +- ▁pulled +- ▁había +- ▁بعد +- cions +- 言葉 +- ▁Gesicht +- بار +- nell +- ▁darin +- сі +- 恶 +- lf +- ▁teeth +- ▁How +- ▁пе +- ej +- を受け +- 活動 +- ▁lamp +- '24' +- ▁smart +- ▁leg +- ீ +- 礼 +- rac +- ▁lovely +- pose +- きます +- বা +- த்து +- 总统 +- 都没有 +- зе +- ает +- 所有这些 +- ▁card +- ▁jane +- 警 +- ▁facts +- dur +- ▁ankaŭ +- ▁我就 +- mir +- 身边 +- ▁sunday +- 投票 +- ▁prefer +- ră +- 黒 +- ema +- ▁detail +- ▁shame +- ▁oli +- 電 +- 마 +- ▁fut +- str +- 主义 +- ож +- ▁block +- บ +- ▁Cu +- 世纪 +- 番組 +- 航 +- ▁هذه +- ▁frei +- ▁этой +- ře +- ▁closely +- ▁intelligence +- ▁erst +- 卫 +- 意识到 +- ì +- ▁hang +- mma +- ▁hearts +- ▁leicht +- ▁drove +- app +- nga +- нос +- 支援 +- ske +- 厚 +- ▁bud +- ▁அவர் +- ▁One +- 进来 +- ▁afford +- back +- ▁zal +- 什么时候 +- ▁whispered +- 現場 +- ▁medical +- 旅 +- 真正的 +- pra +- être +- kor +- ▁pop +- 建议 +- tı +- 増 +- ico +- ▁Warum +- ▁போ +- ▁protection +- ▁details +- ▁Ol +- ▁milk +- 搞 +- 顶 +- eza +- いろんな +- ▁comfortable +- ことは +- ▁Ob +- 论 +- ▁section +- 属 +- oon +- ▁department +- ат +- ▁다 +- 博 +- ▁gathered +- 证明 +- ▁existing +- ން +- 게 +- von +- 尾 +- izing +- ▁affection +- かなり +- ech +- ▁metal +- ▁liebe +- 蒙 +- sko +- ここで +- 他是 +- ür +- pé +- 势 +- ▁dozen +- фи +- 影 +- тро +- 最好的 +- ▁secure +- lab +- ▁extraordinary +- ▁anyway +- ▁cosa +- ▁listened +- 货 +- sus +- ▁brauchen +- ▁slight +- nta +- ▁Namen +- ますね +- ▁conclusion +- ▁female +- нее +- سم +- 抗 +- пол +- tos +- ▁gene +- 观 +- ▁laughing +- ▁represent +- ▁manage +- 鬼 +- ▁syn +- ▁solo +- ▁crown +- ▁handsome +- ▁Pre +- town +- ▁Video +- 领 +- ▁ở +- ▁heeft +- 我们有 +- 延 +- ▁bitter +- ▁carrying +- 一会儿 +- ▁daha +- 我有 +- ▁„ +- 感情 +- ▁nurse +- ు +- 胡 +- ▁smooth +- ▁iran +- ▁él +- 運 +- 経済 +- ▁indians +- 是为了 +- sicht +- 位置 +- eḍ +- ▁donc +- ▁больш +- ▁Hal +- მ +- nek +- 象 +- ▁treatment +- 我已经 +- っていうのは +- medi +- ත් +- ▁অ +- டை +- なんだ +- ப்பு +- ▁consideration +- ▁த +- 制作 +- тэй +- tions +- 不到 +- ▁appears +- ong +- дал +- 的一些 +- fini +- ▁Wissen +- ▁当然 +- 今回の +- ▁developed +- 宫 +- 运 +- ▁careful +- 新闻 +- ▁obliged +- ế +- ▁projects +- もっと +- ▁treat +- kh +- ŝ +- ের +- ▁discussion +- ▁clar +- ▁sự +- べ +- ▁về +- zie +- 思考 +- ▁reward +- 环境 +- ヒ +- ▁П +- kö +- ▁дело +- 参 +- ボール +- гі +- 冬 +- ente +- ▁resources +- ▁வி +- ▁второй +- 日に +- 네 +- ència +- cks +- şi +- ා +- ▁independent +- ▁professional +- さらに +- ▁Is +- 地说 +- 各种 +- blick +- пе +- ▁staff +- ▁Raum +- iyo +- 铁 +- 是因为 +- zan +- 十分 +- ▁role +- 阳 +- 引き +- ▁тогда +- pl +- ティ +- ▁rough +- 举 +- ່ +- 冰 +- ▁nta +- ▁jest +- ▁focused +- ▁drug +- ▁mighty +- 記録 +- ▁ප +- द +- fli +- aha +- ctor +- bor +- ên +- bank +- 日の +- az +- ो +- ▁Q +- 了吧 +- ▁transport +- hält +- ▁lies +- ▁wow +- ▁schools +- wit +- ▁reg +- ▁smaller +- それは +- 最大 +- ▁Woche +- ▁кол +- rap +- 想到 +- ን +- ▁systems +- ▁mé +- ball +- あれ +- なかなか +- 幸福 +- cion +- のに +- ▁response +- tá +- ▁compared +- ▁Mon +- ▁imagination +- ▁pare +- 是吧 +- ค +- رف +- ▁200 +- nyi +- 做出 +- рав +- ▁louis +- ppen +- 曾 +- 会有 +- ▁realized +- каз +- ▁Wort +- ▁Chris +- ▁artist +- ção +- くる +- ▁element +- sho +- ▁sieht +- 归 +- 说了 +- gl +- este +- تا +- ý +- gate +- einander +- dí +- ciones +- 随着 +- ต +- 欢迎 +- 年代 +- uga +- 岛 +- 独 +- nom +- nken +- げ +- 职 +- ▁kurz +- ▁permit +- 尽管 +- ▁organization +- vier +- ère +- ▁extreme +- 危险 +- ژ +- fold +- ▁training +- 现 +- hat +- 寻找 +- ▁spr +- ings +- ▁University +- 行为 +- カー +- ▁Dollar +- ▁incident +- mbi +- gon +- 塞 +- ▁David +- ▁instrument +- ▁hal +- star +- ▁questo +- ▁rare +- でしょ +- 价值 +- ▁Schw +- 嫌 +- ▁cop +- ã +- უ +- ▁organis +- 把我 +- ▁Neu +- யா +- られて +- ▁cya +- ität +- ▁leader +- 歩 +- 仕事 +- ▁smiling +- ▁まずは +- imo +- ▁Kind +- бер +- ం +- ▁beide +- peri +- 受到 +- 暗 +- ▁contrary +- ▁saint +- ▁deine +- ▁treasure +- llo +- ▁hidden +- ierten +- iyor +- ▁patients +- 状態 +- ▁mess +- ▁unbe +- ▁skill +- nza +- ▁eso +- ▁joe +- ▁principle +- 示 +- ▁realize +- 领域 +- ▁EU +- ▁relief +- ▁ain +- 的歌 +- يت +- ▁Pen +- ちゃんと +- ▁arab +- فا +- مر +- ▁Che +- lim +- ▁succeeded +- pos +- ▁fleet +- wind +- өр +- 同样 +- ▁measures +- 豆 +- 公共 +- ▁actions +- ▁temper +- жы +- ▁不过 +- һ +- ▁gan +- ayo +- ってる +- ▁carrer +- ▁liberty +- রা +- ▁ئا +- ▁setting +- оў +- ट +- ▁protect +- 藏 +- 我是说 +- ▁colour +- ▁более +- 刺 +- ▁function +- blo +- ▁estate +- ▁invest +- sid +- ▁families +- ▁Sha +- ыл +- ун +- ▁wore +- nat +- ▁steht +- 同意 +- 劳 +- ppe +- ▁falling +- 必 +- 私は +- 委 +- 简单 +- ▁suffered +- に対して +- тэ +- টা +- 随 +- ▁Sp +- ▁frequently +- hol +- ▁somehow +- 不可能 +- 十二 +- ▁partner +- itude +- ▁flesh +- ▁powers +- اع +- 你看 +- ▁olarak +- ▁ships +- '500' +- cus +- 』 +- ▁yi +- اه +- ▁ج +- 唯一 +- ист +- ▁stellen +- 有时 +- ▁campaign +- uje +- 『 +- ▁solution +- aron +- 上了 +- ubu +- ery +- shy +- ydd +- ▁nevertheless +- 投资 +- ▁overall +- 床 +- 対応 +- ▁affair +- 我不 +- ▁awful +- ▁Europa +- ▁như +- ▁stark +- ▁begann +- ▁Recht +- ▁picked +- ▁Ihrer +- kazi +- 基本上 +- 说的 +- bia +- ▁accepted +- ▁sp +- ▁request +- фе +- ▁Freund +- ency +- 功 +- vari +- shaka +- ▁favour +- ▁direkt +- ▁euch +- ක් +- ▁plenty +- ▁ĉi +- 有了 +- unt +- ём +- 等等 +- ▁businesses +- ▁seized +- もあります +- dien +- ów +- ▁grim +- 特に +- 不过 +- ▁glauben +- hal +- ▁kra +- üh +- ▁conference +- ▁zeigen +- ▁motor +- ▁пера +- 患者 +- юць +- ▁peu +- ▁thế +- 以为 +- 薬 +- sey +- 产生 +- ▁faithful +- ▁satisfied +- fic +- spect +- yor +- lly +- ▁dust +- ▁dreadful +- 即 +- ▁하 +- 私の +- ▁うん +- ▁jim +- ▁pet +- 套 +- 一直在 +- 에서 +- ▁funny +- viv +- 股 +- weg +- cs +- ▁expressed +- ▁مو +- 累 +- 上げ +- mara +- ▁foundation +- аны +- ont +- ▁tip +- gul +- وس +- 職 +- 把他 +- さんに +- uv +- にして +- ▁Sal +- ▁remarked +- ここに +- ▁appeal +- pel +- dul +- ं +- ▁meal +- ▁Internet +- ▁bob +- ▁fields +- 前の +- 生物 +- ▁possess +- ▁soldier +- эт +- つけ +- ▁horror +- ▁alla +- лет +- 変 +- んだよ +- ▁kal +- 你也 +- veni +- 还没有 +- cri +- 贝 +- می +- 当我们 +- лар +- ome +- 洋 +- дан +- ▁воз +- ▁ක +- gie +- 吸 +- 预 +- ▁excitement +- ▁거야 +- 是一种 +- ▁contact +- ▁rules +- 両 +- ▁mac +- ▁negative +- ▁Ist +- 敢 +- ▁Гэта +- ▁connected +- ▁universal +- ▁Gar +- ▁irgendwie +- pil +- ▁majority +- ▁destroy +- ▁Los +- 蒂 +- hod +- 我去 +- prob +- kol +- がありました +- ▁Den +- ோ +- ▁sé +- ▁relationship +- со +- ▁bore +- ▁lifted +- 编 +- tory +- ▁Körper +- ▁fu +- ▁whenever +- かもしれない +- ▁sprang +- வே +- と思う +- 了一 +- cat +- ▁我要 +- これを +- top +- 汽车 +- зі +- 害怕 +- '90' +- ▁iyi +- ▁With +- ▁şey +- ▁qué +- ▁emperor +- ▁lock +- oh +- ▁Và +- ▁flag +- ▁Reihe +- 结束 +- ▁tail +- ▁pardon +- ians +- ред +- ▁proof +- ▁fal +- ▁protest +- ▁parties +- 地域 +- 死了 +- rian +- 你必须 +- яр +- ▁rid +- ▁amazing +- kas +- మ +- nig +- 袋 +- Z +- ▁hello +- ட்டு +- ké +- кова +- ▁challenge +- 但我 +- сад +- ▁Pan +- act +- isto +- 我没有 +- زی +- ▁savage +- tisch +- ▁Angst +- ▁spo +- 丁 +- mise +- 弹 +- 我都 +- 可是 +- ▁prior +- だって +- ▁West +- ▁adam +- ▁nest +- 我还 +- ▁resist +- ▁Antwort +- ▁rev +- ▁수 +- ▁mot +- Y +- ▁இந்த +- ▁decide +- ▁wondering +- ▁phone +- ▁所以我 +- 境 +- ▁crossed +- down +- 疑 +- ▁radio +- 母亲 +- 印象 +- ▁Saint +- ▁те +- mobil +- ▁wisdom +- ▁để +- 战争 +- nna +- ▁anger +- ップ +- ▁flower +- ▁Familie +- kli +- ▁zei +- مل +- ▁Не +- rze +- ▁screen +- aniran +- ington +- ▁کو +- ▁frame +- 食べ +- ktor +- ange +- kü +- '""' +- 露 +- ▁đi +- ▁occupied +- ả +- ▁それでは +- nit +- 翻 +- ▁despair +- ▁washington +- five +- 人に +- 務 +- 和你 +- ▁kunnen +- ров +- ▁demanded +- 里的 +- ose +- 的名字 +- uti +- 天气 +- col +- シャ +- ▁Liebe +- бай +- ▁dawn +- 烟 +- colo +- 做什么 +- ▁schi +- 最初 +- ▁statement +- دار +- nam +- نى +- させて +- 商品 +- 까 +- band +- 杨 +- position +- tage +- 土地 +- ▁gerne +- ▁ghost +- 谢 +- ▁пол +- ▁fundamental +- ▁managed +- 池 +- 治疗 +- duc +- ▁Ihren +- 人员 +- ▁enemies +- eurs +- ▁School +- ▁kur +- ▁rank +- ель +- nah +- なんですが +- fern +- ▁yer +- 衣服 +- 凯 +- ▁communication +- ▁agreement +- ▁marked +- treten +- ெ +- tti +- ▁Son +- бра +- 共同 +- 赶 +- みたい +- ▁一方 +- ▁increasing +- य +- 니까 +- ▁Let +- ▁removed +- وب +- 浮 +- 発表 +- 有没有 +- をして +- ▁dying +- ▁slave +- 关键 +- ▁remarkable +- 进去 +- ▁Krieg +- 権 +- dzi +- tó +- iş +- ▁Het +- ▁теперь +- ▁supper +- ▁ari +- ஜ +- ▁cow +- न् +- 他们在 +- 年の +- ▁improvement +- ▁mistress +- 计 +- 舞台 +- 团队 +- ු +- 面前 +- ered +- ▁equally +- ▁суд +- ▁jak +- iem +- ▁violence +- بی +- ▁strategic +- ▁burning +- öl +- 没有人 +- 今の +- くらい +- ▁шу +- liegen +- ▁très +- ▁schien +- ▁However +- ▁mü +- などを +- ▁poet +- ▁الك +- ▁bishop +- ▁clo +- ▁deck +- お願いします +- ▁baron +- ▁Mor +- stig +- 有多 +- ▁farther +- 皇 +- 课 +- 恋 +- кая +- ень +- ▁primer +- 的声音 +- 人民 +- ▁말 +- ▁regarded +- ▁Spe +- 你好 +- 值 +- ▁groups +- ▁asleep +- 尤其是 +- ▁Э +- 組 +- пом +- ▁kom +- 戴 +- ▁effective +- ት +- stin +- sky +- ▁mile +- ▁verschiedene +- ▁Alle +- யில் +- 机构 +- 如果我 +- ında +- の方 +- 聞いて +- ▁educa +- jas +- ▁code +- ▁kas +- ▁Cap +- stellt +- ▁Ste +- chter +- テレビ +- ▁generation +- 坐在 +- 秘密 +- од +- もし +- ▁wedi +- роз +- พ +- vita +- ▁sprach +- ▁dengan +- ▁cab +- ▁describe +- ▁route +- ಿ +- ▁weißt +- ▁nahm +- ед +- いない +- ▁좀 +- grad +- ▁esto +- 원 +- ▁calls +- 务 +- ▁deeply +- că +- انی +- ▁continues +- னை +- オリンピック +- 了很多 +- ▁meat +- お前 +- 的大 +- bul +- thy +- 先ほど +- ngu +- ▁gew +- uba +- ▁pack +- сты +- wyd +- 丸 +- ▁arch +- ▁播放 +- 怀疑 +- 了你 +- weise +- ага +- آ +- ▁topic +- oz +- ган +- ▁herum +- 看见 +- 和我 +- ▁Amerika +- 移 +- ▁behold +- schau +- 这个人 +- ▁inner +- 营 +- ▁import +- angle +- rice +- ▁capable +- гла +- 女儿 +- ▁nervous +- ▁Kra +- 介绍 +- ▁flying +- 熊 +- ▁hacer +- ▁chain +- 唐 +- ▁minds +- がない +- whi +- 妹 +- 混 +- tische +- 姑娘 +- mah +- ▁acht +- ▁будзе +- 地球 +- ▁أو +- ▁innocent +- gui +- run +- ▁Men +- vě +- ▁software +- ffer +- 背景 +- ific +- らない +- bet +- களை +- تى +- 宁 +- ▁begun +- uzi +- ▁levels +- vă +- 年轻 +- ▁yield +- lap +- よりも +- ▁Informationen +- ▁بی +- ▁spirits +- ▁alarm +- ▁проезд +- ▁machte +- ▁explanation +- 对我 +- 不仅 +- ▁jam +- zone +- ▁younger +- র্ +- 优 +- لت +- гал +- toj +- ▁hide +- ▁buried +- マン +- 攻撃 +- ▁worthy +- 希 +- 吹 +- ▁Commission +- ▁konnten +- ा +- ▁gods +- tors +- lama +- ▁aspect +- ▁eene +- このあと +- dum +- 那样 +- ▁pred +- ison +- org +- 并且 +- ▁rear +- ரா +- 具体 +- ▁wave +- 加入 +- клад +- ▁complex +- 你现在 +- ▁Arm +- を見て +- loc +- ▁southern +- ▁mayor +- ງ +- gs +- тель +- ▁doors +- лә +- ▁citizens +- 麻 +- 眼睛 +- ▁forgive +- نت +- ▁evident +- 事儿 +- 人で +- 帮我 +- வை +- ▁commission +- ▁site +- 自身 +- ▁included +- igt +- 宮 +- 莉 +- 不太 +- 莱 +- ▁unique +- setzt +- ▁अ +- 第三 +- ▁sons +- 展 +- ▁dull +- pass +- ▁我说 +- ▁bottle +- 容疑者 +- ▁dari +- ▁الع +- wydd +- ▁verschiedenen +- ▁bull +- 一只 +- ▁stehen +- 関 +- っていた +- ▁کا +- ▁чего +- pers +- ν +- ступ +- anda +- 高い +- তো +- worth +- 你还 +- ▁dim +- ▁tower +- ▁millions +- ▁satisfaction +- ▁effects +- ▁rates +- ▁gener +- 表明 +- ▁虽然 +- 灵 +- 전 +- kuwa +- 叫做 +- 下面 +- ▁cheer +- من +- کر +- 领导 +- 变化 +- عد +- 正常 +- 第一个 +- ▁clever +- ▁treated +- ▁divers +- water +- lös +- ő +- ▁rocks +- 路上 +- ▁necessity +- もちろん +- 的一部分 +- licht +- ingly +- ۇ +- 我们会 +- yard +- 了他 +- аг +- ▁ново +- oka +- ▁zero +- ▁fund +- ▁Natur +- 接種 +- ridge +- ▁pipe +- 老板 +- قد +- ▁figures +- 丽 +- vant +- 在哪里 +- maze +- だけで +- 替 +- lah +- ▁edward +- ▁shade +- 人間 +- 乡 +- 在他 +- nim +- ĉ +- 备 +- それが +- 新しい +- ▁friendship +- oi +- ホ +- 你这 +- nud +- ▁liber +- ▁sheep +- ▁вер +- ▁pictures +- 义 +- ▁election +- bung +- gira +- ▁Tur +- эм +- alo +- ▁attitude +- ▁них +- jes +- 橋 +- ▁conscious +- že +- ▁proportion +- ▁ruin +- cil +- ▁себе +- cyo +- 其他人 +- ▁document +- ▁western +- ▁oo +- ез +- ▁economy +- ▁twee +- cient +- ư +- ▁palm +- gua +- elli +- ств +- と思って +- raz +- ▁execution +- 視 +- 麦 +- ными +- ▁entrance +- 食物 +- кт +- ▁manifest +- ци +- ▁perspective +- ▁nations +- ▁ху +- lea +- anti +- ▁Bre +- ▁plate +- ▁desired +- ço +- ペ +- ▁alten +- ▁الب +- ▁expense +- 女子 +- そこ +- vou +- 目的 +- 坚持 +- ▁tiny +- voir +- ▁allein +- ▁confi +- шел +- 导 +- ります +- tica +- ▁gradually +- ▁Chi +- cial +- ▁pli +- 壁 +- ▁mem +- tab +- 会议 +- wis +- ış +- 私が +- ▁smith +- 一人 +- ▁obtained +- في +- ▁relation +- ▁grup +- ▁gaze +- رب +- rous +- していました +- か月 +- 彩 +- rk +- 许 +- hä +- ▁tour +- ▁giant +- ▁perform +- いや +- ▁lad +- ▁triumph +- ▁finish +- oku +- ニュース +- 艺术 +- ▁бер +- 席 +- ▁всех +- やすい +- hung +- ▁mí +- jí +- ▁sail +- ▁require +- ▁core +- ▁einzige +- 調査 +- рам +- 马上 +- ▁сказать +- 影響 +- ▁wounded +- griff +- 大哥 +- ▁Tür +- 完了 +- ▁Ziel +- 一场 +- 一旦 +- gent +- ▁untuk +- ▁criminal +- nny +- 企業 +- ▁revolution +- 还要 +- ▁mystery +- ▁mercy +- aban +- ▁constantly +- cli +- ▁teaching +- taj +- shobora +- rod +- cast +- roll +- ▁teacher +- итель +- ologie +- bly +- ▁update +- 僕 +- ▁acquaintance +- 休息 +- 今月 +- ▁article +- 挑战 +- ▁эта +- ▁bisschen +- 某 +- ▁あの +- fri +- 照顾 +- 酸 +- ▁nói +- وق +- ▁sul +- ▁visible +- ▁instantly +- gegangen +- ▁dei +- ▁それ +- ▁значит +- ▁versucht +- 対策 +- ▁работа +- өө +- ▁через +- ▁Ed +- 测试 +- 护 +- year +- というのが +- ▁counsel +- сла +- ҫ +- ですけど +- 接下来 +- ▁你看 +- 難しい +- ▁tres +- 实现 +- ▁триста +- last +- 按 +- 觉 +- 宗教 +- ▁Plan +- کی +- 这么多 +- 确定 +- 悪 +- ▁letzte +- ец +- ▁violent +- ▁knees +- ▁knight +- 在我们 +- 如果我们 +- isha +- aria +- ını +- ▁пу +- '21' +- gru +- ▁nel +- ▁crack +- ് +- 因为他 +- ttle +- ▁splendid +- ▁richard +- ▁Mont +- ▁brilliant +- ▁assured +- script +- 对你 +- rel +- ▁mill +- sca +- imu +- 減 +- ▁jede +- ▁какие +- 责任 +- apo +- ▁être +- ▁az +- 补 +- 就是说 +- ▁earnings +- 新たな +- ▁fragte +- ვ +- ▁necessarily +- tiv +- ▁wit +- ▁critical +- ▁harry +- 一张 +- gol +- 赶紧 +- 潜 +- ではない +- cou +- 一緒に +- ▁confident +- ▁lag +- 本来 +- ew +- In +- лася +- 言って +- 建筑 +- ާ +- 上がって +- ▁multi +- ically +- ▁turns +- 惊 +- ию +- ▁website +- よかった +- ▁worship +- ▁unable +- ▁throat +- ӱ +- ▁grief +- lement +- ここから +- مي +- ▁relations +- iɣ +- ▁كل +- ière +- 额 +- ▁published +- 纸 +- dina +- ▁vis +- umi +- ▁suspicion +- 陆 +- test +- ▁دارد +- ўся +- ▁sẽ +- ▁Det +- 也会 +- dad +- eten +- ▁petit +- در +- জ +- 我们要 +- ▁darum +- ▁maintain +- ▁director +- ▁الن +- غا +- 这个问题 +- 馬 +- 我很 +- aja +- ▁Paul +- 库 +- fy +- ▁official +- rí +- ▁delivered +- ▁cart +- ▁goed +- 上面 +- ▁schön +- ▁prisoner +- enga +- 让他们 +- ▁universe +- 挑 +- ▁rooms +- оп +- ▁bija +- аць +- 站在 +- pper +- ایی +- ▁оста +- ▁regret +- ▁differ +- ▁나는 +- даг +- ▁Col +- んですけれども +- ene +- ந்து +- 这儿 +- トップ +- ▁mat +- 言う +- ▁puis +- tail +- だろう +- ▁実は +- 来到 +- 起こ +- ▁tal +- ▁objection +- ▁Not +- üm +- ▁reden +- 我自己 +- 经历 +- ▁midst +- ▁admitted +- ▁እ +- 耳 +- ▁نمی +- にかけて +- ится +- ▁threat +- ás +- ▁stronger +- ingen +- 考えて +- ხ +- كم +- Т +- ▁county +- zem +- ▁halten +- 遇到 +- eff +- 聊 +- ▁worry +- 错误 +- fla +- 观察 +- fte +- ▁proposed +- 免 +- ▁hence +- ▁attend +- لة +- ume +- ▁cada +- ▁nearer +- ▁Mädchen +- 联 +- 大事 +- 甲 +- lassen +- өн +- ▁такое +- ▁roz +- の中 +- ▁guns +- ик +- ট +- cade +- 牌 +- 岡 +- ▁description +- ▁Ка +- ▁lots +- ないと +- ▁web +- 男孩 +- ▁잘 +- 最大的 +- اند +- 争 +- ▁adalah +- рад +- ▁concerning +- ▁singing +- ▁blame +- lè +- ▁affected +- ▁folks +- ▁verwendet +- kira +- ા +- fas +- ▁shock +- ▁さらに +- 容易 +- ick +- 日本人 +- ously +- 你自己 +- ▁possessed +- mittel +- ▁cabin +- бі +- ▁liberal +- ▁我认为 +- ▁stones +- 根本 +- 缺 +- ▁engine +- graf +- vat +- ▁vice +- ▁plants +- 变成 +- dung +- 录 +- lerin +- ▁Bro +- 唔 +- ▁mc +- dü +- ▁бул +- ▁changing +- ▁scientific +- ท +- ▁immense +- ▁val +- zug +- ▁sport +- ▁largest +- über +- lk +- ▁magic +- ▁гар +- meter +- 届 +- gger +- ე +- 笔 +- ▁私は +- ▁absence +- 京 +- ▁absolute +- ▁дела +- லி +- cons +- 媒体 +- ▁пи +- 这件事 +- 原来 +- ▁wy +- 丹 +- قل +- aries +- ▁Kan +- ▁conflict +- تم +- 对吗 +- 府 +- ▁над +- ischer +- 園 +- ▁brothers +- しく +- oth +- னி +- ▁proceeded +- ▁sem +- nak +- ▁intent +- ▁کند +- ▁disappeared +- 只要 +- ово +- bag +- chte +- ▁govern +- ugh +- きのう +- 秀 +- yar +- ▁mortal +- 停止 +- ▁voices +- 之间的 +- ▁nächste +- ディ +- ▁Au +- ▁rue +- گی +- ප +- zz +- ▁bleiben +- ▁لم +- ▁favorite +- pak +- zähl +- ▁hoped +- ▁Nein +- ▁mae +- なり +- 声音 +- ▁seated +- дет +- ▁bold +- meye +- ▁affect +- ▁tempo +- ે +- ▁soil +- 乔 +- 宇宙 +- ह +- 镇 +- 骗 +- یک +- ▁мар +- 暴 +- aan +- ▁waters +- 中で +- ั +- ucht +- мет +- ▁awake +- elo +- ▁expectations +- ▁sieben +- знач +- মা +- としては +- 撃 +- 工具 +- usa +- 记录 +- 일 +- ▁arrival +- atu +- 在这 +- ▁Que +- ▁hole +- ffe +- 港 +- ▁coffee +- 選挙 +- gleich +- ▁studies +- 幅 +- ▁gente +- 嘴 +- komp +- ▁wusste +- tric +- ▁library +- 增加 +- nzi +- ▁delicate +- ▁domestic +- mina +- ▁scheme +- ▁перед +- rö +- bild +- ▁profession +- ▁experienced +- ▁jedes +- ▁interests +- 后面 +- ▁Kom +- 经过 +- ▁elizabeth +- enda +- プロ +- ▁vessel +- hold +- ▁eating +- ▁quando +- czy +- abil +- merk +- ▁remind +- 盛 +- ▁channel +- ▁Nacht +- ▁না +- 有个 +- 也没 +- 意思 +- ▁link +- ▁تر +- ▁numerous +- zt +- のある +- 今後 +- bun +- نگ +- ▁recognized +- ▁scheint +- ▁الج +- 这就是 +- рын +- ▁custom +- ▁mundo +- ▁occur +- nau +- 的原因 +- 所以我 +- lect +- сці +- そうな +- ▁vez +- 行业 +- ▁bath +- ▁Gehirn +- ax +- 由于 +- 描述 +- ▁pol +- 陪 +- ▁silk +- ort +- ▁crew +- ▁Wi +- bt +- ▁frightened +- ▁всего +- 现实 +- dies +- 娜 +- ザ +- ▁seines +- たくさん +- ▁えっ +- ▁hor +- 我不知道 +- ▁Bereich +- ▁ceased +- 湖 +- 爹 +- ▁israel +- ▁wondered +- ▁objects +- 是我们 +- ▁prime +- 丝 +- ▁apartment +- ▁steel +- ▁ещё +- ただ +- 我相信 +- ▁resolved +- ▁Nor +- ▁Bur +- 固 +- Al +- 洞 +- ▁更に +- 中央 +- 舞 +- ▁china +- ▁cert +- ▁Mein +- 确保 +- mini +- 怀 +- ▁stepped +- 依 +- ▁shelter +- ▁fourteen +- ching +- ▁bou +- ▁failure +- ▁investments +- амі +- кон +- ▁christmas +- ▁signs +- 看到了 +- ▁khi +- ref +- ছে +- ▁groß +- மை +- ▁committee +- autre +- ▁anywhere +- ▁organ +- ▁게 +- ▁apply +- ບ +- いません +- ▁chosen +- ook +- тә +- ▁buck +- んだけど +- 음 +- ▁Wal +- ular +- erung +- 優勝 +- ▁mysterious +- ▁پر +- 決め +- ĝ +- ▁friendly +- 上がり +- 打ち +- rez +- ▁Abend +- ▁tous +- xe +- 万人 +- ▁Энэ +- ▁кар +- ぬ +- سل +- prav +- scher +- adi +- ▁ён +- lyn +- スター +- jun +- ை +- 一部 +- බ +- thing +- ▁principles +- ▁너 +- eka +- ອ +- ▁voyage +- ラン +- nut +- 最好 +- ▁rent +- 方が +- ▁Tod +- ▁Staaten +- ▁دە +- 奖 +- ▁majesty +- wij +- 易 +- ▁tiene +- ▁закон +- 麻烦 +- ▁Rat +- 过了 +- 達 +- ▁حال +- 传统 +- ۈ +- iyi +- 週間 +- つく +- radi +- ▁Haupt +- hil +- ▁bet +- 对不起 +- ▁prices +- ▁manchmal +- ▁manera +- 习惯 +- ▁construction +- gat +- X +- 的所有 +- ▁error +- 抱 +- ▁està +- なくて +- ▁heißt +- weit +- 我现在 +- ▁mission +- nica +- àn +- cor +- zna +- scha +- ときに +- hui +- ago +- ▁ee +- ▁herr +- 模式 +- 人気 +- 高兴 +- 准 +- ▁为什么 +- どこ +- стан +- 学院 +- 我看 +- 結 +- gne +- fahren +- ▁foolish +- 枚 +- ə +- ที่ +- ifi +- já +- homme +- 检查 +- 银行 +- 允许 +- дзі +- ▁pause +- ▁rief +- ො +- 醒 +- uto +- というか +- টি +- list +- 午前 +- ▁problema +- char +- 勢 +- ▁Licht +- nov +- 乗 +- ▁Pla +- ▁char +- ▁internet +- ▁coach +- кан +- 还没 +- enza +- ▁gently +- ▁beach +- fried +- 标准 +- ñ +- ▁currently +- 不行 +- ▁encore +- 圈 +- ለ +- iß +- fect +- 年轻人 +- ▁College +- ọ +- ▁discovery +- ▁practical +- ▁ĝi +- 电视 +- poli +- ▁oben +- 命令 +- дзя +- 艾 +- ▁stands +- 虽然 +- ▁besteht +- ▁Möglichkeit +- ▁git +- ▁paused +- ▁sooner +- ksi +- ▁Mais +- unk +- ▁사 +- த்தில் +- iden +- cc +- ▁这就是 +- زن +- 名字 +- кра +- ▁trois +- 您的 +- door +- 刻 +- ▁mille +- ген +- スタート +- ▁cui +- ▁Will +- ▁sacred +- やり +- च +- зу +- system +- ▁mud +- inter +- ▁одна +- ▁quand +- dienst +- ▁hon +- แ +- 这位 +- ▁blessed +- ▁pushed +- ▁reco +- 瓦 +- ▁ariko +- 大多数 +- ▁наш +- ▁Wahl +- ▁reign +- 장 +- air +- kum +- 来看 +- دة +- ▁delay +- стро +- жу +- ▁mont +- ▁fought +- seite +- ог +- ▁reported +- chester +- 他就 +- gged +- ▁bare +- ▁sigh +- 薄 +- ▁thunder +- شی +- 年間 +- いつも +- アン +- ▁Yes +- ▁Präsident +- ▁northern +- ▁Sir +- ले +- 当地 +- dik +- sy +- tia +- liv +- عمل +- essa +- 軽 +- 议 +- ▁modest +- 蛋 +- ngi +- gesetzt +- oto +- ▁empire +- geführt +- 人たち +- nej +- ▁Ihrem +- ъ +- ▁waste +- ыг +- 被害 +- ▁İ +- bile +- ▁delle +- 弗 +- でき +- 当我 +- ▁quan +- ▁collection +- ▁கா +- ▁prima +- 杯 +- ▁photograph +- ▁veel +- 压力 +- tif +- 典 +- ▁wings +- мә +- ச் +- rij +- ▁dreams +- 司 +- ▁dur +- 予想 +- ▁gained +- 怎么了 +- при +- ▁내 +- ▁سر +- ▁horrible +- 人物 +- пар +- 我能 +- ▁fled +- 超过 +- 干什么 +- cí +- rais +- фа +- 調 +- vision +- ăm +- ars +- ▁easier +- ▁могу +- ▁Probleme +- 있 +- 顺 +- facebook +- ▁sofort +- たま +- not +- zog +- 戏 +- isme +- ▁آنها +- ే +- 显示 +- ▁funktioniert +- wali +- なんと +- 本身 +- 姿 +- 永 +- ▁stairs +- ▁sale +- ulo +- ép +- roj +- ▁Port +- ▁proceed +- 甘 +- ▁copy +- ▁burn +- ▁bearing +- 確認 +- ▁consequence +- ▁completed +- 不错 +- 在一个 +- ▁се +- fred +- 我喜欢 +- ▁employed +- 瑞 +- ▁Oh +- ▁banks +- ห +- 棒 +- ▁enormous +- 烧 +- ▁sympathy +- ▁Lage +- vet +- ▁Some +- ▁concern +- cré +- ங்கள் +- α +- faced +- richtet +- ▁factors +- اح +- 哭 +- ▁nada +- ▁Tor +- ▁philosophy +- ▁clouds +- レー +- ▁gesprochen +- ▁tight +- asta +- born +- 既 +- head +- indi +- ▁By +- ▁instinct +- ▁algo +- 幕 +- ゲーム +- 困难 +- rr +- 我这 +- ҡа +- ▁elements +- の中に +- lık +- ▁congress +- ▁你要 +- ▁album +- ▁London +- ▁relative +- typ +- cted +- 专业 +- ▁connect +- ▁restaurant +- lier +- ▁climate +- ▁goal +- ▁Gespräch +- 则 +- ▁mood +- ▁classes +- ▁introduced +- ▁gì +- üt +- ο +- ▁schwierig +- ▁anche +- лег +- ▁maid +- 持续 +- ава +- ▁König +- 振 +- tique +- dda +- ▁odd +- cord +- tit +- 试 +- dit +- ▁segment +- ņ +- 転 +- ▁conscience +- ▁retreat +- ▁По +- ▁jar +- 難 +- ▁earn +- ▁Por +- sión +- 我真的 +- 盗 +- それから +- ▁التي +- kro +- عة +- '!?' +- ▁version +- 施設 +- ▁Fin +- 那就是 +- 徒 +- 对我来说 +- ▁cave +- ▁medicine +- ▁application +- ции +- 约翰 +- ▁Bild +- ▁informed +- zio +- rant +- ▁gör +- 说你 +- ▁谢谢 +- 大量 +- ajn +- 腿 +- جا +- 傷 +- аж +- ▁previously +- pho +- ▁immediate +- 痛苦 +- 敬 +- 他们会 +- ▁witness +- ▁interpret +- 避難 +- gebracht +- じゃあ +- ▁benefits +- ▁morgen +- ▁reference +- ▁feed +- ▁chu +- 终于 +- mmel +- 年に +- 하고 +- ▁එ +- ▁anxiety +- ▁severe +- ▁via +- اش +- 移动 +- れて +- пы +- ẓ +- ▁discuss +- 到达 +- のように +- ▁但是我 +- ▁returning +- オー +- нес +- 捕 +- ▁recognize +- ▁Vielleicht +- ▁nord +- 取材 +- 怎么办 +- 打电话 +- ▁falsch +- ช +- ▁Mark +- gomba +- ▁cheap +- ишь +- 突 +- ▁recon +- 動き +- 好吗 +- 炎 +- ▁kit +- ▁Of +- ▁ease +- ▁yards +- рь +- ▁engagement +- だと思います +- oro +- 大丈夫 +- ubi +- ▁games +- ▁Musik +- となりました +- 状 +- 季 +- ものを +- ▁slide +- aza +- segu +- führen +- 注 +- さんと +- 他会 +- 想法 +- ▁hurried +- termin +- تي +- ▁mostly +- sun +- める +- ▁wheel +- kem +- 反对 +- ▁intend +- いって +- 知识 +- ▁amongst +- ún +- ▁countenance +- fite +- ワクチン +- 全然 +- ▁variety +- ▁thomas +- 形式 +- ▁بە +- ▁intelligent +- force +- 值得 +- acht +- jem +- 用户 +- ▁الش +- нага +- quin +- rri +- hle +- ▁rush +- тов +- 说什么 +- ▁అ +- овать +- ▁Sin +- ▁کنم +- anto +- 吓 +- いっぱい +- ▁partly +- ▁hinaus +- ▁guilty +- isse +- ▁fox +- stead +- 確 +- ▁rope +- 出場 +- ▁вос +- 面对 +- ▁assistance +- ▁gesch +- ▁Fo +- いつ +- கொண்ட +- tech +- 据 +- ▁Miss +- ▁tools +- lau +- 逃 +- 大臣 +- тив +- лов +- ▁которая +- ▁Ber +- なんで +- 显然 +- ▁solemn +- 楽しみ +- 辛 +- ▁geworden +- ald +- ▁eager +- ▁counter +- 我们现在 +- mana +- ▁consciousness +- iendo +- ▁为了 +- iba +- ▁너무 +- 胸 +- ▁També +- ▁scho +- ▁vent +- xon +- ▁candle +- ▁Ш +- ▁lion +- ▁combat +- 关心 +- ije +- ▁located +- ▁شود +- staat +- ▁resolution +- 検査 +- ▁august +- ▁disse +- 交通 +- گو +- ▁depend +- ▁Von +- かい +- ▁Gen +- 不安 +- はこの +- ▁你是 +- chu +- ▁Programm +- aku +- luc +- ▁joke +- مه +- lands +- эг +- ▁adult +- ▁Да +- が出 +- 成员 +- 姐姐 +- 照片 +- ▁Ap +- ▁consent +- rer +- ▁tief +- ▁rub +- 察 +- ып +- 全球 +- 族 +- 落ち +- ▁ließ +- ▁High +- feld +- tul +- cl +- 事实 +- 하 +- 今日は +- 响 +- rés +- ▁Ger +- рт +- ও +- ▁Herz +- 你别 +- ▁سال +- 的朋友 +- ▁neces +- ▁pitch +- gno +- ▁tai +- kie +- ▁notion +- ▁yu +- eks +- kora +- ▁victory +- hur +- ▁Bas +- agi +- のでしょうか +- 映画 +- 评论 +- کە +- ▁Pol +- どんどん +- ▁enable +- ▁marketing +- ▁número +- 摩 +- ▁reduce +- ▁cela +- වි +- ్ +- ▁cru +- byo +- ril +- ▁push +- ▁ເ +- yen +- ▁bre +- ▁flash +- やる +- ▁خو +- すぐ +- ▁improved +- 持ち +- まる +- ät +- had +- ря +- 糖 +- かもしれません +- 负 +- دم +- anyi +- baza +- ▁überhaupt +- 鸡 +- れた +- ▁rushed +- 回来了 +- оль +- ▁Una +- ▁obtain +- 사 +- ▁refuse +- 语言 +- fangen +- ▁Eu +- 選手が +- kka +- 魚 +- ▁wider +- 骑 +- 善 +- ▁eternal +- قر +- ▁trick +- ▁así +- ongo +- ▁worn +- ▁stores +- рос +- 制造 +- lied +- rica +- raf +- 十年 +- omo +- 、2 +- ▁smell +- rav +- ▁pensa +- ▁continent +- ▁stupid +- となった +- 接触 +- ▁werd +- ▁Para +- 闹 +- ▁stir +- ▁score +- 구 +- とても +- 者の +- ▁こちら +- 属于 +- çi +- том +- 説明 +- 受け +- ▁gest +- サン +- ului +- ▁slip +- 없 +- 増え +- ▁apple +- のかな +- 偏 +- 承认 +- ▁surrounded +- ▁Zukunft +- ▁valuable +- ▁führen +- 答案 +- ▁hätten +- teilen +- ▁einigen +- 孙 +- ▁rw +- handel +- ▁approached +- cis +- ▁exchange +- 、1 +- ▁internal +- ▁мал +- まり +- ラー +- ▁gegenüber +- 埃 +- lain +- ▁absurd +- 全体 +- ция +- ▁phil +- 上海 +- ▁associated +- ▁điều +- ▁cam +- ▁William +- ▁dont +- ▁পা +- шла +- 技 +- ここまで +- ▁abantu +- kna +- 章 +- hem +- 例如 +- ▁Dass +- ▁softly +- qa +- ▁Pra +- 不再 +- 抽 +- ▁họ +- sehen +- ▁sunt +- rada +- を見せ +- ▁நா +- lou +- ▁kindly +- رة +- уб +- 巨大的 +- 作り +- bling +- ▁fet +- ▁moreover +- quel +- ▁uniform +- laufen +- ▁stable +- ▁байсан +- ▁dal +- ▁clients +- wol +- だよ +- ismo +- コロナ +- 材料 +- ▁bitte +- ▁genius +- mā +- があって +- fat +- ▁escaped +- guard +- 男子 +- 在你 +- ▁beginnen +- ▁substance +- ▁bush +- 小心 +- 呆 +- ▁suggestion +- دان +- 跟他 +- ▁limited +- ーン +- ▁offen +- ▁unserem +- 伤害 +- cel +- ▁يمكن +- mate +- 独立 +- giye +- ▁mur +- ▁robot +- etti +- esc +- grund +- ▁Bra +- 负责 +- ▁situa +- 开心 +- ▁Don +- 羽 +- ▁dessen +- ▁plane +- ことで +- gü +- ▁куда +- ▁closer +- ▁precious +- 거든 +- овская +- است +- ▁convinced +- ▁bomb +- tà +- จ +- 種 +- ▁früher +- май +- ał +- ▁confess +- そこに +- ▁жа +- 因为我们 +- ▁phải +- вой +- кс +- ▁curiosity +- نو +- 図 +- 別 +- ▁десять +- tting +- йте +- ▁kiel +- ▁Meine +- できた +- ▁sap +- 大きく +- ▁addressed +- 康 +- ota +- சா +- نه +- kali +- тым +- ▁shouted +- ▁этим +- гә +- ▁сер +- gere +- 総 +- ▁우리 +- ▁concept +- here +- のために +- ▁unten +- ▁National +- sek +- ▁crea +- ▁hare +- ▁button +- なのか +- উ +- これまで +- 関東 +- quet +- 当他 +- 弟 +- ▁نو +- ▁நி +- 博士 +- stal +- 佐 +- amo +- ▁gal +- mé +- ár +- zing +- ▁zwanzig +- ▁nachdem +- بو +- していく +- ▁pressed +- ▁neza +- 有关 +- ▁dignity +- ▁meanwhile +- ▁Millionen +- ▁causes +- ▁poison +- を取り +- pir +- ▁arrive +- ▁mia +- ▁flood +- ory +- ▁thu +- 放弃 +- 早く +- ckt +- 的那个 +- anar +- 虚 +- ▁lights +- 雲 +- wart +- ▁같애 +- مو +- ▁doen +- ▁phrase +- そうですね +- 的一 +- ▁cum +- யை +- Co +- 込んで +- ▁tiu +- idos +- سب +- ▁今日は +- ▁musste +- 似 +- қ +- ▁flew +- ▁Mittel +- 给我们 +- ライ +- ▁bigger +- prov +- ▁Qui +- ▁hanging +- schrift +- してください +- ▁За +- 犯罪 +- ▁purchase +- ▁quarrel +- üs +- ▁seg +- ণ +- ▁federal +- ී +- 说我 +- ▁también +- ▁yari +- apa +- nja +- ▁succeed +- ▁hielt +- ▁recht +- Ma +- 正如 +- 焼き +- ▁besten +- fam +- 論 +- おります +- ุ +- くて +- tation +- 住宅 +- وه +- ▁mod +- ▁coal +- ▁italian +- ほ +- пан +- tine +- ▁però +- ▁render +- ▁South +- 欠 +- 广告 +- реш +- をする +- кий +- schuldig +- ▁programs +- рен +- ぼ +- hé +- ▁cancer +- ▁verk +- ük +- ▁miserable +- श +- azione +- ▁bunch +- ık +- ▁fierce +- fie +- ▁appropriate +- ▁healthy +- ▁subjects +- ▁kre +- qué +- ▁día +- ▁Ama +- ych +- ▁fatal +- 馆 +- kiri +- ▁لە +- 菲 +- 每一个 +- ились +- форм +- hoo +- вор +- vingt +- ▁assume +- 消息 +- ▁swift +- ▁سو +- elt +- ▁competitive +- ▁hasta +- ▁aquí +- 小时 +- 既然 +- させ +- gene +- stoff +- ▁opera +- ▁М +- shing +- lies +- 連続 +- voy +- ▁mamma +- めて +- unda +- ▁hint +- ▁offering +- 吴 +- ▁luck +- ▁Medi +- iu +- 賞 +- lte +- 一份 +- 国际 +- ▁crisis +- ▁creatures +- raum +- لك +- ▁Roedd +- lut +- ▁tremendous +- ▁Esta +- swa +- রে +- ために +- ρ +- ▁micro +- 发布 +- kov +- ▁monde +- ▁shoot +- ▁rage +- ín +- ன்ற +- ident +- ▁reflection +- ▁stern +- 部屋 +- 太多 +- ▁forgot +- 殺 +- ▁arthur +- 広 +- ▁zwar +- lina +- を使って +- ▁rob +- эй +- ▁destroyed +- idi +- ello +- ▁activities +- cole +- ▁nein +- ▁dell +- pada +- 여 +- ▁Ser +- ▁tells +- ▁painful +- ones +- 子供 +- ▁他说 +- ▁politics +- 还在 +- 观众 +- ▁Seine +- ines +- 记住 +- ▁branches +- 僕は +- 更加 +- wala +- ▁Nord +- satz +- ▁appointed +- ▁że +- きて +- რა +- uring +- 決 +- äng +- ▁sens +- tischen +- 表达 +- pia +- ▁acquisition +- ▁تم +- 疾病 +- ▁directed +- ▁bwa +- 持って +- 某种 +- ▁chap +- یر +- хан +- ▁keen +- はない +- ▁lover +- ▁nou +- 有一 +- ▁Sicherheit +- ▁hum +- ▁observe +- 岩 +- ▁accompanied +- ▁laughter +- ▁ஒ +- jor +- دە +- ▁Hel +- rā +- ▁whilst +- 時代 +- ▁waves +- 意味 +- ▁survey +- ид +- 作業 +- 伝え +- ▁Sprache +- schrei +- ▁distinct +- 沈 +- един +- يم +- வர் +- dzie +- 赵 +- ▁spin +- amba +- 雅 +- ▁دست +- 很多人 +- 北海道 +- ありがとうございました +- schließen +- ▁porta +- லா +- vic +- ▁tren +- hum +- ▁Eltern +- பெ +- 澳大利亚 +- なんですね +- ▁많이 +- ▁branch +- 咋 +- 商业 +- ▁throne +- ▁burden +- ▁martin +- ▁alors +- fertig +- ▁rela +- 情绪 +- 抓住 +- 留下 +- 因为你 +- ▁totally +- 并没有 +- ▁sector +- ▁launch +- ▁leaders +- ▁shouldn +- 众 +- ▁cái +- 形成 +- 寺 +- ▁decline +- ▁Thema +- ▁fifth +- 从未 +- ▁thoroughly +- ▁Prozess +- La +- ệ +- ▁Bla +- 一块 +- box +- will +- なんですけど +- 终 +- ▁sugar +- ří +- роб +- ▁» +- én +- ▁votre +- 撮影 +- ▁warning +- ▁hundreds +- ▁Это +- ▁divided +- からは +- 重要的 +- 我希望 +- ▁string +- 合い +- دن +- ▁fand +- ▁Politik +- dı +- ▁stated +- 充 +- 映像 +- 目标 +- سي +- ▁household +- ▁suis +- ण +- ▁hut +- ι +- 几天 +- ▁dollar +- 鸟 +- 病院 +- 在这儿 +- ís +- rid +- riye +- 我对 +- プレー +- ▁punt +- 戸 +- ▁City +- ologi +- صد +- ▁tear +- رد +- emos +- ணி +- turn +- ▁pea +- 设 +- ье +- 齐 +- からね +- 表现 +- 早上 +- уул +- 盖 +- ▁degrees +- 四个 +- ▁hurry +- 爆 +- ▁প +- ▁plej +- ▁forever +- ė +- пад +- ders +- ▁دی +- ▁remote +- ▁mount +- ▁privilege +- uj +- bata +- のこと +- ぜひ +- cket +- ▁hari +- ▁critic +- ▁Fer +- ▁hopes +- மான +- ▁applied +- かけ +- تون +- ▁kwam +- ▁cyangwa +- ▁Macht +- ▁lift +- 流れ +- gram +- 平台 +- 写真 +- 拒绝 +- гор +- ು +- ▁Gemeinschaft +- ников +- ▁regarding +- ▁reduced +- 生产 +- 頂 +- ▁joseph +- ▁Boden +- ▁shining +- pela +- ວ +- dacht +- 植物 +- ▁heel +- 학 +- これが +- ったら +- 是有 +- ▁Während +- ▁weary +- 大概 +- 坂 +- ▁völlig +- ▁años +- chy +- ▁день +- ▁wound +- えて +- ▁combination +- oy +- autres +- инская +- ван +- asse +- кол +- ▁States +- ▁эту +- دو +- ▁meu +- ▁sollen +- 出て +- 人口 +- ል +- 我们需要 +- ▁humble +- به +- ▁bang +- most +- 自我 +- inda +- ▁rolled +- 报道 +- 睡觉 +- 暖 +- ے +- ▁crazy +- ▁seriously +- 较 +- 니 +- 我只是 +- 虫 +- ▁remaining +- rra +- ▁Ten +- unter +- pr +- 入り +- ngo +- ▁punishment +- ▁episode +- ▁zeide +- kop +- ▁sank +- いきます +- ▁file +- ▁Durch +- ▁Selbst +- ▁Projekt +- ▁ring +- ▁prisoners +- ▁pes +- ▁Fu +- 絶 +- ால் +- 言い +- ▁народ +- cca +- ▁dad +- ▁hero +- ▁vos +- ▁Mus +- ▁helen +- ▁생각 +- ▁Schritt +- ていました +- shire +- adas +- ▁pricing +- ▁Entwicklung +- 子ども +- 的情况 +- dim +- 码 +- gur +- gging +- vul +- ▁pays +- ліся +- 夢 +- ▁holiday +- hus +- ▁remarks +- ▁Rolle +- ған +- ほとんど +- ිය +- '23' +- 专 +- ▁strongly +- ▁solutions +- tang +- ▁اما +- ake +- tara +- 比赛 +- lad +- 律师 +- ▁uw +- ап +- 団 +- bur +- ▁types +- 欧 +- ▁assist +- 海外 +- ▁california +- ▁pig +- ▁trap +- ▁gall +- ös +- dica +- gled +- ▁architect +- ▁Ph +- ▁Blick +- 自宅 +- ▁onze +- ▁我也 +- ▁Geist +- 把你 +- ▁wicked +- ▁wolf +- 結婚 +- 记得 +- ▁ああ +- ▁breaking +- şe +- 尝试 +- ound +- ▁views +- 每个人 +- ское +- তি +- ▁pool +- 過 +- ▁trat +- ▁attended +- عا +- ▁profound +- 大部分 +- 应该是 +- ▁humanity +- în +- mad +- ここは +- 調べ +- ▁loving +- 流行 +- ▁arose +- 高校 +- 智 +- あっ +- 不仅仅是 +- 国会 +- 最も +- てきた +- ▁sous +- ▁Но +- зд +- ▁movie +- camp +- lieb +- шу +- ▁kindness +- ς +- ▁我知道 +- gut +- ▁literature +- 斯特 +- tam +- ▁presentation +- ことし +- ▁designed +- わけです +- km +- ▁expenses +- oko +- 我们都 +- ▁George +- 優 +- 交流 +- 献 +- 失败 +- ひと +- ▁vy +- ▁border +- ▁pilot +- 集中 +- ▁tegen +- ም +- 基础 +- ▁inquired +- つか +- ▁assets +- ▁ibyo +- ▁slept +- ▁mismo +- ▁zien +- 登場 +- iḍ +- ▁interrupted +- ▁constitution +- ▁nodded +- archi +- ключ +- 还不 +- ▁هي +- ▁alas +- ▁merit +- 비 +- ▁начал +- ▁буду +- ▁Nur +- ▁thrust +- luci +- ▁الق +- ▁adventure +- ▁puede +- ▁debate +- пуст +- ▁paying +- 诗 +- mata +- four +- hari +- mě +- ▁enterprise +- については +- ▁Ei +- fit +- প্র +- সা +- ▁atmosphere +- ண்ட +- ▁இது +- 煮 +- ▁cottage +- アル +- ▁ஏ +- ▁cattle +- ில் +- arte +- ▁pole +- luk +- ▁secretary +- লি +- ▁leven +- 因为他们 +- stä +- 困 +- ▁Aquest +- 豪 +- 功能 +- ▁peer +- вол +- 两个人 +- ມ +- ▁earl +- 偷 +- ▁möchten +- ▁kuko +- ▁گ +- ost +- тен +- ▁прав +- ▁manager +- ▁пыта +- ▁Robert +- த்தை +- ject +- iten +- ғы +- 本当 +- 异 +- ▁faster +- ▁interior +- füg +- вя +- ▁Wert +- ▁cel +- frage +- مة +- baka +- 目の +- ▁Energie +- ▁leap +- muntu +- 的新 +- ▁margaret +- ▁weakness +- ▁steam +- ▁souls +- 정 +- ▁danke +- ▁Ма +- ▁eventually +- ché +- 我们就 +- 哥哥 +- ▁약간 +- 安排 +- lant +- 扔 +- ▁guests +- ско +- ▁click +- 頃 +- ▁Gruppe +- organiz +- ნ +- 水平 +- lop +- ▁tanto +- vý +- பி +- ▁imagin +- ▁Peter +- ▁rosa +- ▁Tat +- ▁bai +- 成了 +- uur +- gio +- ▁Ac +- haw +- が多い +- esse +- そうだ +- ▁کنند +- avoir +- ▁seus +- 国際 +- ា +- نىڭ +- 売 +- ▁spanish +- 宽 +- 聪明 +- 反应 +- ▁widow +- 不敢 +- ▁unit +- アメリカの +- ▁suc +- 質 +- ▁unhappy +- ▁flame +- 对吧 +- ▁tide +- ▁dijo +- ậ +- ▁shift +- 帕 +- 韓国 +- azi +- ▁déc +- 经验 +- 达到 +- ▁notes +- 랑 +- ▁fare +- 怒 +- ▁catholic +- 技術 +- 资源 +- ▁Nous +- bila +- ▁stared +- ▁tied +- quest +- 各位 +- ▁thirteen +- vano +- 对方 +- ağı +- ▁abge +- ssel +- 因为它 +- ▁veil +- ▁chat +- ▁또 +- establish +- 以外 +- ި +- raj +- மாக +- ▁auszu +- გ +- lance +- ▁anzu +- غير +- kara +- 答え +- 晓 +- மே +- ▁essential +- 当時 +- 번 +- nyuma +- ▁Stimme +- lage +- ै +- ört +- を持って +- ▁anderes +- 亿 +- ▁Sol +- игр +- 兴 +- リン +- த்தி +- wachsen +- ってこと +- ▁plu +- ▁partners +- ▁eggs +- ▁largely +- ▁hadn +- ▁enjoyed +- ው +- aid +- 상 +- ▁despite +- ▁Os +- 房间 +- ▁Union +- кр +- 五十 +- ▁distribution +- ▁pues +- 人々 +- 客户 +- ▁intellectual +- ▁cred +- ▁buildings +- 国王 +- ▁Show +- ios +- ▁baş +- ▁wholly +- ▁parent +- ▁neat +- лын +- ▁ehhe +- ▁braucht +- ▁stud +- 入れ +- ▁verloren +- ▁guest +- wyr +- ちゃう +- enti +- sak +- ران +- ▁kr +- аа +- 简 +- شا +- gegeben +- ▁mate +- 亲爱的 +- 增长 +- 意义 +- あり +- ▁đang +- ▁delighted +- 婚姻 +- trau +- ▁handle +- ▁مح +- ゲ +- 伟大的 +- مت +- ▁steady +- 健 +- ▁Cal +- ▁Bank +- ances +- ▁Tôi +- ▁physician +- his +- pren +- ambi +- ڭ +- laden +- ▁stayed +- などで +- ▁patience +- ▁utterly +- ▁오 +- ▁Dieser +- 牙 +- ▁primarily +- ▁Grunde +- ▁esper +- كون +- י +- ony +- ▁context +- kaj +- தா +- ▁sud +- là +- Le +- ▁іх +- ▁Mer +- ▁annual +- сил +- 中の +- ▁fro +- цу +- вали +- ▁contrast +- ▁Technologie +- 爷 +- ▁lernen +- 泰 +- burn +- 有一种 +- দি +- 禁 +- An +- 和他 +- uld +- ▁будут +- 幸 +- 史 +- coming +- ▁entwickelt +- ache +- 呼吸 +- hara +- ▁trump +- ▁hey +- post +- 子さん +- ▁beste +- asa +- ▁Zo +- füll +- 这么说 +- 挂 +- ▁arranged +- 悲 +- 一つ +- ics +- лек +- ▁coup +- 办法 +- மி +- があり +- 一边 +- ▁pink +- ▁расс +- 保证 +- ▁follows +- ▁scar +- ировать +- 御 +- ▁retail +- 另一 +- ダー +- эс +- 文件 +- ▁symbol +- جر +- 爸 +- 现场 +- 透 +- diri +- след +- teur +- σ +- というふうに +- 给了 +- ▁contained +- 放送 +- ddle +- ▁budget +- ▁"" +- өл +- ▁kamen +- ▁Met +- wag +- ▁کل +- ▁biggest +- ▁gross +- ▁feature +- Л +- fun +- 圆 +- ▁distinguished +- ▁studied +- kunda +- ▁dispose +- 人を +- ▁Hy +- 得到了 +- ▁Af +- Ar +- fus +- バス +- rai +- ▁obwohl +- innen +- ▁shoes +- eme +- そうなんです +- او +- kra +- ▁sensation +- mission +- ▁всегда +- raga +- ▁hoffe +- 心理 +- ▁ŝi +- 했 +- ▁properly +- ▁pala +- 那边 +- 大統領 +- ▁prophet +- ▁parliament +- нова +- tera +- fil +- というところ +- 就不 +- hou +- ▁consum +- ▁tomb +- ު +- uze +- ていく +- 羊 +- ▁lit +- 适合 +- ▁Gesellschaft +- としています +- ▁созда +- ▁desk +- ▁হ +- ▁አ +- rek +- ▁đến +- 带来 +- твор +- 题 +- год +- ▁russian +- に出 +- ▁Luft +- '22' +- dank +- 再说 +- 斗 +- వ +- ▁jedem +- ▁பா +- ▁knife +- 反正 +- 開発 +- ▁crying +- ▁moet +- sser +- ▁operation +- ▁confusion +- ರ +- に入って +- master +- 缩 +- ▁этих +- ▁continuing +- ▁rival +- ły +- ▁articles +- ▁кажется +- ▁remark +- ▁damage +- ご覧 +- nto +- ▁Google +- ▁strip +- 銀 +- お店 +- tse +- ▁iets +- ▁devoted +- 絵 +- ▁jump +- 园 +- 女士 +- 世界上 +- ▁log +- 丈夫 +- ▁traffic +- ▁所以我们 +- ünde +- ▁deu +- ▁abandon +- ▁tale +- 审 +- şa +- ▁bah +- ▁тот +- bble +- 寄 +- ▁tis +- ▁musical +- 开发 +- ▁deposit +- 阅读 +- two +- のような +- كن +- 项 +- 决 +- ▁num +- tiva +- 中に +- ▁چه +- ıyor +- ▁persönlich +- kta +- ён +- ▁Mc +- that +- ander +- ▁perceived +- 東京都 +- ▁Ter +- ▁hunting +- ▁companions +- ▁emotion +- cious +- 부 +- 升 +- さまざまな +- 记者 +- 绝 +- ್ +- ▁ends +- ▁الإ +- 细 +- ias +- thro +- ▁bor +- fei +- ▁Inter +- 的感觉 +- 任务 +- ▁surrounding +- ▁хочу +- ▁tar +- ▁mixed +- ▁Schüler +- ▁স +- さま +- ▁spending +- ▁Parlament +- see +- пор +- 一段 +- 我和 +- guru +- ▁beau +- еш +- аш +- ▁என்று +- zor +- ▁sisters +- вать +- ის +- bei +- ites +- ▁yours +- лось +- ▁друг +- ▁Just +- ▁expedition +- ▁utter +- ▁செ +- ▁transform +- ▁hollow +- lev +- ▁lonely +- ▁sonra +- క +- ▁zijne +- үү +- ▁erkennen +- ▁té +- ▁هر +- ▁komen +- ktion +- сло +- 利益 +- 真的是 +- ड +- tzen +- ▁mare +- late +- ▁shake +- ▁servi +- ▁homes +- しながら +- भ +- 法院 +- ▁multiple +- ▁Fri +- あまり +- ▁exception +- ▁reader +- 潮 +- ▁discussed +- 什么样的 +- ▁trop +- ▁две +- nä +- irwa +- ▁uko +- 塁 +- hing +- sack +- いただきます +- 肯 +- 盛り +- ological +- ▁Facebook +- ▁poco +- cles +- schauen +- 出し +- تن +- 她说 +- чит +- ▁spi +- zelf +- 沢 +- ▁helping +- খ +- ▁Dat +- 价格 +- 看到的 +- ▁деле +- ▁kap +- ▁accordingly +- ӹ +- ▁operate +- ▁wer +- 委员会 +- ▁meng +- ▁literally +- tari +- 左右 +- лом +- ▁bus +- ▁permanent +- 效 +- 四十 +- хий +- pol +- vous +- rè +- こうした +- ▁arise +- こっち +- ▁lại +- ্যা +- teri +- ▁driver +- 十五 +- ▁American +- соб +- ù +- ▁heap +- ▁barn +- nger +- ▁Cas +- すれば +- ▁rifle +- ▁Produkt +- ▁After +- ▁まず +- 中间 +- ▁stem +- ▁background +- stehen +- ▁Tage +- bij +- ▁schließlich +- ▁কি +- rte +- кай +- ▁writer +- 額 +- ▁duties +- ▁hungry +- ▁wegen +- ▁piano +- ▁pretend +- 運転 +- ▁sleeping +- mpa +- 大脑 +- iw +- 部门 +- ▁doctrine +- ▁define +- dian +- 美元 +- mmen +- 提醒 +- ▁efficient +- ▁続いては +- ו +- eo +- ▁plötzlich +- ສ +- ▁несколько +- きょうは +- denken +- дә +- ▁President +- ▁occasionally +- 不喜欢 +- ▁James +- ▁perd +- ▁eigen +- 今日の +- ▁nombre +- under +- 津 +- ▁estaba +- ▁бел +- ▁rod +- ▁mala +- ▁sovereign +- 今回は +- anno +- ▁понял +- مە +- ▁tiempo +- 平均 +- ▁initiatives +- ▁Tro +- ▁тре +- got +- ▁industrial +- uro +- ▁Weil +- ▁beast +- ▁spell +- ことに +- ▁conviction +- ▁sorts +- ▁sistema +- ▁visited +- lines +- ▁olma +- enz +- 寝 +- 伴 +- ▁《 +- 状态 +- ▁tele +- ▁quit +- ▁poder +- registr +- ▁你怎么 +- 将军 +- 战斗 +- leben +- 途 +- ্য +- 触 +- ▁absolut +- 朱 +- bis +- 懂 +- ▁cells +- 里边 +- stadt +- ▁kings +- はず +- ▁divi +- ▁bless +- ▁einge +- 不需要 +- ် +- ▁queer +- bir +- ▁свет +- ич +- alter +- çe +- 先月 +- ▁lawyer +- ▁кур +- now +- еж +- ▁formal +- ▁город +- ▁extended +- ▁poverty +- 許 +- буд +- 湿 +- bringen +- 贴 +- ▁từ +- ▁verlassen +- ▁Folge +- ▁lest +- 那天 +- ▁composed +- ▁innovation +- quen +- ▁вз +- ▁striking +- 锁 +- ▁fellows +- サー +- ▁Team +- ▁lieutenant +- ряд +- ▁loro +- ▁gefunden +- ▁Freunde +- ▁Minuten +- 地震 +- ▁これが +- ▁generous +- ▁толькі +- rib +- 経験 +- ヘ +- hap +- 家的 +- pid +- iente +- 丢 +- chel +- mod +- ▁sagten +- enge +- ▁exciting +- 되 +- 月に +- ▁spielen +- ▁destruction +- ▁すごい +- 接近 +- ович +- ▁stiff +- constru +- pur +- 想想 +- ▁Wochen +- 岸 +- tsi +- ▁premier +- 见过 +- ▁Non +- ▁possibility +- ▁responsible +- ší +- ▁expand +- স্ +- ị +- Be +- ▁strain +- ڵ +- ▁интерес +- ister +- dau +- ▁singular +- ▁location +- ▁prospect +- 変化 +- ▁suo +- ▁genannt +- ▁stress +- лд +- ubwo +- 検 +- るの +- бли +- жээ +- ▁Sein +- ▁cả +- 相手 +- ▁вторая +- ▁Morgen +- comb +- ▁troba +- вин +- igo +- 那么多 +- ▁должны +- いで +- ās +- ▁Dis +- ▁那我 +- 昨天 +- geld +- ▁acts +- ▁Trump +- ▁boats +- ジャ +- ▁eigene +- 隔 +- 输 +- іць +- лин +- ▁Schule +- ▁যা +- пре +- ▁association +- ▁trembling +- 猜 +- вая +- ரை +- loop +- ▁recall +- どうぞ +- buch +- '300' +- ▁gibi +- ▁stretched +- ட்டி +- ▁россии +- ▁нэг +- 5% +- ▁performed +- グループ +- ıl +- ▁proposal +- ▁semi +- 捜査 +- ▁sehe +- 隆 +- ▁accustomed +- したのは +- ▁schlecht +- 长大 +- ▁unusual +- ress +- 很快 +- ▁frequent +- activ +- gezogen +- ▁germany +- ▁ça +- bound +- ▁باش +- ▁Fla +- ifica +- ▁anni +- یو +- ▁brings +- ▁вельмі +- лог +- ▁individuals +- maz +- » +- 걸 +- ▁Ordnung +- лё +- 大阪 +- ▁یا +- ேன் +- erte +- 不断 +- தான் +- ▁ale +- кла +- ▁glanced +- jya +- pis +- 是不 +- aro +- ▁Yo +- 我们必须 +- sprech +- چی +- ▁nav +- graph +- ▁großer +- uten +- 温度 +- ▁Cre +- ▁modo +- ▁mewn +- ▁wearing +- figur +- uye +- ▁North +- chung +- ▁kay +- ▁european +- るのは +- ▁billion +- служ +- 細 +- ▁hunt +- ▁responsibility +- ▁ও +- ▁говорит +- ▁grateful +- 太阳 +- ▁fragen +- 抢 +- ▁অঁ +- ▁dice +- ▁riding +- ▁tard +- dition +- ファン +- ▁있어 +- ▁sports +- π +- ▁india +- ья +- বি +- cum +- 妻 +- 无论 +- 意外 +- produkt +- やっぱ +- 而是 +- ありません +- 症状 +- ▁Op +- bio +- ▁victim +- ▁wanna +- owa +- ▁Ak +- ▁самом +- ▁Glück +- rse +- سه +- 我们已经 +- rede +- sept +- 霍 +- ▁Gre +- dwa +- nant +- 仲 +- rack +- ▁thì +- 我将 +- ▁butter +- ▁hace +- ▁Š +- 特朗普 +- át +- bera +- ▁делать +- 力量 +- ▁yok +- ▁داد +- het +- gis +- ▁Leuten +- 다고 +- för +- ▁agent +- ป +- 監督 +- تح +- 誰 +- anc +- ▁mehrere +- 作为一个 +- ▁değil +- 瓶 +- ▁지금 +- 下午 +- ▁katika +- 同学 +- ▁سا +- ▁invited +- ▁spare +- ▁represented +- eld +- 印 +- 撞 +- ▁swept +- ▁wishes +- 之外 +- などが +- ▁maiden +- ▁الف +- ▁prize +- ase +- phone +- 問 +- خر +- ▁concluded +- ▁repair +- gos +- ню +- liz +- ее +- 有可能 +- ▁ак +- ▁neben +- 造成 +- ▁nennen +- ▁Cy +- ▁oak +- овский +- rif +- lern +- ezi +- ▁Gemeinde +- ▁guten +- ▁hid +- ▁poetry +- ▁mano +- ▁такая +- ▁plot +- ▁selling +- ▁gekommen +- ▁Maria +- ▁Min +- 导致 +- ີ +- gelegt +- 操 +- fod +- 就算 +- لب +- 家人 +- 墙 +- ところで +- 脑 +- ▁Komm +- 版 +- なの +- ▁yap +- ▁proposition +- eze +- ▁latin +- 喂 +- gebaut +- cinc +- politik +- ▁そこで +- aquesta +- ▁але +- gala +- ▁actor +- ggi +- тя +- არ +- unu +- 荷 +- ĩ +- ээр +- ▁sil +- ▁поселок +- ▁Pat +- 了一些 +- uren +- found +- 摇 +- ент +- ▁signed +- くなる +- ▁display +- 不一样 +- やつ +- 内部 +- ▁tema +- 演讲 +- ▁select +- ▁ashamed +- 決勝 +- 户 +- ▁elder +- 寒 +- jin +- 发生了 +- wyn +- स् +- 孩子们 +- ちゃ +- ▁rude +- ▁именно +- әй +- 生气 +- 販売 +- ▁yw +- ▁movements +- 好き +- ▁feared +- 实际 +- ▁dun +- ▁creation +- ▁pied +- 腕 +- point +- жил +- யி +- Bri +- ▁cad +- genda +- ▁kissed +- 标 +- ▁chest +- ▁cheeks +- 避 +- 冒 +- 宗 +- kwi +- ▁Tal +- ▁cycle +- ▁geschrieben +- られない +- lian +- 映 +- lebt +- 帰 +- ▁adopt +- たり +- kola +- ▁payment +- ான் +- ▁hol +- త +- ▁bible +- ▁achieve +- 意味着 +- hü +- пят +- ▁rail +- おい +- ▁действительно +- ▁Platz +- اط +- 卵 +- ▁materials +- رت +- ッと +- ware +- sses +- ▁disposition +- ▁glücklich +- tial +- fund +- ▁continu +- stimmt +- 話を +- kur +- ▁attached +- ▁mild +- ▁locked +- 染 +- フェ +- ▁recover +- ▁Qu +- 顾 +- 办公室 +- ▁sou +- kata +- hak +- 立て +- 桥 +- ள் +- лт +- バイ +- グラ +- ▁shout +- 一切都 +- 忍 +- ▁comments +- ▁United +- аться +- үүл +- ▁transition +- ▁manufacture +- 所以你 +- aine +- 習 +- Ge +- accord +- ▁przy +- ▁leurs +- ▁jsem +- ▁verb +- 也可以 +- 就要 +- 你去 +- ▁brush +- lov +- шта +- ▁jobs +- 份 +- ▁appreciate +- ガー +- 围 +- ▁maj +- emo +- ▁supported +- ▁abroad +- ▁unu +- ▁thấy +- ▁sc +- ้า +- ▁못 +- pes +- ▁Mag +- ின் +- ▁salut +- tatu +- ▁juga +- ් +- ох +- つまり +- 几年 +- ▁நான் +- ▁font +- ▁Kirche +- ▁knee +- работ +- ▁Zwei +- ▁distress +- ▁Bau +- 猪 +- wur +- hof +- ▁blessing +- ழ +- mera +- ▁heavily +- ▁الص +- cover +- 逆 +- 磨 +- 려 +- 签 +- 強く +- гра +- 含 +- ▁behavior +- وان +- ▁pine +- bewusst +- ▁neun +- ▁bones +- ▁それが +- ▁armed +- ▁quant +- нут +- 同志 +- るか +- ▁refuge +- 说过 +- ирован +- 播 +- 见到 +- いった +- ▁Bill +- ▁reserve +- ▁farmer +- roy +- 没有什么 +- ▁intimate +- شن +- சு +- ▁essentially +- ▁aquest +- ▁corre +- ▁sala +- ▁ändern +- 郎 +- んじゃないか +- ▁Tages +- ▁ここで +- ▁сама +- 厂 +- ▁хар +- 错了 +- ளி +- ▁june +- ▁competition +- ▁fois +- ilen +- リア +- 我不会 +- ▁ruth +- ▁opposed +- ▁penn +- ▁هستند +- 拖 +- ▁antwortete +- ▁jeune +- إ +- ▁repeat +- ▁greek +- 就说 +- ș +- '!」' +- ▁teachers +- ▁sy +- あなた +- 看来 +- isation +- ▁rya +- 一段时间 +- ▁belong +- obu +- ാ +- ▁traditional +- ▁painted +- ことも +- чь +- ▁Mrs +- сов +- ▁settlement +- いろいろ +- ▁کنید +- load +- ▁massive +- ▁zag +- ▁alternative +- dá +- aren +- メートル +- ▁retired +- ▁consult +- ▁feels +- njye +- 训练 +- ▁charming +- hop +- ▁尽管 +- wl +- ▁sole +- gad +- ▁karo +- nez +- tec +- 我告诉你 +- 国の +- jon +- ▁bio +- крас +- tali +- ▁việc +- ▁reasonable +- 制度 +- ▁kate +- bw +- юсь +- نش +- ▁schaffen +- 搭 +- ▁slipped +- 気温 +- tī +- ゴール +- ّ +- ▁adopted +- 更に +- para +- となっています +- ind +- ▁etc +- んでしょうか +- ▁scan +- ▁ambition +- iques +- ▁basket +- rau +- ▁bark +- 鞋 +- させる +- dora +- igu +- éc +- ían +- ▁supreme +- يف +- krat +- mund +- 卷 +- avo +- 暴力 +- ▁seldom +- hack +- urt +- ▁approaching +- 幼 +- др +- ▁murmured +- kni +- ▁goodness +- ▁Так +- zeug +- 合わせ +- Po +- 腰 +- ▁Val +- ▁consistent +- ▁rever +- ▁gap +- ▁gehe +- ▁dame +- witt +- ▁handelt +- ści +- dreh +- ▁pages +- يو +- 另外 +- ě +- nach +- ▁unfortunate +- headed +- 恨 +- path +- ましたね +- 主人 +- ▁совет +- rī +- ▁aren +- ять +- ▁depends +- flo +- miss +- ▁таки +- ▁zeigt +- ▁terre +- ▁commanded +- ▁noi +- bell +- ▁Tatsache +- cycl +- رك +- mani +- ் +- ▁muito +- duk +- lir +- ▁tidak +- ▁regiment +- izo +- ほか +- ▁clerk +- ▁vào +- ▁года +- 雄 +- ▁bullet +- tree +- ▁sempre +- hlen +- дэг +- erin +- rimo +- 银 +- ▁teams +- ▁foi +- ums +- ▁shortly +- ▁cure +- atge +- 恢复 +- ▁Hol +- づ +- ▁Test +- ▁drinking +- ▁released +- tics +- ▁eastern +- St +- ▁zaman +- 作用 +- ▁versus +- ense +- সে +- aught +- ▁жив +- 라고 +- 押 +- ▁reflected +- イギリス +- ▁Hund +- கை +- وع +- 交易 +- ▁blank +- ▁Situation +- ▁жизни +- ▁minor +- 大変 +- 으로 +- ▁obvious +- 环 +- 攻 +- ▁useless +- ▁blieb +- のほう +- ▁slaves +- 材 +- ▁également +- fal +- сын +- ▁tras +- овой +- ▁wherever +- рез +- ▁contest +- care +- ▁institution +- дав +- гло +- 的那 +- ▁contribution +- 这边 +- нне +- ▁administration +- 互联网 +- 了啊 +- ▁donde +- она +- ▁Demà +- ление +- ▁也许 +- ▁jour +- ▁বা +- ес +- 打算 +- ▁быў +- awa +- mere +- रा +- 我不是 +- platz +- 私も +- pè +- geven +- ▁ensure +- ▁importante +- 彼 +- ▁داشت +- 表情 +- тру +- ところが +- ▁vital +- bab +- 給 +- nio +- ▁nutzen +- ją +- 泡 +- 不得不 +- rend +- یان +- 柱 +- ▁glorious +- ensi +- 这事 +- ாக +- abu +- 有一天 +- ▁feast +- 동 +- ▁olan +- 把这个 +- ▁inhabitants +- キロ +- ließ +- 资金 +- 庄 +- ▁Tas +- area +- 気が +- gues +- يق +- шин +- 積 +- bug +- 練習 +- ▁stroke +- ▁Sy +- ▁või +- 狂 +- 迟 +- ▁Tot +- arse +- ▁plum +- 不应该 +- ▁handed +- ▁earnest +- 勤 +- 对此 +- 我来 +- 敌人 +- 佳 +- ▁acquired +- lak +- жал +- ▁fever +- ▁impulse +- 任何人 +- 南部 +- ▁dove +- ▁ihres +- 저 +- nega +- 前面 +- готов +- ▁newspaper +- ックス +- rait +- мар +- 碎 +- 老公 +- 所做的 +- ▁otro +- ▁difficulties +- 開催 +- ▁owner +- 批 +- bü +- aver +- дать +- ▁trace +- ▁gleichen +- தை +- weisen +- aɣ +- ▁coin +- شه +- 드 +- 例えば +- agon +- ▁print +- ▁treffen +- اً +- 乗り +- 法国 +- ذا +- ▁hombre +- 隐 +- 不足 +- ▁Spa +- kı +- ▁departure +- 的方法 +- 老婆 +- ▁хотел +- ▁creating +- nten +- 台風 +- 人も +- ▁وجود +- ▁Sk +- ates +- ▁tough +- ▁ўсё +- ▁unlike +- flu +- ▁zweite +- 冠 +- oba +- 以上の +- 一件 +- sell +- ova +- ▁accomplished +- ально +- てください +- 峰 +- pati +- 住在 +- ▁ignorant +- 事实上 +- ▁deeper +- ▁travers +- ▁venture +- 予定 +- らず +- 病人 +- يك +- হা +- ▁Wirtschaft +- 是由 +- ワン +- cola +- صل +- 妻子 +- ▁我在 +- ▁reputation +- ▁entfernt +- trieb +- ▁fiscal +- ▁combined +- การ +- ▁plainly +- ▁closing +- ▁og +- غر +- ▁eher +- 押し +- ▁فقط +- тры +- 多的 +- 要去 +- イメージ +- 欧洲 +- och +- ṣ +- ▁reckon +- ▁granted +- 際 +- ể +- ▁italy +- 熟 +- ļ +- 淡 +- ▁whisper +- лай +- ▁painting +- ▁poi +- ▁smoking +- ▁понимаю +- ёр +- krank +- ▁insist +- うまく +- ▁fairy +- 但他 +- アップ +- мест +- цен +- quis +- まさに +- tör +- ▁mono +- 試 +- 続 +- ▁orange +- キャ +- 你不能 +- お金 +- ▁Sohn +- гд +- 哪儿 +- 网站 +- 你怎么 +- amento +- icia +- 深刻 +- тр +- ▁mist +- تو +- ▁weder +- 以降 +- 乳 +- ▁attractive +- 漂亮 +- 广 +- ▁sue +- ▁咱们 +- にとって +- 追い +- ден +- ▁Cla +- ▁такие +- 始まり +- ках +- حق +- ▁Ali +- 内心 +- ▁jemals +- ▁suspect +- 次の +- ▁wollten +- ▁hunter +- ▁slope +- lee +- agenda +- ▁spre +- ká +- 供 +- ▁pond +- 你了 +- になり +- 还能 +- ▁risks +- ものが +- ▁Av +- юцца +- ▁Because +- ▁мой +- usi +- 叔 +- ▁seeking +- ▁momento +- ▁margins +- 近く +- ▁General +- ▁epi +- hö +- ▁compelled +- так +- тон +- mä +- ▁وأ +- 艺 +- ▁pound +- ์ +- ▁admiration +- ▁songs +- 行動 +- ▁dein +- 館 +- ▁ښه +- ▁abuse +- ▁Stück +- ▁pope +- ois +- ▁Umu +- كي +- ▁igihe +- になっています +- ấ +- ッド +- manda +- hush +- ▁interessant +- ▁hörte +- ▁bya +- ▁jean +- 的手 +- ▁infinite +- ▁entonces +- ают +- 感兴趣 +- ける +- 一体 +- foot +- дол +- ому +- эв +- chas +- ând +- rück +- zia +- ▁이런 +- 难道 +- ▁adapt +- ▁Kor +- 心配 +- ▁regions +- ▁eagerly +- ▁Mensch +- 一项 +- sab +- 殿 +- ▁Kol +- ▁communities +- ▁kaum +- odor +- わり +- ▁Kla +- 而言 +- ń +- ▁yard +- dine +- ино +- ▁lunch +- 武器 +- ▁我现在 +- ▁forehead +- ▁Bon +- ▁fame +- Ж +- ▁那是 +- ▁withdraw +- ▁mask +- ▁تع +- ▁dag +- liness +- 佩 +- 三年 +- ▁всем +- ▁aho +- レン +- 哪里 +- полит +- 냐 +- ▁idle +- ▁dealing +- bern +- 的信息 +- ▁روی +- ご紹介 +- ками +- geze +- eti +- has +- ▁Mary +- ▁planning +- сь +- 每次 +- ュ +- 控 +- 阶段 +- ▁Kunst +- iff +- لى +- liga +- ▁جو +- ▁remove +- 老人 +- ▁mister +- 準備 +- ▁islands +- ▁erreichen +- 多い +- ▁characters +- ▁Bis +- ▁вся +- 一致 +- 祖 +- stieg +- ▁mom +- ▁само +- geri +- boy +- ▁Rwanda +- ▁estat +- 印度 +- ▁client +- wacht +- 收入 +- ▁Mes +- bles +- jä +- ▁acting +- ▁infrastructure +- ▁predict +- ổ +- щи +- ロン +- cido +- grav +- ▁мог +- ▁burned +- ▁gebracht +- ▁shell +- ▁australia +- cult +- 金融 +- ▁steep +- ▁rang +- 出生 +- 假设 +- ▁مر +- ▁anirà +- сен +- ▁まあ +- 这是我 +- ▁되게 +- voj +- —— +- ▁organic +- छ +- 的影响 +- ▁gather +- 对话 +- 很重要 +- ât +- ffen +- dauer +- ват +- tons +- 跟着 +- 并不是 +- 今晚 +- ▁Sinn +- ▁nghĩ +- ▁Bericht +- ▁É +- cono +- lose +- 辞 +- こちらです +- ▁일 +- 爱情 +- だな +- 说明 +- ях +- ▁tag +- ▁اون +- ▁electric +- 昔 +- ▁commander +- 凡 +- கு +- ▁chin +- det +- 続け +- ▁fy +- 比如说 +- ▁thrill +- 一千 +- 证据 +- だったら +- ▁яны +- ▁causa +- ▁insult +- ▁fou +- час +- 实际上是 +- 莎 +- ▁Rück +- ▁vessels +- ▁junge +- ▁eens +- ▁inclined +- ▁opposition +- 計 +- ▁Forschung +- spec +- ▁unfortunately +- ▁towns +- ▁الر +- 提到 +- ▁shirt +- ▁сделать +- 执行 +- 野菜 +- 快速 +- hole +- ▁இரு +- isiert +- ▁ella +- ▁Richtung +- ▁wedding +- ▁Viele +- ▁leadership +- 義 +- 你觉得 +- 销 +- 逃げ +- ▁ali +- ▁institutions +- nā +- aven +- ▁billy +- ▁schrecklich +- licher +- ▁icyo +- ब +- ▁descend +- 答应 +- 判 +- eck +- ▁gihe +- 注意到 +- 情感 +- dha +- '35' +- ▁undertake +- ▁extrem +- 拼 +- ▁Unterschied +- won +- ▁equipment +- لم +- 多く +- år +- lässt +- ▁philosopher +- ▁uttered +- 毕业 +- 主任 +- 星期 +- 施 +- ▁sed +- маг +- 再见 +- ▁Yu +- 我跟 +- 长的 +- やった +- いか +- 发现了 +- くん +- ▁shared +- 租 +- ların +- ▁doubtless +- aires +- كل +- යි +- 가지고 +- ソン +- 的吗 +- ▁Einige +- ▁vrouw +- 不够 +- ▁intense +- fol +- ▁glow +- ▁permitted +- ▁pis +- quelle +- ёт +- 成长 +- طور +- lib +- 跟我说 +- 最後の +- 価格 +- 逼 +- ▁settle +- 结构 +- stände +- κ +- fallen +- ▁negro +- ▁♫ +- chin +- ▁лучше +- য়ে +- schein +- нул +- ▁While +- ike +- ▁tijd +- ▁học +- ्या +- ▁emotional +- 模 +- city +- zed +- ▁passat +- ▁avons +- 래 +- tah +- ▁человека +- 是一 +- говор +- ҡы +- ▁desde +- ▁deny +- ▁obligation +- ভ +- رق +- 異 +- stad +- ▁providing +- 专家 +- ▁Ag +- zak +- ▁Sand +- ▁lighted +- ▁baba +- hall +- ografi +- ▁nella +- stab +- ▁substantial +- иль +- கோ +- ▁vague +- 一方 +- ▁cease +- ▁Erfahrung +- 严重 +- λ +- 的眼睛 +- ▁ありがとうございます +- 去找 +- ▁historical +- олог +- 踏 +- ▁Name +- 意识 +- 何で +- 将来 +- 域 +- یس +- どういう +- したり +- gura +- ▁curve +- ▁Aufgabe +- ▁fence +- ▁dancing +- ▁flung +- ▁investigation +- folge +- ▁evolution +- ▁და +- ▁Мо +- گە +- ▁conserva +- нии +- ▁load +- ▁nhiều +- ▁parole +- 尊重 +- ',"' +- psy +- 効果 +- ▁egypt +- geht +- たちが +- ulu +- ús +- 表演 +- 候 +- そういった +- ▁speaker +- ▁East +- ▁utiliz +- 记忆 +- ▁wooden +- ▁beloved +- 一度 +- ▁allows +- ▁pursue +- keeper +- 環境 +- leh +- 胜 +- ▁phase +- 긴 +- 更好 +- 没想到 +- ím +- tě +- ▁lecture +- ▁응 +- 订 +- 犬 +- ▁vorbei +- ▁Mü +- ▁lately +- nosti +- ▁bod +- 一定会 +- programm +- ▁arme +- ▁irish +- ữ +- 恐惧 +- 생 +- idade +- 按照 +- 佛 +- ▁Gesetz +- ▁rabbit +- 钟 +- ▁wilde +- 国民 +- west +- ה +- 我々 +- 慢慢 +- 刑 +- 頼 +- tun +- 搜索 +- note +- ▁grandfather +- larını +- ▁decisions +- ▁murmur +- ▁terra +- ▁할 +- ▁explore +- ▁Ven +- していて +- கள +- ▁TED +- tivo +- 文字 +- メンバー +- bà +- 驚 +- ▁staring +- 電話 +- 满足 +- 支付 +- pac +- ▁cliff +- erson +- のため +- 穿过 +- 插 +- пал +- ▁trunk +- ▁league +- ▁acest +- ▁Tan +- orient +- cele +- ▁desperate +- ▁彼は +- tical +- ना +- ▁expensive +- ڕ +- 适 +- ▁stuck +- ▁Stunden +- ▁dared +- ▁Jahrhundert +- gres +- ஹ +- ▁cheerful +- かどうか +- oor +- 議員 +- 更新 +- 益 +- һы +- ▁Rest +- 分かって +- 创 +- ▁après +- ▁إن +- иде +- Q +- ông +- ▁obey +- しても +- iad +- tje +- nner +- zimmer +- ますよね +- ▁sistem +- ▁workers +- ▁거기 +- 员工 +- ▁spain +- ▁nad +- ▁rend +- ▁observation +- ▁llama +- ▁volumes +- 地下 +- 北朝鮮 +- ந +- gir +- ▁declare +- ▁upward +- 極 +- طر +- ▁deserve +- ▁klein +- ▁defence +- ▁increases +- ▁simp +- ▁tramp +- 台湾 +- 对他 +- bord +- ▁camera +- ancy +- ▁jacob +- ▁kwe +- ată +- 问题是 +- 実際に +- ▁Sche +- welt +- ▁Arten +- gla +- ▁Bürger +- የ +- ộ +- ▁Worte +- ever +- 梦想 +- bec +- ▁begged +- ▁wretched +- ▁hơn +- ▁хотя +- 些 +- ስ +- ант +- ▁sending +- 降り +- ▁gilt +- lando +- że +- ▁India +- ▁questa +- grün +- 手を +- qi +- ▁Mel +- ▁assure +- 这意味着 +- あって +- смотр +- iber +- ナー +- шка +- ця +- ▁entering +- ▁prze +- tak +- ▁hervor +- ages +- ▁offset +- اج +- ▁今日 +- ▁cũng +- ▁consumer +- zzi +- 신 +- ▁adding +- ▁virginia +- ▁capture +- ▁pistol +- ▁curl +- ▁accounts +- 律 +- ▁Zahl +- rut +- なん +- 紧张 +- ▁pursuit +- ▁Michael +- ası +- ▁Far +- ▁Berg +- itza +- stück +- mira +- ▁besonders +- ▁enhance +- fulness +- dhi +- யாக +- ▁چې +- ube +- 肩 +- ▁jews +- ▁أنه +- ▁ils +- ▁swear +- ▁erreicht +- ▁sentiment +- ▁reaching +- илась +- かり +- ▁cents +- 중 +- 让她 +- ▁volta +- ▁yell +- 今天的 +- ские +- ▁expansion +- ▁notre +- ▁torture +- ▁purposes +- 她们 +- ▁disgust +- ެ +- ▁aktiv +- ▁highlight +- yol +- ้ +- ▁pit +- 所以我们 +- 力を +- ▁magazine +- ▁America +- rance +- 它会 +- 崎 +- ▁saddle +- ▁pont +- 来た +- blau +- ક +- tama +- ვი +- ▁Richtig +- ▁depart +- dag +- ▁只要 +- ▁Trans +- lagen +- ▁кан +- になっている +- 思って +- 不起 +- ▁indulge +- polis +- 鳥 +- ▁четырнадцать +- ▁тэр +- ভা +- gabe +- ▁langsam +- በ +- ▁должен +- ▁leverage +- ▁bench +- 摆 +- ▁distinction +- / +- 大雨 +- 地上 +- ने +- куп +- ▁biết +- действ +- tore +- east +- ▁brook +- brach +- issa +- 해서 +- ▁lesen +- ▁Erde +- ▁bari +- ▁quelque +- say +- sinn +- ▁vend +- 階 +- rand +- نە +- ▁damals +- рак +- ▁recovered +- 過去 +- の大 +- ▁verd +- ники +- 运行 +- ▁begins +- дум +- ▁mbere +- 圧 +- ▁alice +- 范 +- ▁cutting +- ▁rescue +- бар +- 奶奶 +- ▁incredible +- 理论 +- ▁grain +- ▁habits +- なし +- ▁merry +- ▁جا +- ったり +- уме +- 现代 +- نس +- ▁whereas +- ▁cloth +- ▁havas +- ää +- 时期 +- 启 +- ▁gesture +- ▁belonged +- ▁Ко +- تە +- ▁случае +- jet +- 拿着 +- ▁journal +- ▁rien +- 暮らし +- 活躍 +- èrent +- 得多 +- 合わせて +- vuga +- ▁lodge +- 是他 +- ▁gingen +- தே +- ロシア軍 +- してきた +- يس +- ação +- ата +- 一方で +- ▁tat +- 観 +- 一名 +- ▁بد +- ▁irre +- ▁خیلی +- 過ぎ +- ▁sowohl +- 歌曲 +- nett +- ▁früh +- ▁Та +- ▁гэж +- 宋 +- 荒 +- 掌 +- kad +- ▁Reise +- ▁dread +- ▁fog +- 没错 +- bled +- うわ +- 积极 +- ▁Verbindung +- ▁sensible +- ▁mounted +- ▁interes +- mur +- 设备 +- 音楽 +- '2000' +- ▁никто +- rug +- ಾ +- We +- 承 +- ▁shadows +- ▁vin +- nung +- 被称为 +- ▁Weißt +- ▁arrow +- jal +- زه +- ▁misery +- 狼 +- lets +- 的机会 +- wig +- glich +- 遗 +- fehl +- ▁komm +- ▁なるほど +- 信任 +- ▁brachte +- iel +- ▁editor +- ▁Alter +- 他对 +- ости +- ▁gegeben +- над +- جي +- نم +- gard +- lja +- 傻 +- лав +- ť +- 、3 +- ▁padre +- 厳しい +- 我不能 +- んじゃない +- ▁observ +- उ +- ▁prepare +- 珠 +- tanga +- でございます +- ▁bowed +- ▁Super +- '27' +- iers +- ись +- ▁Sen +- 不如 +- ▁jumped +- ▁Gal +- ▁permet +- 仕 +- 很少 +- ރ +- 投げ +- 了这个 +- ▁troubled +- ▁sufficiently +- 我不想 +- hun +- ▁cars +- rzy +- ▁그래 +- 欢 +- gelijk +- erlei +- ▁whence +- рук +- și +- ▁Martin +- stelle +- ▁Van +- ▁باید +- 塩 +- ▁schl +- 采取 +- ング +- 让人 +- 为什么要 +- ▁lamb +- 진 +- ▁fired +- ▁Wissenschaft +- 沿 +- 多了 +- daki +- れない +- ▁señor +- dura +- zahl +- ▁zeer +- ▁external +- ▁كانت +- mour +- 失去 +- ▁Vereinigte +- ▁муж +- ર +- cchi +- فعل +- ▁schreiben +- ▁Deshalb +- ▁falls +- ▁disc +- ▁drum +- ▁нибудь +- ▁рэ +- 革命 +- ▁faut +- 離 +- みると +- ▁dalam +- ▁Eis +- ▁helpless +- bbi +- 闻 +- ▁голос +- 的脸 +- ▁schöne +- 电脑 +- ▁scorn +- 没什么 +- 正解 +- spann +- ▁Danke +- 飞机 +- ▁runs +- ▁includes +- assa +- ▁gedacht +- ▁fins +- verse +- aged +- enzi +- bé +- mento +- ▁Arbeits +- fang +- ▁straw +- ▁Schul +- 訪 +- ▁experiences +- ▁beam +- ▁rendered +- データ +- ▁lesson +- おり +- ▁verse +- ▁mirror +- زا +- ▁cheek +- カメラ +- ▁Gegen +- ял +- 部队 +- 穿着 +- ▁leads +- ત +- ▁technical +- ▁conceal +- ▁zeal +- ▁authorities +- ▁losing +- arri +- 我们是 +- ▁wagon +- ▁Bett +- ▁reports +- ▁weapons +- spel +- ▁kick +- ▁그게 +- ▁assumed +- ▁qualities +- あげ +- 魅力 +- ▁dwell +- マイ +- ▁peak +- 見せ +- ▁jug +- ▁endlich +- ▁tio +- 我没 +- ▁stretch +- À +- falls +- ្ +- пі +- nih +- ▁aufge +- 公開 +- аз +- lju +- گاه +- ▁eve +- 谈谈 +- მა +- ▁namens +- ▁করে +- ジェ +- وو +- aging +- tered +- вай +- ▁zit +- とこ +- ස් +- iah +- ▁discipline +- ര +- 미 +- Re +- bara +- ▁exposed +- شت +- ▁infant +- ▁Ä +- ▁email +- ▁owe +- 期间 +- ▁icy +- 一句话 +- 徐 +- ょ +- ▁yara +- ▁Ana +- ▁carbon +- 行了 +- eja +- あす +- ▁pile +- ▁planned +- kita +- ▁railway +- ▁знаете +- 一句 +- 製 +- üb +- 今夜 +- ▁ahora +- ▁naj +- ?」 +- dou +- şte +- 正是 +- ▁ultimately +- 沖縄 +- bahn +- vine +- 减少 +- ▁پس +- ▁Washington +- ▁considering +- ▁Era +- ▁persona +- nimmt +- 有时候 +- ▁bara +- 用的 +- ▁tomorrow +- ifa +- 他们是 +- 看了 +- を中心に +- front +- ayı +- ▁primary +- 的心 +- 过程 +- ▁spur +- ▁distribu +- 要么 +- уш +- ▁nk +- 戦争 +- fir +- ▁измен +- 案件 +- ▁neighborhood +- 意識 +- ▁drunk +- ▁よろしくお願いします +- 黑人 +- ▁tran +- ▁мир +- ▁extend +- ▁USA +- 神经 +- 时候 +- ▁그렇게 +- که +- ▁raw +- nus +- 学会 +- mpel +- impo +- 军队 +- ▁Gericht +- arra +- ▁winds +- ▁jungen +- ప +- ▁Lassen +- ▁деньги +- ▁sabe +- ▁mobile +- пло +- ති +- ▁cub +- illo +- ecek +- ▁こちらは +- ▁Gri +- ി +- ▁rằng +- ▁Mil +- piece +- ▁mucho +- 处于 +- ▁pier +- ▁aloud +- ▁Gold +- ద +- ▁Hilfe +- قي +- ▁americans +- geno +- ▁gates +- vio +- 早期 +- ▁separated +- ▁நீ +- ન +- 出す +- 最新 +- ▁mam +- illes +- ▁ведь +- ▁avant +- ▁заб +- уй +- ▁এই +- 更好的 +- key +- ▁kannst +- ▁quantity +- ▁свое +- ▁toujours +- ▁ages +- ു +- ませんでした +- ▁opinions +- ▁images +- Se +- 窗 +- setzung +- 开放 +- 就能 +- みて +- tritt +- 辺 +- range +- 運動 +- ▁wander +- вет +- 費 +- ▁haste +- 正式 +- ▁sexual +- ṭ +- ▁Gedanken +- ▁reli +- それに +- ▁100 +- ▁weird +- ದ +- 细胞 +- ▁همه +- ▁portrait +- ▁chill +- 生活中 +- чер +- 纽约 +- estra +- ▁sera +- 全く +- anz +- ▁слова +- ▁County +- もん +- ▁det +- وج +- ▁deed +- ▁claims +- ▁delightful +- ▁vroeg +- ▁яе +- ข +- 別の +- ▁тех +- 면은 +- ark +- ▁scattered +- ▁gazed +- rado +- гром +- वा +- Any +- обра +- 仙 +- ality +- ▁missed +- ▁prin +- 宣布 +- ▁flatter +- 都没 +- ▁essere +- ▁personally +- 子里 +- 後ろ +- 离婚 +- ▁magnificent +- ▁miracle +- ▁rolling +- ▁thread +- 述 +- ▁fuel +- ▁altar +- ▁قبل +- دى +- お母さん +- 行く +- ▁daughters +- өг +- ▁crash +- ະ +- ू +- ▁challenges +- его +- 哪个 +- 介 +- ▁rồi +- tron +- akt +- ▁ص +- undzwanzig +- ▁gens +- maid +- できます +- plaats +- ▁bosom +- ロシアの +- ▁mm +- ▁methods +- staan +- 兄 +- ection +- 握 +- ▁그때 +- ான +- كى +- せる +- بع +- colored +- ▁ĉe +- нда +- mbre +- ▁robe +- マスク +- ▁Mars +- ▁concert +- mov +- you +- ▁midnight +- ▁missing +- 分钟 +- ▁drag +- ার +- ▁joint +- nost +- つき +- ▁Ён +- ▁于是 +- sini +- ▁Jag +- ương +- 历 +- ables +- ▁restrain +- ▁africa +- ▁horizon +- 以至于 +- خت +- ▁reduction +- ▁совершенно +- ▁insisted +- 邀请 +- 欲 +- 坦 +- bru +- ▁Anfang +- ▁zeggen +- 우 +- ▁Feuer +- freund +- bwira +- 减 +- ண் +- ▁Afrika +- ▁außer +- 这么做 +- 宅 +- hearted +- legt +- 長い +- にお +- omen +- ▁trou +- ▁Brief +- ▁anna +- ▁vest +- ▁你就 +- ских +- ▁bestimmte +- ▁sia +- 练 +- ▁raising +- 竹 +- 规则 +- ▁ignorance +- cep +- dek +- ▁گفت +- ▁einzu +- 敗 +- ▁führte +- ▁хорош +- حل +- ▁이렇게 +- 成本 +- 撤 +- ▁consequences +- ▁factor +- 旁边 +- ▁patron +- ▁involve +- pas +- 风险 +- erie +- cap +- 宿 +- 够 +- ▁Ф +- 一生 +- られました +- ▁sink +- 建造 +- ▁valor +- ▁против +- ▁cock +- ▁نیست +- 年龄 +- ティー +- 严 +- izza +- ▁момент +- mäßig +- ▁这是一个 +- ▁province +- ▁convert +- tina +- cup +- tiques +- ▁breed +- 干吗 +- rb +- gefallen +- ▁paint +- ▁foe +- ulation +- 沃 +- ▁kugira +- igh +- っていうこと +- ▁அவ +- plic +- koze +- 亡 +- ▁prote +- pok +- ▁primera +- ▁Sun +- ▁Volk +- ▁entra +- ▁другой +- ▁aufzu +- емся +- ▁cards +- のよ +- куль +- 改善 +- ▁perché +- 执 +- ▁Dingen +- ▁mainly +- wohn +- ドル +- ▁cet +- ヒット +- ವ +- ▁folk +- onde +- このように +- 劲 +- 明らかに +- ▁trên +- থ +- 旗 +- 봐 +- ަ +- ▁மா +- ▁significantly +- ▁chase +- ▁مثل +- 振り +- 当初 +- 儿童 +- ▁nam +- 会議 +- 剑 +- ӓ +- ▁Richard +- 날 +- ▁absent +- რ +- луч +- 载 +- ▁هناك +- ▁appar +- せて +- ▁Band +- ▁我不 +- 後に +- oedd +- De +- ▁минут +- 没有任何 +- 距離 +- 竞争 +- ▁Ö +- ▁Fahr +- gaben +- ▁15 +- sert +- 危 +- ▁кого +- 本人 +- ά +- ▁Air +- ▁Kultur +- yal +- ▁lust +- 漫 +- ▁developing +- '26' +- ▁boots +- あとは +- stream +- ▁ບໍ່ +- 弾 +- dress +- ▁quelques +- ▁Bewegung +- ▁messenger +- жен +- ▁roads +- ų +- ▁menschen +- gender +- deck +- ▁molto +- mart +- 学家 +- ▁basic +- 也不会 +- ▁nag +- チャ +- を受けて +- ի +- 有的 +- ▁firmly +- 提高 +- ▁одно +- 団体 +- ender +- ▁Bezug +- kura +- wort +- ▁inclu +- لار +- 作家 +- 話題 +- 住民 +- bura +- çı +- ▁crowded +- diği +- ▁outcome +- 有效 +- volle +- ▁May +- َّ +- ▁honey +- 行って +- чет +- boot +- 分かる +- یی +- 家伙 +- boat +- wara +- stimmen +- 公平 +- 発見 +- ▁Вы +- 的情况下 +- ర +- ▁sana +- ▁ram +- ▁тысяча +- ▁especial +- ▁hastily +- されます +- ▁Vielen +- 和其他 +- 或者是 +- ▁hai +- ▁nearest +- ▁multitude +- kraft +- үүд +- minister +- ivi +- ▁rất +- ▁plays +- ▁clay +- 销售 +- ▁porte +- 周围 +- wechsel +- ууд +- ▁erzählen +- ▁ernst +- ▁оно +- ▁系 +- 市民 +- ▁leaning +- ▁overcome +- 长期 +- melt +- ▁Groß +- үр +- ▁innerhalb +- ▁scrap +- cita +- ▁returns +- ▁april +- 奈 +- gehalten +- 应用程序 +- dela +- ▁kri +- amp +- 滚 +- ▁grasp +- ▁cách +- 软 +- ▁corps +- elde +- ▁lincoln +- ▁lee +- 全て +- ▁continually +- ▁Rus +- ▁خوب +- 一步 +- 人と +- 一九 +- ▁đầu +- ▁lokal +- ▁молод +- に対し +- ege +- ▁disorder +- ▁implement +- 吐 +- 默 +- nick +- 足够 +- 者が +- ▁twin +- ▁между +- 餐 +- 下的 +- タイ +- iment +- 自分が +- ▁reveal +- ờ +- schlagen +- uki +- richten +- тельно +- 相关 +- ▁kadar +- ▁cosas +- ▁chinese +- ▁Paris +- ▁rebel +- 挑戦 +- ▁এক +- ▁humor +- ▁improving +- һа +- いただいて +- ваць +- ▁fühlen +- ▁cerca +- āk +- ▁ornament +- ▁Wahrheit +- 带到 +- 科技 +- 找到了 +- 真的很 +- euse +- ▁purple +- 聞き +- 外面 +- ▁deshalb +- ▁amid +- ▁Mac +- 疯狂 +- ления +- 颜色 +- ▁clau +- ுக்கு +- ▁continua +- 职业 +- ネット +- 張 +- کرد +- 浪 +- 的行为 +- kleid +- ல்ல +- ▁september +- ▁Schiff +- tava +- 软件 +- 遠 +- 也不是 +- ▁Este +- 思う +- ▁confirm +- tete +- になると +- 乌 +- istan +- どれ +- äre +- 皇上 +- ▁oath +- 愤怒 +- دل +- 朗 +- ▁apparent +- ồ +- ▁khác +- ▁shaking +- ▁acquainted +- ▁citizen +- stav +- ▁biz +- 陸 +- 得很 +- 权力 +- ▁lieben +- ▁fost +- ▁badly +- ▁King +- ▁mankind +- util +- ▁هیچ +- ҳ +- tele +- sucht +- 戻 +- Da +- ▁centuries +- ようです +- нар +- ▁urged +- чен +- matic +- ▁throwing +- ▁outlook +- ▁loves +- ▁religi +- を感じ +- OK +- gab +- ▁Nähe +- ▁issued +- zioni +- ▁đây +- iriza +- gesch +- 裁 +- aud +- ▁Universität +- さっき +- lika +- ▁studio +- рат +- 聴 +- чин +- 分からない +- ▁зада +- ▁afterward +- lerini +- ▁conta +- ましたが +- 逊 +- 트 +- ▁있는 +- ▁Tr +- ▁illness +- 見え +- ▁alter +- ▁sounded +- posta +- ▁Job +- ▁significa +- 下降 +- ▁третий +- nyo +- elen +- ▁کنیم +- avuga +- ▁poem +- ▁Sur +- 变成了 +- ख +- 再び +- sili +- 早就 +- نج +- greg +- 絶対 +- ▁First +- trac +- ▁photo +- 当年 +- greifen +- iĝas +- ▁wären +- ▁caso +- ode +- '45' +- 能不能 +- Me +- らしい +- ▁enthusiasm +- マー +- ▁bene +- 警戒 +- انه +- ừ +- krieg +- ř +- 爬 +- ▁شهر +- ▁preserve +- ▁Kur +- 震 +- ▁spear +- 浅 +- ▁bwo +- ▁moeten +- imba +- ▁comparison +- したこと +- ▁câ +- 食べて +- 胖 +- 拡大 +- ▁право +- ▁kw +- ▁الخ +- 蓝 +- 臣 +- 什 +- ▁recorded +- ▁rational +- ▁estimate +- 你知道吗 +- ▁thinks +- 見た +- ▁arrest +- ssy +- ▁trend +- 表面 +- eke +- ▁durant +- ▁contain +- ▁Dy +- ற்க +- ைய +- 一件事 +- 临 +- кә +- sicher +- 人都 +- ▁gathering +- ▁transaction +- coll +- ▁explo +- ▁maria +- ovan +- ▁当我 +- ног +- 什么事 +- ला +- 同事 +- ▁toch +- 議 +- ▁vorher +- 说是 +- ▁Wat +- ▁genuine +- リーグ +- ckte +- jahr +- ▁madam +- ध +- مون +- タイム +- ▁sig +- scribe +- 购买 +- premi +- Pa +- ▁হ্যাঁ +- ога +- 识 +- ▁Fern +- 日子 +- 斜 +- 분 +- ника +- ▁hook +- ania +- ▁schwa +- ▁Zeitpunkt +- ▁год +- ▁meadow +- ▁charity +- ▁نام +- ▁column +- ministr +- ▁Kraft +- ঁ +- 的钱 +- ▁revealed +- 宣 +- ▁fearful +- ▁melancholy +- ▁daher +- 机器 +- ▁первая +- まずは +- vesti +- 把自己 +- ▁ansehen +- ▁lugar +- ▁Geschäft +- 交给 +- ▁leaf +- зо +- 腹 +- 虎 +- 'No' +- ქ +- ▁compliment +- 但这 +- ▁trot +- ▁lands +- ▁Fuß +- 報告 +- ொ +- 巡 +- iš +- ▁manners +- جد +- 治療 +- 等待 +- خط +- ▁brow +- ▁mock +- овая +- tico +- 生き +- ▁wet +- 怎样 +- passen +- lur +- ▁Yuba +- シー +- 不在 +- embro +- ধ +- ▁zonder +- ន +- Ü +- ▁craft +- nji +- 档 +- فی +- য +- ▁misfortune +- kaba +- вес +- ക +- flow +- ▁Pero +- さんです +- アウト +- чым +- 过程中 +- ppel +- これで +- cce +- вае +- ▁alike +- 阻止 +- しましょう +- ▁blu +- 嘉 +- ▁senior +- ▁stellte +- version +- 药物 +- ▁然后我 +- 忘 +- вала +- ▁gloom +- 复杂 +- 的节目 +- ▁mejor +- ča +- wende +- 演员 +- ▁borne +- センター +- ▁спа +- ▁ebi +- ▁requires +- 杜 +- ▁پا +- ▁fac +- 医療 +- pher +- 第二个 +- ▁switch +- yne +- ▁theatre +- 作った +- 信号 +- 体验 +- лам +- 你需要 +- ▁sixth +- ▁abandoned +- ▁tipo +- 類 +- ▁noted +- 规 +- ▁initial +- 上去 +- شار +- ▁charged +- 宇 +- 돼 +- ▁ciudad +- 当たり +- 为你 +- ▁cares +- އ +- 活着 +- ▁encourage +- 門 +- tures +- 간 +- ▁Би +- ▁referred +- erde +- ▁leaned +- дом +- ▁Blut +- ▁шо +- 非常感谢 +- انت +- 画面 +- ▁marks +- ▁flock +- ะ +- 以下 +- ▁công +- ▁saß +- ▁originally +- ▁sowie +- kti +- ▁encouraged +- cm +- psi +- ▁жизнь +- ▁hunger +- ता +- 我今天 +- 忠 +- stel +- уп +- 自信 +- قى +- ▁volen +- acco +- ▁acu +- ▁яшчэ +- ▁而是 +- lation +- aks +- nish +- angan +- 芸 +- гад +- 할 +- ям +- ี +- ogni +- ▁hoping +- 約 +- 紙 +- 出版 +- さんも +- ▁Hat +- ▁likewise +- 치 +- ▁contempt +- ▁Seiten +- ▁свою +- 我我 +- ▁wanting +- ไ +- య +- anze +- こそ +- ▁operational +- вести +- سر +- ▁gaan +- کس +- maß +- 民族 +- 仅仅 +- 阿姨 +- فل +- ▁тысяч +- rò +- DNA +- 工程 +- ▁stout +- 毎日 +- ▁senses +- 研 +- dil +- ▁fuhr +- aca +- 担当 +- ▁говорить +- ▁dispute +- rgi +- ▁landscape +- tima +- ▁الذي +- сте +- ▁brick +- بول +- jer +- َا +- ▁examples +- 对我们 +- ▁Hin +- ▁großartig +- ▁gir +- ▁engineering +- ▁cau +- ▁monk +- mona +- ځ +- 上班 +- 作者 +- ▁má +- ▁الط +- зов +- 伝 +- ▁chỉ +- dern +- ▁provisions +- '28' +- ales +- ▁Bal +- 创建 +- atory +- ▁introduce +- ▁назад +- bart +- 好きな +- mother +- üz +- ▁engage +- гон +- лад +- ▁champion +- 子的 +- 食品 +- 見える +- SNS +- ▁inferior +- ▁gratitude +- 九州 +- ▁trained +- ▁mensen +- 可怕的 +- 闲 +- 走吧 +- stern +- view +- 玛 +- 开了 +- 単 +- ▁finance +- ▁Gebäude +- führung +- 是这样 +- の影響で +- すでに +- 的关系 +- ▁personas +- ▁bride +- ▁occasions +- 自分で +- ▁priests +- と同じ +- 搬 +- imiento +- сем +- ▁То +- 呗 +- iche +- used +- стаў +- ▁chicken +- ▁Straße +- 好处 +- 是非常 +- hom +- 公司的 +- away +- ▁temperature +- ▁sob +- ▁darling +- ▁knock +- tick +- 术 +- 甜 +- franc +- ▁гол +- ▁Quan +- based +- 不得 +- しっかりと +- ▁artificial +- sburg +- メディア +- 大きい +- නි +- 增 +- ▁आ +- られている +- өөр +- tät +- 很大 +- ▁todas +- 工作的 +- aş +- 听说 +- 所说的 +- vali +- schied +- ▁objective +- سو +- 区域 +- じゃなくて +- avait +- likuwa +- 鹿 +- ▁laut +- ではなく +- ▁monta +- ▁swell +- 主席 +- ▁anderer +- ▁ellos +- 是吗 +- ▁determine +- 的第一 +- ▁Familien +- ▁threatened +- のも +- 灰 +- 我的意思是 +- ▁شو +- ▁utmost +- miz +- ▁nacht +- ▁arts +- 束 +- ▁commit +- ▁backward +- ▁efficiency +- ▁surrender +- ebe +- とともに +- نده +- 通知 +- ەر +- 这些人 +- baha +- ▁sonst +- git +- vale +- ▁зам +- iness +- ▁Preis +- お伝え +- ▁imagined +- 内で +- ▁visual +- 의 +- ▁Bedeutung +- んだろう +- まった +- чат +- wang +- ▁probable +- 他也 +- ▁conclude +- ▁Ili +- 財 +- 設 +- वि +- ots +- dium +- eerd +- ▁employment +- 的女人 +- ຮ +- 梁 +- 変わって +- 民主 +- quent +- 十六 +- uge +- ▁retain +- ச்ச +- ▁monarch +- ▁receiving +- かん +- utse +- ▁dreißig +- ▁Anne +- ▁employ +- оз +- ▁attempted +- ▁july +- ▁nào +- tief +- すぐに +- ēja +- ▁draußen +- ▁könig +- 我们也 +- رج +- ▁detective +- kup +- ▁geç +- そのまま +- ぶり +- வர +- ▁childhood +- кал +- ▁ciutat +- ении +- ▁bloom +- かも +- ▁wilt +- koj +- ▁poured +- んの +- ▁hinzu +- 節 +- ager +- 附近 +- ▁femme +- 才是 +- cco +- ▁ramp +- によると +- buka +- ▁уг +- ▁eki +- ▁monument +- ▁contains +- 公众 +- öz +- ▁items +- Mo +- поль +- ▁kleiner +- 从来没有 +- が入って +- ▁instruments +- ▁thine +- ▁essen +- 侧 +- habit +- 桃 +- をお +- ▁suchen +- 敏 +- ▁Region +- shin +- تل +- ▁Tiu +- 尚 +- 葉 +- ators +- наход +- డ +- ▁могут +- zik +- ステ +- 态 +- wagen +- ▁recognition +- mez +- フィ +- ▁safely +- ▁Jack +- ija +- ▁телефон +- овка +- ▁commitment +- 跟你说 +- ▁wage +- зда +- සි +- тын +- 好不好 +- ▁мало +- ▁alleen +- ▁பு +- ▁hasn +- スの +- ってきた +- 悪い +- ▁relatively +- ▁Mur +- ▁Bru +- ▁relationships +- ▁rat +- るように +- ▁Doch +- ▁noon +- 同样的 +- ▁integr +- 简单的 +- ▁seal +- гляд +- ▁Uhr +- 我怎么 +- ▁dining +- ▁gebe +- culture +- 師 +- 他不 +- ▁kot +- ▁huis +- 帮你 +- 大家都 +- ▁solve +- fur +- ▁poll +- ▁jamais +- meri +- ▁cared +- bonne +- 思想 +- 数量 +- 一半 +- ▁furniture +- ▁territory +- ▁verbunden +- gaan +- Imana +- herr +- ▁estar +- ▁revis +- hale +- ▁Kü +- ▁lucky +- 账 +- ▁pursued +- の皆さん +- っていうのが +- ▁mondo +- 瞬間 +- スポーツ +- dě +- ▁ugly +- 秦 +- 資 +- ▁ولكن +- ▁gering +- пас +- 始めた +- ▁cries +- ありがとう +- 裂 +- ▁amor +- alis +- haber +- ë +- 巨大 +- гер +- たの +- kee +- وە +- ▁groot +- ▁प्र +- цев +- 新たに +- 谱 +- ары +- نفس +- ▁ваш +- ▁кры +- maal +- ▁mum +- iter +- ▁mig +- bá +- 盟 +- 向け +- ▁betty +- ▁никогда +- ▁кү +- гэ +- どの +- ブラ +- 北部 +- йн +- ▁peasant +- gren +- 很容易 +- 下さい +- ไม่ +- ▁Ek +- ▁Are +- friend +- ▁invisible +- evi +- ▁climb +- lek +- rika +- tua +- ▁terug +- эк +- ▁mijnheer +- ▁decir +- ▁Mill +- とおり +- ▁studi +- ▁shield +- 伸 +- assi +- ▁award +- 需 +- pira +- 禁止 +- ▁autor +- ▁contre +- ▁entend +- 给他们 +- ▁hugh +- '!"' +- ▁passa +- ▁erwähnt +- 公开 +- ▁zweiten +- iau +- ▁Ok +- mitten +- ৈ +- 喊 +- dle +- 来る +- inu +- ▁ئە +- ▁freely +- 汤 +- なんですよ +- ▁nuestro +- ▁couch +- ▁mistaken +- '400' +- ▁expecting +- 攻击 +- ▁landing +- 你对 +- 的就是 +- ▁größte +- ▁那就 +- 这对 +- 点击 +- ried +- ▁bowl +- 裏 +- და +- kah +- بط +- face +- lekt +- ▁urbo +- ▁solchen +- 距离 +- вели +- ▁drama +- をした +- chip +- اص +- mouth +- ▁statt +- antwort +- kho +- โ +- 她是 +- ▁literary +- ▁بیا +- fassen +- ▁michael +- ▁nights +- ▁jag +- 都可以 +- ▁Geschichten +- дын +- 出来的 +- yê +- 模型 +- ▁آیا +- ▁пятнадцать +- ▁belle +- ピー +- ▁Stra +- бит +- ▁merchant +- ▁russia +- 骂 +- ▁Amb +- 今は +- youtube +- 수 +- ▁grade +- ▁ɣer +- ც +- 撒 +- ▁pipeline +- 聚 +- ▁Möglichkeiten +- たのは +- ▁julia +- 容疑者は +- 微信 +- ▁얘기 +- くなって +- ▁umuntu +- sprung +- などに +- খা +- ▁vorstellen +- ▁decent +- 動か +- もいい +- 的力量 +- トン +- ▁acted +- ▁Personen +- 恐 +- 大型 +- ▁reproach +- エン +- ▁nhà +- ▁Heute +- に対する +- マーク +- ▁Street +- ▁toutes +- ▁hinein +- ▁двенадцать +- даа +- ▁ब +- ▁Ah +- ера +- ▁kama +- ▁hob +- ▁abzu +- 黑暗 +- ▁hated +- ▁steal +- ▁더 +- ▁yıl +- ▁事实上 +- volu +- ▁powder +- Ch +- klu +- 针 +- ং +- ▁Entscheidung +- ▁mail +- 话题 +- ▁otra +- rir +- ▁rhy +- ▁сразу +- 你可能 +- cija +- там +- dow +- 摸 +- rite +- ienne +- 感染者 +- play +- lick +- ▁denk +- ▁están +- 若い +- ▁verändert +- チャンス +- 红色 +- ▁bade +- ây +- mt +- nych +- 世代 +- ▁johnson +- ▁fears +- som +- 什么呢 +- 去做 +- ▁prompt +- 最終 +- ▁capabilities +- ுவ +- ▁Anti +- ▁harder +- 在那 +- ides +- ▁examination +- ▁invitation +- ▁Erfolg +- 小的 +- 定义 +- 测 +- ▁això +- 住了 +- 赫 +- ▁авто +- ▁apt +- ▁Roman +- wahr +- hard +- ▁irà +- ▁toute +- 会場 +- ▁spectacle +- 個人 +- 德国 +- حد +- 别的 +- けて +- ▁näher +- mpe +- 用意 +- ▁کی +- ▁bedroom +- ▁puc +- ▁nascut +- 一日 +- ▁30 +- ▁meantime +- ということは +- ▁Charles +- ▁shareholders +- 明白了 +- 국 +- 故 +- ыз +- තු +- 十一 +- usta +- ೆ +- ▁parla +- اخت +- ▁inches +- power +- 的这种 +- ずに +- berry +- 品牌 +- 引起 +- ▁historia +- ▁pret +- ▁fantastic +- 威胁 +- kru +- 当他们 +- ؤ +- esi +- ▁occupation +- rose +- ር +- ▁statue +- 決定 +- ясн +- ો +- ▁Ton +- ▁blij +- uɣ +- ogo +- ▁favorable +- 我从 +- ▁outline +- atur +- んじゃ +- ▁বি +- ▁conception +- ▁comun +- 大谷 +- меш +- 었 +- ▁session +- ▁fed +- 今まで +- ▁ridiculous +- 妹妹 +- бр +- ▁maig +- フランス +- ▁2017 +- ترین +- ▁глаза +- ▁её +- ▁Computer +- ▁vanished +- kauf +- ▁Unterstützung +- ▁gukora +- 做的事情 +- 业务 +- ▁schm +- 러 +- ▁gotten +- ▁pār +- ▁rece +- ▁zuerst +- கா +- 猎 +- ▁vergessen +- ▁weet +- ný +- ▁Japan +- ▁pointing +- ▁estos +- ▁unconscious +- だけど +- னா +- ▁permission +- هایی +- вел +- 一定是 +- 头发 +- ине +- 悔 +- ▁Zum +- ッシュ +- 杀了 +- 様子 +- ▁blush +- ▁sharply +- 做得 +- ▁befindet +- ▁cyf +- ▁football +- ▁alguna +- пов +- 泥 +- ghi +- 十八 +- ▁treball +- ▁inspired +- ▁pattern +- ▁crystal +- 効 +- ▁cultural +- ▁monster +- ▁Bücher +- ▁என்ன +- сел +- ▁pomp +- ▁これで +- 記 +- eyed +- mati +- トリ +- boo +- 庭 +- commerce +- pru +- ▁records +- 取得 +- culo +- ▁Mau +- ようと +- ▁Ban +- 特殊 +- ฉัน +- 采访 +- дра +- ош +- イベント +- 发出 +- ▁prayers +- ▁employees +- klo +- count +- ▁panel +- ▁crossing +- 擦 +- 这是我们 +- ▁Frank +- ▁kinda +- ghan +- reichen +- ▁shone +- có +- ▁tutti +- 真实 +- ▁avenue +- ちょうど +- kultur +- 在我的 +- ▁iyo +- ▁fetch +- essen +- ▁detect +- ▁England +- ▁село +- ▁난 +- ▁reaction +- 特定 +- 采 +- person +- 惊讶 +- ▁strangers +- ▁gemeinsam +- тыр +- ▁beard +- ▁gleiche +- ▁Africa +- 周り +- ▁сколько +- ▁steadily +- voca +- 两年 +- zira +- ▁startled +- ▁muttered +- 寄せ +- 你应该 +- 策 +- ▁jud +- 在他们 +- 闪 +- 개 +- ▁millor +- ▁vein +- に向けて +- 香港 +- 播放 +- ▁accurate +- 扬 +- 살 +- ▁Website +- ফ +- 覚 +- ▁whirl +- よし +- ope +- ລ +- 英雄 +- ▁我会 +- ▁gek +- фі +- 是怎么 +- ▁rap +- ますか +- ▁attacked +- ▁endure +- ▁tie +- يع +- rp +- rash +- ▁specifically +- ▁collected +- nahme +- uous +- න්න +- dru +- 稳定 +- oid +- と思った +- ▁каб +- how +- ▁以及 +- ▁anchor +- 行き +- ▁pia +- ingham +- ▁также +- 礼物 +- ▁Typ +- 理想 +- ▁lleva +- ないように +- 角色 +- uck +- ી +- ▁abstract +- ▁Steve +- Pro +- ▁secured +- ▁бес +- mist +- 生意 +- ▁consequently +- ▁vriend +- 的世界 +- ▁führt +- ໄ +- ▁railroad +- ▁ticket +- igis +- ▁Ji +- 道德 +- ▁disgrace +- 소 +- ▁compare +- 我必须 +- ▁wandering +- ▁knocked +- ▁tant +- liter +- ▁procure +- ▁oedd +- media +- ▁offensichtlich +- 都市 +- fed +- ▁続いて +- کار +- ▁resistance +- ▁ئى +- ▁menos +- ▁maken +- 空气 +- 제 +- stock +- 負け +- ▁disappointed +- fee +- 選手の +- ▁admire +- ่า +- ▁marie +- 立即 +- 質問 +- ▁directions +- eron +- ▁Jean +- ясь +- يات +- კ +- 汁 +- 兴奋 +- ▁egg +- كا +- ▁erinnern +- ▁Polizei +- ய் +- ▁È +- 吸引 +- iere +- ຍ +- ▁dip +- ▁starts +- ▁свой +- cir +- ক্ষ +- 兴趣 +- ्य +- fekt +- ▁Marc +- ▁coward +- 匹 +- ▁உள்ள +- ▁dalla +- とした +- ▁brutal +- ▁traf +- holen +- 肥 +- gian +- 鲜 +- 课程 +- 会儿 +- ▁resumed +- ຕ +- ▁территория +- schul +- ▁complet +- ▁sighed +- 限制 +- ▁elsewhere +- ança +- 质量 +- ノー +- ▁Versuch +- образ +- kwe +- ▁virus +- 天気 +- 筋 +- 的书 +- ▁timing +- 熟悉 +- 促 +- ▁дома +- 对了 +- ▁Damit +- 我给你 +- ▁Bel +- ối +- ▁Chance +- জা +- ルー +- 快点 +- これも +- anca +- ▁frau +- 周辺 +- ▁pierre +- 干嘛 +- ▁فکر +- 教堂 +- ▁確かに +- 香り +- 道理 +- agit +- 有多少 +- 指示 +- ம்ப +- ▁patch +- スーパー +- ▁tonight +- ▁Markt +- رم +- ▁Regel +- migrant +- miş +- sió +- 巧 +- kha +- Ha +- mination +- ▁astonishment +- ▁asia +- má +- kota +- дээ +- ▁Fehler +- ▁Dieses +- ▁persone +- cant +- ▁aquel +- 消防 +- ▁perfection +- cció +- rren +- 门口 +- fest +- ▁viz +- 粗 +- ▁nonsense +- schätz +- ができる +- 程序 +- ▁говорил +- ▁Clo +- siz +- ▁identify +- ós +- ▁omu +- 祝 +- 続き +- ▁род +- ock +- 表現 +- ▁slightest +- aĵo +- 豊 +- ▁пожалуйста +- ски +- ▁Lehrer +- ▁erfolgreich +- moor +- பு +- ▁players +- ▁vì +- ▁descended +- qual +- xo +- ▁hopeless +- ▁conducted +- 手术 +- ▁Ay +- ▁12 +- っちゃう +- 生活的 +- ▁dragged +- ▁بعض +- нет +- ▁inte +- мон +- ▁teu +- тө +- ▁liquid +- ▁hip +- find +- moni +- ▁State +- Е +- ▁shooting +- ▁legend +- 埋 +- ▁revenues +- ▁unglaublich +- abel +- слав +- ▁” +- 听起来 +- 所有人 +- ▁düşün +- 了他的 +- 残り +- fro +- ▁bend +- ▁wirst +- ▁akk +- ▁hitherto +- 成長 +- こうやって +- ▁dirty +- metri +- 分の +- ▁perceive +- ▁jur +- vra +- خا +- ▁năm +- 晴れ +- 酷 +- ▁poste +- лер +- lais +- ▁sav +- 认真 +- 毕竟 +- with +- ▁regional +- ▁scholar +- 苹果 +- 改めて +- 因素 +- டா +- кы +- ▁sembla +- zustellen +- ▁pupil +- ifying +- 缓 +- 手に +- 名前 +- ▁совсем +- 相談 +- ▁ал +- ▁kendi +- ▁promote +- ▁стороны +- 了我们 +- 发生的 +- прост +- ▁mateix +- ▁дума +- ково +- ▁Green +- 自动 +- lima +- もらう +- ели +- ▁departed +- ▁belonging +- ▁Star +- وز +- テーマ +- யின் +- ▁hesitated +- ▁Om +- 评 +- ▁Hoch +- 正确 +- 協力 +- ikan +- はどう +- ▁lane +- machen +- reba +- ▁ব +- 逮捕 +- 在美国 +- ▁гру +- osi +- '1000' +- 泉 +- ▁examined +- 方は +- ▁disco +- ▁Ale +- ▁terwijl +- ▁dig +- 避免 +- ▁leisure +- worm +- ▁depth +- 卢 +- ▁worried +- 做好 +- 出身 +- 生まれ +- ▁قرار +- 废 +- ám +- zzo +- culp +- ▁Gebiet +- ibya +- ач +- ▁scenes +- 王子 +- gelegen +- 基于 +- ▁partie +- lhe +- ▁belt +- রি +- änder +- ▁compassion +- ♪ +- 下了 +- ями +- ▁devotion +- ろう +- 他の +- ケット +- ▁monitor +- ▁häufig +- 検討 +- tö +- enta +- ▁sido +- 補 +- 聊天 +- 我一直 +- ▁гэтага +- ▁называ +- 蒸 +- ▁当你 +- shyi +- houden +- conc +- ▁device +- この日 +- 凉 +- ▁Del +- mica +- 剂 +- ドイツ +- 是要 +- 隣 +- ▁narrative +- ▁Medien +- ▁francis +- Р +- ▁beaucoup +- ▁whistle +- 她在 +- ▁kumu +- ▁droit +- 我们正在 +- nahm +- etta +- ▁fille +- Do +- ▁owned +- 通り +- もらって +- 写的 +- 疼 +- ל +- ām +- пра +- них +- gali +- shya +- ▁France +- ▁cord +- だし +- rab +- ▁estava +- ▁folgen +- 遺 +- 位于 +- ▁sä +- ▁Sport +- ▁kui +- 页 +- の方が +- nata +- ▁facing +- ▁பொ +- もない +- He +- ▁inventory +- 实验 +- uter +- raten +- Sa +- ▁drank +- قی +- 伺 +- ▁Barcelona +- ▁keeps +- ▁하고 +- ▁mult +- gni +- 금 +- ▁astonished +- ▁readily +- ▁unexpected +- ▁mug +- どうして +- ҙә +- 跡 +- еб +- ▁Hill +- 面临 +- onia +- ▁cinema +- čas +- 创业 +- ▁зап +- rücken +- ▁silly +- ▁facility +- ▁除了 +- 用于 +- ▁Monsieur +- ばかり +- ▁collect +- ▁انجام +- ▁gifts +- ▁doctors +- ▁emotions +- ▁republican +- ▁maintained +- ▁snake +- ▁سي +- 身份 +- ▁ней +- ▁models +- ▁gracious +- ibwa +- leigh +- بت +- ▁meines +- 警察は +- stall +- ▁percentage +- خوا +- ▁crop +- ▁ainsi +- 忘了 +- cide +- ▁killing +- ▁tool +- 的好 +- teria +- ▁mutual +- 剩 +- ▁wreck +- ▁chiefly +- ▁values +- ▁strengthen +- ▁cómo +- 같 +- 的能力 +- ▁wunderbar +- steigen +- ▁heir +- ▁2018 +- кат +- zī +- ▁அது +- ▁கூ +- breite +- ▁guter +- ▁duck +- 相对 +- 承诺 +- 叔叔 +- ▁bana +- 使う +- زار +- 组成 +- lö +- としても +- kap +- 操作 +- 物质 +- Ba +- 入って +- halte +- ▁tau +- ▁weapon +- ▁байгаа +- rok +- ▁graduate +- 心情 +- ブル +- ▁höher +- leu +- するため +- ▁vai +- ころ +- 五年 +- ▁landed +- 闭 +- ▁след +- ▁selected +- 放心 +- 秘 +- 等着 +- nol +- gling +- ▁对于 +- ▁lend +- ▁povas +- 券 +- ▁sources +- ▁Kampf +- はある +- ▁Gro +- ▁jemanden +- 要做 +- ▁peaceful +- як +- 规定 +- dolph +- 追求 +- univers +- 添加 +- ▁pump +- バン +- 特徴 +- 多年 +- easing +- 枝 +- ▁Louis +- ▁Rob +- 改革 +- 一本 +- ▁climbed +- ▁bueno +- ▁analysis +- важ +- シン +- ▁roger +- sein +- ▁riesige +- organ +- ▁plat +- ▁seventh +- imper +- ика +- ニー +- ▁breeze +- ▁slavery +- モン +- ▁Seg +- cru +- 这个时候 +- zte +- nici +- ▁grandmother +- 这是一种 +- 最後に +- 厉害 +- ề +- ▁usted +- ▁split +- 的儿子 +- 速度 +- gers +- ▁heavens +- شان +- ▁planta +- 奇怪 +- ▁Sed +- ▁yüz +- дай +- ▁saturday +- うれしい +- 奇怪的 +- 联邦 +- جو +- ydi +- ▁cyn +- ▁зах +- üste +- agne +- мол +- ায় +- ▁bwe +- бира +- toria +- 尖 +- 好多 +- undu +- ▁urban +- гч +- ыч +- 穴 +- ▁hiding +- ▁loan +- ແ +- ▁kant +- ▁complain +- ▁apa +- ▁точно +- 抜け +- 建物 +- ▁Win +- يب +- 재 +- 政府は +- ▁Professor +- ▁naked +- 期間 +- ▁essay +- 翔 +- ▁propose +- ▁circumstance +- めた +- 不见 +- tour +- 使われ +- гар +- 我妈 +- ▁zuvor +- 坚 +- mik +- 财 +- ▁museum +- ▁건 +- ▁engineer +- 日から +- uß +- ▁solar +- nın +- ▁gesamte +- ▁后来 +- となって +- 写了 +- ▁agreeable +- ▁canoe +- ▁rug +- ▁Hor +- جان +- 什么呀 +- ▁marble +- meister +- ەت +- ▁dorothy +- ▁confused +- ноў +- лат +- ffi +- née +- 否则 +- Applause +- ண்டு +- ▁complicated +- ▁guerra +- キー +- 你不是 +- ▁最后 +- class +- ▁swiftly +- lton +- 滴 +- ▁vollständig +- ▁будем +- ▁gleam +- ▁finest +- ザー +- ▁fiel +- ▁gusa +- ▁motive +- 時の +- ▁circ +- timo +- ▁こんにちは +- rated +- هی +- ect +- ▁moins +- ▁rested +- fau +- dden +- elijke +- 鼓 +- ough +- kub +- ▁quart +- ຫ +- 菌 +- skri +- まれ +- ▁Juli +- جه +- ▁dorm +- ▁selfish +- 混乱 +- ▁佢 +- なんですか +- ▁examine +- ▁insurance +- гай +- 一开始 +- ▁disturb +- cción +- 政権 +- 伏 +- 征 +- ▁Foto +- ▁stati +- 讯 +- xed +- ▁chemical +- ром +- ships +- ligen +- ▁halb +- ▁introduction +- ▁дальше +- ▁dish +- 联合 +- posa +- 积 +- 基因 +- ይ +- 商店 +- 粒 +- 不去 +- ▁Fran +- 彼此 +- ▁nieder +- ▁mache +- 都要 +- три +- 気になる +- ▁основ +- ▁achieved +- ▁نظر +- 込む +- زم +- 高的 +- Di +- 使い +- 某些 +- ▁Joe +- пам +- ▁cloak +- 投入 +- ▁captured +- 週 +- 就这样 +- сс +- 所谓的 +- ▁arī +- ▁spoil +- nuncia +- ▁ɣef +- word +- ▁materially +- ▁thực +- ▁öffentlichen +- ▁яв +- gum +- ▁ئۇ +- ▁quote +- ▁indicated +- ▁stor +- tare +- ▁kaufen +- ▁google +- ▁unterstützen +- 对自己 +- ▁wichtige +- ▁recovery +- mensch +- ▁Ehe +- ▁lessons +- neɣ +- 던 +- 怎么回事 +- octubre +- 頑張って +- أكثر +- ▁testing +- އި +- ști +- dır +- ▁byose +- ▁polite +- рова +- imana +- ▁exhausted +- ▁rivers +- を行う +- 帝国 +- oval +- ▁例えば +- ▁Rom +- 这不 +- ▁Yn +- ▁patent +- 動画 +- рас +- ▁mole +- 不必 +- cura +- ▁anh +- ▁überall +- 美国人 +- ▁disappointment +- ▁soup +- ktu +- ▁transformation +- ▁Verhalten +- 後半 +- ▁байдаг +- 合う +- ▁Sil +- ぜ +- 扎 +- trud +- ży +- ▁shepherd +- ▁возможно +- レス +- cier +- ▁sunshine +- ▁Telefon +- 愉快 +- ▁havia +- aşı +- のだ +- 进行了 +- 农 +- ▁continuous +- ▁públic +- ▁poz +- ▁давай +- 满意 +- 悲伤 +- lma +- ▁curse +- reb +- 空気 +- قال +- ▁player +- 安定 +- maker +- 的那样 +- ▁ntabwo +- ▁способ +- heben +- ▁hecho +- wide +- Ho +- then +- ありました +- ▁pendant +- ▁咁 +- 但它 +- 能量 +- ▁Himmel +- 十九 +- 有些人 +- 年的 +- ▁свои +- ▁practically +- ость +- ▁deserted +- 说他 +- ▁buying +- ▁thorn +- ▁holds +- 信仰 +- lings +- ▁glimpse +- ▁CA +- ▁Kal +- slav +- ҙа +- 思います +- 何も +- ँ +- regen +- ッチ +- druk +- قص +- ▁preferred +- 续 +- بة +- ▁мин +- fälle +- ▁travail +- ▁他是 +- ழு +- ▁matt +- ít +- eği +- 勝ち +- মি +- ▁ваше +- するのは +- ෝ +- 出した +- ▁bite +- 黄色 +- مال +- ▁preparing +- ▁há +- ử +- digit +- ▁World +- かせ +- ieron +- 答 +- 遇 +- カル +- ファ +- بن +- 화 +- ▁priv +- kaza +- ▁giờ +- ப்பட்ட +- ▁bé +- ▁چند +- kut +- ▁darf +- ▁دوست +- 具有 +- fes +- еть +- ▁Cette +- konstru +- ▁thứ +- ▁jako +- ছিল +- organisation +- ▁Essen +- ▁surprising +- 渴望 +- 资 +- 浦 +- isieren +- ▁байв +- ▁Ideen +- స +- ▁größer +- besitz +- bour +- ән +- werfen +- ▁Ebene +- dah +- 美丽 +- 监 +- ドラマ +- じゃん +- ▁калі +- 独自 +- 時期 +- ▁cose +- ▁چیزی +- ▁joining +- ▁confession +- 天天 +- ▁processes +- 보 +- ▁比如说 +- 也就是 +- ーム +- 是我的 +- ▁Stil +- スピード +- 少年 +- ▁fühlte +- 予 +- vig +- ики +- ▁nap +- ▁angels +- ▁schedule +- rán +- ▁boston +- ▁oude +- まま +- душ +- 腾 +- ху +- 咖啡 +- валі +- ▁лес +- 刷 +- ▁suspected +- ▁inquiry +- ▁amusement +- ordnung +- ▁Klasse +- 食べる +- 我记得 +- 连接 +- فق +- ▁precisely +- ープ +- ▁왜 +- ▁Thomas +- 場合は +- schlag +- னர் +- ▁instructions +- turi +- ▁passieren +- ▁medium +- 姓 +- ▁укра +- にする +- wasser +- ▁cigar +- ▁pessoas +- ▁thirst +- ▁gö +- がこの +- ▁norman +- geni +- 拜 +- rina +- اک +- 出现了 +- 纯 +- ffin +- 忘れ +- 戦い +- 效果 +- こういった +- kõ +- ▁مق +- ▁روز +- 妙 +- ▁jones +- ▁During +- 碰 +- 这条 +- っちゃ +- рон +- pack +- gina +- が起き +- ▁sins +- gelassen +- prä +- ▁Wand +- istes +- plat +- ▁telephone +- conf +- 桌 +- ▁shine +- 不知 +- جل +- ▁Red +- ▁pearl +- ▁prec +- 家の +- ▁Süd +- ▁într +- 牧 +- agu +- お話 +- ▁sym +- 意見 +- case +- ▁2016 +- ▁tenía +- ▁Netz +- lusion +- ▁sola +- なくなって +- 克斯 +- 习 +- енно +- ▁lucy +- 日間 +- 단 +- መ +- 肺 +- Sch +- 文章 +- ▁festival +- нае +- дам +- ppy +- ▁glaubt +- ило +- 漏 +- सा +- は何 +- rico +- 吃了 +- ▁première +- 移動 +- ▁River +- 穷 +- ▁sensitive +- 今週 +- ▁provides +- нуть +- 今度は +- 获 +- ▁attract +- ▁durante +- 桑 +- ▁கு +- を作って +- volv +- ື +- ▁armen +- 現 +- abwe +- 세 +- ých +- 隊 +- chet +- ▁euro +- kula +- ▁hoofd +- ▁visitor +- ▁nooit +- ятся +- にした +- ▁August +- 每年 +- ▁هست +- ▁colors +- ▁buri +- ▁definitiv +- ▁Wu +- かない +- eno +- গে +- ▁لكن +- egi +- ▁своей +- ▁Jordi +- pfen +- ▁solicit +- ▁goods +- ▁composition +- gine +- 第二天 +- までの +- ▁intellect +- ▁vow +- 现在是 +- ▁frown +- ▁furnished +- ▁обе +- য়া +- 收到 +- ▁sicherlich +- ▁setzte +- ▁harsh +- 専門家 +- ▁Тэр +- 社長 +- 的一切 +- ハー +- 迅速 +- hend +- られています +- 毁 +- ന +- 順 +- ▁lunga +- 最初の +- anta +- ▁expectation +- ▁أي +- ью +- ▁дээр +- ▁মা +- udo +- ▁jail +- 计算 +- ▁나도 +- お父さん +- fä +- '*' +- ▁Studenten +- ▁Gut +- ▁你可以 +- 合同 +- рус +- zam +- rul +- 帅 +- ▁Why +- ▁moderate +- 块钱 +- හි +- alia +- ▁timid +- ▁cigarette +- 没关系 +- ologist +- rufen +- legi +- دید +- ▁முடி +- 敷 +- 方も +- 刺激 +- 误 +- ▁fortunate +- ▁crow +- kehr +- ーション +- ▁nut +- 你认为 +- frei +- ▁mình +- ▁existed +- 烈 +- lij +- agost +- ▁partnership +- ู +- ▁ده +- ▁così +- ▁hebt +- fire +- ▁país +- druck +- Ә +- ▁demon +- ▁improvements +- 这样一个 +- ▁jealous +- 化学 +- 連絡 +- 医学 +- huit +- ▁transfer +- گیر +- ▁favourite +- 强烈 +- お伝えします +- 卫生 +- ▁jerusalem +- ঘ +- ارت +- 化的 +- ▁parallel +- ções +- 概念 +- 我们知道 +- anu +- したと +- ▁我不知道 +- 候補 +- 在他的 +- iens +- 적 +- مى +- ▁Jud +- に戻 +- ▁Gleich +- ▁dynamic +- ▁arrested +- 母親 +- ▁establishment +- 何を +- ▁père +- ▁Regi +- لف +- 科学家 +- ▁xwe +- 갔 +- ▁Fan +- ▁television +- bach +- zes +- 数学 +- கே +- ってくる +- ớ +- ▁граждан +- 下一个 +- ▁стран +- loj +- ▁是啊 +- ▁masters +- лез +- ▁какая +- オープン +- ▁option +- ັ +- ▁identity +- ▁submit +- ▁jusqu +- 抑え +- gefühl +- ▁medio +- bira +- 我应该 +- 勝利 +- ĝis +- ▁handkerchief +- 夫妻 +- 孩子的 +- ▁vue +- ▁sober +- 阵 +- ▁lightly +- clos +- ▁laten +- chie +- şti +- 那个人 +- informa +- rough +- ▁links +- ▁distinguish +- tego +- ▁civilization +- ▁jaar +- ▁drugs +- ▁convenient +- いると +- ನ +- ▁например +- dock +- ▁disturbed +- würdig +- ▁deutlich +- hri +- destin +- 免费 +- zina +- ▁revenge +- zogen +- чка +- 瀬 +- ▁concealed +- rwanda +- ▁باز +- fahr +- ilo +- 한테 +- 奶 +- いるんです +- аба +- 得点 +- institu +- нан +- ▁hedge +- ▁Every +- 違い +- ▁Ly +- ▁بس +- свя +- 你这个 +- ▁dressing +- 猛 +- 俗 +- ச்சி +- ▁Ang +- 问我 +- ▁بزرگ +- ▁chapel +- ходит +- ▁kiu +- ений +- 我跟你说 +- 堡 +- utter +- 躲 +- ▁ໄປ +- ▁fabric +- ▁frankly +- を出 +- 漁 +- 队长 +- ▁هل +- 的歌曲 +- 쫌 +- baar +- 还有一个 +- ▁boast +- ▁Pf +- ▁bunu +- ▁Kas +- сол +- rock +- 元気 +- お願い +- ▁Santa +- imento +- 抜 +- ▁чувств +- ණ +- 書いて +- ▁dwelling +- 聞いた +- ▁Laufe +- brechen +- stol +- 也在 +- раж +- 给她 +- ▁arrangement +- ▁Са +- zat +- jung +- '29' +- minded +- ▁vivid +- ▁18 +- 走到 +- 去看 +- ▁weren +- うち +- ▁Mir +- 背后 +- abilir +- ホームラン +- ures +- 上がる +- nischen +- bridge +- lara +- hound +- ▁technologies +- ▁accompany +- დ +- tempe +- ▁cream +- ▁anticipated +- même +- лей +- ▁Linie +- が行われ +- ▁Pres +- 言った +- past +- ruf +- ▁trait +- uche +- 모 +- ▁scotland +- ▁struggling +- ▁vậy +- posit +- 患 +- ミサイル +- ▁preserved +- ▁зачем +- ▁defeat +- avu +- ▁aby +- ▁pint +- iji +- leute +- known +- 済 +- サービス +- ▁ёсць +- 実際 +- 的国家 +- ▁são +- ▁copper +- 宾 +- ▁Partei +- ziel +- ▁illustration +- ими +- politi +- ハン +- ▁US +- bry +- ▁verge +- öd +- 法官 +- itud +- 番の +- 差不多 +- 很有 +- ▁jury +- ▁Pas +- 知道了 +- ▁объ +- edifici +- 雨の +- 类似 +- ▁stamp +- stimul +- 我们应该 +- ▁monte +- ީ +- 称之为 +- 细节 +- ote +- ▁номер +- ライン +- 日中 +- 赌 +- ctive +- 页面 +- gion +- ▁creative +- 始 +- ▁Venim +- ▁beings +- schloss +- ▁influ +- 它在 +- ▁гэтым +- 传播 +- 子どもたち +- ▁Vous +- mış +- ▁sino +- fach +- ▁Stelle +- 対象 +- 个月 +- big +- ▁autumn +- chron +- ▁давайте +- ▁eaten +- ▁crept +- цэ +- 値 +- ▁defense +- 激しい +- ▁echo +- nelle +- ▁owing +- ▁Black +- ▁moest +- ▁behalf +- ▁происходит +- impa +- ▁minimum +- niz +- ▁investiga +- 着急 +- ▁october +- られます +- ▁virgin +- ▁lean +- ළ +- ▁ответ +- えた +- ▁звони +- いけ +- 享受 +- äch +- 你们的 +- onge +- ▁Hände +- trat +- ▁outward +- 这里的 +- ▁notwithstanding +- ▁volunteer +- ▁Smith +- чная +- 去吧 +- 湾 +- 帯 +- きている +- вез +- 制限 +- maya +- どうですか +- ▁clothing +- 性格 +- ▁Baby +- bbing +- වා +- 花了 +- аю +- ▁entwickeln +- ▁approval +- ▁irrit +- 他没有 +- ▁Alles +- ▁associate +- ▁kenne +- ▁bolt +- 永远不会 +- lug +- ▁perfekt +- gué +- nutz +- 想知道 +- ▁bestimmten +- ▁nail +- ビー +- ыми +- ▁hatred +- glia +- 保存 +- ▁answers +- ▁hefyd +- 不懂 +- 催 +- aeth +- ▁math +- 的一种 +- ounce +- eco +- қа +- ĝa +- regel +- うん +- ▁betrachten +- பா +- nyama +- 起き +- 玛丽 +- ▁Fort +- 願 +- ▁Chúng +- wald +- moto +- ▁sustain +- 명 +- ▁founded +- ▁bringt +- 工资 +- undi +- Emp +- ▁isso +- ▁pris +- と一緒に +- eaux +- ủ +- aĵoj +- ても +- 海洋 +- ▁passes +- otto +- ▁Gesundheit +- կ +- 先週 +- unga +- зал +- ▁immortal +- ▁covering +- ▁wash +- ích +- bula +- казать +- wak +- issen +- 担 +- 泽 +- nico +- ▁hyn +- ▁react +- ▁мор +- mol +- ▁definite +- ▁decrease +- ▁scarce +- ▁beating +- print +- 強化 +- ▁Wind +- egu +- ▁справ +- леп +- gga +- ▁nhưng +- ▁poc +- 是最 +- ங்கள +- ▁compete +- かかる +- ▁territori +- hana +- 続く +- ground +- 経 +- 就是我 +- 買 +- وری +- 邦 +- ミリ +- ▁Gib +- nă +- ▁segui +- 种族 +- gung +- ▁formerly +- ▁gün +- ents +- யும் +- кие +- ▁Kindern +- ▁farewell +- ▁cotton +- пон +- ▁mechanical +- ▁enabled +- थ +- wesen +- ▁prejudice +- 과 +- ▁Organisation +- کان +- ▁beasts +- 敌 +- ▁breathing +- ▁đề +- ▁dues +- ▁grandes +- ▁letting +- wegen +- ▁provision +- ▁fishing +- ▁ongoing +- ŭ +- 地位 +- ▁그러 +- 和平 +- ▁länger +- ▁canada +- 过的 +- ▁alma +- ▁Pal +- cular +- வெ +- ▁elegant +- 司令 +- かね +- ▁interessiert +- ▁feu +- ▁violet +- маш +- ▁Landes +- ▁gazing +- gestalt +- 一个小 +- нат +- klar +- ló +- ▁gallant +- pä +- ▁tutto +- ▁În +- kore +- 正确的 +- lever +- ▁restrict +- ▁Lösung +- ▁applications +- ▁witch +- ительно +- yong +- 会在 +- تج +- 彼女 +- stärk +- たちは +- гре +- ▁Spi +- ▁tribes +- η +- six +- sitz +- komen +- rê +- ▁geboren +- ▁niets +- ▁prominent +- けどね +- 诉 +- 添 +- 发生了什么 +- tamente +- ▁unver +- 韩 +- ỗ +- ▁viņa +- heure +- ያ +- 兹 +- るんだ +- 巨 +- дж +- ඉ +- ři +- ▁upstairs +- ▁entertain +- цию +- ▁indicate +- kab +- ▁rarely +- 株 +- ▁imperial +- pression +- дем +- 应用 +- 形で +- crib +- ▁replace +- ▁beaten +- 阴 +- ▁আছে +- 平时 +- 立刻 +- 一群 +- ▁Außerdem +- джа +- ▁seltsam +- ▁ته +- 유 +- いわゆる +- দা +- ▁dimension +- ▁Bob +- 岁的 +- 思い出 +- open +- 孤独 +- ▁disaster +- களில் +- baba +- ▁touching +- をかけ +- ▁tribe +- kati +- 航空 +- ▁Nation +- ▁maxim +- 留在 +- 방 +- となり +- 手が +- ▁ähnlich +- ēt +- ▁strict +- いきたい +- により +- гән +- ▁wives +- ▁политик +- クラ +- どちら +- ▁Herausforderung +- 这一切 +- ▁sailed +- lash +- ▁hanno +- тка +- 月の +- ▁Vorstellung +- sible +- участ +- 倾 +- namen +- हरू +- 込まれ +- daw +- 揚げ +- っていく +- nsen +- ▁collar +- ނ +- hill +- ▁petite +- alität +- ▁grab +- ▁Kam +- ▁egal +- 绿 +- 事业 +- ores +- ▁bewegen +- besch +- ▁Titel +- 了她 +- きょうの +- 这两个 +- 危険 +- labor +- ▁funds +- 十三 +- 갈 +- ▁jaw +- ▁senator +- ▁doorway +- ationen +- ્ +- зар +- litz +- dó +- ▁определ +- ▁あれ +- ▁accent +- yana +- ▁wrath +- Li +- ▁moses +- arna +- ▁Hay +- ええ +- ▁interfere +- ▁Text +- ▁можна +- 臭 +- なんですけれども +- embra +- zó +- лич +- 描 +- 发表 +- ぁ +- itor +- ▁cheese +- ▁stato +- 돈 +- ▁Mitarbeiter +- ▁label +- কার +- ▁spun +- ▁propos +- ▁speaks +- 在家 +- 赞 +- ór +- ▁finds +- 市で +- 眠 +- ነ +- flor +- ニア +- ▁мяне +- ▁اگر +- ▁operator +- tention +- ▁definition +- 見事 +- вра +- ▁büyük +- tribut +- порт +- 非常非常 +- вяз +- rov +- ▁walter +- oti +- ▁marched +- ▁restored +- ells +- ▁trug +- 好啊 +- onda +- ▁riches +- ▁Hoffnung +- 太太 +- ுடன் +- lob +- ▁belongs +- ▁hans +- 非常重要 +- ▁présent +- 分子 +- 某个 +- 讨厌 +- ▁attracted +- しまう +- ▁encounter +- nnes +- zzle +- レイ +- ▁attain +- ▁вами +- ▁mutter +- 开车 +- 바 +- ▁funeral +- щу +- اره +- ▁shiver +- 创新 +- ▁стал +- treiben +- 保险 +- ▁lightning +- ▁complaint +- ▁african +- 重大 +- 你跟 +- ▁같은 +- چى +- 对他们 +- ▁quel +- ▁sama +- ▁обо +- 遊 +- aves +- ▁manufacturing +- 汗 +- 教会 +- 做一个 +- ▁wid +- мент +- ▁november +- ▁месяц +- ▁elbow +- ▁tank +- ほぼ +- лем +- ति +- NHK +- кин +- ▁Bilder +- ▁zeker +- стве +- 一个非常 +- ▁curt +- ტ +- ▁asset +- 破坏 +- anye +- ▁differences +- ▁нашей +- clin +- ウクライナの +- 行われた +- ▁Shi +- dors +- ▁democratic +- ▁Obwohl +- صف +- هر +- ▁feeble +- leş +- 这种情况 +- ssin +- を受けた +- kai +- ▁robust +- ▁besondere +- ▁elected +- ▁Modell +- ▁seconds +- lauf +- ダイ +- ګ +- セット +- 時は +- Applaus +- 白人 +- ▁свобод +- 病毒 +- 损 +- ජ +- ▁Mat +- ▁executive +- ▁onto +- lag +- ▁важно +- ან +- ▁concerns +- ء +- ebbe +- ▁Tru +- ▁seed +- 推荐 +- ▁Staat +- 祭 +- ▁cleared +- მო +- eixen +- 让它 +- သ +- wiesen +- Ro +- train +- ▁acknowledge +- 取れ +- 風が +- 依然 +- ▁indifferent +- 人数 +- ▁generate +- ▁frost +- itaj +- ▁reminded +- ▁romance +- 隠 +- ▁ireland +- ▁Ха +- 最多 +- ▁layer +- 柳 +- 就有 +- ▁caution +- ▁bezeichnet +- ▁denied +- سە +- ▁profile +- 的位置 +- tato +- ▁politische +- ▁Dra +- 高度 +- ちゃった +- ▁Bay +- 成立 +- ▁stephen +- laş +- 変わり +- neb +- ält +- oza +- coloured +- рок +- ▁independence +- ▁traveller +- 接着 +- utu +- 许多人 +- ▁leather +- 这项 +- 进步 +- ▁exists +- kia +- 进一步 +- ړ +- ▁Char +- ▁English +- cional +- maakt +- ▁zá +- ▁wereld +- ▁дэ +- 他们都 +- ▁Sicht +- 出来了 +- وك +- ▁christians +- 種類 +- gone +- ▁говорят +- ▁danach +- ▁positions +- 问你 +- यो +- ▁daylight +- wall +- えない +- 不住 +- ▁echt +- 脳 +- 搜 +- ▁consists +- děl +- 人在 +- ▁Adam +- umva +- ▁formula +- anzi +- ▁тысячи +- ▁casual +- ины +- ▁eighth +- plica +- guer +- 世界的 +- ▁استفاده +- ▁German +- ▁بیشتر +- ▁Ŝi +- ează +- 反対 +- ▁determination +- 时刻 +- iller +- 히 +- 不愿意 +- ▁republic +- respon +- alen +- liste +- ▁outer +- ▁echte +- 对待 +- 私たち +- ▁которых +- って言って +- 你先 +- ่ +- ▁aveva +- nym +- acions +- ▁然后他 +- ▁democracy +- 填 +- ▁гэты +- ▁Bruder +- ▁characteristic +- ▁Kris +- ▁neuro +- politic +- ▁visitors +- ໂ +- ▁gale +- tır +- ▁protestant +- ▁befinden +- ▁одиннадцать +- ▁Schi +- いまして +- öhn +- 연 +- そういうこと +- arbeiten +- лас +- ▁porter +- 做到 +- cun +- нер +- nette +- atan +- ▁zweitausend +- ల +- ట +- öö +- ▁relevant +- 鼓励 +- 很棒 +- fford +- ▁dios +- ▁Tak +- 个小时 +- 我发现 +- ▁Ul +- rating +- ▁creek +- ▁aggressive +- ▁трэба +- それでも +- 手里 +- へと +- بح +- нік +- 一个问题 +- 公主 +- 见面 +- ▁saa +- 始め +- 崩 +- ivo +- Mi +- ▁extensive +- ▁спасибо +- ▁properties +- ▁Asia +- ▁Gran +- 序 +- 애 +- posing +- 发生的事情 +- 想起 +- 十七 +- ▁Anwendung +- лө +- ▁Member +- トー +- 孔 +- ▁наши +- ▁span +- ▁swung +- ▁perception +- हा +- ▁ox +- 劝 +- ▁laying +- ▁carpet +- wch +- vē +- はもう +- 赚 +- ▁Demo +- mala +- daten +- მე +- quar +- ▁تمام +- anima +- ▁radical +- ▁власти +- anı +- ▁Ils +- 証 +- '00' +- hub +- ало +- の姿 +- るのが +- раў +- 読 +- '%' +- ваў +- 监狱 +- すいません +- ▁execute +- bred +- ▁profess +- ▁Fenster +- 不上 +- exc +- ▁torment +- 互相 +- ▁unge +- 着我 +- ரிய +- の一 +- ▁sci +- 設置 +- versa +- ▁größten +- vê +- ▁graceful +- popul +- 夺 +- ಸ +- 採 +- とにかく +- name +- ▁Partner +- あるいは +- ▁nuestra +- ▁impressed +- ức +- 对不对 +- IT +- 方便 +- pek +- 一周 +- ਾ +- ම් +- ▁California +- ▁assembly +- ▁bran +- жда +- 可以在 +- ▁lei +- 在她 +- 有趣的 +- ▁divide +- 直播 +- nemen +- の話 +- 求め +- 彼の +- ▁trends +- ▁veröffentlicht +- илось +- 助け +- க்கப்பட்ட +- ▁دې +- ▁rapport +- ▁tones +- nego +- 怎么说 +- ົ +- 也很 +- grat +- träge +- ▁großartige +- ▁cape +- ▁successfully +- سى +- علم +- 撮 +- jah +- 安妮 +- ▁whit +- inin +- ▁Funk +- 他自己 +- ▁funding +- jär +- 女朋友 +- ホテル +- ▁poly +- ▁awkward +- iyorum +- wich +- lish +- ▁Jung +- cata +- جم +- ▁Then +- bby +- embe +- ▁Kein +- 防止 +- 访问 +- ▁blanket +- 鉄 +- ▁andrew +- ▁grounds +- ▁چا +- ▁Israel +- ▁pap +- 出てくる +- ▁convention +- றி +- えっ +- ▁Wieder +- 充满 +- ▁Australia +- fik +- аем +- ▁schlechte +- ▁Tier +- ▁febrer +- 屈 +- 肖 +- 課題 +- idas +- ▁milli +- ▁parish +- borough +- 進め +- ▁Zeug +- عب +- En +- ▁exceedingly +- 柔 +- 砂 +- 郑 +- ▁таксама +- leb +- 最低 +- 当て +- ▁japan +- 你把 +- ächtig +- sort +- ▁shudder +- ▁profitable +- 如果他们 +- ▁放一下 +- クロ +- ände +- 他们说 +- ▁Durant +- 很高兴 +- pare +- artig +- schlossen +- ▁ora +- ▁அந்த +- cà +- 掉了 +- fè +- ▁canal +- ▁administra +- ▁bears +- 出现在 +- ▁shriek +- ▁знал +- ebilir +- ▁schrieb +- contra +- ▁roar +- 間に +- 液 +- 相互 +- ▁package +- でお +- ▁Maar +- 식 +- けども +- ▁romantic +- ▁tales +- ▁gelernt +- ▁invent +- 大体 +- ▁anyhow +- を作る +- stoß +- ▁podcast +- ▁Пра +- ლი +- 奔 +- lp +- män +- кар +- mesi +- 的观点 +- gani +- Mail +- ▁mwa +- サッカー +- ▁alien +- tiu +- 是真的 +- 計画 +- りの +- 診 +- 医疗 +- 明确 +- ▁parece +- десят +- иш +- 哇 +- ▁meta +- CO +- lec +- ▁但是我们 +- argent +- 炸 +- 我先 +- ▁studying +- shaped +- 的样子 +- ▁anymore +- ▁attendant +- 可怕 +- ▁erfahren +- nade +- ▁zona +- ▁Dame +- ▁containing +- ▁Patienten +- ▁болон +- 統 +- ר +- ▁ჰო +- ▁соглас +- মে +- 目に +- ▁gyda +- ▁endeavour +- 那时 +- 発射 +- бур +- ▁cael +- จะ +- 言われて +- ▁meg +- 観光 +- ▁envelope +- ▁говорю +- ▁snap +- ▁truck +- 电子 +- ຊ +- ▁endeavor +- ▁stole +- ▁beheld +- 焼 +- 这也是 +- energie +- ▁acid +- ▁communicate +- ▁Хо +- 估计 +- 怎么会 +- зем +- මා +- ▁Australien +- fish +- 嫁 +- igheid +- odi +- 区别 +- нев +- liko +- tale +- ▁Camp +- 文学 +- krit +- hielt +- ▁tube +- ▁карт +- igne +- ді +- 我再 +- 的身体 +- obo +- 告诉我们 +- ▁dhateng +- ▁invention +- ări +- ▁அவர +- ▁Herrn +- าย +- ▁cunning +- folk +- をしている +- ▁Fra +- ▁ignor +- ▁Denken +- 付き +- ▁слуша +- 実験 +- patri +- ▁Ganz +- ▁kurze +- ▁saving +- 東北 +- 韦 +- るのか +- ▁baz +- ▁Freude +- ▁километр +- 責任 +- ▁restless +- ском +- ▁Ty +- ▁факт +- ▁whip +- 收集 +- となります +- スタン +- ▁folly +- ▁wool +- ▁uses +- મ +- ▁Unsere +- 全員 +- стат +- ▁regards +- ▁Flu +- El +- ▁recommend +- るような +- tering +- ству +- ీ +- cope +- 每天都 +- harmoni +- ▁کرده +- ▁appointment +- 下雨 +- 广泛 +- ehr +- für +- 向き +- cell +- юр +- വ +- 设置 +- 这只是 +- ▁erzählt +- publik +- ▁nämlich +- 经理 +- ▁senate +- ▁perpetual +- 的研究 +- 昼 +- ற்று +- ▁Grand +- 和我们 +- ものです +- まって +- hra +- ▁laura +- 可能性がある +- ▁Cho +- ▁mama +- ▁Cam +- chair +- ▁chart +- ▁опять +- ▁injury +- scheid +- ambo +- ▁gospel +- projekt +- cı +- ▁elephant +- ▁наверное +- nisse +- ▁dislike +- ▁stomach +- ▁amendment +- 応援 +- ▁barrier +- ▁upset +- 独特 +- 白色 +- ▁dedi +- 無理 +- ▁extract +- 時間が +- 小说 +- ▁pains +- 就是你 +- 観測 +- ▁所以说 +- 粘 +- 選手は +- yin +- ▁этому +- ▁lass +- 湯 +- 指挥 +- ▁illumin +- rush +- 進んで +- দের +- élé +- ▁helps +- fia +- ▁Bildung +- ▁Jeder +- 亏 +- 億円 +- ご覧ください +- gress +- ▁romans +- ▁Haben +- トラ +- 国家的 +- mato +- hut +- 支え +- ▁tudi +- ▁disappear +- ына +- ▁Gesundheits +- ▁ነው +- ▁Beziehung +- cam +- ▁Drei +- 扣 +- ▁celebrated +- ▁coisa +- ▁convey +- ▁aussehen +- weis +- ▁Hon +- 止め +- 碗 +- ▁acquisitions +- 关闭 +- ▁Ба +- 超级 +- ▁tables +- ໃ +- ▁ndetse +- 一面 +- ▁واقع +- ีย +- ibility +- 載 +- ilor +- 信じ +- وف +- раг +- grade +- 上の +- ▁Viņš +- ӧ +- 手段 +- бил +- ▁damp +- ▁Alex +- ▁taxes +- ▁chez +- ▁50 +- ▁zumindest +- がいい +- 盤 +- brau +- 歴史 +- kopf +- ▁wordt +- ▁ເອີ +- 두 +- 차 +- เป็น +- 茨 +- ▁cable +- ▁grows +- ▁constitute +- ▁یې +- ▁interessante +- てしまう +- 備 +- ▁despre +- ▁promo +- 回目 +- 那个时候 +- ▁imbere +- 探索 +- phon +- 途中 +- ▁machines +- ▁Handel +- ▁salvation +- ▁parted +- ▁punto +- алі +- ▁moja +- 壮 +- halb +- ▁corporate +- 者的 +- ▁flank +- 勇 +- ▁relieved +- ますよ +- ена +- drückt +- Н +- ▁churches +- めちゃくちゃ +- 自民党 +- 进了 +- 仁 +- ▁swim +- ▁loĝ +- ▁الآن +- hnen +- 也不能 +- ▁eben +- とっても +- ټ +- ▁getroffen +- ▁stake +- kou +- ▁Fisch +- schap +- 太好了 +- zwi +- ▁vive +- 如果他 +- 最重要的 +- γ +- ますが +- 軍事 +- ▁woe +- ウェ +- 息子 +- ▁Steuer +- 肯定是 +- ▁tay +- ▁boss +- граф +- rons +- lasse +- 灭 +- க்கும் +- lini +- 体験 +- ▁delivery +- ▁temptation +- 忘记 +- ウル +- 奴 +- ▁thành +- ▁په +- ▁writers +- ▁assistant +- ▁Tam +- кө +- 我爸 +- ▁boom +- чный +- だね +- اپ +- weil +- uwa +- ▁facilities +- ▁monkey +- 私たちは +- صور +- ▁тому +- સ +- 真相 +- 这就 +- 削 +- ▁Sim +- ▁squire +- ▁britain +- 败 +- ۰ +- しかった +- ちなみに +- ستان +- ▁trifle +- dist +- ▁options +- empat +- 敲 +- ▁Monat +- 会说 +- стой +- しようと +- ▁langen +- ப்பி +- ▁Az +- 焦 +- ますので +- ছ +- sters +- 糟糕 +- erei +- ▁subtle +- 胎 +- に行く +- ▁яна +- ▁времени +- スタジオ +- ▁сообщ +- 普遍 +- yim +- pē +- ▁sitzen +- プーチン大統領 +- 你没有 +- — +- ▁Monate +- ▁dive +- ▁Fre +- 各地 +- ▁bias +- ml +- ▁bị +- ▁gardens +- ▁ceremony +- ▁roots +- غل +- geschichte +- ▁Ĉi +- ▁minu +- ▁имеет +- 来年 +- iaeth +- 小さな +- 饿 +- ▁можа +- ▁Hall +- 帽子 +- کش +- ▁pense +- ▁Tisch +- эконом +- ufu +- の世界 +- ▁Leistung +- ▁steer +- сю +- hul +- ーク +- ですので +- 爷爷 +- вон +- ▁wax +- 违 +- дь +- 一个月 +- ▁isabel +- 向你 +- ె +- lari +- ▁peril +- メッセージ +- すぎ +- 것 +- ▁общем +- ▁Ken +- ▁natives +- 邪 +- ▁Anda +- nice +- 结合 +- 把她 +- chang +- кро +- ▁Kunden +- 首都 +- 地点 +- ▁launched +- ▁cran +- вен +- фер +- 開始 +- ப்பா +- ▁Dum +- 的意思 +- ▁dragon +- ▁silently +- なければ +- 荣 +- ▁Junge +- ▁searching +- 这将 +- ▁erklären +- ▁scratch +- ▁ehrlich +- emba +- ▁Liste +- 応 +- 까지 +- ▁fitted +- とする +- GAAP +- ▁limits +- რი +- を使った +- 배 +- ovi +- eight +- раш +- ▁marine +- ▁Tar +- ▁Many +- 壊 +- 년 +- ▁troubles +- ▁nuclear +- ▁lodging +- خص +- ▁termina +- 多分 +- Weiß +- 有所 +- acak +- wise +- prof +- num +- 英语 +- abana +- 胜利 +- cada +- autobús +- ▁residence +- ولا +- ▁zeg +- ▁Jim +- 抵 +- ▁Bö +- ▁Hauptstadt +- 京都 +- iling +- 我把 +- ▁appetite +- ▁oameni +- ▁cardinal +- häng +- 地元 +- ▁doubtful +- reiz +- リスク +- 来て +- 慌 +- ғ +- しょう +- ▁bother +- 算是 +- ▁reverse +- ▁dearest +- ของ +- ▁занима +- ▁giả +- 不像 +- ▁newspapers +- ▁boil +- のうち +- μ +- ▁мужчин +- 一声 +- ār +- ▁fury +- かわいい +- ầ +- api +- ố +- ở +- ▁Aufmerksamkeit +- shore +- 堆 +- ▁центр +- 議論 +- ได้ +- ですし +- 如今 +- ▁passions +- ▁limbs +- ▁producer +- verein +- ▁مج +- ▁glen +- ▁natur +- rade +- ▁verrückt +- 版本 +- 回転 +- lica +- ▁hinder +- ▁hastened +- ▁anticipate +- 大事な +- の問題 +- ▁zwölf +- 先に +- ▁그니까 +- ▁erstaunlich +- ▁assault +- 发生在 +- ▁vede +- ▁bust +- ▁binnen +- ▁lloc +- は今 +- tré +- といった +- court +- ▁exquisite +- wunde +- ның +- ▁Lee +- ▁bundle +- duct +- 高速 +- ▁nas +- mac +- ▁достаточно +- 体育 +- チャー +- さあ +- ▁desires +- ▁Geschäfts +- gana +- 辛苦 +- 略 +- 交谈 +- 的那种 +- bí +- レベル +- ▁brass +- 说得 +- 무 +- dala +- 歯 +- ▁shalt +- kuba +- スタ +- ▁взгляд +- 对象 +- ▁clinical +- 目を +- 殖 +- industrie +- 戈 +- 的主要 +- ▁Sel +- ԥ +- enne +- ▁ralph +- ▁resting +- ась +- aran +- body +- ▁esteem +- ▁hail +- ඩ +- ▁вместе +- 仔细 +- ▁rip +- ▁Aquesta +- ▁Welche +- Bo +- されていた +- ▁multe +- 锅 +- 否 +- ▁наша +- ▁export +- ▁vigorous +- ▁Phil +- мын +- ▁scandal +- 炮 +- カレー +- ▁Gla +- ▁بازی +- تان +- ▁prevented +- ▁tranquil +- ▁tobacco +- ▁thence +- 집 +- ▁tire +- ▁schwarze +- リング +- ▁embrace +- ▁schu +- ほら +- ▁rural +- ҙы +- ▁skirt +- ▁каждый +- るという +- ▁Bitte +- 仍 +- ຄ +- ▁wrap +- vara +- ەوە +- 者は +- воз +- нал +- ▁offers +- έ +- 恐怖 +- 安心 +- ▁geweest +- ▁dumb +- ▁municipal +- фон +- 上げて +- tē +- 小组 +- ▁Carl +- ▁golf +- ▁Position +- ▁después +- 绑 +- '2019' +- ▁scientists +- ▁但是你 +- 경 +- ▁دیگر +- ▁excess +- লো +- erweise +- pence +- ▁prey +- 把它们 +- قة +- そこで +- ▁fünfzig +- пле +- 微笑 +- ▁cabinet +- ▁accused +- muzi +- 確保 +- ▁решил +- ▁Büro +- 的最 +- كر +- ▁formation +- ▁princes +- ですけれども +- still +- әр +- ▁баш +- ▁entertainment +- ິ +- 奉 +- '800' +- ▁собственно +- 放下 +- ということを +- bird +- システム +- ток +- ▁Tochter +- 被告 +- ▁uncertain +- ▁нельзя +- ▁شخص +- ほん +- arma +- ▁insight +- ▁ruler +- ▁altijd +- ▁habla +- ären +- ▁Here +- zunehmen +- ▁passionate +- ▁nunca +- ▁typically +- 童 +- 와 +- ▁supplies +- räum +- 温暖 +- anche +- ▁lustig +- stop +- ▁ascend +- かし +- ▁Stunde +- ▁начина +- وار +- றை +- ර් +- ▁marquis +- ▁Quin +- 伙伴 +- ▁إذا +- ▁Pop +- 惠 +- кую +- のない +- anne +- していきます +- 友達 +- ▁retire +- 来源 +- almente +- frau +- ▁ўжо +- mates +- няя +- нич +- ▁seda +- 消失 +- ısı +- ▁wrapped +- வில் +- ▁política +- 行われ +- 見えて +- ▁mau +- lager +- ▁při +- 上来 +- lett +- ލ +- dang +- ▁bez +- енный +- 哲学 +- ены +- جز +- ▁barrel +- 相反 +- ▁neighbourhood +- パス +- zeichne +- esten +- メダル +- ▁Kosten +- ▁relativ +- коп +- ▁älter +- 编辑 +- الي +- gründe +- голов +- 体を +- ஷ +- 有机会 +- ▁nobles +- 这件事情 +- が発生 +- ということなんです +- 告诉他 +- 往往 +- ▁دارم +- ũ +- yah +- 五个 +- న +- ▁argue +- ශ +- ピン +- imos +- ▁trusted +- ▁прямо +- рог +- ▁depuis +- idades +- Ч +- ▁যে +- ではありません +- ていて +- 億 +- ▁unpleasant +- smith +- わない +- ▁latest +- рг +- んじゃないかな +- nische +- ▁pulling +- を持つ +- puesto +- 乘 +- 酒店 +- ▁такого +- ▁Gelegenheit +- rats +- ▁svoj +- ▁viva +- 这就是为什么 +- 杂 +- ▁مورد +- পর +- ▁pushing +- ▁depths +- しよう +- ヨ +- Ne +- gles +- ▁guards +- 均 +- ▁hadden +- ▁maison +- ▁sketch +- вых +- 宝宝 +- 弁 +- ▁surgeon +- ▁aŭ +- ▁siempre +- sea +- 除非 +- ▁далее +- quí +- 感觉到 +- capacit +- ▁advantages +- ▁chant +- umwa +- bä +- 森林 +- ▁foul +- مار +- 矿 +- 跨 +- ▁staying +- 热情 +- мысл +- ▁paw +- ▁Straßen +- ▁forecast +- ▁собира +- اری +- 互 +- obli +- енные +- ப்பட +- ▁fum +- ▁cá +- ▁distinctly +- ада +- wari +- 飲 +- 一部分 +- 市内 +- 怎么能 +- gge +- ▁عنوان +- 出演 +- ▁sterben +- ▁reproduc +- ▁register +- ▁Mitte +- tiga +- bron +- ▁Software +- ▁knights +- たちの +- ▁место +- ▁menschliche +- ising +- ▁repent +- ▁mechanism +- taka +- ▁haut +- 需求 +- ▁stopping +- ợ +- ▁breathe +- 濃 +- 不容易 +- stick +- sagen +- ▁guarantee +- 这些东西 +- 詰め +- 缝 +- ▁sabi +- 所在 +- ランナー +- ▁представи +- ▁является +- 特别是 +- شي +- Đ +- ▁després +- 辺り +- 也要 +- ▁образом +- 听着 +- ▁earnestly +- ▁Tim +- воль +- 就没有 +- ост +- ▁oleh +- 何が +- ▁donne +- فة +- trägt +- ▁brains +- 幸运 +- ▁deadly +- станов +- valu +- ürü +- いえ +- ▁skull +- gebiet +- Mar +- 敵 +- 攻め +- ▁spielt +- source +- baren +- ▁Bevölkerung +- 都能 +- ▁stirred +- ▁commonly +- ▁pang +- ▁Before +- 角度 +- ▁tener +- ▁winning +- ▁öffentliche +- 截 +- نة +- ▁parce +- dler +- させた +- уль +- ▁Größe +- ▁nei +- ▁conservative +- ▁туда +- というもの +- 用の +- ▁boxes +- ▁reception +- ▁Şi +- ▁timber +- ▁Druck +- 発生 +- мир +- 適 +- 弃 +- ▁Sud +- 解決 +- க்கி +- ▁baga +- からも +- وح +- ▁comprend +- 在你的 +- 工人 +- 划 +- ложен +- 原则 +- 史上 +- klä +- ե +- markt +- 荡 +- kari +- walt +- オン +- ▁neues +- ▁Ergebnisse +- ▁courts +- нг +- 버 +- shot +- ең +- ▁blew +- haltung +- ▁Herzen +- грамм +- ▁participate +- ▁competi +- ちょ +- 알 +- ▁gerek +- ▁президент +- ▁esti +- ண்ண +- 공 +- 교 +- ▁fatigue +- ▁fatto +- ▁aquella +- altra +- ▁blossom +- 恵 +- 鮮 +- 瑟 +- ▁jewel +- ▁Rock +- 帝 +- ось +- ▁remainder +- ▁راه +- 特別 +- ▁technique +- ▁pillow +- opa +- 많 +- ▁category +- ▁таким +- ませ +- ▁monday +- それぞれ +- pio +- läuft +- ▁zunächst +- ▁Second +- volg +- motiv +- ▁nerves +- ▁programme +- omu +- tious +- ▁Bell +- ▁augen +- дон +- 一把 +- инский +- ▁ஆஹ் +- ▁omdat +- ▁dutch +- سته +- ▁profitability +- affe +- ▁standards +- 付近 +- 俄罗斯 +- kreis +- ▁gelang +- овых +- кор +- ▁procession +- ơ +- 将其 +- 他有 +- 爱的 +- 很有趣 +- ▁Omu +- кія +- ▁summit +- ▁fünfzehn +- چه +- 生活在 +- コー +- 情况下 +- ▁gesamten +- 海岸 +- 非常好 +- 家长 +- écri +- ▁murderer +- ▁Он +- ▁مست +- ▁accelerate +- itas +- cía +- ▁diejenigen +- ▁contracts +- ▁commun +- 高中 +- hte +- ▁delivering +- たっぷり +- kala +- ▁popula +- 公园 +- ▁domain +- ▁journalist +- ▁repar +- crit +- ための +- ▁Auswirkungen +- ▁былі +- ▁Papier +- 所以他们 +- lē +- பார் +- 外交 +- ▁Bundes +- 我们家 +- そんなに +- ▁stolen +- 低い +- 附 +- zaba +- иа +- ▁egyptian +- ା +- 달 +- 脏 +- ▁uwo +- lă +- 会不会 +- ▁Web +- ▁olduğu +- дор +- regul +- 時点で +- 必ず +- ță +- wissenschaftlich +- ▁scripture +- mper +- を示 +- ▁alterna +- kke +- حر +- shuri +- ▁format +- amerikanische +- ння +- ▁serving +- ▁doll +- ▁resemble +- ▁slain +- 走进 +- 美丽的 +- 展開 +- ▁wilderness +- ▁creo +- kind +- ▁Stein +- ▁mussten +- gramm +- ▁абсолютно +- ని +- film +- 不好意思 +- ▁sailor +- 我看到 +- 笑声 +- 嘅 +- 火车 +- 便宜 +- gid +- うまい +- 也就是说 +- 中継 +- ▁cats +- ango +- wehr +- чил +- ▁flashed +- 小孩 +- 으면 +- ▁occupy +- 不对 +- ▁victims +- rink +- ▁shan +- ▁dife +- ▁должно +- あんまり +- чай +- ▁وقتی +- 谈话 +- 珍 +- 庁 +- コース +- rechte +- ▁компани +- 后的 +- ▁fem +- ▁utili +- struktur +- 付出 +- mount +- ▁humour +- ții +- ▁respectable +- を迎え +- бри +- ▁бог +- myaka +- mast +- ▁accomplish +- оро +- 什么意思 +- ▁allowing +- ▁streams +- 扫 +- mming +- ▁Pferd +- ▁aya +- ގެ +- ▁Canada +- chief +- ▁erhielt +- ▁scared +- ▁burnt +- ▁gloomy +- ▁выбор +- lha +- ▁さて +- нулся +- ▁Link +- ımı +- ベル +- ிருந்த +- 仪 +- 睡眠 +- ▁God +- ▁Vorteil +- ▁Stellen +- ístic +- を作り +- ▁Reich +- 重点 +- 氷 +- つい +- лийн +- 早速 +- ▁số +- ▁стол +- ▁Haar +- ゾ +- 説 +- ▁equity +- ▁grove +- ▁زندگی +- お客さん +- 选举 +- 妮 +- फ +- ывать +- 開かれ +- kamer +- хай +- ▁adjusted +- парт +- ▁insanlar +- 垃圾 +- ան +- だが +- 您可以 +- mena +- ▁suitable +- ދ +- fähig +- bikorwa +- 上升 +- ▁needle +- ▁hawk +- มี +- ベスト +- ▁prend +- ▁clima +- poko +- 地元の +- ▁jos +- قابل +- ▁prudent +- 什么是 +- ▁agony +- ▁inevitable +- losen +- ▁таких +- ▁wages +- ▁otros +- date +- 双方 +- 诊 +- ▁cluster +- 桂 +- 杉 +- インド +- ▁meaningful +- iet +- ▁fruits +- 継 +- ▁status +- 的男人 +- ▁trage +- ▁polly +- zehn +- でしたが +- ▁самое +- amour +- 和她 +- ufer +- ▁transparent +- rier +- tero +- スク +- を入れ +- ▁offence +- ▁இருந்த +- ライブ +- ▁washed +- ▁obscure +- esso +- 規模 +- ▁resident +- ▁resolve +- ▁betrachtet +- ▁foarte +- 幻 +- 正好 +- ▁damn +- zugehen +- 那儿 +- ஓ +- წ +- tian +- 層 +- ▁assembled +- 中国人 +- ▁chairs +- 夸 +- ▁сур +- 解除 +- ▁Dit +- 終わり +- To +- ▁menyang +- tanz +- ▁officials +- ▁libro +- ▁Glauben +- ibu +- ▁prim +- гы +- ▁Most +- 构建 +- ▁entweder +- ▁bauen +- 是关于 +- 動物 +- ▁Mund +- ambu +- かけて +- rop +- ▁generations +- ▁Joan +- ▁dash +- ▁masses +- ▁mögen +- بات +- oud +- 込んだ +- ▁brows +- 演奏 +- 一気に +- 防衛 +- cula +- ▁Interesse +- еры +- 方針 +- 和他的 +- mog +- ຈ +- 輝 +- ▁disguise +- ▁varia +- ▁leaped +- नि +- ▁leer +- шь +- zieren +- ļa +- ına +- rique +- 彼女は +- ளை +- 雑 +- amendement +- 这本书 +- ▁confined +- 不久 +- 将在 +- ▁nephew +- imit +- бан +- 缘 +- gado +- 我们今天 +- ereza +- 墓 +- ▁domina +- 买了 +- 体制 +- 稳 +- صر +- 一万 +- 競 +- 浴 +- 的结果 +- 時から +- पा +- ▁hopefully +- ▁còn +- 什么都 +- ▁poe +- ▁fastened +- ▁brands +- ▁ấy +- 烂 +- ▁florence +- ▁legislation +- gari +- ▁высо +- barra +- ▁Plu +- aciones +- dna +- 一首 +- 賀 +- ▁december +- ▁valid +- cine +- ▁erinnert +- pole +- familie +- 琳 +- strat +- ▁humans +- gā +- ▁kinder +- ▁scri +- ampl +- ▁blast +- 琴 +- 曹 +- ▁dispar +- 绿色 +- 挣 +- ▁продолжа +- кру +- ▁steamer +- ▁arguments +- ▁toda +- を超える +- ▁kullan +- tli +- ▁Zustand +- ▁suspicious +- 脉 +- ▁obstacle +- 競技 +- 椅子 +- ▁Maß +- ▁temporary +- 的任何 +- ▁persuaded +- 如果你想 +- 逐 +- ▁cambia +- ウン +- ό +- ▁abbiamo +- ▁vary +- ▁понятно +- ぐらいの +- ものの +- 辈 +- ▁commenced +- ▁Schrei +- ligt +- 主题 +- 都知道 +- schule +- ▁separa +- web +- ▁Kaj +- 飞行 +- thon +- ▁nnyo +- ump +- ▁Service +- ▁irgendeine +- eus +- 件事 +- 这么大 +- 的老 +- ▁protected +- ▁effectively +- 分かります +- dür +- 主要是 +- кус +- ▁enorme +- ष +- エネルギー +- ▁sunset +- нэ +- wah +- ▁призна +- кино +- ▁deinen +- ▁costume +- くない +- کو +- ▁homo +- ▁کردن +- tò +- ума +- もありました +- いきましょう +- ▁seats +- ▁Dort +- ▁mars +- ▁supporting +- ▁replaced +- ▁hammer +- ▁Two +- ▁interven +- sley +- ▁машин +- 把这 +- ▁genauso +- مۇ +- нская +- ▁furnish +- ▁units +- 的爱 +- ▁strangely +- 먹 +- steuer +- 受伤 +- 関係者 +- 是这样的 +- 失去了 +- ▁اینجا +- 分け +- ທ +- ▁globe +- 市場 +- 播客 +- иг +- 资本 +- ▁contents +- hanga +- zicht +- ▁großes +- 还会 +- ▁jove +- кер +- ▁saints +- 丰富 +- ▁Vol +- ▁fazer +- ▁mou +- دون +- ▁Ntabwo +- ▁Pass +- ▁fires +- ▁devices +- ▁tienen +- нымі +- ▁mademoiselle +- ガス +- taba +- ▁achter +- 鬼子 +- 还真 +- 買い +- ▁rays +- ▁Cent +- ▁buryo +- ▁cual +- ▁amigo +- ▁murdered +- んでいる +- ▁vulgar +- elte +- ▁seas +- ▁либо +- пуска +- ▁aceste +- 申请 +- そば +- ▁Brit +- ▁bitten +- 的历史 +- ▁Natürlich +- ▁Texas +- 炭 +- ▁Schwester +- ▁блок +- ▁neighbors +- ாள் +- 一時 +- ▁двух +- rita +- ▁effet +- ▁часть +- מ +- ▁speziell +- ▁групп +- われ +- 亲自 +- جی +- ashobora +- ▁armies +- tuk +- ▁succession +- 上昇 +- ▁Minister +- 一些人 +- ৃ +- 究 +- ▁wing +- いう +- 的呀 +- anthrop +- の一部 +- ▁fountain +- 兼 +- ▁minut +- りとか +- 初の +- 把他们 +- ว่า +- ▁Design +- ▁familia +- 神秘 +- lui +- ▁testimony +- 教えて +- ▁abruptly +- ▁Une +- ▁decidi +- riet +- 类型的 +- ▁meetings +- 받 +- 월 +- рай +- space +- iadau +- ▁pall +- ▁antwoordde +- 職員 +- مز +- каў +- think +- ▁insbesondere +- ▁solitary +- ヨーロッパ +- ▁responded +- 中国的 +- ▁puzzled +- 逆に +- ▁Mul +- 赢得 +- గ +- сөн +- 不是我 +- ▁sauce +- ついて +- ▁diferente +- life +- 民主党 +- ▁pronounced +- までに +- 公民 +- ▁hohe +- ▁diverse +- ▁namely +- ▁weigh +- pian +- 这张 +- ▁thereby +- வீ +- ▁tragedy +- が出て +- ▁但是他 +- 谷歌 +- іцца +- ök +- nika +- ▁chứ +- 剪 +- ▁offices +- 你们俩 +- ▁channels +- zette +- sozi +- ▁twi +- 公園 +- gize +- rata +- 養 +- ▁scott +- ▁grip +- ▁longing +- ▁texas +- ▁diamond +- 事業 +- 这场 +- ▁Kä +- bou +- 想过 +- ுள்ள +- 一遍 +- 尝 +- schutz +- ▁clara +- ▁уу +- вяр +- 善良 +- ▁memories +- üyor +- ▁producing +- ▁sadly +- ▁wink +- 生存 +- 现在的 +- 协议 +- ▁scent +- ىنى +- hine +- ▁veces +- ▁pří +- ▁Ng +- 购 +- ▁Werk +- ▁cog +- 行政 +- ワールドカップ +- ▁Schmerz +- ▁milit +- liği +- ▁neglect +- pier +- 黑色 +- ▁என் +- ▁functions +- ▁harvest +- 시간 +- ▁floating +- が今 +- ▁metro +- lingen +- яць +- ▁partially +- ▁indication +- ▁Rei +- スタッフ +- ▁Sub +- 予報 +- ▁guilt +- gesehen +- 的学生 +- ▁sergeant +- mari +- ады +- Wa +- 平等 +- 房间里 +- 않 +- ▁documents +- ▁cavalry +- ▁பல +- fashioned +- ▁sets +- бой +- ▁nehme +- த்தின் +- ▁پیش +- क् +- 广播 +- ае +- 动作 +- ▁integration +- 石头 +- ▁результат +- ▁amas +- ▁brig +- দে +- 饼 +- ▁fiction +- 題 +- ▁кстати +- ▁shu +- ▁பிர +- しまって +- flex +- eorang +- made +- рал +- shop +- 領 +- scheiden +- ĉa +- 旁 +- 舍 +- ї +- 不是说 +- truc +- schiff +- ▁Scott +- ія +- ▁roses +- ▁但是在 +- 胆 +- ▁Ра +- داری +- 我们想 +- Ab +- ▁trabajo +- に関する +- ▁defect +- ▁Gil +- ერ +- ▁wandered +- 会談 +- ckle +- 勝負 +- Au +- meli +- ▁bose +- 飲み +- šo +- 植 +- ▁애들 +- 所说 +- vian +- ▁لقد +- 作って +- ▁satisfy +- ffle +- ▁Arzt +- ▁wann +- ▁deeds +- ▁myth +- ▁Nummer +- ▁criticism +- ▁Kro +- 故意 +- 单位 +- ▁맞아 +- ستا +- ▁guardian +- ▁indignation +- Ver +- ▁recollection +- 会見 +- ▁whoever +- break +- 気温が +- সি +- ▁gleichzeitig +- 陛下 +- ▁delicious +- 开始了 +- 读者 +- beeld +- 起了 +- ▁illegal +- 地面 +- ▁yeni +- ▁enjoyment +- ▁outrage +- 并在 +- ▁flee +- 屏幕 +- больш +- ▁interact +- ▁momentum +- ▁hano +- ▁inspiration +- liches +- ලා +- iser +- ▁glasses +- 加上 +- 暑 +- орон +- 耐 +- ▁dramatic +- ▁равно +- hla +- gó +- 协 +- 障碍 +- 倉 +- ▁sunk +- ▁шестнадцать +- ▁tendency +- ▁Island +- するなど +- 预测 +- よい +- ▁unbedingt +- ▁bleibt +- ▁шмат +- ▁disp +- angira +- arca +- ▁crimes +- onne +- ▁loyal +- ▁apostle +- ▁betray +- оны +- ▁inward +- ilia +- 烦 +- 的日子 +- ▁사람 +- lg +- 見る +- rinner +- 沉默 +- ▁seize +- ஞ்ச +- iler +- ▁правильно +- なあ +- ▁بسیار +- 媳妇 +- ▁говоря +- 主意 +- 물 +- ▁ruhig +- ▁Turn +- 不出 +- сом +- ▁Nel +- 紫 +- unddreißig +- を務め +- unta +- ▁Autor +- ▁diana +- ▁alexander +- ▁telegraph +- ▁ساخت +- нен +- ▁amen +- 焦虑 +- ▁Artikel +- аар +- حة +- ▁seves +- ▁пост +- һә +- 天下 +- Un +- 明显 +- ▁لدي +- лаг +- ▁Rand +- ▁personality +- hart +- abandi +- っていました +- zek +- ▁arrangements +- بد +- ▁sermon +- が多く +- 的照片 +- ▁ruined +- ahu +- なと +- 智慧 +- ัง +- ▁теле +- tou +- ▁geheel +- ению +- ▁своих +- ▁virtues +- ▁widely +- ▁mingled +- ▁Kir +- 我们没有 +- ccio +- ▁Club +- 我们不 +- езд +- してた +- ▁rider +- teilung +- كو +- 一片 +- ▁женщин +- سان +- 重复 +- 生日 +- ▁approved +- 绕 +- 機能 +- ishi +- ograph +- 讲述 +- 危机 +- 広がって +- 获得了 +- رە +- 意见 +- 妇 +- ▁loaded +- cation +- いいですか +- ▁fran +- услов +- ▁pastor +- 统 +- 提供了 +- 再開 +- ▁puff +- ն +- 障害 +- ▁financi +- 给大家 +- kund +- ▁tune +- arro +- ▁없어 +- ▁levi +- lade +- 今も +- ▁yea +- ▁serpent +- ▁endless +- いいですね +- いき +- ▁Where +- ▁Beste +- riz +- 离开了 +- 径 +- ränk +- ному +- 伸び +- ▁Fähigkeit +- ▁Schlaf +- ▁duchess +- 你和 +- ▁لأن +- 就这么 +- ▁executed +- ▁heels +- ▁chicago +- 성 +- ▁vader +- zahlen +- ▁periods +- called +- just +- ▁тринадцать +- さい +- dron +- 改变了 +- रि +- ▁vera +- ▁sharing +- inta +- ▁Feld +- 負 +- ▁ihe +- кров +- dog +- ▁чт +- pool +- ▁dreamed +- ▁heilig +- ▁slender +- 在家里 +- ▁uncon +- മ +- ▁그리고 +- ▁Kandi +- Union +- 英里 +- ▁chances +- ryo +- 场景 +- 遥 +- 链接 +- 移民 +- 十四 +- ▁sac +- fact +- ▁selten +- ▁Arab +- 谈到 +- ▁feather +- ▁inch +- 尽可能 +- 都被 +- 日常 +- ▁attorney +- human +- ▁helpful +- 劳动 +- 经营 +- ▁mă +- ▁Cro +- ▁languages +- ▁Esperanto +- лев +- ▁sustainable +- タン +- 生産 +- 纵 +- うちの +- ▁promotion +- lateral +- stamm +- making +- 華 +- ▁risen +- geist +- ▁vehicle +- 大量的 +- сна +- ▁careless +- ваю +- 村さん +- 一刻 +- 育て +- ▁Ча +- 取り組み +- ▁passengers +- 雇 +- း +- ▁chimney +- ▁엄청 +- ▁abundant +- ใน +- 调整 +- 場で +- moc +- ▁sao +- ▁Generation +- 男女 +- ▁provin +- ▁funktionieren +- ▁limp +- ▁calmly +- gesellschaft +- ▁Ram +- ▁quello +- ▁tv +- ▁agents +- 、4 +- あら +- 和他们 +- ▁беларус +- ▁Bezirk +- どっち +- ▁villages +- ▁intervals +- ▁cooking +- ▁printed +- ▁revelation +- ▁Gene +- 也就 +- ǧ +- 今シーズン +- 女王 +- ▁mwen +- 我们对 +- стер +- 上で +- 链 +- ▁politique +- ▁sunlight +- ▁differently +- god +- 보고 +- 暑さ +- 对她 +- ▁dost +- 图像 +- ▁poden +- igno +- çu +- ▁holes +- かれ +- 多久 +- ▁consumers +- ▁sweat +- bac +- 喝酒 +- ▁کم +- ▁movies +- ▁одной +- τ +- テン +- arian +- ▁verdad +- قول +- 司机 +- 承担 +- ▁exceed +- низ +- 今日も +- 措施 +- ▁clan +- uso +- ▁Last +- 回应 +- ▁nowhere +- ência +- ▁islam +- ɣa +- gende +- بان +- 報 +- quir +- ▁Lehr +- Ц +- ▁nerve +- ▁january +- 批判 +- 很大的 +- 男朋友 +- 通信 +- کت +- 栏 +- いきました +- ▁путин +- 町の +- 混合 +- ▁absorbed +- wami +- もともと +- èn +- 有趣 +- ▁hinunter +- state +- ▁fathers +- ▁sweep +- 情報を +- ▁alcohol +- bonye +- ggy +- රි +- fitting +- isierung +- aq +- ▁exposure +- 紹介 +- iker +- indu +- ▁friday +- цыя +- brü +- ▁faculty +- ▁convict +- ▁tad +- 誰か +- نظر +- 新型コロナ +- 업 +- ို +- 遺体 +- ▁addressing +- 什么的 +- たって +- ▁veu +- ▁presents +- ▁depression +- ハイ +- ▁Suche +- 财产 +- ▁Ту +- 前半 +- ▁joan +- を引き +- стрел +- 田中 +- ▁user +- ▁constitu +- ▁Publikum +- ▁Tour +- ەکە +- 機関 +- ▁muốn +- овал +- ▁moonlight +- ▁welke +- まだまだ +- ▁которой +- ▁participa +- 彻底 +- ▁discussions +- ▁году +- idée +- 醉 +- 出して +- ▁Nachrichten +- fordert +- ▁proces +- 高さ +- ▁Esto +- 예 +- 切って +- ▁Inhalt +- ▁fortunately +- ево +- ndre +- ▁قو +- arı +- 你都 +- فه +- 披露 +- market +- ▁сами +- tano +- 了一下 +- 平衡 +- '150' +- gekommen +- 多大 +- ተ +- ▁lieber +- zas +- ▁demands +- 多少钱 +- べき +- 飛び +- шә +- ▁stare +- 他们有 +- abantu +- 하지 +- ▁hı +- 魂 +- ▁supplied +- 豚 +- шен +- ▁preparation +- bing +- ▁heavenly +- 規 +- ▁nhất +- selt +- ▁გა +- ▁gig +- ▁можем +- 銃 +- ضا +- ▁raus +- ▁Ergebnis +- ▁forests +- ▁erstellen +- ▁Fle +- ஸ +- ▁behaviour +- 年轻的 +- lder +- энд +- тел +- யான +- ▁Please +- ▁travelling +- 多么 +- volution +- 더라고 +- ▁größere +- を変え +- ▁procedure +- 遭 +- ▁Material +- ▁campus +- を行って +- 級 +- руу +- roch +- ▁Mä +- 現在の +- 你已经 +- чын +- ▁erwartet +- ▁requirements +- 就不会 +- 専門 +- médi +- 转向 +- Lachen +- 未来的 +- ▁commune +- ▁Fluss +- 孝 +- tega +- ▁Zimmer +- 我认为这 +- ▁Cra +- レース +- 状况 +- ▁جدا +- 一大 +- 不是你 +- зор +- ▁choses +- ▁Tie +- ▁representative +- ▁pent +- ▁knot +- 有点像 +- െ +- ▁slim +- ▁Sho +- っか +- чных +- 法案 +- ța +- ▁barbari +- ▁Sto +- ▁promptly +- камі +- изм +- oog +- ▁verme +- ▁adorn +- やめ +- ▁commence +- ▁Hör +- schritt +- emt +- ところに +- ▁vz +- ▁тип +- 债 +- леч +- がん +- ▁добра +- abend +- excel +- ▁aceast +- のもの +- 你真的 +- ▁invented +- 矛盾 +- ▁neutral +- と思うんですけど +- erna +- rf +- zima +- 规模 +- ワー +- 喺 +- ▁currency +- ▁eagle +- lom +- magn +- ▁claimed +- ▁pockets +- 점 +- etto +- 的目标 +- ▁হয় +- ▁blade +- ▁laŭ +- евская +- 重要な +- dī +- ▁кабинет +- ▁zéro +- ▁francs +- 大多数人 +- вил +- ▁identified +- 你可 +- ▁logic +- 你给我 +- تس +- axe +- ▁achievement +- ▁contribute +- ▁Ober +- 反応 +- 宝贝 +- もあり +- ▁itu +- 基地 +- ▁admiral +- nydd +- shyira +- 中学 +- drin +- teen +- こんなに +- رات +- 脸上 +- ში +- ▁colleagues +- 同情 +- ▁random +- 覆 +- 挤 +- 声が +- ▁bewegt +- 结束了 +- 安静 +- 영 +- ▁weiteren +- ▁okul +- ▁начальник +- erfolg +- ▁grava +- ▁pove +- ▁Pod +- 的数据 +- ▁typical +- クリ +- schaffen +- 也好 +- ▁wrought +- জন +- kommt +- だったり +- dust +- terra +- 講 +- ▁bushes +- ▁muß +- ユ +- ▁хэл +- ▁waist +- 我一 +- 跌 +- 工业 +- ▁dave +- ئو +- 回头 +- ▁Radio +- '600' +- ▁confirmed +- ということが +- 外国 +- 来讲 +- ža +- chal +- ▁mouse +- 仲間 +- ▁alert +- ላ +- ▁Council +- 肌 +- ▁beginnt +- 铺 +- ▁Day +- ▁hired +- 全国の +- だい +- 伟 +- ук +- ▁condemned +- いよいよ +- ▁stap +- ▁música +- ithi +- ▁conform +- performing +- ▁incredibly +- ▁cresc +- ▁lingvo +- 扭 +- 胃 +- ▁thumb +- ▁honestly +- isk +- ffel +- ▁specimen +- glass +- はこちら +- ▁spark +- munt +- 西方 +- ▁grupo +- 你不会 +- ▁söyle +- histoire +- વ +- 随便 +- rama +- ಕ +- なきゃいけない +- ▁circuit +- の声 +- ▁Rue +- 练习 +- ▁prayed +- 更大的 +- 納 +- برا +- ほかの +- 회 +- ▁entdeckt +- ▁команд +- фор +- 这也 +- ▁nasıl +- nehmer +- 相关的 +- 原谅 +- рыв +- 送到 +- ▁deutsche +- IS +- ▁purse +- 上有 +- ▁soziale +- ▁rhe +- 代码 +- ует +- 輪 +- ▁Hallo +- 比我 +- iest +- かかって +- ▁tid +- posició +- ▁daring +- してくれ +- sprach +- 東部 +- 毎 +- ▁agency +- poj +- 知って +- gamba +- ▁carr +- 指导 +- ▁yeux +- 飛 +- ▁followers +- 贾 +- ▁obedience +- ▁spät +- ▁mischief +- 報道 +- 川さん +- action +- 迎 +- ▁resort +- ▁deals +- ▁warned +- 摔 +- 丑 +- ▁Einzel +- லாம் +- ほどの +- ▁mob +- ああ +- もんね +- jed +- 하면 +- precia +- 百万 +- ▁represents +- российск +- ▁entitled +- ▁derived +- ▁lace +- ▁resource +- ▁certainty +- ▁gott +- 又是 +- ▁gallop +- ジュ +- iwa +- 電気 +- 这就是我 +- руч +- ▁dolan +- npr +- Il +- ▁coarse +- ▁процесс +- みます +- ▁tenderness +- ▁charges +- 野さん +- ▁emerge +- umber +- 喊道 +- 检 +- ▁satu +- ▁sahen +- є +- ▁notwendig +- தோ +- ▁flames +- 士兵 +- ▁Seele +- خبر +- ▁Nhưng +- ▁från +- ▁کښې +- ▁아니야 +- ▁affectionate +- ▁curtain +- ▁detailed +- やら +- 我叫 +- 一系列 +- ▁пара +- oce +- ▁exempl +- 范围 +- がいる +- sions +- ▁artists +- ària +- 凭 +- ▁divorce +- ▁хоёр +- ▁corridor +- ▁lofty +- 最高気温 +- roma +- 陷入 +- 開け +- ▁nivel +- 集团 +- waka +- ב +- ▁Feind +- 损失 +- ▁орган +- mite +- polo +- 内の +- ▁Zugang +- 使って +- ▁fein +- ▁numéro +- ▁allí +- ற்ப +- ▁pressing +- afrika +- ষ +- dores +- 可以看到 +- ▁roughly +- ▁стара +- 技能 +- ▁savings +- ▁farmers +- ▁theater +- glück +- magnet +- ▁când +- ▁barely +- ▁briefly +- вялі +- போது +- ôn +- 児 +- احت +- と呼ばれる +- cloth +- ▁aka +- 和一个 +- ▁painter +- ▁challenging +- 初めての +- ▁borrow +- 完美 +- ▁pillar +- ί +- ரோ +- ▁Frei +- 军事 +- ▁advertising +- ▁solitude +- ことができる +- やってる +- 力が +- ▁bargain +- のではないか +- 不少 +- ジャンプ +- ბა +- ビル +- жо +- ▁sees +- يح +- ▁normalerweise +- bih +- ▁před +- ▁telefon +- ▁injured +- ▁marsh +- uburyo +- ▁правда +- 就把 +- ▁газ +- 瞧 +- ▁moves +- के +- ▁writes +- ▁advocate +- なんですよね +- ▁sebagai +- ▁wherefore +- ▁hoop +- maga +- ▁sphere +- 来月 +- guin +- 咬 +- ▁underlying +- ▁olduğunu +- にいる +- 主动 +- ▁plusieurs +- みんなで +- ً +- nwa +- 燃 +- lijke +- 私人 +- ▁Studie +- 例子 +- ূ +- 牢 +- ▁happily +- 따 +- ciò +- ▁идет +- ▁парти +- を入れて +- ▁ranks +- īt +- ctic +- 就是这样 +- ▁blows +- 有用 +- ▁colon +- 吵 +- 找你 +- ▁pensar +- кім +- 彼は +- 迹 +- ▁organized +- 柄 +- дог +- ▁countess +- niu +- liest +- ▁construct +- ో +- ▁newly +- ▁Kontrolle +- ▁சிற +- ▁nahe +- ▁тү +- стей +- 指摘 +- ▁announcement +- ▁tenant +- ▁mexico +- おはようございます +- vuit +- 突破 +- ▁видел +- terie +- ▁energ +- houd +- 봤 +- ▁harbor +- տ +- ▁verlieren +- avaient +- aquest +- ▁Dal +- 优势 +- ▁deja +- ember +- 讨 +- 竟然 +- ▁slecht +- initiative +- ehrt +- るんです +- ativ +- ▁Studien +- letter +- 观点 +- 到底是 +- ▁stond +- ▁penetrate +- ▁dividend +- ▁investors +- 警方 +- ▁иван +- 面白い +- っちゃった +- ▁বল +- ▁revolver +- ateur +- руш +- misch +- ▁vengeance +- シュ +- quatre +- ▁wheat +- shaw +- ▁nawe +- trop +- cret +- があると +- 指出 +- рә +- ▁simon +- 创作 +- ▁thither +- ивать +- ▁beschäftigt +- ▁brethren +- igita +- ▁Nie +- 这个词 +- ▁Brown +- قط +- ribu +- ▁bitterly +- ▁sofa +- ▁component +- ▁ventured +- これだけ +- bora +- 很久 +- 았 +- ▁Religion +- 缺乏 +- ▁Pin +- 咱俩 +- ▁panic +- 很明显 +- zorg +- 的父亲 +- ▁survive +- 一辈子 +- ▁gravely +- ▁Tagen +- ▁counted +- ▁positively +- 召 +- дым +- ූ +- ▁dacă +- 関連 +- ினார் +- 沿着 +- ▁bisher +- はありません +- だろ +- ▁elf +- ް +- 共产党 +- ▁clutch +- anten +- 咲 +- ▁casi +- یل +- ▁conversion +- 知道的 +- ▁warten +- ьте +- ▁پای +- feuer +- 瓜 +- ▁بۆ +- ▁tenir +- ▁Ну +- 不明白 +- ▁napoleon +- の映像 +- 两种 +- 自从 +- 幸せ +- hib +- jwe +- ▁podemos +- ▁pirate +- ▁bedeuten +- лова +- 我得 +- 切れ +- orden +- つ目 +- ▁weeping +- をつけて +- ছি +- 衰 +- ▁интересно +- ▁tradu +- ▁сме +- 互动 +- ស +- 행 +- がい +- ▁versuchte +- 恒 +- 르 +- ▁Anzahl +- 彼ら +- ▁practices +- ▁мед +- menti +- ▁weiterhin +- ▁restore +- ologia +- ▁computers +- ▁algun +- 用来 +- 干净 +- school +- аза +- ▁vivo +- ▁Grundlage +- ukan +- なくても +- ▁estado +- ▁attempts +- ▁Ĉu +- ▁sample +- bund +- ▁analog +- ▁celle +- ▁salva +- ▁providence +- すばらしい +- ▁House +- ▁trim +- ▁erkannt +- ▁rushing +- 旋 +- ゼ +- ▁bulk +- はおよそ +- 世界中 +- ▁findet +- cultura +- زو +- ▁instances +- зан +- ගේ +- であり +- енных +- ▁santa +- ▁jewish +- gele +- ▁gusta +- ▁condemn +- '5000' +- 司法 +- führer +- ▁sais +- үл +- 東京オリンピック +- に入り +- 诚 +- ධ +- ▁nouvelle +- ▁invite +- ovat +- ▁treaty +- ▁navy +- urteil +- minate +- іх +- 襲 +- ▁mexican +- ggle +- اي +- ▁germans +- ▁aqui +- 在我们的 +- ▁canvas +- ▁selection +- ijo +- 送り +- ▁blaze +- lığı +- ▁gesund +- gora +- ▁آب +- ▁Who +- 知り +- nız +- ▁ôl +- ▁suck +- ▁displayed +- えば +- ▁undoubtedly +- 的过程 +- طة +- ▁Así +- ▁warrant +- ▁ursprünglich +- ▁کردم +- пен +- 婴儿 +- 蛇 +- ▁هغه +- ▁illustrate +- 事実 +- ▁bureau +- fata +- なか +- ▁Richter +- mbwa +- 费用 +- 那就 +- ▁Teile +- ▁Daniel +- ▁nên +- ▁Ад +- ▁deploy +- ký +- Č +- 純 +- ▁entscheiden +- ▁چیز +- ▁Reaktion +- ▁можете +- währ +- アイ +- က +- ▁acquire +- лив +- ▁caesar +- 有事 +- ské +- ▁doth +- ▁tête +- 蓝色 +- ▁conversations +- ▁wept +- 入れる +- ▁politischen +- ▁jerk +- ▁elaborate +- 然后你 +- ▁весь +- ▁ladder +- に行って +- 分开 +- ▁advancing +- macht +- ▁které +- 電力 +- Wi +- дыр +- ▁hamwe +- とう +- ▁lasted +- タイミング +- ▁afite +- 报纸 +- 事態 +- ▁Ker +- 漂 +- ▁employer +- ▁discourse +- ▁cannon +- ▁Kommission +- yat +- shim +- ▁которое +- valo +- даў +- istoj +- breng +- ▁prevail +- ニング +- ▁julie +- nine +- ljen +- вым +- ▁pension +- 縮 +- ▁сум +- ▁kleines +- ▁publish +- lden +- ▁alex +- ▁niece +- 閉 +- に来て +- ▁simplicity +- もらった +- 吃的 +- ▁idol +- ester +- ਰ +- はね +- ээс +- 针对 +- 阳光 +- たく +- 書き +- ▁brood +- ୍ +- が続く +- craft +- 专门 +- 調整 +- んですけども +- 批评 +- ▁dependent +- 沟通 +- 全面 +- 两千 +- 掌握 +- ▁других +- kere +- 으니까 +- 基金 +- iska +- ▁kang +- empresa +- ▁daniel +- ▁четыреста +- 着你 +- 반 +- utilitza +- 会被 +- ▁riu +- 主張 +- نية +- philosoph +- ▁munsi +- ▁помог +- طل +- ▁measured +- 稍微 +- ▁وقت +- 第四 +- ▁flows +- ▁hogy +- 都很 +- ▁Act +- までは +- 朋友们 +- ▁trials +- ▁schlug +- 符合 +- 目標 +- ▁shower +- シーン +- チョ +- нные +- 分手 +- ▁kent +- ެއް +- ින් +- ▁владимир +- ▁Angelegenheit +- ▁ascertain +- ▁gaat +- ▁الث +- oja +- ▁birthday +- 続いては +- ▁robin +- 緊張 +- ▁Fol +- ▁сделал +- ▁amused +- plex +- 刑事 +- 我还是 +- 储 +- ▁Zahlen +- やす +- ▁frozen +- ごろ +- このまま +- ▁sailors +- ▁önce +- lite +- ▁eerste +- 补充 +- 走向 +- ▁». +- 現地 +- 愚蠢 +- Lo +- gă +- artagnan +- ▁suite +- іў +- 有两个 +- 机器人 +- ▁relate +- ▁fisher +- 财富 +- ▁vanity +- 尊 +- 凶 +- ɛa +- 谋 +- umba +- きています +- ▁Wild +- ▁magistrate +- ▁مرد +- Ich +- مب +- appel +- 姿勢 +- 疲 +- પ +- yez +- 工程师 +- 乎 +- მი +- ▁exemple +- ▁Even +- ▁ample +- 混ぜ +- ▁Poli +- ▁Ari +- 皇帝 +- ▁schr +- ▁picking +- 庆 +- ▁quella +- يز +- 保護 +- 結局 +- блі +- ▁Cur +- 窗户 +- ическая +- মান +- '31' +- 你来 +- ▁семнадцать +- ▁scout +- ▁Lebensmittel +- 收听 +- Qu +- 上次 +- قوم +- கால +- جميع +- wür +- ▁Good +- 建设 +- 世界の +- δ +- ▁raison +- ▁Mike +- нный +- шо +- idio +- るため +- ვა +- fällt +- ▁declined +- geza +- 如果您 +- 大声 +- すべて +- いるのは +- 赢 +- ▁obeyed +- ▁depending +- ▁colony +- 側に +- стью +- ក +- 워 +- osten +- ▁flourish +- 是如此 +- を奪 +- ▁كنت +- ▁swing +- 脾气 +- ▁garments +- 前进 +- brid +- ▁Și +- ▁sarah +- 鼻 +- ▁Ny +- Ja +- ▁swallow +- ▁entreat +- pran +- ▁angesehen +- 警告 +- ▁experiments +- 坏了 +- 援 +- kunst +- ▁correspond +- ▁быстро +- 首相 +- ziert +- ですからね +- ▁judges +- ▁passe +- ▁frontier +- 玩儿 +- ▁байх +- の影響 +- gericht +- zeichen +- bari +- 两位 +- ▁colours +- 唯一的 +- 実現 +- 鳴 +- 寻求 +- 評価 +- ▁impre +- ▁aspects +- ▁zeigte +- ▁compte +- ▁secrets +- ması +- 句话 +- ifik +- ň +- 策略 +- ▁Henry +- 一口 +- ▁Бо +- ប +- ං +- ▁chính +- gier +- বার +- нию +- ケース +- ▁fanny +- ▁curs +- 烤 +- wedd +- bian +- ▁twist +- ▁mère +- ▁почти +- сим +- 日本は +- ▁idiot +- ▁hoog +- лиз +- ▁comprehend +- ▁Wald +- 可怜的 +- 引用 +- 统治 +- тик +- ▁들어 +- ▁lawn +- きっかけ +- práv +- らし +- なと思って +- ▁ceiling +- ijwe +- ▁그럼 +- ▁susan +- 側の +- のところ +- ▁проект +- だという +- 汇 +- ▁Freiheit +- 좋 +- ▁تت +- ▁trembled +- ▁Bil +- 祈祷 +- 樹 +- estima +- cze +- ▁goat +- ße +- ことです +- ▁sai +- 俊 +- ▁сюда +- ▁Rose +- ▁install +- 威尔 +- bett +- ▁Indian +- ▁luxury +- 聖 +- 芝 +- 投稿 +- ▁Dun +- ▁повер +- などと +- dec +- ▁emma +- ▁uncertainties +- lok +- っしゃ +- ▁signor +- 频道 +- 딱 +- ▁ئۆ +- ▁servir +- 復 +- 仅 +- ብ +- 委員会 +- agira +- ாய் +- 我们能 +- ▁ministers +- を加え +- 使用的 +- paga +- ▁urge +- ▁phenomena +- 翼 +- ahan +- 指導 +- bruch +- 标志 +- abord +- osos +- ▁essence +- ए +- atori +- ▁dried +- fica +- ▁ratio +- いますが +- ▁Lang +- 半年 +- 裁判 +- ▁drops +- ▁вось +- ▁Änderung +- 芬 +- ▁Beginn +- ▁emily +- ▁дур +- ▁investing +- ديد +- әк +- 운 +- ▁skills +- ▁potentially +- ▁herunter +- リード +- ▁revolt +- ▁soit +- ▁Bor +- メン +- 权利 +- ▁vertical +- ▁believing +- хі +- 自治体 +- ▁считаю +- 金メダル +- ▁groan +- ることができ +- 演出 +- களுக்கு +- үн +- rog +- kubwa +- веч +- ifer +- ▁emphasis +- 卓 +- getragen +- ▁ليس +- ▁pacific +- なくなる +- ▁bisa +- 扇 +- ▁Jen +- ▁страны +- ▁alarmed +- 署 +- ▁Sorgen +- 係 +- ▁كما +- ▁باشد +- ▁wheels +- 最後 +- 共和党 +- ▁tho +- ива +- 鼠 +- 半分 +- yum +- 分かりました +- ugi +- はその +- フレ +- ▁September +- ▁вечер +- と言って +- takse +- ▁voller +- šu +- éra +- 涉 +- banga +- ▁bass +- ▁Diskussion +- eres +- station +- ▁forming +- ▁attacks +- ▁renew +- ▁centro +- ggs +- ყ +- ▁diminish +- ▁faded +- ▁instruction +- ルド +- сал +- ▁wach +- ▁sozialen +- 的部分 +- 増加 +- 相似 +- 净 +- 泣 +- 在这种情况下 +- 味道 +- bourg +- を確認 +- 叫我 +- ▁steve +- 师父 +- kumi +- ▁Meer +- 一代 +- ▁Städte +- ▁erwarten +- 小子 +- ▁folded +- ▁Mut +- fähr +- اخ +- ▁sleeve +- ড +- ▁subsequent +- ▁bessere +- トロ +- rong +- ▁лично +- сту +- ест +- ▁weer +- ▁giới +- ▁назва +- ▁sara +- ▁acknowledged +- bier +- ▁Boston +- ▁مد +- 孤 +- 姨 +- ▁Risiko +- غان +- 犯人 +- ▁transmit +- ▁regularly +- ▁власть +- 做到这一点 +- 確かに +- спор +- ▁finde +- грам +- 可以说 +- ▁highway +- 非洲 +- ▁crush +- ▁tett +- 横浜 +- 月份 +- ▁gelesen +- なくなった +- ▁whale +- fällig +- ▁ripe +- ▁wherein +- 이랑 +- ダメ +- 勉強 +- ▁nang +- ▁Mitglied +- ▁famille +- 繰り返し +- カード +- 智能 +- dain +- ехал +- 罗马 +- 複 +- 訳 +- '99' +- 实在 +- 楽しい +- 이야 +- 発言 +- 命运 +- aktiv +- ▁dense +- ▁Up +- ▁reside +- 大家好 +- ▁dug +- ▁genetic +- 方の +- の間 +- ▁primitive +- ▁condu +- 听听 +- ▁dropping +- 進出 +- या +- まい +- тек +- ▁lowest +- ▁хүн +- ▁Kann +- ▁trova +- 妇女 +- шир +- ▁sandy +- ▁Això +- ▁которую +- ▁gossip +- ▁Ме +- 随时 +- ▁adventures +- ▁jsme +- 对手 +- 特征 +- ミス +- ▁repose +- ▁Gruppen +- ▁jackson +- ▁cage +- ▁Gewalt +- ▁Armee +- систем +- ▁rigid +- ంట +- ▁trink +- 大卫 +- မ +- ▁tumble +- сә +- 到现在 +- 我们如何 +- ▁summon +- ▁lên +- gesetz +- クション +- そこから +- サイ +- 관 +- ▁그랬 +- 帮忙 +- ▁lantern +- ▁Klein +- 果たして +- fusion +- hild +- wirtschaftliche +- 去世 +- цо +- present +- ▁users +- ▁pelo +- сид +- ▁sağ +- ▁Schuld +- 老爷 +- 出席 +- ▁license +- 臨 +- ину +- ▁neglected +- ▁Stu +- දි +- ▁maka +- ▁Zusammen +- ▁harp +- mill +- 是从 +- скай +- 彼得 +- 度过 +- schte +- 爽 +- 漫画 +- 杀死 +- 保留 +- عرف +- ▁emergency +- 他已经 +- ▁plead +- するという +- ▁destiny +- 解放 +- 午 +- まさか +- そんなこと +- 滞 +- pell +- ▁presume +- ތ +- ▁Chicago +- ический +- ▁crois +- ▁plastic +- linda +- ▁consist +- ▁jolly +- uke +- 董事会 +- يى +- ▁dedicated +- ຂ +- ▁проста +- 体の +- ფ +- 交代 +- いただく +- ▁genoeg +- 边缘 +- ▁ninth +- ▁flushed +- 他想 +- ▁impatient +- hst +- гын +- ▁agua +- ▁basin +- ▁prosperity +- 今朝 +- posto +- 罚 +- ▁lease +- ические +- ▁idee +- ▁shouting +- ▁soixante +- ▁oogen +- リスト +- ▁frog +- 两次 +- ونه +- 区の +- trouw +- ▁consisted +- 郊 +- ▁Ibi +- ▁Standard +- ▁partir +- 声明 +- čč +- ▁cordial +- ▁brute +- ▁rond +- ほしい +- 几个月 +- ▁denkt +- 消费 +- road +- kül +- ደ +- א +- ▁знаешь +- ▁ruins +- زان +- ▁segments +- lise +- あなたの +- 着他 +- 还得 +- 思った +- 俺は +- ▁incorpora +- ウィ +- ▁принима +- 其中一个 +- ▁induced +- ▁lively +- кән +- ▁recruit +- ▁viola +- 雨が +- ▁động +- ▁peep +- fter +- ▁Sommer +- 是很 +- を探 +- 让自己 +- ▁occasional +- лах +- ▁выход +- kud +- స్ +- ▁верх +- ▁nouveau +- ▁amerikanischen +- ▁ross +- ▁взял +- ▁questioned +- ▁Begriff +- ▁anfangen +- imwe +- вис +- ▁eby +- ▁irregular +- inya +- ▁April +- мах +- 物を +- hafte +- 男が +- ▁sites +- 事を +- ▁Jahres +- ▁realm +- 纹 +- ▁erinnere +- kosten +- 成熟 +- 仗 +- ِي +- 捨て +- մ +- ತ +- 입 +- はまだ +- ▁luego +- ▁dunkle +- 三百 +- ▁Pot +- کاری +- ▁deaf +- 物の +- 其实是 +- iam +- ▁impacted +- цый +- 生徒 +- ▁thankful +- melde +- '36' +- ▁situated +- 食材 +- barkeit +- рем +- 给你们 +- 为此 +- 他妈 +- ču +- 冲突 +- ▁confessed +- альный +- 墨 +- ▁친구 +- 固定 +- 主义者 +- ▁spy +- 驾驶 +- ises +- ▁exit +- lep +- しまった +- ர்கள் +- ▁discern +- ▁preparations +- 群体 +- ▁menschlichen +- zieht +- ▁institute +- 其他的 +- ▁neighbor +- gte +- 他们可以 +- hängen +- гаар +- رک +- zier +- 呐 +- পা +- ▁jewels +- 誰も +- jj +- ▁terme +- жив +- 眉 +- ansah +- 带来了 +- iumenge +- handlung +- 电台 +- 少ない +- ▁Farbe +- 浪费 +- ▁Jugend +- ▁чуть +- 行為 +- ард +- neuf +- ガン +- lch +- mö +- ukuri +- ▁gewinnen +- 得了 +- remo +- 弥 +- ▁tại +- ▁Mai +- 当局 +- link +- 黄金 +- тели +- 的家庭 +- ▁suburb +- ▁captive +- ▁summoned +- 堪 +- 葬 +- 不说 +- ▁bump +- ▁camel +- まとめ +- ▁checked +- 一回 +- ത +- イル +- ▁ebenfalls +- gust +- gic +- ▁luna +- ▁austria +- ▁exhibit +- ög +- ▁francisco +- únic +- seven +- オミクロン株 +- 过去了 +- 石油 +- racy +- 飯 +- ▁Wil +- ▁lado +- ▁flies +- беж +- ỏ +- ▁شب +- idir +- ▁variation +- 聞く +- ▁doit +- 平静 +- ▁Hälfte +- ▁aujourd +- woman +- ▁мои +- ▁stran +- ▁convince +- ▁prendre +- lī +- ▁geschickt +- ▁perfume +- 头上 +- ▁конце +- 里克 +- ▁turk +- ▁divert +- 没人 +- حي +- 郭 +- ▁benutzt +- ですかね +- nier +- Rh +- 适应 +- ▁trebuie +- ▁сай +- 前から +- ▁pledge +- が必要です +- 冷静 +- ▁fist +- 咯 +- ▁Gefahr +- 懸念 +- ▁брат +- 予選 +- cock +- つけて +- fond +- ▁кому +- ▁cô +- 为自己 +- ▁täglich +- チェック +- 强大 +- ела +- さが +- uzu +- 拉斯 +- ▁banda +- 遍 +- ▁Länder +- ັນ +- களின் +- ▁guessed +- ソース +- hoff +- 掛け +- 在哪儿 +- වෙ +- 拔 +- ▁threshold +- ▁advised +- ▁Behandlung +- тора +- ▁chaque +- ▁varied +- kay +- カン +- lā +- ▁jerry +- kunft +- ип +- ▁publication +- ▁Gründe +- 艺术家 +- لە +- ▁Vergangenheit +- 冇 +- 深い +- ốc +- ▁pueden +- ▁sentiments +- 西日本 +- ▁readers +- ▁Element +- ▁төр +- ▁gebruik +- lisa +- ▁factory +- ▁kau +- ▁Mitglieder +- 将是 +- ▁вдруг +- 工場 +- 风格 +- ации +- ▁interna +- ▁recalled +- ▁scream +- twitter +- 解説 +- xes +- 専 +- ▁Stern +- ▁няма +- ▁visitar +- ▁owners +- 0,000 +- ▁gefragt +- さすが +- ▁خواهم +- ▁shoe +- ▁dashed +- ▁zelfs +- bola +- ӑ +- ▁Schlüssel +- ວ່າ +- ĝe +- 高级 +- ▁persuade +- думал +- ということですね +- ▁celui +- 聞 +- री +- 他人 +- ▁Ini +- নের +- ▁pře +- ▁estan +- ▁recognised +- 伟大 +- からです +- 知道你 +- ▁reeds +- கின்றன +- 陣 +- zugeben +- ▁downward +- 総理 +- ▁plen +- 商量 +- 杆 +- ▁nosotros +- ▁vater +- ▁Ва +- ▁Ell +- 唱歌 +- ▁права +- 学者 +- ▁recollect +- ▁representation +- ▁Gefängnis +- િ +- ▁Erinnerung +- 他被 +- ▁арт +- ẽ +- ać +- ▁moss +- luft +- 置いて +- ▁Akt +- سف +- 心脏 +- ▁babies +- tekereza +- 食事 +- කා +- торы +- блюд +- のみ +- 分から +- رى +- ▁drain +- aidd +- ▁Abantu +- ģi +- 行った +- 詳しい +- ▁opge +- ▁deiner +- メニュー +- mula +- 得意 +- ▁struggled +- 窓 +- 偶 +- ▁Besuch +- ங்கு +- ▁enfants +- ▁Bern +- ▁perish +- 千葉県 +- ▁від +- 困惑 +- ▁آخر +- ▁Fue +- க்கா +- できて +- kond +- ▁სა +- ▁christianity +- くれ +- ▁nka +- ڪ +- ▁segon +- lique +- 强大的 +- っぱ +- ▁gains +- 那时候 +- 카 +- '&' +- ▁rechts +- TV +- 日本代表 +- 他们没有 +- lice +- ▁наших +- ▁Beruf +- 兆 +- лес +- ▁shrink +- ▁Albert +- ayi +- ▁forbid +- ▁miteinander +- 奸 +- 靴 +- uloj +- 州的 +- ▁ashes +- クト +- дов +- ▁refresh +- тат +- ▁freundlich +- lista +- ▁rings +- ▁fancied +- aktion +- ▁diseases +- ▁bekam +- 東京の +- ▁quien +- 上下 +- 我又 +- しょ +- ▁Як +- ▁biblioteca +- ▁jemandem +- 事物 +- ckey +- суд +- ▁overhead +- どうも +- جمع +- ▁Parti +- ▁pill +- قدم +- ▁Insel +- るから +- ▁sobald +- ▁Kap +- උ +- ▁aga +- ▁என்ற +- ▁Ни +- いている +- 险 +- ▁Berlin +- ▁victoria +- rato +- simil +- сек +- ▁categories +- ▁Quelle +- ▁Lake +- seb +- dama +- ▁восемнадцать +- antoj +- が高い +- ▁лишь +- ▁año +- bring +- ▁그렇 +- нні +- ▁дня +- ற் +- 当時の +- ▁renewed +- corn +- ▁goals +- 小学 +- 两天 +- ▁Gesetze +- ▁estamos +- どうやって +- ▁livre +- 案子 +- landa +- провод +- ម +- 別に +- ▁красно +- 七十 +- ごはん +- атор +- ▁yonder +- 听众 +- acre +- ▁uncomfortable +- sätze +- ▁programa +- bê +- ▁observations +- ▁muse +- кли +- 大幅 +- 他把 +- ▁beef +- ঠ +- ▁dialogue +- ▁marvel +- 请你 +- ▁awakened +- ▁Iran +- automat +- ▁чалавек +- வில்லை +- 实施 +- ▁contributed +- ▁richtige +- 它们的 +- みました +- ▁сказала +- ▁кем +- ▁escrit +- ▁hierher +- 他现在 +- ▁indifference +- யே +- 亡くなった +- 方面的 +- 数は +- 川の +- ಮ +- ▁Objekt +- シーズン +- ▁teatre +- 制定 +- 钢 +- ▁Ressourcen +- 箭 +- ▁augment +- 担任 +- 丰 +- ▁escort +- iris +- 月から +- ница +- ▁wenige +- пут +- ız +- ▁footsteps +- ▁Umwelt +- شى +- ▁mixture +- 呼びかけ +- 南方 +- ▁erg +- 岸田総理 +- ି +- cem +- ▁tests +- неш +- mura +- gré +- ▁менее +- há +- ▁pepper +- ங்கி +- 代の +- ▁разговор +- yamba +- 等你 +- ▁indignant +- 했어 +- ▁энэ +- ▁contented +- ▁speci +- ▁Staats +- ție +- その時 +- ුව +- ▁alliance +- 上学 +- おっ +- 前線 +- చ +- ▁schönen +- 分かった +- ация +- 緑 +- 勇敢 +- ▁thoughtful +- жан +- ▁trouve +- сно +- ▁Rechts +- ର +- ▁february +- 一辆 +- 举行 +- ères +- ▁minha +- toxic +- 牵 +- 释放 +- ▁gallery +- кажу +- ▁bestand +- ▁fils +- ▁Charakter +- ▁Sinne +- sache +- ▁Gast +- 在这些 +- ▁sper +- ヌ +- ái +- ▁Wood +- 六十 +- ▁simul +- しかない +- 仮 +- 医師 +- ▁Florida +- ▁distributed +- ▁flour +- oxid +- ன்ன +- の部分 +- 出る +- ▁saat +- ▁giá +- ▁reporter +- 就没 +- ▁amy +- ▁profund +- ▁International +- ▁framework +- ვე +- zir +- ложил +- 加速 +- しまいました +- ▁Ты +- lion +- 伪 +- 杀人 +- 准确 +- 値上げ +- ▁Organ +- することで +- ▁funciona +- нак +- どうしても +- 夕方 +- ▁вс +- 为我们 +- ▁gezeigt +- ponent +- ワクチン接種 +- ▁velvet +- ▁attraction +- と思いますね +- 巻 +- 購入 +- ▁Spaß +- ▁här +- ▁Baum +- 必要な +- ▁instruct +- ▁lordship +- 知らない +- ▁arbeitet +- 稍 +- 怖い +- ▁Ehre +- 실 +- 覆盖 +- ▁ладно +- ▁absorb +- ▁tread +- 踏み +- cate +- 誘 +- 空港 +- ▁patriot +- িয়া +- trust +- ▁Beth +- ▁transactions +- ▁tạo +- firma +- ▁Gö +- 实践 +- teg +- とり +- ▁claro +- もので +- かというと +- 打了 +- 我需要 +- ▁admired +- ▁bronze +- duction +- Bu +- ▁одного +- yla +- Ş +- 的女儿 +- جن +- ▁стала +- ▁conceived +- цей +- ▁akan +- biologi +- ▁palabra +- ▁stolz +- デン +- wärts +- ▁jsou +- ▁twilight +- ▁Brazil +- ▁verbracht +- reka +- ▁понимаете +- つける +- ppi +- ▁calcul +- general +- ▁igual +- ▁wealthy +- usia +- оо +- ▁harmony +- ▁Code +- 協 +- ▁принят +- 强调 +- пала +- ▁symptoms +- ▁trading +- ▁chef +- ▁answering +- 降低 +- 著 +- ▁expedi +- 这个地方 +- ▁swimming +- ▁froh +- ▁roused +- 車が +- フォ +- ▁chatter +- brun +- Univers +- ▁earliest +- hita +- ▁max +- ▁awoke +- 農 +- ladi +- ▁scor +- 垂 +- 教练 +- vollen +- ▁уверен +- 儿啊 +- pfel +- Ko +- ▁bate +- 慎 +- 夫婦 +- ▁tunnel +- ▁visto +- あん +- ▁uncertainty +- 有限 +- ▁conquer +- ▁decades +- ▁Lü +- ▁Mach +- ▁Sehen +- чыць +- 差し +- ▁warriors +- なさい +- 四年 +- под +- illon +- 狠 +- 感激 +- vik +- ▁decade +- ▁lime +- 的确 +- ▁Elizabeth +- 선 +- ボー +- ▁plunged +- 实验室 +- ▁Nachricht +- ühr +- 泊 +- ▁Viņa +- ▁managing +- ▁seul +- heden +- ▁Höhe +- ▁robber +- ▁testament +- bereich +- medic +- ipun +- トラック +- cott +- antic +- ބ +- ▁собой +- 发挥 +- мін +- ▁Mond +- ▁carro +- どうした +- aco +- ていきます +- ▁Després +- 凝 +- 计算机 +- ▁Podcast +- ▁получа +- ▁fais +- ▁mould +- ▁полу +- паль +- 想像 +- ▁Schutz +- step +- 相比 +- いち +- けん +- ną +- బ +- ーター +- ▁principi +- 二零 +- mail +- ▁hire +- ▁legte +- ▁degli +- ▁плохо +- کا +- 会長 +- ランキング +- хүү +- 盐 +- ▁limb +- ▁mineral +- 最喜欢的 +- 取った +- ▁proven +- mack +- ▁Themen +- ▁democrat +- 才会 +- 通報 +- new +- ▁satan +- ▁yaptı +- ▁jene +- koll +- შ +- ▁retro +- ▁عم +- '2015' +- 払 +- ▁Ces +- ▁innocence +- 間違い +- ▁array +- ▁yid +- ▁déjà +- ▁şekilde +- 始まった +- あなたは +- ▁electro +- 邮 +- 文明 +- 入院 +- داد +- 当她 +- ▁upright +- ▁jours +- ポン +- ▁Cel +- すこと +- ▁ekonomi +- ▁suicide +- きっと +- كت +- ▁corruption +- ▁tue +- ▁Karte +- 危機 +- мас +- ▁الل +- っこ +- ▁apprehension +- 磁 +- worthy +- ▁constrain +- lwa +- ▁jacket +- problem +- ▁anxiously +- ▁hohen +- ▁কর +- angi +- ▁subscribe +- ▁проблема +- ▁цяпер +- 篇 +- 好看 +- ▁lösen +- ▁parson +- গা +- ש +- 廊 +- 天然 +- ▁своего +- 联盟 +- üü +- ▁cob +- 赖 +- ▁Sä +- ▁rattle +- тин +- おく +- ޭ +- 华盛顿 +- messen +- ▁göster +- ▁muchos +- зон +- 拆 +- ▁tracks +- 不确定 +- ▁المن +- ランド +- ▁niba +- ไป +- ▁resulted +- 这个国家 +- もあった +- leta +- ▁multaj +- ▁classic +- 梨 +- ކު +- empre +- վ +- ▁matthew +- ▁strategies +- ▁Rad +- セン +- ねぇ +- 屋さん +- 旨 +- ▁amazement +- ږ +- ▁같이 +- mbang +- ▁Max +- 曜 +- ▁terribly +- schütt +- ▁адзін +- と発表しました +- ▁Gottes +- 拿到 +- 構 +- クイズ +- ▁hideous +- ▁مهم +- ▁каза +- 타 +- tzt +- ▁çalış +- 来吧 +- 平和 +- ▁twe +- ▁mule +- クリーム +- 成绩 +- ▁vrij +- というのも +- ▁weißen +- ▁cathedral +- ▁viņš +- ▁pobre +- 构 +- てくれ +- issement +- শি +- ▁tenth +- ▁pretended +- 朵 +- дт +- ▁thief +- ▁planted +- ▁persist +- 喷 +- ▁долго +- ▁zufällig +- ddu +- 的精神 +- たった +- анд +- 钻 +- 郡 +- ▁завтра +- ▁eminent +- ▁losses +- ▁drie +- 棋 +- annya +- 楚 +- ▁причин +- ▁flick +- ▁bekommt +- ▁pode +- ▁unterstützt +- ▁Tiere +- 的内容 +- が出る +- ▁какое +- ▁Ball +- するために +- ▁mwaka +- 回目の +- ▁visits +- hne +- ▁australian +- ▁oldest +- ▁variable +- ssystem +- ▁rely +- ▁стоит +- 客人 +- altro +- 亡くな +- ▁dispers +- 被害者 +- bber +- ▁Kerl +- 裤 +- 等我 +- ▁Mikro +- ▁Barr +- овый +- ▁occup +- ች +- くり +- 我确实 +- ையும் +- ▁situas +- 洁 +- finanz +- ▁gewe +- 徳 +- داخل +- ▁threatening +- 失望 +- ▁Beweise +- ろうと +- ▁holl +- 准备好 +- ▁bells +- 啲 +- ▁shakespeare +- 拳 +- скую +- kasi +- 推动 +- ▁Schlag +- ým +- ▁oncle +- ▁dorthin +- ▁assert +- ಲ +- 培训 +- ▁unwilling +- 位の +- ▁bills +- ▁drivers +- ▁instru +- 弟弟 +- 各国 +- tip +- ▁avail +- kade +- 瞎 +- 公子 +- 历史上 +- エリア +- ▁tierra +- ▁старо +- 皆 +- ▁headquarters +- 翻译 +- 組織 +- ▁Feder +- ood +- экс +- ▁videos +- 为我 +- ception +- 官员 +- 審 +- ▁자기 +- ▁Kollegen +- imbu +- nywa +- ▁raven +- ▁sultan +- ffy +- guha +- 阻 +- шым +- рек +- ▁Chan +- 夏天 +- 対戦 +- ▁derzeit +- けば +- 自分たち +- ▁einzigen +- '2020' +- 籍 +- ▁pluck +- ▁Allgemeinen +- ▁Einfluss +- 为什么不 +- ▁environmental +- сць +- ▁separation +- siniz +- ▁Fal +- 娶 +- ▁මේ +- ▁induce +- ▁ebenso +- ▁donner +- ▁снова +- orde +- 打席 +- 概 +- 收拾 +- ▁Finger +- ▁Schwarz +- やすく +- ▁linen +- ▁filling +- 贡献 +- 震惊 +- ▁Präsidenten +- ▁proceeding +- 地图 +- champ +- issabte +- ▁быць +- 带走 +- зав +- ▁kämpfen +- 捜索 +- ▁policies +- 演技 +- лап +- 思いました +- ▁egy +- ▁плат +- 分配 +- 驱 +- 耳朵 +- 降る +- ▁sally +- ▁gotta +- 氏は +- どういうこと +- عتقد +- 繁 +- バッター +- ▁decree +- をかけて +- ▁deinem +- ▁beggar +- ジョン +- tino +- ▁gehören +- hwa +- 授 +- łu +- ▁strongest +- ▁recommendation +- ▁nchi +- zil +- 了个 +- ▁prepara +- 电子邮件 +- 知事 +- ▁trabaja +- arak +- 覚えて +- 前回 +- ▁habitual +- cky +- 耶 +- ▁செய்த +- cina +- łem +- ▁pencil +- ▁ĝin +- そもそも +- 였 +- ▁triumphant +- tiği +- ▁visiting +- ▁recording +- 变得更 +- 牺牲 +- ▁hesitation +- ▁erschien +- 千万 +- kende +- rrington +- ùng +- ▁conquest +- ▁openly +- ▁sali +- ▁herauszufinden +- ▁особенно +- бод +- せい +- ▁sulla +- ņu +- 弯 +- ▁tug +- ▁européenne +- ▁gewisse +- čin +- ением +- てた +- ▁promises +- дат +- ırı +- ▁buiten +- ızı +- ▁inflict +- mädchen +- ▁ermöglicht +- ▁maintenance +- ▁curiously +- خواه +- ▁hình +- ▁третья +- ▁кир +- 战略 +- лон +- ▁rocky +- 来週 +- straße +- 问他 +- ▁mächtig +- 炉 +- 纪念 +- ́ +- ホントに +- antwoord +- 完成了 +- コーナー +- ▁musician +- ▁Chinese +- キュ +- 信心 +- ▁mansion +- 奏 +- ąc +- 娱乐 +- ▁extension +- ▁decay +- ▁arbeitete +- ▁dood +- 很好的 +- やん +- ▁hoy +- 근 +- ▁anguish +- 僕が +- が見 +- ▁electricity +- espera +- ▁cove +- ▁feathers +- lif +- 说的话 +- なります +- ▁hilft +- entes +- 有问题 +- ▁reuni +- 安慰 +- ирует +- diplom +- ję +- deki +- anja +- 找不到 +- цвет +- brand +- 闘 +- 有着 +- 居民 +- නා +- したもの +- troph +- ▁purely +- ▁troop +- ずつ +- рост +- ▁nicholas +- шей +- ▁moeder +- ショ +- ▁Sonnen +- ▁aucun +- してくれる +- 物語 +- 乾 +- முறை +- ▁landlord +- ▁interval +- 一套 +- unternehmen +- 怨 +- 宏 +- 部长 +- ▁менән +- ▁lagi +- ▁historian +- ්‍ර +- ▁erect +- ▁waved +- кнул +- ▁plains +- мал +- rce +- tuvo +- 残って +- 泳 +- 图书馆 +- ▁inclination +- kamp +- ▁такі +- 出发 +- にくい +- ▁verde +- 盯着 +- ▁jimmy +- ▁messages +- ▁liebt +- 点儿 +- ▁lifting +- пры +- ▁productivity +- پل +- креп +- ▁witnesses +- яз +- るんですけど +- 师傅 +- année +- ▁Mehr +- ▁equivalent +- ▁regi +- ën +- زي +- てくれる +- 突き +- ▁wütend +- ▁translation +- 回忆 +- ▁هنا +- 導 +- ▁partit +- ▁maintenant +- cela +- ▁außerhalb +- のことを +- ▁turkey +- ▁які +- 有任何 +- ▁disciples +- 終 +- なと思います +- 梯 +- kole +- ▁Künstler +- ▁konzentrieren +- ▁crimson +- енко +- 私たちの +- ▁Sonne +- 符 +- ▁garrison +- യ +- ▁furious +- 金属 +- 出于 +- ssé +- ▁durchgeführt +- ▁victor +- dele +- ▁packed +- 漂亮的 +- ▁madre +- aggio +- үүр +- ついた +- 在外面 +- 长得 +- ▁cần +- ▁blowing +- දු +- ▁Mari +- ▁strictly +- ющих +- lessness +- ▁Prä +- ajo +- 资料 +- ▁Lord +- くれて +- 肚子 +- ▁wounds +- ▁nếu +- チーズ +- carna +- ホール +- 들이 +- ску +- だんだん +- 克里斯 +- ▁бүр +- ▁demonstrate +- haga +- 寻 +- 追加 +- рей +- 头脑 +- 立つ +- 芳 +- जा +- ▁Oku +- 西部 +- 期望 +- ▁saber +- れている +- 柏 +- ▁девятнадцать +- 거 +- инг +- うちに +- ▁nhận +- ▁sommes +- なのに +- ▁betrayed +- Ç +- つもり +- るんですよ +- त् +- ▁herein +- りたい +- nium +- 人気の +- 现象 +- 抬 +- 的公司 +- ნა +- hali +- ▁admirable +- 髪 +- 这里有 +- ▁ultimate +- ▁devas +- つけた +- 募 +- ▁warmth +- ▁reject +- 贸易 +- 警視庁 +- 簡単に +- 感受 +- ▁organizations +- ▁realmente +- ▁schwarzen +- ▁Glo +- '75' +- ▁unjust +- 居然 +- 的例子 +- ▁Jungen +- ▁Què +- ования +- ▁retra +- 一些东西 +- ishwa +- ▁dingen +- ▁nime +- ▁què +- цов +- 取って +- komeza +- 躺在 +- ▁gravity +- ▁Таму +- ▁englishman +- ▁artistic +- ▁housing +- 在于 +- ▁allan +- 温柔 +- amerika +- 的时刻 +- fahrt +- ▁schätze +- ▁Opfer +- 伦敦 +- ▁greeted +- ▁ranch +- ▁tú +- ▁exile +- 小时候 +- 董 +- ▁illusion +- ▁Finanz +- ▁willst +- ▁Come +- ▁geheim +- ▁weep +- ▁Waffen +- bó +- vā +- 昏 +- ▁underneath +- dığı +- ▁Jane +- ▁вопросы +- ▁dopo +- 杰克 +- 主義 +- gesprochen +- ▁groote +- ▁история +- 受け入れ +- 負担 +- ▁масс +- awo +- ▁cứ +- ▁advise +- 涨 +- 笑顔 +- plu +- ▁আর +- 兽 +- ▁stroll +- 哪些 +- ▁conceive +- なった +- ▁nachdenken +- ▁precede +- 先輩 +- graben +- ▁Einer +- ▁Boot +- バック +- ілі +- дова +- скі +- 无论是 +- eira +- ▁comedy +- 你得 +- ▁Però +- 入れて +- роў +- ▁narra +- ography +- 味が +- 帰って +- 拍摄 +- 评估 +- ▁inquire +- 类型 +- گان +- ▁bestehen +- ▁nacional +- ▁fremd +- 天空 +- ▁opponent +- gebildet +- ものは +- escent +- ▁blown +- ▁unterschiedlich +- ▁substitute +- 我只 +- ▁withdrew +- ▁Kri +- 込め +- ▁From +- ▁explosion +- fragen +- ▁exclude +- 女性が +- papier +- ▁heiße +- ▁praktisch +- ▁mga +- ▁foster +- 滋 +- ▁Earth +- ▁troviĝas +- 教室 +- 到时候 +- けが +- ▁frightful +- ▁nationale +- 在那个 +- ланд +- ▁firing +- ора +- たん +- 存在的 +- 镜 +- trakt +- 術 +- اث +- ▁那我们 +- ▁scarlet +- ▁exhaust +- хар +- ▁circum +- ▁ancora +- 皮肤 +- 替え +- 充满了 +- づけ +- 放心吧 +- 你看看 +- ▁ажил +- ▁yourselves +- 串 +- 做一些 +- ▁enlighten +- تاب +- ▁vierzig +- 统计 +- ▁harris +- kanye +- ثر +- 申 +- ▁moan +- ▁impressive +- ▁Tele +- кур +- цыі +- 导演 +- 你说的 +- いなかった +- ставить +- ▁blend +- ▁wretch +- ▁descent +- seid +- ▁stages +- 剤 +- ▁정도 +- 我知道你 +- ▁Holz +- ▁boven +- ルール +- ▁هە +- ▁adjust +- 続けて +- 海上 +- ▁Argument +- chau +- 勇气 +- 洪 +- 見ると +- ▁motionless +- が必要 +- ▁Schulen +- ▁Spitze +- ▁tenia +- 明け +- 遅 +- 投手 +- chain +- 跟踪 +- ▁Zeiten +- ▁mọi +- 待って +- haupt +- daj +- 的妻子 +- ▁urgent +- tack +- ▁publi +- 桶 +- 盆 +- 夹 +- ▁crushed +- これまでに +- ▁oriental +- てくる +- ▁reverence +- 在过去的 +- ▁heroes +- arlo +- ▁toilet +- しゃべ +- クラス +- ünü +- paro +- することが +- mela +- ▁jealousy +- fant +- 挡 +- ▁significance +- 系列 +- 灾 +- ▁gym +- завод +- 気に +- ▁tipp +- ▁barbara +- ▁Actualment +- ▁Today +- 態 +- ющие +- ▁discussing +- 能源 +- ▁granda +- ▁спросил +- onic +- ือ +- ▁Neben +- さない +- アー +- ▁아이 +- ▁hizo +- いたします +- 外国人 +- มา +- klop +- 反映 +- wirken +- すと +- フォー +- ьян +- そのあと +- ▁кара +- ▁jeff +- 死者 +- ሰ +- ▁violently +- 読み +- giving +- ▁하나 +- чик +- 之下 +- 回り +- 조 +- တ +- umbi +- ▁convent +- ▁altered +- 成为一个 +- ▁conven +- 으 +- ▁affirm +- ▁المح +- ▁Kern +- angka +- ஃப +- 听见 +- 的经历 +- 燕 +- 赔 +- 」「 +- ▁pav +- ▁starke +- ▁tiger +- 且 +- 的发展 +- pois +- ▁busca +- らが +- ыт +- ความ +- ologische +- ▁другие +- の上に +- ▁comrades +- ゅう +- ত্র +- 充分 +- tez +- ▁petition +- 人群 +- руб +- tafel +- 到来 +- ▁sailing +- ఇ +- ▁милли +- 超え +- ▁Hü +- ▁четвёртый +- 取决于 +- yobozi +- لق +- 写作 +- strahl +- るために +- ▁edition +- ▁possibilities +- 社交 +- ▁attribute +- ▁enjoying +- サイド +- ured +- 手指 +- 叛 +- istische +- ▁tự +- 法庭 +- ▁бизнес +- 开玩笑 +- ▁academic +- ▁позвол +- 贷款 +- 为他 +- ▁Vall +- 比例 +- princip +- ەی +- ▁increasingly +- 爆炸 +- ▁heartily +- ▁japanese +- êr +- 巻き +- enfant +- ından +- ▁collabora +- undvierzig +- 尘 +- ▁whither +- 不怕 +- ką +- mēr +- ▁그러면 +- ▁diversos +- ▁medal +- ifies +- стары +- valent +- ▁ungefähr +- 쪽 +- ▁dagegen +- 高齢者 +- ▁তিনি +- ড় +- 記念 +- larda +- 态度 +- ▁leisten +- ▁связан +- ▁assez +- ▁stove +- 白い +- ებ +- 痴 +- ▁mới +- 殺害 +- 創 +- ▁align +- 特别的 +- ildi +- ▁Karriere +- ▁laat +- richtung +- 真っ +- adores +- 疫情 +- といえば +- 맞 +- ▁proceedings +- 不一定 +- ▁throng +- дает +- 美国的 +- ▁genom +- 企 +- 泪 +- ▁greeks +- ▁compound +- ▁reporting +- escola +- どおり +- ▁butler +- ▁groupe +- ట్ +- дад +- めっちゃ +- 年前に +- three +- ҵ +- 闷 +- 詳しく +- 著名的 +- ▁envy +- 一眼 +- もらえ +- ▁punish +- يرة +- 骄傲 +- デザイン +- ▁menjadi +- 悩 +- を得 +- দু +- 進む +- 好事 +- 一座 +- ▁cargo +- 你再 +- 聞こえ +- 작 +- ▁ваши +- でしたね +- ▁platforms +- ▁clair +- るんですね +- ▁personne +- 现在我们 +- において +- ▁madness +- 본 +- ▁Wesentlichen +- ▁konuş +- ▁откуда +- tius +- енная +- вит +- يج +- ▁shops +- zep +- ží +- ▁Botschaft +- ▁devant +- ▁abraham +- ▁respective +- 马克 +- شو +- здоров +- ▁motives +- ības +- ▁encouraging +- 辣 +- 還 +- ▁möglicherweise +- ▁Realität +- 国外 +- 尼亚 +- larında +- 挺好的 +- ▁거지 +- ▁Ding +- exist +- 再生 +- ހ +- 揭 +- 高橋 +- gression +- ▁zusätzliche +- ▁karşı +- 做的是 +- ▁beobachtet +- õi +- ▁Genau +- үүн +- ▁anim +- 徹底 +- キン +- 下げ +- ▁şu +- 失敗 +- ▁Hab +- பட +- ▁Quel +- rono +- ▁Cer +- ▁تلك +- の動き +- 感覚 +- 続ける +- mania +- bala +- 给自己 +- લ +- ▁Strom +- ▁Што +- 精彩 +- ▁jew +- ▁Entscheidungen +- ▁customs +- ▁dismay +- 大学的 +- 视为 +- なお +- ஐ +- ▁lachen +- ドラ +- ото +- ▁porch +- 寄り +- ▁consul +- ▁dusk +- 全世界 +- ▁diverses +- ພ +- ▁excellence +- 她会 +- رن +- ▁concentra +- 議会 +- ▁Over +- ழ் +- 我们看到 +- ▁mach +- ▁Regen +- 万一 +- ▁Пер +- すべき +- ▁Frieden +- ▁шаг +- oph +- ▁viene +- 若者 +- ▁hostile +- 拿走 +- 注意力 +- į +- spiegel +- ていない +- 中国の +- dige +- 万美元 +- 发明 +- dorf +- ▁россия +- tesse +- зве +- шло +- ▁скоро +- ▁dentro +- ▁ngày +- してきました +- ▁metge +- ▁echter +- 聚集 +- 劫 +- ٹ +- ▁Führung +- ɛe +- ▁villain +- ▁deceived +- ▁eenige +- 的变化 +- つつ +- sieg +- ▁traurig +- ▁membres +- ận +- もう一度 +- 站起来 +- ありがとうございます +- tòria +- ▁trente +- ▁Imp +- čen +- ▁protested +- 试着 +- ▁welfare +- 福岡 +- ▁oui +- гр +- 病気 +- 某人 +- roning +- 中には +- ▁encountered +- 浩 +- 真实的 +- ▁vile +- ▁battery +- 提升 +- ου +- ира +- 摘 +- ▁Amerikaner +- ր +- ▁ambassador +- に入る +- ▁بش +- 这个故事 +- ▁tengo +- ▁fragments +- 舌 +- タイプ +- ิน +- ▁relatives +- 提前 +- ▁secretly +- 晴 +- 我们俩 +- rührt +- ▁Center +- ▁martyr +- 邻居 +- ▁süß +- ▁exceptional +- ほうがいい +- 魏 +- 嫁给 +- 床上 +- 这真的 +- ダンス +- park +- ▁eigenes +- ▁naught +- ▁yapı +- 道歉 +- ▁catching +- 这份 +- ▁verstanden +- 透明 +- тся +- 的生命 +- ▁wichtiger +- 沮丧 +- '65' +- ▁montre +- ▁tarafından +- 依赖 +- ▁aufgrund +- ホーム +- ▁swarm +- 全力 +- 終わ +- ▁earthly +- 捉え +- ပ +- ▁expanding +- 懒 +- ▁Uganda +- 辆 +- ▁morris +- 唉 +- 有钱 +- gero +- ▁només +- 孟 +- ▁Nó +- ▁cơ +- できるよう +- ▁haunt +- かって +- しまいます +- ▁satisfactory +- 你为什么 +- 差异 +- てきました +- ▁unmöglich +- ▁давно +- ▁Wohn +- 做过 +- 厨房 +- ışı +- 到这里 +- ▁compensation +- ▁teh +- ▁aroused +- kulu +- cava +- ▁verses +- ▁каким +- ▁deliberately +- ▁zullen +- 爱你 +- lje +- ▁carl +- ▁계속 +- 消费者 +- 日本で +- schluss +- lıyor +- 広島 +- ▁أنا +- 常见 +- ▁Joseph +- ▁muscles +- ▁tarde +- 向上 +- ▁проблем +- ัน +- ▁cao +- 瞬间 +- onym +- バラ +- ▁Journal +- 緊急 +- ▁Winter +- ▁моя +- 更有 +- ▁بخش +- 的房子 +- ceea +- mişti +- ライト +- ▁calculated +- ▁général +- 茂 +- 심 +- ▁cuatro +- 生まれた +- ▁travelled +- 成就 +- かつて +- ▁joc +- ▁parting +- ▁hört +- ▁sống +- stup +- meze +- щен +- ▁адна +- ским +- ▁attending +- ▁crest +- 把握 +- ▁cellar +- ▁الناس +- beck +- 男性が +- 好吃 +- னு +- ▁justified +- ້າ +- рв +- 动力 +- ▁Straf +- どのように +- लाई +- ▁woke +- ▁fascinating +- صح +- ▁vrai +- に住む +- cite +- ▁Fest +- 狱 +- ▁tumult +- かく +- けない +- ්‍ය +- ▁дух +- ▁holland +- 仇 +- ▁inspector +- ▁Dol +- 大小 +- 誉 +- ▁Jahrzehnt +- みましょう +- ▁Gall +- ▁hiện +- 停下来 +- 居住 +- wandel +- мел +- މ +- 悠 +- ▁slaughter +- 肝 +- の前に +- 粉丝 +- ▁swamp +- を集め +- ▁befand +- ▁пятьсот +- ▁Edward +- 加油 +- ▁femmes +- geschlagen +- ▁wilson +- ▁failing +- ▁Früh +- ▁manuscript +- めの +- ▁000 +- 情报 +- quadr +- ▁observing +- ถ +- ▁tommy +- 看过 +- するよう +- ▁twas +- ▁Labor +- ▁jahre +- ▁cruelty +- ▁flowing +- писа +- ▁Other +- ▁trenta +- ▁corrupt +- 如果说 +- 厅 +- 계 +- igihugu +- ▁ກະ +- ▁causing +- шча +- 少爷 +- ▁severely +- ▁dünya +- leiter +- ティング +- အ +- yel +- ических +- ▁nineteenth +- ማ +- 成功的 +- 的看法 +- ▁Traum +- ▁Gui +- ▁edit +- ▁exterior +- 思维 +- held +- 色の +- ▁sincere +- لىق +- ▁sever +- ▁considerably +- 有一点 +- logi +- ▁också +- 团体 +- ходят +- ▁colonies +- berries +- kunde +- ▁oldu +- determin +- ▁poets +- 与此同时 +- 貴 +- ▁incremental +- bereit +- ▁lowered +- ໍ +- 激动 +- ▁Gas +- 富士 +- зер +- ▁Sar +- なるほど +- ▁cooper +- قب +- 轻松 +- ographic +- ▁uneasy +- ▁ancestors +- ște +- core +- ▁colli +- ▁okw +- ının +- 損 +- 経営 +- 変わる +- modul +- valuation +- 说的是 +- தன் +- 状態で +- bû +- ▁مخ +- lò +- ▁должна +- ▁confine +- насці +- ▁devour +- ▁shaft +- ▁purchased +- mwi +- 物种 +- 僕の +- 찮 +- 阿尔 +- ▁paradise +- ▁glare +- альная +- евич +- ▁rejected +- ▁стать +- シェ +- ▁Glas +- 艰难 +- ▁lily +- ▁flora +- 之一是 +- ▁aliaj +- ▁starb +- 働き +- ▁Seit +- '.000' +- ▁Zweck +- ▁Fähigkeiten +- 災害 +- なこと +- 迈 +- ▁commissioner +- フリー +- 피 +- ▁verändern +- 冒险 +- adel +- ▁begonnen +- 小学校 +- 后果 +- '32' +- ubuzima +- 的身份 +- ▁allah +- ▁screw +- 早い +- ▁Strateg +- ách +- ▁fram +- igte +- ▁заяв +- ▁dritte +- പ +- ▁iemand +- хә +- 两人 +- рым +- jja +- ▁vot +- われて +- ▁nuevo +- ▁erklärt +- せず +- އް +- ▁zufrieden +- 歩いて +- ▁declaration +- AI +- 的文章 +- ▁مردم +- おう +- technologie +- ▁книг +- rani +- 保守 +- ▁confer +- ▁questi +- affi +- ▁mijne +- ▁hither +- 这些事情 +- ▁twentieth +- ▁White +- ▁hue +- jih +- garde +- დე +- ▁greeting +- ebwa +- ▁Sachen +- ▁gladly +- 稿 +- ▁encuentra +- ウイルス +- خی +- سة +- ▁sour +- ▁equi +- ▁tempest +- ▁провер +- rava +- द् +- 伙 +- تها +- ▁psycho +- ▁blocks +- ▁Öffentlichkeit +- 暂时 +- ▁shopping +- 他要 +- ▁disagreeable +- ▁dominion +- 井さん +- வாக +- ▁marketplace +- ▁compromise +- 浜 +- いただきたい +- 作る +- 위 +- YouTube +- ziehung +- ▁terrorist +- 随后 +- ▁seltsame +- 血液 +- وش +- ▁tragic +- ▁danced +- ▁excessive +- мыш +- fari +- sail +- ็ +- 是一名 +- ▁gaf +- ▁invested +- 深入 +- 奴隶 +- ੀ +- ▁destined +- ▁böse +- 夕 +- ается +- 人士 +- ▁gulf +- そうで +- 很快就 +- ▁eldest +- ▁Angeles +- 従 +- வின் +- 我非常 +- prüf +- 車の +- 纪 +- ▁placing +- 営業 +- ▁lovers +- ▁tornar +- leistung +- 東海 +- 苦し +- kuza +- ▁然后呢 +- vuze +- 虐待 +- فن +- trans +- ▁membre +- したということです +- maschine +- ▁Ash +- laba +- ▁Stre +- そうか +- ையில் +- 恐怕 +- ▁footprint +- ▁gush +- kiza +- گیری +- 公式 +- ▁Ruhe +- ▁imperfect +- ▁posted +- prop +- 的目的 +- ▁prospects +- ▁Version +- このような +- ކ +- ո +- கிற +- ▁arrange +- ▁мяс +- ▁transportation +- 装置 +- ▁Dü +- itel +- ļu +- คุณ +- 你喜欢 +- ▁basa +- vro +- ▁নাই +- ▁Euro +- praw +- ▁militar +- ▁Fel +- теп +- ▁twisted +- 筹 +- ▁fosse +- ▁юу +- ▁Fred +- ▁harbour +- slov +- pov +- ▁கட +- ອງ +- 你没 +- лэг +- ▁недо +- ▁wishing +- 上げる +- 扱 +- ▁retorted +- 疑い +- ▁އެ +- ivity +- Ra +- cado +- 不管是 +- 无论如何 +- 即将 +- ▁aange +- ாத +- ▁lifetime +- вання +- 哎 +- kräfte +- irira +- ▁defeated +- დი +- ▁llega +- ▁слово +- ▁آل +- ▁Kurs +- ▁lebte +- ▁Med +- گرد +- 制裁 +- 다가 +- 歇 +- ▁broader +- quant +- ▁slate +- ▁запад +- を終え +- ▁crawl +- алт +- нула +- ▁рыб +- ▁verstehe +- зм +- 严重的 +- ▁mereka +- 要不然 +- ありまして +- ▁Central +- ▁amazon +- ▁دارند +- ниц +- ▁mater +- ▁regulatory +- ▁Verfügung +- 丘 +- 已经被 +- ▁offerings +- ▁Tio +- லே +- 一路 +- ёл +- ర్ +- ▁gevoel +- お天気 +- ▁chorus +- ▁shallow +- 祥 +- ▁дерев +- 的其他 +- amaga +- ▁trata +- іст +- Reg +- ▁Monaten +- ▁schwach +- ▁Bio +- rew +- ▁cinco +- ▁Vertrauen +- オンライン +- 辩论 +- 说到 +- ▁dön +- 宣言 +- ってきました +- ▁roi +- ないか +- 下载 +- 这将是 +- ω +- ▁phenomenon +- اغ +- 売り +- кас +- ▁foam +- ▁tako +- ▁trumpet +- kür +- 野球 +- 行われる +- 旦 +- ķ +- ▁platja +- خانه +- 打电话给 +- ▁bloody +- かける +- ▁attentive +- ▁reckless +- 倒是 +- のほうが +- ▁publicly +- 教师 +- пля +- 護 +- 不相信 +- 山口 +- ▁gefährlich +- ▁johnny +- ▁punct +- فهم +- 形象 +- ▁lump +- 神奇 +- 不是吗 +- 赚钱 +- 有意义 +- জি +- ▁йо +- ▁bonds +- 겠 +- 糟糕的 +- ▁shaken +- ປ +- estudi +- ▁prose +- ▁chains +- 伝わ +- cac +- ▁wist +- قت +- ▁spectator +- 庫 +- ▁comparatively +- ▁zulk +- ▁notable +- ▁Пры +- cida +- ▁sustained +- volk +- ▁сторон +- ▁Kongress +- いたのは +- ần +- ▁pow +- ▁waving +- ▁breathed +- 供应 +- ▁höchst +- ▁получил +- ▁juda +- 僕も +- ▁Manchmal +- ▁banner +- үз +- ▁corpse +- 心中 +- ▁einiger +- 确实是 +- bericht +- ▁Orte +- ▁Angel +- 服装 +- 柴 +- ▁Аднак +- 三天 +- ▁Umgebung +- ▁Flor +- ▁corte +- ▁migra +- ▁expanded +- ▁positioned +- 始まる +- ▁تش +- ▁Бу +- 线索 +- чал +- ▁Big +- 的父母 +- 融 +- ▁philadelphia +- ▁concrete +- ▁hacia +- いるので +- ▁niemals +- gyn +- ▁schneller +- ▁compris +- ることで +- 有一次 +- 凤 +- ▁tribunal +- ▁engineers +- таб +- drücke +- ▁voran +- ▁dumm +- 싶 +- вшись +- ▁anstatt +- ront +- なんとか +- garten +- 恐らく +- коло +- '34' +- 等于 +- acqua +- 觉得自己 +- ▁manier +- ▁voz +- ことが分かりました +- だけでなく +- ▁بالا +- ▁большой +- 的第一个 +- 누 +- 整体 +- яў +- 这个世界 +- ▁dishes +- たくさんの +- ▁över +- ▁shocked +- 经历了 +- 栄 +- ▁pleasing +- ابت +- 物理 +- koresha +- ▁ojos +- ▁Parliament +- いらっしゃる +- பதி +- 一杯 +- 標 +- 难以 +- ▁dien +- ▁buena +- ▁якія +- の間に +- ▁naval +- ▁teori +- 责 +- ▁plato +- өрө +- kera +- ▁searched +- ▁remembering +- ▁ceva +- ▁interpretation +- ▁месте +- ▁deemed +- ▁positiv +- azioni +- ▁exhibition +- ▁davant +- ▁dome +- 少女 +- geschäft +- 难过 +- sanga +- ▁loudly +- ▁sinner +- werp +- 马上就 +- rima +- ▁থেকে +- 玻璃 +- رح +- ▁begannen +- ▁cherish +- ▁bail +- ่อ +- ▁Ara +- потреб +- ආ +- ເ +- 보다 +- preis +- ▁McC +- ▁creep +- ▁behandelt +- フル +- ▁fees +- اك +- 打破 +- ستر +- лены +- ▁drowned +- 卑 +- ▁unabhängig +- ৰি +- きれい +- ▁mô +- 知道我 +- treffen +- ▁People +- 你今天 +- 还可以 +- 最初に +- 新型コロナウイルス +- ▁announce +- ▁ocup +- ▁решение +- 请求 +- issant +- trek +- ▁bout +- ▁Great +- 自ら +- ▁نوع +- ▁ribbon +- おいしそう +- ペン +- ▁ibintu +- ziri +- нский +- るんですか +- ▁திரு +- ancia +- ▁exploit +- 厳 +- ▁contemplate +- كە +- 工厂 +- foc +- ▁inquiries +- ▁observer +- ▁entry +- cora +- িত +- ивает +- ҙе +- hield +- equip +- を与え +- 相同的 +- ▁practic +- ▁smallest +- 年度 +- ▁unity +- 値段 +- 就像我 +- ৰা +- 一篇 +- ▁reducing +- ▁مص +- ▁wrist +- 小さい +- 遇到了 +- ▁injustice +- ච +- 就是我们 +- ▁gasped +- 之中 +- ▁zouden +- home +- 它们是 +- ▁مختلف +- 蔵 +- ▁Madame +- ▁manche +- 婆 +- intel +- ようになった +- ▁দেখ +- ▁controlled +- ▁fazla +- ▁coral +- remos +- ▁bending +- 瞒 +- おっしゃって +- ▁Não +- ▁provinces +- ▁peng +- ▁мала +- 你可以看到 +- ▁florida +- ▁Estas +- ▁disclose +- 说服 +- 错过 +- 浸 +- 認 +- ត +- ▁flexibility +- ▁entertained +- 実施 +- ▁diamonds +- あんた +- 这首歌 +- ▁frac +- 生きて +- '46' +- ግ +- の名前 +- ▁thorough +- ▁multipli +- ким +- ▁dahin +- 尸体 +- ▁seeds +- 遅れ +- asso +- boj +- bě +- grand +- ▁Mini +- 因为她 +- යක් +- 仔 +- 岳 +- ▁Lass +- liku +- ием +- 花园 +- ▁besoin +- ▁anos +- 诸 +- ▁oogenblik +- ニューヨーク +- ▁può +- ▁British +- 提到的 +- इ +- 出口 +- ▁legacy +- ▁fraud +- ▁corporation +- 見えます +- ัก +- 歌手 +- بخ +- ј +- 藤さん +- ▁있었 +- 找我 +- ▁Hinter +- 並 +- ▁vraiment +- ▁bann +- வ் +- টে +- デビュー +- ▁consolation +- 欣赏 +- 変わった +- 摆脱 +- 我当时 +- 这句话 +- ▁loans +- ▁verkaufen +- 飾 +- ▁Sex +- 飲食店 +- валь +- ▁alexandr +- ▁нормально +- 所谓 +- ▁вещи +- 余り +- υ +- ▁drill +- ▁preceding +- 斗争 +- 我们从 +- ▁Stand +- 的母亲 +- länder +- imiz +- 一些事情 +- ▁zweifel +- ▁quanto +- ▁salon +- 穆 +- ▁misschien +- ▁Motor +- ▁prev +- qü +- ebla +- 指定 +- szcz +- ▁ambitious +- 面包 +- uganda +- 雾 +- 営 +- بور +- рин +- ▁tribu +- 元素 +- ▁alongside +- 哀 +- 했는데 +- ▁negli +- ▁أنها +- 第五 +- ▁Rede +- ▁Nova +- ซ +- 始めて +- ▁fuck +- にとっては +- 问问 +- ▁tenemos +- 狭 +- το +- 人たちが +- ▁kya +- ▁Ing +- ▁हो +- こうして +- obten +- ▁العالم +- 我才 +- ▁antaŭ +- ▁yielded +- ▁treu +- 说说 +- ында +- slag +- ▁bella +- ▁руки +- 편 +- 劇 +- ▁krijg +- '700' +- 输入 +- ▁erzählte +- ▁quasi +- ▁hommes +- 何度も +- lý +- 逐渐 +- ▁банк +- ▁komt +- 咩 +- насць +- ▁dürfen +- ▁прад +- ▁இட +- ங்களை +- noma +- რე +- かれた +- ыць +- 邪恶 +- ▁ĉiuj +- 怎么做 +- 地域の +- ▁cough +- ▁многие +- 膜 +- دام +- ▁calculation +- ▁студ +- 农民 +- に向かって +- ▁machinery +- fühl +- ▁jonge +- 这就是我们 +- 活用 +- 长时间 +- Ө +- モデル +- ▁mandat +- ▁neighbours +- 狙 +- వా +- рот +- ▁clue +- ▁mentre +- алга +- شون +- 这样的人 +- ▁fanden +- ▁weekend +- ▁heroic +- ▁Kamera +- ▁recommended +- ▁Komp +- ▁geschlossen +- ▁Hintergrund +- ▁normally +- ▁viu +- 感染拡大 +- ▁كۆ +- eqq +- 代理 +- ▁زمان +- بدأ +- alde +- ▁түүний +- ▁elector +- 看一下 +- ▁thor +- لند +- ▁побед +- うえで +- 竜 +- ▁проблемы +- ▁стране +- aggi +- چە +- ▁selle +- ストレート +- Ү +- 燃料 +- ▁constructed +- ▁henri +- stricken +- ▁прошло +- ▁misma +- шке +- рош +- èl +- ▁ehemalige +- 亿美元 +- orna +- тая +- న్న +- ということになります +- 青年 +- gezeichnet +- ረ +- Ingenieur +- ショット +- ▁tricks +- 我可 +- ßen +- ▁glowing +- 노 +- ▁hymn +- ▁olive +- ▁towers +- 莲 +- sponsor +- 自体 +- энне +- фо +- ▁feeding +- ▁nueva +- 下一 +- ▁کردند +- makers +- biro +- 合法 +- 在线 +- andra +- ▁spraw +- 再来 +- პ +- 培养 +- 乔治 +- いただきました +- ▁знает +- ▁mason +- gence +- umbu +- どころ +- ▁داشته +- போ +- ▁downstairs +- ▁بم +- 出た +- 是一个非常 +- ▁judged +- ល +- muka +- ▁ashore +- ▁Ausbildung +- opera +- hour +- بوو +- 祸 +- ▁collapse +- 的角色 +- 2% +- 挨 +- ŵ +- 脂 +- vallen +- 急に +- ▁campo +- fili +- ბ +- тары +- mien +- ศ +- ▁intercourse +- ผ +- ▁Rahmen +- пита +- ▁gast +- 好奇 +- 轨 +- 乐队 +- ование +- 没有办法 +- 脑子 +- ▁traveling +- ural +- 笑话 +- ▁polític +- どこに +- 这些是 +- 면서 +- ▁Wy +- ически +- 话说 +- jó +- 過ごし +- ической +- 鈴木 +- に入れ +- jährige +- kurs +- ▁formidable +- ▁pinch +- ▁assigned +- ▁Können +- ▁verdienen +- уют +- werte +- ▁fluid +- ▁پێ +- брос +- ▁avoided +- чих +- ▁memiliki +- バランス +- ▁kell +- ▁Anem +- ▁richtigen +- сси +- ▁amazed +- برد +- بال +- ▁Quant +- ▁могли +- вест +- ▁supplement +- ▁Werkzeug +- 暴露 +- unch +- ▁terrace +- voor +- 戏剧 +- 大好き +- ète +- 姜 +- ▁어떻게 +- ▁Figur +- raba +- ▁sina +- 最佳 +- 廷 +- 八年 +- ▁Rücken +- 大夫 +- lustra +- ▁flush +- ▁difícil +- ▁rejoined +- ▁Oni +- رز +- ▁reinforce +- 女的 +- ▁patterns +- ありますね +- avais +- ▁ceux +- çar +- 膨 +- ▁triste +- 場面 +- ちゃって +- луу +- шиг +- கூட +- 成分 +- ▁senza +- ▁опас +- ▁negoci +- flamm +- wirtschaft +- もそう +- 五百 +- 标签 +- ▁Auge +- woord +- を守る +- 坑 +- アジア +- ▁것도 +- ▁vaccin +- 隐藏 +- ▁côté +- теля +- 复杂的 +- bö +- ▁shells +- 크 +- 履 +- それだけ +- prise +- control +- zwei +- ▁parlament +- Italia +- 邓 +- ▁alto +- ▁chuck +- していない +- ならない +- ▁yaşa +- ให้ +- альна +- шёл +- ▁Obama +- ▁Road +- ▁exclamation +- ▁tới +- شكل +- 给予 +- 有利 +- 現実 +- 跟我们 +- 世界各地 +- astro +- ▁More +- ▁Vergleich +- だということです +- 晃 +- 爆发 +- 父親 +- elimina +- ▁completion +- ▁kostenlos +- ▁wussten +- 年以上 +- 这么多年 +- たかった +- ▁acute +- таў +- ▁conquered +- ▁benshi +- ▁Sau +- ▁torch +- ▁мире +- ▁maintaining +- ▁spider +- child +- ▁baker +- ▁тийм +- 鍋 +- ▁dasselbe +- ▁Best +- ▁offend +- ▁язык +- ▁insects +- 踢 +- ਸ +- ئی +- لَ +- ▁agitation +- Alb +- ▁Bord +- ▁göre +- ▁Quer +- ▁attach +- ▁sinking +- 这可能 +- 呼び +- 朕 +- 彭 +- ▁reluctant +- ியா +- zukommen +- ике +- ▁좋아 +- 国防 +- 掘 +- ▁Museum +- ▁saba +- ▁Zug +- ▁mußte +- лена +- ▁لن +- ▁độ +- 老鼠 +- ▁öffnen +- ▁vorne +- ▁batter +- できません +- Vi +- 资格 +- ▁hazard +- gata +- ▁nancy +- ▁гос +- ▁economi +- 太平洋 +- んじゃないですか +- ▁выгляд +- ▁الأمر +- ▁marvellous +- 西班牙 +- ходить +- ▁Party +- ▁stack +- دىن +- 但我们 +- ▁muchas +- ▁ҡу +- čí +- ▁halbe +- 葡萄 +- ▁Pil +- ▁dwelt +- ▁havis +- ▁adoption +- ▁différent +- 各种各样的 +- 당 +- 会社の +- gebrochen +- ség +- 的消息 +- 勢い +- ின +- ▁participation +- ▁fühlt +- 灵魂 +- 叹 +- дея +- 指控 +- ▁möglichen +- schlaf +- icio +- lili +- ▁aufgenommen +- 各地で +- ▁logical +- 目が +- ▁котором +- ▁competitors +- 待ち +- 配合 +- ▁لأ +- ▁adjustment +- 足球 +- ▁muti +- ▁germ +- ▁이거 +- の情報 +- labora +- っち +- 古代 +- пат +- ▁cai +- 自杀 +- 打击 +- ▁charlie +- лага +- くれた +- ▁север +- kenntnis +- 可爱 +- 公里 +- 看起来像 +- ▁virtual +- ▁guitar +- streit +- gawa +- ▁Such +- 1% +- ▁weiße +- ▁ivan +- ▁خلال +- ▁Wohl +- ▁leise +- ansi +- 逻辑 +- 하게 +- ▁oxford +- ште +- ▁revel +- ▁sahip +- bintu +- ▁tien +- ▁trauma +- ▁trước +- ▁honourable +- ▁probability +- Est +- ▁Mak +- gereza +- 矢 +- ▁lớn +- 回復 +- ▁brisk +- rende +- プレ +- emis +- 我开始 +- ▁potent +- 客气 +- 几次 +- 还记得 +- това +- ▁mevrouw +- ▁eighteenth +- ывает +- ▁fing +- wohl +- こちらは +- 是对的 +- iện +- jana +- 得更 +- 连续 +- ▁süre +- ائل +- தாக +- 在里面 +- 走り +- ▁ardent +- 的事儿 +- buk +- ▁chuyện +- wuchs +- زى +- ▁allgemeine +- 肠 +- 吻 +- 抱歉 +- 得太 +- ゼロ +- 这个东西 +- ▁March +- 听说过 +- ▁زمین +- ▁fragment +- ▁بودند +- 舒服 +- ジャー +- öpfe +- ▁dieselbe +- 要請 +- ▁reasoning +- modell +- لات +- xxam +- 斯坦 +- 的天气 +- ▁خل +- ▁cùng +- introdu +- 有名 +- Й +- 稀 +- meni +- ▁Proto +- 这是你 +- vocation +- 大丈夫です +- ▁плане +- なもの +- ▁Erfahrungen +- しましたが +- 賃 +- ▁welcher +- ▁riep +- ▁legisla +- けた +- ▁мной +- hong +- ▁você +- ▁baseball +- ▁slap +- objet +- ▁Nda +- ▁شيء +- ಯ +- ijas +- vēl +- ĝo +- mada +- ▁mystic +- EC +- 課 +- ▁experts +- 杂志 +- 昭和 +- 因为这 +- ▁yose +- ▁preference +- ▁Flug +- 簡単 +- ▁impatience +- 쓰 +- プレゼント +- หน +- ▁ولی +- ▁slay +- ▁så +- 今後の +- ▁числе +- ▁ຢູ່ +- ▁хотите +- ▁никаких +- ▁நட +- lette +- mong +- していると +- ▁več +- ▁dismissed +- ▁Wissenschaftler +- ▁liquor +- ▁pursuing +- を目指す +- glaub +- бро +- ▁buff +- 下班 +- ▁ilk +- ▁Untersuchung +- ▁Tradition +- ▁linked +- ▁knit +- ▁successor +- linie +- ▁Matt +- ▁количество +- ▁French +- センチ +- நேர +- ário +- ▁insect +- aigua +- qq +- アフリカ +- ރު +- キング +- の一つ +- ▁converted +- ▁vault +- wain +- schel +- samkeit +- ỉ +- ▁personnes +- ▁staircase +- 咨询 +- ▁slumber +- ▁Со +- corr +- schicht +- ▁clasped +- sigur +- ▁concur +- 姉 +- ▁hẽe +- ▁pueblo +- ▁Cat +- 任何事情 +- ▁جهان +- 去哪儿 +- нных +- marin +- kaya +- ▁Todes +- ләр +- ▁Gan +- ੇ +- ▁routine +- 竞选 +- 如果是 +- 生病 +- ▁punished +- ▁libre +- قات +- ▁bamb +- ▁demonstration +- ▁retained +- ▁nhìn +- ▁엄마 +- ▁Worten +- kapa +- ල් +- ▁siege +- ▁üç +- を伝え +- 女生 +- ▁schützen +- ▁família +- 严格 +- ▁singer +- 青春 +- ▁Besitz +- ▁poems +- しております +- 考试 +- わら +- 女の子 +- バル +- ▁Merc +- ▁scope +- なきゃ +- 不是一个 +- ▁loyalty +- 躺 +- 研究所 +- ▁juffrouw +- 英尺 +- ▁verkauft +- груз +- ▁jongen +- 贝尔 +- ▁أع +- ▁pai +- 读书 +- 现在已经 +- 问道 +- 很长 +- щих +- esca +- ckel +- ▁thanked +- ▁Produktion +- ▁Milliarden +- 子供たち +- ▁bodily +- gada +- 鉄道 +- گل +- 显 +- ▁Both +- ▁carrier +- fér +- aime +- 的许多 +- arrêt +- profit +- ▁breathless +- いたら +- 妖 +- が一番 +- ▁verbessern +- 瘦 +- ▁mall +- ないので +- ▁traces +- ▁timp +- 后悔 +- téri +- 向前 +- یز +- 範囲 +- ▁dealt +- 乖 +- ▁desirable +- 去看看 +- 考える +- ▁erster +- лик +- ▁рассказыва +- サイト +- ıldı +- клон +- 即使是 +- ▁Home +- ngingo +- 際に +- ▁abode +- してます +- ▁всю +- ▁près +- 興味 +- 街道 +- wè +- ški +- ▁precaution +- 芽 +- ▁원래 +- 解决方案 +- ▁이러 +- 届け +- ▁collective +- ▁pious +- kina +- ▁Struktur +- tata +- 든 +- ▁trotzdem +- AR +- ▁offensive +- おき +- Tech +- ▁Ал +- 最后一个 +- ▁Dorf +- ▁Deutschland +- ちゃんの +- してほしい +- ▁streng +- வும் +- ▁horrid +- ▁Kontakt +- ▁molly +- 牧师 +- sprache +- ▁Haushalt +- 昌 +- ▁Fünf +- ▁regain +- ▁Ländern +- 考えた +- 一起去 +- ህ +- ▁terrified +- ▁learnt +- ▁witnessed +- ▁trov +- ▁keiner +- ▁Beziehungen +- 把我们 +- زل +- ▁amafaranga +- 起来了 +- ▁franchise +- ▁abundance +- ▁atlantic +- ▁airport +- كس +- せない +- kong +- ▁conclu +- 的态度 +- 的音乐 +- ▁Sind +- 蜂 +- ▁nữa +- たんですけど +- 回报 +- ுடைய +- ▁domini +- ▁shillings +- ▁encara +- ▁entgegen +- ţă +- виз +- ▁обще +- ަށް +- ▁Verwaltung +- ▁شروع +- ▁Aktivität +- 癌症 +- yandi +- ▁seulement +- 得好 +- esprit +- yaga +- 想办法 +- ▁Francisco +- の予想 +- ▁Wein +- 晶 +- ït +- تنا +- ▁serie +- ▁characteristics +- ▁mesmo +- ▁Schulter +- 阔 +- ▁کے +- laki +- nood +- 的状态 +- sett +- フト +- ▁Virginia +- メーカー +- ▁acum +- ▁Vila +- muş +- кана +- カラ +- ▁tract +- ▁шар +- fordern +- スマホ +- 季節 +- ▁داده +- ново +- 減少 +- 任何东西 +- ▁части +- ები +- යේ +- へん +- ▁consolid +- 惩罚 +- ▁Krebs +- ▁pregunta +- ▁дараа +- ▁barri +- ▁кроме +- ▁поле +- 受欢迎 +- коў +- lux +- 柜 +- iek +- 店舗 +- itari +- 参考 +- भा +- ▁договор +- ▁recess +- atura +- 识别 +- ▁bieten +- ▁என +- 換 +- ▁Fortschritt +- ▁trotz +- ▁youngest +- कार +- 对对对 +- க்கிற +- 跑了 +- 予約 +- 颗 +- ▁lawyers +- ▁своим +- ▁Nya +- 嫂子 +- ▁mining +- ▁submitted +- ▁кил +- ▁guided +- 女性の +- 안 +- 迁 +- ทํา +- ▁bắt +- ওয়া +- 温泉 +- नी +- ▁bike +- ▁tossed +- ஸ்ட +- ▁Brand +- ▁ثم +- ▁Ти +- 纠 +- ▁சரி +- 었어 +- ▁emerged +- ▁versuche +- これまでの +- 包含 +- ▁offended +- ▁già +- ▁passer +- 您说 +- 锦 +- klin +- ▁rechten +- 地球上 +- тара +- ▁machten +- 下次 +- ▁privat +- 疾 +- ను +- ▁slice +- தற்கு +- ▁destination +- てしまった +- дали +- 你可能会 +- ▁comprehensive +- ワイ +- 数が +- τα +- amiento +- рать +- ▁Theorie +- らせ +- Music +- ▁columns +- ▁зрения +- 坊 +- ▁incapable +- 내 +- 一根 +- ▁Jun +- ▁guerre +- ▁prudence +- ▁spielte +- жим +- kiwa +- කි +- ▁relax +- ifiziert +- ▁Slide +- ▁errand +- ▁drawer +- 年生 +- 落とし +- てない +- ▁reserved +- ▁мира +- 惹 +- 鶏 +- ▁suffice +- ▁premium +- ▁handful +- été +- ▁олон +- であれば +- party +- ▁истории +- 看待 +- ▁работы +- ▁اینکه +- ▁borders +- 最大の +- енным +- 終了 +- čno +- ▁winding +- 加拿大 +- あんな +- ▁Johnson +- ってください +- beera +- ▁dreaming +- ▁tropical +- 方案 +- ویل +- ▁georgia +- සා +- ▁있고 +- ▁amidst +- 扯 +- เขา +- ▁emerging +- ▁Roger +- ▁projet +- ستی +- ▁Gel +- ▁drap +- ▁spit +- hund +- мак +- 议员 +- 际 +- zusetzen +- ピッチャー +- 意大利 +- விட +- رض +- ▁rép +- ▁хө +- ▁Long +- 带来的 +- ▁слож +- 扮演 +- нк +- ▁அறி +- ▁converse +- 超越 +- 引き続き +- JR +- 大手 +- fowl +- pata +- ▁goddess +- 妃 +- ▁commend +- ディー +- рис +- ▁Hotel +- ラスト +- ním +- rän +- gah +- 多个 +- 教え +- 佐藤 +- ▁boldly +- 悩み +- ▁которого +- 自転車 +- ちゃんが +- 核心 +- vacu +- ▁resent +- ▁último +- 的大脑 +- 发言 +- cule +- ▁wählen +- ― +- 辱 +- 강 +- ruka +- 傾向 +- еду +- ▁reicht +- ▁répondit +- дин +- 绳 +- 雕 +- 你知道我 +- 工作人员 +- ▁boiling +- ▁моск +- 顺利 +- ▁polic +- terior +- ▁sect +- 荣誉 +- хэн +- わせ +- irdi +- itatea +- ▁draft +- 的衣服 +- تور +- 3% +- 堵 +- யோ +- ාව +- να +- raub +- 悟 +- 侯 +- ▁entschieden +- ▁Zeichen +- 感謝 +- ▁Planeten +- ▁fueron +- 就知道 +- ▁loi +- iteit +- ▁gestern +- ▁otras +- ▁Öl +- ▁neighbour +- ▁standpoint +- сар +- 完全に +- 不舒服 +- VTR +- ▁spaniards +- ▁Sozial +- ▁dirt +- ▁hwn +- 颜 +- 晨 +- abanya +- рий +- ▁chiar +- 斤 +- ▁getötet +- ▁unnecessary +- bizi +- brew +- ▁پار +- Plattform +- ▁gewonnen +- 規制 +- 发送 +- を使う +- ▁priority +- ▁Geheimnis +- ▁suspended +- 同時に +- geteilt +- ▁willingly +- ▁seien +- ▁Unser +- 不动 +- ▁Fund +- AS +- ▁nama +- ކަ +- 感动 +- ţii +- american +- 你们都 +- ▁justify +- ▁steward +- ▁Kim +- 舅 +- мур +- 袭击 +- اشت +- ▁реально +- 正直 +- 没问题 +- līdz +- 最後は +- 阶 +- 남 +- ▁bản +- ▁이게 +- ▁இரண்டு +- 歴 +- ▁нэр +- ▁Wol +- ▁clung +- 大使 +- ▁Flo +- ▁Industrie +- udge +- ▁massa +- ▁此外 +- ▁clergy +- のもと +- 免疫 +- ▁работает +- 相撲 +- ▁থাক +- ▁candidate +- かなと思います +- 跟大家 +- ordre +- hala +- ▁canadian +- 小朋友 +- aña +- ▁coordina +- teeka +- plin +- といって +- 抗议 +- 羞 +- ង +- ▁spreading +- ▁sadece +- ▁einzelne +- 的任务 +- ▁Tā +- ▁sinh +- ▁allies +- ▁behave +- ▁wildly +- ▁generated +- パラリンピック +- 这段 +- 明星 +- سبب +- 時間を +- ▁strand +- presi +- 준 +- 抱怨 +- 首脳 +- ▁Market +- ▁Harris +- ▁Unit +- atrice +- boden +- 清晰 +- ماذا +- 大学の +- ţe +- விட்ட +- ▁innovative +- ▁database +- 肯定会 +- ▁capa +- ▁actua +- morph +- ▁einzelnen +- bali +- ▁juan +- いだ +- 忍受 +- ▁creator +- ▁Denk +- urwa +- ս +- ▁artillery +- މަ +- ▁توسط +- ▁gilbert +- んや +- stürzt +- ▁telah +- あい +- ▁situé +- 笔记 +- ってくれ +- ضحك +- ▁anthony +- wissenschaft +- しゃ +- ▁tante +- 一点点 +- ▁большая +- menya +- ӗ +- ရ +- 规划 +- ▁vilaĝo +- 合って +- ▁preacher +- ▁ноль +- ▁verder +- 从事 +- ▁spreche +- ▁potatoes +- ▁corpo +- था +- ▁faz +- ਨ +- ▁geliebt +- 放松 +- 的产品 +- ▁Angriff +- ▁thật +- ▁irgendwo +- curi +- 高校生 +- ▁petr +- ▁Their +- проч +- ニュー +- ▁spared +- ފ +- 这个节目 +- 戒 +- ▁Nachde +- 千葉 +- ibyo +- τη +- 就好 +- ▁fortnight +- 周末 +- 見ていきます +- 我想知道 +- хам +- ▁consumption +- ▁আৰু +- ▁sympathetic +- ▁Konzept +- んだよね +- ▁Geräusch +- んだって +- ▁subsequently +- ▁Russia +- ▁کسی +- ことがある +- ▁afforded +- ự +- まえ +- pfa +- flug +- ▁queste +- ▁progressive +- 似的 +- mita +- кет +- ▁sentir +- 桌子 +- ▁хочет +- ▁Rasse +- ▁Fällen +- anın +- があるんです +- 築 +- рван +- と共に +- ▁Dick +- マジ +- 此时 +- ▁Spo +- ▁bonnet +- ҥ +- āju +- 扩大 +- 这两 +- 体重 +- ෙන් +- шил +- مَ +- 也能 +- tiere +- 但在 +- 唤 +- ▁çocuk +- ▁heutigen +- 冬天 +- ▁Put +- 彼らは +- ▁guarded +- ▁نشان +- 向我 +- قام +- stained +- ▁estoy +- 靠近 +- ▁protein +- ப்பட்டது +- 争论 +- ați +- ่น +- ▁buchstäblich +- ▁усё +- ▁Lor +- тура +- ▁pensi +- まん +- وض +- ▁evangeli +- 是非 +- полага +- 原始 +- عي +- ிலும் +- мян +- 不信 +- afi +- ድ +- 拓 +- ふだん +- 消失了 +- ▁يتم +- ▁amusing +- ▁punch +- ▁när +- 听到了 +- 资产 +- ▁Kath +- 哭了 +- ▁tremble +- ▁leiden +- ánh +- 有助于 +- ▁prosper +- itse +- ▁عليه +- рев +- சை +- ▁Haut +- ▁внимание +- 详细 +- ▁있잖아 +- 投資 +- ▁garanti +- град +- ▁가서 +- ▁другом +- ごと +- 新鲜 +- ▁faintly +- ▁Amazon +- ▁Ан +- 耀 +- ▁Erklärung +- IC +- 反而 +- quarter +- ▁来一首 +- 性别 +- 罩 +- ▁charlotte +- ▁attained +- ▁детей +- ▁profond +- ▁نیز +- ▁Яны +- 但是如果 +- ▁Männern +- ▁поскольку +- 配置 +- gespielt +- ▁eran +- ▁Fur +- ▁algunos +- ▁unua +- ▁отношения +- 菊 +- 姐妹 +- 選手権 +- 护理 +- ▁strive +- wright +- 誓 +- ▁halted +- Argent +- ▁поводу +- ▁morir +- ▁Gewinn +- ▁seguir +- ▁requested +- '37' +- ▁Alice +- 我跟你 +- ▁schlimm +- ▁генерал +- 挖 +- χ +- ▁кооператив +- 蓄 +- 自動車 +- ▁merchants +- ▁그래도 +- autor +- ▁Те +- ▁wichtigsten +- 考虑到 +- нә +- ▁Ray +- 埼玉県 +- ź +- 咪 +- ▁удар +- 広がり +- 叫什么 +- 或许 +- ûn +- ▁November +- geworfen +- ধা +- ▁assuming +- ▁Außen +- ▁Debatte +- ▁nhân +- 利亚 +- ▁muslim +- гээ +- Michel +- ▁serait +- 山さん +- ன்று +- bris +- ▁telegram +- 笨 +- 陶 +- عرض +- '198' +- 調べています +- 会发生什么 +- ▁smash +- ▁петр +- 盲 +- ෂ +- ▁вроде +- ▁sólo +- ▁Times +- 信用 +- 술 +- 파 +- 訪問 +- ▁mı +- komst +- ඳ +- ▁александр +- ▁happier +- 毫无 +- ▁Roma +- ▁kalt +- niveau +- қә +- kurikira +- 終わった +- твар +- poro +- аваць +- 你就是 +- ▁deserved +- īja +- '33' +- ¡ +- 陰 +- ▁speculation +- 警察官 +- 大きさ +- 八十 +- visa +- ▁rey +- 十万 +- seks +- 也得 +- 去年の +- ▁Andrew +- 我刚才 +- 这可能是 +- tausch +- 继 +- ▁conspicuous +- ▁remembrance +- gebung +- ▁скажу +- 旅游 +- ▁jedno +- schreiben +- 相处 +- ▁respectful +- ▁plague +- すべての +- 不幸 +- чна +- ென் +- kuta +- ▁vehicles +- stell +- 每周 +- 之处 +- 给您 +- ацион +- ▁Anna +- わけですね +- म् +- ▁tempted +- おととい +- ▁جای +- 而已 +- 赤ちゃん +- covid +- page +- ระ +- ▁fig +- ッツ +- 年前の +- ▁theories +- 究竟 +- − +- wanga +- prost +- ▁pony +- ▁heures +- ▁samuel +- seitig +- 就跟 +- ▁дуу +- どうなる +- かかり +- 整天 +- もう一つ +- 倾向于 +- 溪 +- ▁prevailed +- ▁یاد +- ▁climbing +- пот +- ▁sõ +- führt +- чо +- ▁investigate +- sobola +- jski +- 忧 +- दि +- ▁mike +- ▁Song +- wish +- ▁Tä +- 形状 +- စ +- asyon +- ▁roast +- haired +- ▁vais +- 記者 +- тим +- ▁luke +- ඒ +- ặ +- ▁confederate +- 올 +- ▁masa +- credi +- ەکان +- Work +- udio +- ▁disagree +- 向他 +- 傘 +- kämpft +- ▁довольно +- Смех +- ▁vraag +- drag +- ▁proto +- ▁sûr +- 的建议 +- ▁seeming +- حمل +- 耍 +- ▁whereupon +- ▁carries +- 抵抗 +- の結果 +- 陵 +- ▁Zwischen +- 매 +- 菅 +- 博物馆 +- 六个 +- werken +- すぎる +- ▁darunter +- ▁intervention +- を示しました +- ▁implementation +- 共有 +- cji +- ▁embargo +- 줄 +- ▁negotiations +- ▁torrent +- rilla +- 都已经 +- 更重要 +- 水分 +- డు +- ▁شوند +- ▁null +- خارج +- ▁usage +- をしていた +- 扶 +- 문 +- 산 +- 列表 +- ▁suited +- улы +- ▁выступ +- それも +- 袖 +- 次は +- 始めました +- ▁approximately +- を続けて +- 这座 +- ێن +- ▁compass +- ций +- ▁quaranta +- ▁tym +- ▁bibli +- مات +- ▁بىر +- klad +- ировал +- 你不要 +- ▁необходимо +- ▁promising +- ▁Meilen +- lege +- loge +- ▁figured +- 申し +- ときは +- ▁equality +- 之类的 +- ▁erhob +- ケーキ +- 認識 +- ▁reconcile +- ▁yabo +- ▁debat +- コード +- haya +- 那我就 +- 惨 +- 昆 +- ▁слишком +- お互い +- 交渉 +- ▁Daher +- ▁plea +- ▁habia +- 会让 +- чны +- 孕 +- 笑了 +- 喜马拉雅 +- 訓練 +- ▁говорили +- ▁места +- 編 +- рма +- 組み +- 就开始 +- त्र +- ▁تخ +- вший +- ▁Grenzen +- 我以为 +- 注册 +- 伝統 +- ரே +- ▁Sendung +- ▁souvent +- 绝望 +- ▁gesicht +- гьы +- かけた +- ▁franz +- 砸 +- ▁ఆఁ +- ▁pauvre +- ▁rejoice +- 本周 +- lamp +- נ +- ▁cuộc +- ▁donald +- 行きます +- 这是一个非常 +- тав +- 上がった +- 就是一个 +- istischen +- ή +- кина +- に行った +- ▁Nick +- నా +- ▁clearing +- ▁tinha +- 에는 +- タル +- 乃 +- zeichnung +- ▁товарищество +- 桜 +- 卒業 +- يه +- ▁luz +- 왔 +- ▁qo +- ladı +- baum +- 完美的 +- 疗 +- いるという +- ▁verdient +- 오 +- ▁слыш +- ище +- ▁tact +- middel +- 迎えた +- 玲 +- お二人 +- ▁curtains +- alimenta +- ▁tooth +- のですが +- ▁foresee +- Risas +- àtic +- コメント +- 产业 +- ▁Lager +- gewalt +- んでしょう +- حص +- ▁fühle +- ▁respected +- 宣传 +- 行吗 +- たこと +- चा +- bürger +- ▁alchemist +- ▁Jones +- чака +- ▁шест +- ľ +- 俱乐部 +- ▁денег +- 繰り +- karte +- 黎 +- 比你 +- ▁shrill +- піс +- ▁accordance +- තා +- ▁بشكل +- 营销 +- ▁halo +- ▁washing +- ▁heath +- ワーク +- ▁mature +- ▁Wohnung +- ▁representatives +- information +- ھا +- material +- ▁rosy +- ▁regulate +- ▁cinquanta +- ▁veteran +- dov +- 只需要 +- ▁hull +- ▁但是他们 +- 跟她 +- 产生了 +- 時には +- 一颗 +- ▁riot +- 这并不 +- ▁pagan +- ▁veux +- ▁evolu +- luck +- ▁será +- ▁übrig +- ▁resta +- 负担 +- ▁başka +- ▁пример +- ▁parle +- ন্ত +- estro +- ▁Regeln +- vió +- 尿 +- ුණ +- 素晴らしい +- ▁தொ +- pí +- phra +- ▁efter +- 糸 +- ု +- 楽しめる +- ▁persian +- ▁Fil +- ▁возник +- 了下来 +- ▁willkommen +- 饱 +- 糟 +- 畑 +- ▁gigantic +- ▁buffalo +- ▁meditation +- ユー +- ▁solemnly +- よろしくお願いします +- ▁explica +- 溜 +- ਦ +- ▁wünschte +- 備え +- lige +- ubwi +- виду +- 我不认为 +- очка +- خان +- ancien +- ▁supposing +- ▁gloves +- ▁lahko +- ▁работу +- 访 +- sional +- 所以我想 +- ከ +- ገ +- และ +- シリーズ +- てくれた +- ▁смог +- ▁Lied +- の方に +- ▁confront +- ▁சில +- ▁parler +- ▁agnes +- 坎 +- 撕 +- ▁medizinische +- 少数 +- Man +- 正义 +- 微博 +- ıcı +- ▁jungle +- طب +- ▁vicar +- ▁Grad +- ▁thereof +- 像你 +- lach +- '38' +- ▁Verständnis +- ▁энерг +- ギャ +- ▁blog +- 一个新的 +- ▁samo +- IP +- ▁junior +- ▁kümmern +- ▁commis +- burger +- 機会 +- ▁хол +- ブリ +- ▁توان +- อง +- 沼 +- ▁calendar +- ▁angefangen +- ▁கொ +- 这时 +- 敏感 +- ▁tlie +- というのを +- ▁fürchte +- excursió +- ራ +- ツアー +- 天堂 +- ▁oficial +- 達成 +- bouw +- ▁forbidden +- 全ての +- 価値 +- ▁bruce +- ジー +- 胶 +- ▁Lernen +- 我有一个 +- 野党 +- обр +- あさって +- いるのか +- ▁nützlich +- ▁partial +- ▁tempt +- يون +- シュート +- ▁dachten +- 平安 +- ▁ruled +- ▁integrated +- 新型コロナの +- ▁grind +- vina +- ▁сильно +- ▁месца +- んだから +- 可以用 +- ▁dernier +- сет +- cato +- ▁голову +- raient +- ▁ayuda +- くなった +- 開幕 +- baye +- ▁гри +- 所以它 +- 及时 +- プラス +- ნი +- 驾 +- ▁mortgage +- ▁awesome +- 怀孕 +- ▁нават +- дела +- ▁float +- ▁Revolution +- 一看 +- 違います +- ▁садовое +- 槽 +- ▁invasion +- ▁особо +- ▁splash +- 相手の +- عاد +- ▁dla +- 国連 +- ▁contend +- ▁bubble +- ਹ +- 只会 +- ▁tính +- ▁martha +- ▁چرا +- 你不知道 +- risti +- ▁хто +- の天気 +- paka +- ▁المت +- 建て +- коммерческое +- ▁tersebut +- 細胞 +- ▁snapped +- حدود +- 进化 +- natured +- 围绕 +- toren +- 臓 +- 稼 +- 我们认为 +- 新型コロナウイルスの +- ▁adequate +- 监控 +- ▁precipita +- ▁lorsqu +- venue +- 股票 +- ったこと +- ▁inspire +- ▁verließ +- ▁Га +- ▁sensor +- 空中 +- ठ +- ਕ +- ▁Aspekt +- ▁intens +- শা +- 見つかった +- ▁remedy +- みたいに +- ったのは +- ▁greatness +- ▁comunica +- гул +- ఆ +- かさ +- っていうか +- 楽しんで +- 立法 +- ▁müsste +- licit +- BC +- ▁دهد +- ▁Ansicht +- ▁sozusagen +- ▁awhile +- த்துக் +- ▁Apple +- ▁obliga +- ▁dolor +- іль +- ுள்ளது +- ▁Vari +- 批准 +- ▁components +- ▁Latin +- ▁rebellion +- 预算 +- ▁genial +- ক্ত +- 爆発 +- ▁Mannes +- tawa +- ▁சொல்ல +- 炒 +- ▁thursday +- මු +- гур +- ▁gasp +- ▁focusing +- ▁June +- 拿出 +- ▁Bald +- ▁естественно +- ▁настоящ +- 棍 +- 記憶 +- ▁chariot +- ▁comrade +- ▁лицо +- ▁rachel +- メント +- 九点 +- ▁altri +- 有更多的 +- ▁nuit +- 㗎 +- エル +- ▁resolute +- ensemble +- চি +- 就得 +- 的项目 +- ருக்கு +- ▁nannte +- ̣ +- ▁Verantwortung +- 所以这是 +- 将会 +- ▁lemon +- gänge +- 涉及 +- ョ +- kili +- eṭṭ +- ▁Antrag +- ▁blanche +- されていました +- ▁Gru +- 戻って +- ▁تنها +- ことによって +- ▁Town +- ▁leider +- mali +- ▁yep +- 你妈 +- 塗 +- 梅雨 +- ▁добро +- 的速度 +- ▁которым +- 芸人 +- 選手たち +- kord +- bald +- ▁Bol +- plant +- agh +- 伸ばし +- кала +- 我们不能 +- 欣 +- ▁preach +- ▁breit +- ▁இருக்க +- ▁செய்ய +- ▁pilgrim +- ▁voix +- ▁alguns +- ▁veya +- 请问 +- заў +- どこか +- ического +- ती +- rauch +- 的概念 +- PR +- щие +- ranye +- ▁één +- ▁fé +- 政治家 +- drop +- 取消 +- とみられる +- ▁accomplishment +- ▁vegeta +- ▁camin +- アプリ +- ▁assumptions +- mütig +- ailleurs +- ▁Во +- wadde +- prozess +- ▁resulting +- жды +- こん +- открыт +- асці +- ފަ +- ensor +- zaam +- ▁actively +- ksa +- ▁Ці +- juk +- эш +- körper +- インタビュー +- 来来来 +- yama +- чным +- issait +- ▁uncommon +- ▁despatch +- 但他们 +- ▁klas +- ▁Valley +- ▁часто +- ▁tế +- 奪 +- ▁Open +- န +- ▁façon +- なんでしょうか +- ▁gag +- ▁Start +- ▁отдел +- 说法 +- ▁добры +- いこう +- grä +- ▁louise +- ▁gewisser +- reiche +- 崩れ +- ▁fulfilled +- 措置 +- 这话 +- ▁gedaan +- いたい +- ▁wail +- diye +- 近づ +- ▁тобой +- ▁sheriff +- 限定 +- 校长 +- 運営 +- ▁gyfer +- adju +- そうですよね +- 柯 +- ▁occurrence +- ട +- 这一次 +- ▁folgte +- 过得 +- 的专辑 +- 夜晚 +- 事務所 +- 惜 +- ▁aunque +- 等到 +- ボールを +- 夏の +- ▁falta +- ▁frühen +- ▁daraus +- ▁saith +- ▁Mira +- ▁sanft +- 尴尬 +- んですかね +- ▁religiöse +- ▁nennt +- дель +- ▁شک +- ▁childish +- ▁мнение +- ▁stalk +- ▁خوش +- Һ +- ▁bởi +- 見込みです +- ▁kişi +- ▁acaba +- ▁Live +- ruff +- ▁approve +- ေ +- 賛 +- züge +- রু +- 工夫 +- 铜 +- ▁همچنین +- 형 +- ▁reflecting +- 入れた +- 也不知道 +- 醒来 +- related +- аас +- ▁filter +- ▁sunny +- ▁cuenta +- 蛮 +- 熬 +- ▁catherine +- ▁respekt +- 尽快 +- ▁vertraut +- ▁cautious +- 겠다 +- kami +- ▁États +- ▁warrior +- ▁circular +- ▁orang +- チェ +- ▁specially +- قان +- ▁doom +- 裔 +- ▁kubi +- ▁raid +- わず +- 你又 +- ▁erklärte +- われた +- hurst +- ▁strait +- 弄清楚 +- ▁класс +- 它可以 +- ありますか +- 拐 +- 체 +- バイデン大統領 +- 揺れ +- gibt +- reise +- いただいた +- ▁dump +- ▁meek +- ▁hayi +- proof +- fassung +- ▁Stock +- 坡 +- 煤 +- 遗憾 +- ▁Experiment +- トマト +- 协会 +- ▁contribu +- 东北 +- ▁aynı +- sız +- ▁geschaffen +- ▁secondary +- ▁pitt +- auto +- гуля +- mies +- lohn +- 離れた +- сот +- 所有人都 +- スペイン +- 維持 +- ▁Tema +- ▁আমি +- 日まで +- 銀行 +- 整理 +- 原子 +- 殿下 +- вернул +- ▁goede +- ▁relates +- 近くの +- ▁клуб +- ▁douglas +- 仪式 +- ▁paz +- ▁implica +- কি +- korera +- 试试 +- ▁translated +- ▁тое +- 单独 +- ியது +- ▁algorithm +- 몇 +- ▁случай +- ▁anterior +- 俳優 +- ▁comic +- ▁candidates +- もうちょっと +- 一緒 +- ość +- ▁nước +- ▁thay +- ▁policeman +- 足を +- 測 +- ▁combine +- ார்கள் +- ▁Pour +- ▁gaining +- 更容易 +- ▁bloß +- ▁Punkte +- જ +- ▁chocolate +- ည +- 労働 +- それぞれの +- ▁robbed +- ▁fourteenth +- 专辑 +- 物価 +- 北方 +- یده +- ▁commanding +- বু +- ▁joyous +- ▁drehte +- ▁товарищ +- ▁eingesetzt +- ▁sullen +- 五千 +- 姑 +- ▁девушк +- 我以前 +- ▁elderly +- を取って +- けさ +- 日目 +- 织 +- ▁elektr +- ▁hearty +- ▁trigger +- トル +- ▁waarom +- ▁zač +- หล +- ▁schaute +- ▁starve +- erade +- ▁yapma +- ▁precise +- ▁kinderen +- ▁حول +- rolle +- ▁productive +- мова +- ▁bằng +- 酬 +- ▁შე +- ulin +- ▁regulations +- 直後 +- ▁насколько +- 祝福 +- 结论 +- ▁Kanada +- ▁philosophical +- ▁slash +- dynami +- 他是一个 +- くなります +- ▁shelf +- '95' +- ますけど +- ▁deprived +- ▁stray +- 出门 +- 小屋 +- そうそう +- вался +- ▁mujer +- ու +- 泄 +- ▁моей +- 窃 +- ▁überrascht +- ▁diğer +- ▁حتى +- ▁loin +- 雨雲が +- ▁importantly +- ▁fiery +- ▁contradict +- ▁Яна +- ▁balloon +- ając +- ▁einfacher +- ▁bestowed +- 島の +- город +- ▁moyen +- 浪漫 +- ▁தலை +- ▁fortress +- ▁lebih +- schild +- nimi +- coli +- というような +- ▁sprak +- ▁fright +- ▁benutzen +- 吞 +- ▁Schwierigkeiten +- ▁estão +- ▁vide +- ▁frederick +- 延長 +- 的城市 +- ināt +- 貌 +- ▁Hey +- 雰囲気 +- ▁aggr +- ▁wiederholt +- າຍ +- ▁musket +- ▁swan +- TO +- ▁Gang +- cala +- ێک +- look +- ▁الْ +- 社員 +- ▁wales +- ▁problème +- こちらも +- zusehen +- ▁پو +- sichtig +- ▁electronic +- гээр +- 把你的 +- ▁server +- ▁exertion +- 屏 +- ല +- ▁ejemplo +- ▁invariably +- fugi +- 外部 +- gruppe +- mord +- 為 +- ந்தி +- ▁señora +- двига +- ▁exert +- 諸 +- ▁كبير +- ▁feedback +- ▁Terra +- 大切な +- ющий +- そこまで +- чар +- ▁Var +- 食べた +- ▁glancing +- 薪 +- 还有什么 +- ▁compact +- 审查 +- 原さん +- ▁хоть +- ▁أحد +- mén +- 絶対に +- ▁merge +- ってきて +- ▁swallowed +- ▁Wachstum +- ▁Technik +- مدينة +- ▁fossil +- ▁organiza +- 把这些 +- 引っ +- を見つけ +- 阁 +- てほしい +- нө +- ▁impart +- いますね +- ▁numero +- あふれ +- 立場 +- kutu +- ▁correspondence +- 增加了 +- ▁ragged +- А +- ▁hindi +- ▁dyn +- ▁successive +- がこちら +- ▁verdammt +- 严肃 +- ▁barren +- ▁prairie +- లు +- ▁Ora +- ▁понять +- ▁vamos +- ▁conventional +- に参加 +- ▁vegetables +- ▁стали +- ▁تغییر +- 希腊 +- ▁kelkaj +- 算了 +- '48' +- ацыі +- ▁kitty +- 踊 +- ▁Wahrscheinlich +- meza +- ▁swore +- ▁cheerfully +- zego +- ▁storage +- تك +- ▁bezahlt +- muz +- 五月 +- jol +- дей +- oğu +- icamente +- ▁hinauf +- син +- ▁prova +- ▁letzter +- ▁temperament +- ▁rencontre +- ▁influenced +- ラーメン +- ▁некалькі +- ▁parlour +- ▁Mariya +- fläche +- ▁Meister +- 提出了 +- を求め +- 有意思 +- няў +- ▁polar +- ▁Verwendung +- ▁стен +- ەم +- 的作品 +- ▁verstand +- 所以如果你 +- ▁mieux +- ▁요즘 +- ▁diversity +- бак +- 恐れ +- 案例 +- 洲 +- ▁tamam +- ▁salary +- ▁возможность +- 它将 +- kret +- 氧 +- 龍 +- ▁industries +- chá +- ▁Vier +- ▁swinging +- ▁bacon +- пись +- ▁edith +- 诶 +- ັດ +- ▁знаком +- фу +- ою +- ừng +- ▁impress +- 立って +- ões +- хад +- 锐 +- ▁resemblance +- 罢 +- 拯救 +- 我也是 +- ▁tightly +- けがを +- лева +- 货币 +- ▁beautifully +- యి +- ▁Histori +- ▁Harry +- 訴え +- 集団 +- даль +- 短信 +- 可以通过 +- лаш +- 苗 +- ▁summary +- 프 +- ▁первых +- 企画 +- oxy +- っつ +- ▁celebra +- 准备好了 +- ▁обрат +- 大胆 +- tuig +- θ +- ▁mabel +- бла +- метр +- 50% +- ▁fugitive +- ▁babe +- だよね +- 名单 +- ▁haunted +- 做到了 +- lerde +- white +- ▁technische +- 意味で +- 脂肪 +- ▁dissolve +- zze +- ▁일단 +- ▁loath +- ▁intensity +- 提案 +- 提交 +- ▁steckt +- 耶稣 +- ▁orbit +- ▁русски +- ▁fiercely +- 年後 +- 只是一个 +- Ex +- ▁sakj +- 查看 +- ▁آر +- ▁Ost +- ▁stump +- ▁enthalten +- ▁bitterness +- 会合 +- 他又 +- ▁hesitate +- 神奈川県 +- 键 +- كار +- 鹰 +- ▁درباره +- жиг +- ▁cabeza +- lada +- ▁bidding +- тыш +- ▁cautiously +- 主播 +- Gelächter +- ▁erlaubt +- ▁reconciliation +- 崩溃 +- وارد +- pion +- ▁fapt +- 協議 +- ▁gemeinsame +- 키 +- ▁دارید +- ▁Qual +- 東日本 +- 三千 +- ▁میں +- ▁venus +- ▁undertaking +- 所以我认为 +- 克拉 +- ▁câu +- われる +- гэр +- aurait +- ▁никак +- かわい +- 别说 +- hilfe +- ▁writ +- beug +- ▁sombre +- ptic +- 如果有 +- NG +- limi +- 的事实 +- ▁cảm +- rott +- ▁район +- ▁desolate +- ▁picturesque +- বো +- 晕 +- ذهب +- ることができる +- ▁weinig +- ▁siya +- ▁stain +- 惑 +- ▁pourquoi +- ▁строительный +- ▁doğru +- ▁Institution +- 送给 +- ▁Indien +- 干啥 +- design +- ゆっくり +- 近い +- ▁Sicher +- ▁раньше +- 용 +- ▁effektiv +- NATO +- ▁incentive +- ▁assisted +- 什么东西 +- ▁stirring +- ▁corresponding +- हि +- 复制 +- 窝 +- ▁Füße +- ▁tất +- ències +- ▁Ati +- 钥匙 +- ▁mysteries +- ▁bietet +- ▁gegenseitig +- ▁எழு +- ▁tej +- 庆祝 +- เล +- ▁நகர +- るもの +- மீ +- نز +- sinde +- サル +- になってる +- 上空 +- 言われた +- ▁Julia +- ۋا +- ▁grundlegende +- ▁comte +- pida +- ▁speedily +- 我们希望 +- respect +- 普通の +- ▁thoughtfully +- ▁Är +- 宜 +- sorge +- ▁betrifft +- ▁dụng +- ար +- 你如何 +- 地址 +- ▁يكون +- лета +- 都说 +- 赏 +- 強調 +- ▁Sab +- лос +- tijd +- ▁bezahlen +- ▁Serie +- イタリア +- ▁flexible +- ▁isolated +- ▁angrily +- ゲスト +- 被认为是 +- 人工 +- tauchen +- ▁точки +- 張り +- ▁Right +- borg +- ligi +- about +- 匠 +- さんから +- ▁passive +- ▁delayed +- かす +- ダン +- জে +- 想着 +- ▁vacant +- 宴 +- ▁congregation +- 分かり +- خور +- ▁juice +- ستخدم +- るべき +- 子どもの +- ▁poble +- 三振 +- けれど +- 緩和 +- ▁pigeon +- сны +- ▁большое +- ▁Westen +- әһе +- сни +- ▁ensuite +- ▁agencies +- ▁remorse +- ▁смотрите +- الات +- 工事 +- 터 +- ▁отвеча +- igkeiten +- ▁Universitat +- bwiye +- という感じ +- 통 +- ▁identific +- 男性は +- 冻 +- ▁quá +- 日曜日 +- ▁সেই +- ミン +- ído +- ▁parcel +- ▁êtes +- ▁ringing +- 癌 +- ▁baixa +- ▁благо +- するか +- 组合 +- ▁predomin +- reisen +- hnung +- ▁கரு +- 贪 +- ▁Häuser +- ▁nowadays +- ▁Victoria +- ثلاث +- imecres +- ▁ошиб +- 保健 +- ▁goose +- ▁nieuwe +- ▁consented +- 匪 +- ▁geloof +- ▁Würde +- ▁pup +- 集まって +- ▁parade +- これらの +- 周围的 +- 美好的 +- bildung +- ▁plank +- ▁blink +- ▁behalten +- ▁сказали +- ▁каких +- ▁දෙ +- 佑 +- 呂 +- ▁bestimmt +- ▁بده +- ţa +- 但她 +- 寿 +- ▁ўз +- iera +- ▁shrewd +- ▁рядом +- меж +- 毎年 +- ▁persistent +- ▁addict +- ▁mogelijk +- ▁Christian +- ▁disconnect +- ▁dadurch +- gisha +- ▁politicians +- ▁audio +- 让人们 +- ▁Harvard +- ▁Niemand +- fí +- ড়া +- ▁digest +- 同一个 +- 契約 +- ▁corona +- kku +- 広い +- 以色列 +- ▁Kreuz +- 陪伴 +- ゃ +- ▁Gü +- ▁uitge +- ▁seasonal +- ▁sanction +- Th +- යා +- vär +- 幻想 +- ▁Kate +- 麦克 +- 榜 +- ▁exchanged +- ▁verfolgt +- メジャー +- ▁jardin +- ▁Kritik +- ▁Islam +- 心态 +- 侵 +- ▁console +- ▁الان +- ▁fulfil +- 多数 +- fiel +- ▁voraus +- conscious +- sohn +- 부터 +- 時半 +- ▁canon +- ▁zahlreiche +- 盒子 +- মু +- länge +- pila +- ▁линия +- 偶然 +- ▁whatsoever +- 转变 +- ▁eleventh +- 暗示 +- 心理学 +- ▁albert +- 表现出 +- 蜜 +- ▁pennsylvania +- 새 +- らん +- たくない +- tev +- плы +- 扑 +- ▁taun +- 手中 +- ▁onward +- імі +- 空間 +- ▁thời +- ▁евро +- ▁tuesday +- ▁scotch +- ▁смысле +- しているということです +- ▁redeem +- čni +- 評 +- лык +- ▁Divendres +- ประ +- ▁tested +- ▁passar +- 偶尔 +- ▁Group +- ▁знаем +- 二十四 +- 想定 +- ▁Satz +- 淘 +- 摧毁 +- ▁dapat +- ▁helmet +- ▁historic +- 特定的 +- ▁youthful +- ▁relieve +- ▁chris +- ▁argued +- 十几 +- ▁eerst +- ▁документ +- ▁poate +- мор +- 退休 +- 你有没有 +- 帰り +- ▁මෙ +- হু +- 鎖 +- 長く +- ▁deliberate +- казаць +- 違 +- ▁shed +- ographie +- 舒 +- ▁jaun +- ▁wanneer +- ▁ببین +- 燃烧 +- taking +- ▁Schau +- 发现自己 +- 出てきた +- comm +- وجه +- ▁contro +- ▁angenehm +- চ্ছ +- ▁awaiting +- عَ +- ▁watu +- ▁overwhelming +- 宠 +- ▁peuvent +- ▁erlebt +- が好き +- 仕事を +- 体系 +- vidi +- ▁relating +- ▁sweetness +- ▁rhai +- ▁круг +- カリ +- ▁هستم +- ▁disput +- 発達 +- schnitt +- ▁Bü +- ▁recognise +- ▁tracta +- 只是为了 +- 通過 +- ではなくて +- 始まって +- ▁discharge +- 不出来 +- ▁inventor +- ▁bog +- ▁français +- 贤 +- 锻炼 +- びっくり +- аваны +- 公正 +- ゅ +- ▁страна +- 安装 +- ▁kwenye +- ніка +- urage +- 在网上 +- ▁drown +- 年ぶりの +- terri +- zellen +- ת +- セル +- いかがですか +- 授業 +- ▁morgan +- ▁miller +- ほうが +- ▁neuer +- 论文 +- ▁wunder +- ▁Fach +- ▁skies +- 标题 +- ▁Sitz +- zional +- خواهی +- 見てみましょう +- ▁transformed +- 没办法 +- ▁melted +- ▁encontrar +- ▁genre +- 擅长 +- ▁Middle +- 说实话 +- ática +- ności +- グル +- ▁cultivated +- ▁pioneer +- 基準 +- 生态 +- ▁இல்ல +- ▁neden +- スープ +- ▁Questo +- ▁pry +- 食感 +- ▁Wall +- ▁regulation +- 锋 +- 我认为这是 +- 近くに +- gemeen +- ▁hospitality +- ▁erected +- ▁Have +- ▁interaction +- greif +- ಂ +- ▁tissue +- ▁таго +- ▁элек +- 不要再 +- ▁Brun +- ▁gill +- っちゃって +- what +- 変え +- ▁adapted +- 铃 +- マンション +- جار +- ▁frighten +- ▁Gw +- ▁Top +- ▁juist +- ▁Jeff +- ▁wrth +- ▁frisch +- 好听 +- ▁penalty +- ▁څه +- ▁marion +- ▁Front +- ▁Arch +- ▁dicho +- ော +- ▁optimistic +- ▁Zusammenhang +- әл +- 铁路 +- ▁accounting +- ▁vocal +- оби +- ▁representing +- ▁cancel +- ĕ +- 转移 +- రి +- 七年 +- ▁kubera +- 饮食 +- ▁unfold +- 无聊 +- ▁Stephen +- ▁bestow +- ▁регион +- ▁terrific +- 监管 +- 場所に +- وک +- ▁matin +- ▁conveyed +- ▁склада +- ペース +- ▁adhere +- ついに +- And +- ▁underground +- tuvi +- ▁apenas +- ▁allowance +- ▁противо +- Rires +- ▁нашего +- ▁نیاز +- ▁begon +- ▁harold +- ことから +- 定期 +- 返し +- ベース +- ▁кост +- 测量 +- ▁deceive +- ダウン +- 部署 +- 应对 +- 找个 +- 命名 +- ▁bucket +- ▁traitor +- ඇ +- ʻ +- ވަ +- gá +- ▁அமை +- ▁Zweifel +- овым +- 殺人 +- 落下 +- ▁Tell +- ▁стало +- 跪 +- ▁Lieblings +- ▁earthquake +- రు +- рик +- 処 +- ▁pavement +- 我真的很 +- 離れ +- ▁mora +- 開いて +- 十个 +- ww +- indre +- eerde +- 次に +- 否定 +- ▁violin +- ▁numa +- ドリ +- 加州 +- ましたけど +- ▁моему +- vēr +- ▁enfin +- いける +- ▁plunder +- grado +- ジャン +- ▁podía +- били +- ▁mourn +- ▁circula +- ▁screamed +- ▁eternity +- ▁privi +- ほう +- ▁되는 +- 正面 +- ▁üle +- ombra +- ▁வரு +- pane +- åg +- ▁entlang +- 团长 +- 驻 +- マル +- 残る +- ných +- 思いを +- ▁Jackson +- ҭ +- も多い +- ▁එක +- を行い +- achtig +- 的证据 +- ▁geschehen +- 慮 +- ▁gentil +- ▁найти +- わし +- 分裂 +- impi +- 悦 +- ▁định +- 弁護士 +- 陽性 +- zubringen +- 早点 +- ▁autonom +- 手術 +- 種目 +- 我说的 +- ޮ +- 审判 +- 年纪 +- ▁其实我 +- ▁gris +- ▁показал +- ▁tourist +- быт +- 机场 +- ▁interrupt +- 守り +- 筋肉 +- ▁manière +- ユニ +- 作戦 +- ▁proced +- 響 +- ▁morality +- ▁Wunder +- igeze +- ▁awfully +- ▁gesti +- ▁Allerdings +- ▁학교 +- ▁dwarf +- 上市 +- ▁futbol +- кен +- ▁construir +- 疯 +- 大雪 +- ▁physics +- ▁beteiligt +- オーストラリア +- ▁hearth +- эння +- ▁cavern +- бат +- евский +- 路线 +- іі +- ▁Donc +- ና +- ▁appreciation +- ▁trousers +- 基础设施 +- ▁gewissen +- 城镇 +- 你看到 +- ▁организаци +- 悬 +- 抹 +- ▁hinzufügen +- ▁brillant +- ▁Donald +- ご飯 +- ▁dominant +- рах +- 伙计 +- meɣ +- ▁benim +- 鉴 +- выше +- 郁 +- 捷 +- クリスマス +- ▁ມັນ +- ▁اسم +- その中で +- 看不见 +- ывают +- らせて +- 饮 +- йын +- かぶ +- 掌声 +- ори +- ▁puzzle +- ្រ +- 队伍 +- ▁carved +- ది +- ▁admission +- слуш +- 鼻子 +- ouvri +- pta +- ▁yani +- ▁extending +- ப்படுகிறது +- தில் +- 官方 +- шчы +- ▁пойм +- 皆さんに +- रे +- ▁minim +- ▁forgetting +- rseits +- طي +- 日々 +- unterschiedliche +- teko +- bewegung +- ▁coffin +- ▁Information +- 挥 +- いきたいと思います +- ▁arribar +- kubernetes +- ▁nachzudenken +- '55' +- 狙い +- '3000' +- ▁ultra +- лым +- 業者 +- ▁تحت +- ▁menace +- ▁Instrument +- いかない +- ▁Boy +- گا +- ▁Gehen +- ەیە +- ▁capability +- 양 +- dział +- වේ +- 经典 +- の仕事 +- abri +- 都不知道 +- 的家人 +- луг +- 游泳 +- ▁owl +- 仍然是 +- ▁attachment +- 今から +- ▁Apo +- ▁наступ +- Oh +- 所以当 +- ▁тихо +- ▁casting +- 然后在 +- 常に +- ▁laatste +- weza +- тир +- マス +- ▁bộ +- ▁luther +- ▁عام +- ▁скажем +- ▁меньше +- 溶 +- ▁делает +- ▁Hinsicht +- ▁ambient +- ▁бя +- 一号 +- illion +- ▁Zweiten +- ajja +- ▁подобн +- ▁sylvia +- 縁 +- ごめん +- ▁trở +- ▁crude +- すみません +- fanya +- 灾难 +- นี้ +- ▁dritten +- ▁transferred +- ▁freight +- ▁chemin +- ▁milieu +- 他认为 +- を発表 +- ▁cruise +- ▁deepest +- нап +- леш +- ▁Ecke +- ▁Kreis +- 要不要 +- öß +- ▁Minute +- ▁процент +- 广州 +- ▁sublime +- ▁получается +- ▁Brad +- 然后是 +- ▁allgemein +- 农村 +- ▁болно +- ▁Eigenschaft +- 比較 +- ▁grandi +- drängt +- ۋ +- ▁அதிக +- ▁Cri +- 場所で +- سك +- ▁çek +- щий +- 纽 +- 冯 +- ▁живот +- ▁مې +- 便利 +- krimin +- 当然是 +- ▁kicked +- MS +- 友好 +- ▁Krankenhaus +- ▁Trotz +- じゃないか +- 成果 +- 剩下的 +- ▁Vision +- ▁verdade +- ▁pê +- ▁Түүний +- ▁پیدا +- '=' +- ▁пусть +- ▁Privat +- マネ +- ▁Quar +- 物体 +- ▁ນີ້ +- ませんか +- 单词 +- 触れ +- 山上 +- ママ +- koloni +- bogen +- ▁đổi +- ▁Tanzania +- 在我看来 +- 太陽 +- нец +- 生长 +- ▁Dev +- ▁scrutin +- نَ +- ▁девятьсот +- llah +- の裏 +- trum +- に加え +- ▁fulfill +- ▁regardless +- ▁surpass +- ▁வந்த +- ▁seixanta +- ▁inflation +- ▁augenblick +- орд +- ▁infinitely +- ▁ufite +- 时光 +- ▁Lauf +- 精力 +- ēr +- が確認され +- மெ +- හා +- ▁பேச +- schmerz +- unterricht +- reɣ +- 创造了 +- ▁veure +- ▁sechzig +- steller +- ▁retour +- ▁untersucht +- に入った +- 方がいい +- ▁constitutional +- 号码 +- ▁educational +- มัน +- ▁Those +- ▁Quando +- ▁herbert +- 以便 +- ▁années +- ▁acres +- 帆 +- ▁maître +- ▁langer +- 罗斯 +- ▁syria +- office +- ▁nebo +- ▁контрол +- ▁everyday +- ▁ähnliche +- ▁diferents +- නවා +- 密码 +- ▁Blue +- ▁broadcast +- žu +- дают +- أن +- pik +- 月亮 +- stimmung +- ▁Krä +- ▁satellite +- ▁weltweit +- ▁figli +- ▁tailor +- くれる +- 腐 +- ሽ +- の写真 +- ▁كه +- 変更 +- ▁negroes +- ▁همین +- ▁Acht +- strom +- مەن +- 勾 +- 妨 +- 一夜 +- 働いて +- ▁lachte +- ▁persisted +- perto +- larga +- படி +- ▁Wirkung +- ▁gezicht +- ▁فرا +- geladen +- овые +- vana +- ▁bemerkte +- ▁beliebt +- ▁гаражно +- 싸 +- ないといけない +- ▁provoca +- ▁Ausdruck +- 两者 +- ▁canvi +- ▁complexion +- гран +- ▁vedere +- DA +- ӡ +- häuser +- とかも +- 留下来 +- ▁چون +- Atlanti +- schwer +- 姿を +- 死去 +- ▁bewildered +- ▁refrain +- ▁verfügbar +- ▁dije +- ▁praying +- ▁fuera +- 代价 +- ▁Selle +- হে +- ▁hyd +- 全身 +- يين +- ▁немного +- ▁أخرى +- ▁Qualität +- 护士 +- 年齢 +- ▁tension +- Prince +- ième +- шет +- 谦 +- ẩ +- ucu +- ▁ними +- ছা +- ▁Ky +- 知道他 +- 蔡 +- 拦 +- instagram +- ovitch +- ▁orphan +- телей +- ▁hablar +- ▁subsist +- ▁grape +- アナ +- давать +- фан +- ▁välja +- を使い +- 汽 +- 另一种 +- нікі +- 排除 +- ▁scientist +- ভি +- лыг +- ▁tribute +- таш +- ▁lind +- 低気圧 +- ▁ohio +- ▁universit +- 简直 +- zaj +- ▁Letzte +- țe +- abaye +- ▁nke +- 週末 +- 仏 +- 主持人 +- ▁먹고 +- ▁recherch +- ▁wohin +- ▁pulse +- ▁lazy +- ▁impatiently +- ▁invalid +- ىدى +- を巡って +- 富有 +- ▁identical +- 霸 +- 刊 +- responsabil +- 違反 +- ▁futuro +- ▁داریم +- ителей +- ▁Zeitung +- سون +- 置き +- ▁pete +- 基督教 +- щения +- 時代の +- 上げた +- ▁военкомат +- 赤い +- 安全保障 +- ▁descri +- ▁Cle +- ▁Kapitän +- ▁regelmäßig +- ▁verfolgen +- 脅 +- 高騰 +- ▁Einrichtung +- itarian +- 大规模 +- 是个好 +- âr +- ▁Brust +- ▁herausfinden +- ▁privacy +- ▁важны +- ▁Out +- mitglied +- ▁dedicat +- 廃 +- ▁signature +- ▁பகுதி +- ▁arriva +- ▁quiero +- この時間 +- abba +- ▁Nehmen +- ▁enlarge +- ாங்க +- ▁Lady +- 趁 +- ▁greece +- ▁surgery +- ▁dunkel +- dokument +- ▁quiere +- ってしまう +- 雨が降り +- ▁hause +- ▁discretion +- 的风险 +- ほんとに +- ▁Universum +- ▁Foo +- kê +- ▁Pala +- ▁exclusive +- крат +- ▁assumption +- ▁sev +- を持ち +- ▁exhibited +- ▁такую +- ▁hỏi +- ▁produziert +- ▁jersey +- ▁Schönheit +- 额外的 +- ▁Vorstand +- ▁sotto +- ▁eagerness +- funa +- ▁unseen +- ▁jumping +- ▁legitimate +- ▁physically +- ▁hafi +- ▁poetic +- iyordu +- 唱的歌 +- 崇 +- ▁rubbed +- ▁humility +- 启动 +- ▁accessible +- ▁hoarse +- ▁nơi +- ▁bois +- үй +- حب +- cari +- ▁Fleisch +- ▁Для +- singa +- 犹豫 +- ▁Bedingungen +- ▁englische +- ▁sneer +- を挙げ +- ▁sentimental +- 运营 +- ▁jaroj +- 覧 +- 我一直在 +- 潘 +- ▁ingredient +- 真ん中 +- ▁Alexander +- ▁brigade +- ▁oxygen +- 相同 +- 过度 +- 校园 +- 何だ +- ключа +- شە +- تُ +- ▁Rang +- 远离 +- 相次いで +- ▁byinshi +- ▁tätig +- umugore +- ▁dictate +- ▁nhau +- ția +- 船长 +- ▁năng +- 侠 +- 誤 +- となっている +- 但是如果你 +- ▁hyper +- 该怎么办 +- 大学生 +- ればいい +- 这很 +- тоў +- ság +- ▁fifteenth +- ▁đâu +- 길 +- ▁известно +- ▁glacier +- einig +- сво +- 那一刻 +- に乗って +- ẻ +- 罐 +- ▁arriving +- ▁který +- ▁закры +- べる +- 革 +- ▁retirement +- ▁marching +- ှ +- ▁annoyed +- ▁üblich +- yerek +- говарива +- kampf +- දා +- 提议 +- ▁Western +- なぁ +- ▁kubona +- ▁کجا +- gezi +- 疏 +- 进展 +- ▁города +- ▁hurriedly +- ▁kiuj +- 年ぶりに +- ▁appearing +- NA +- ▁elfu +- 鸡蛋 +- 涛 +- ▁bernard +- ▁manual +- бед +- ▁banc +- 美しい +- schneiden +- لعب +- ▁Maßnahmen +- ▁superstition +- speicher +- ▁embark +- 観客 +- koko +- ▁manipula +- お話を +- ▁joyful +- হি +- ▁incessant +- ▁courtesy +- ҳа +- ▁fain +- imbi +- '[' +- 为他们 +- ▁determina +- 本部 +- 民間 +- もらいたい +- 裸 +- أت +- 做了什么 +- лыш +- kiye +- bleib +- ▁şeyler +- 売れ +- ▁Germany +- 我很高兴 +- ありますよね +- 呵 +- ▁вокруг +- 专注于 +- ▁sequence +- 予算 +- ▁indirect +- ▁bilden +- lässig +- 合适 +- ຽ +- ჩ +- You +- 所属 +- ▁tries +- ▁speeches +- カット +- ▁trivial +- ▁posterior +- 見通し +- ▁rhan +- оруж +- 去过 +- ҩ +- ▁monstrous +- 遊び +- ▁hàng +- ▁союз +- 都不会 +- 見られます +- ▁ernsthaft +- ▁Tatsächlich +- ▁мозг +- しん +- beho +- horse +- ▁breach +- ファイ +- ▁když +- ▁muscle +- ▁comparable +- ▁grasped +- 誕生 +- ▁Nta +- ▁zyn +- ▁Они +- 有几个 +- 碑 +- Ю +- ▁Firefox +- ▁carolina +- 控え +- ່າ +- 布莱 +- gruppen +- 澤 +- ▁круп +- 働く +- نق +- 볼 +- ▁yake +- ▁tiek +- 冠军 +- পে +- baho +- ▁Streit +- 晋 +- ▁Brü +- ▁направлен +- 维尔 +- fär +- presa +- についても +- ▁tõ +- ▁administrative +- ▁communicated +- ubah +- реп +- க்கிறது +- 老大 +- 選ばれ +- ▁благодар +- ▁desperately +- corre +- šķ +- ▁sweeping +- 怎么可能 +- ggie +- ▁recur +- ▁உட +- ▁floated +- 推出 +- прэ +- 在上面 +- 織 +- ◆ +- ▁twelfth +- 腺 +- 女孩子 +- ▁counting +- ▁hurrying +- 如果没有 +- ▁Abschluss +- ▁stealing +- ▁Deck +- 稲 +- ▁Bevor +- कि +- みてください +- ▁کمی +- ▁Verkehr +- ▁Martí +- ▁assess +- 逮捕された +- ▁حرف +- gekomen +- 天才 +- 类似的 +- ▁Online +- ď +- ▁እንደ +- 订阅 +- 渋谷 +- ▁už +- サイズ +- 支配 +- чку +- ▁advertise +- ▁wanjye +- urile +- 丧 +- ▁aussieht +- ▁общественн +- ▁Like +- ▁kirk +- ▁tennis +- ▁журналист +- ▁сторону +- ▁دنیا +- 온 +- လ +- ▁главное +- ▁fiz +- funktion +- lå +- ▁fotografi +- шат +- 対策を +- かれて +- 缠 +- ወ +- ▁вполне +- ▁Flugzeug +- ▁trường +- grond +- ▁echoed +- ▁phát +- だいぶ +- ▁Sara +- ▁conversa +- ▁stimme +- ▁Quina +- 指数 +- 祖父 +- wahl +- ▁klug +- righteous +- рап +- ▁mujeres +- 的痛苦 +- 六年 +- 全都 +- ▁clasp +- 浏览 +- топ +- ▁horizontal +- 坚定 +- ▁wengi +- ▁bored +- 局长 +- ▁travaille +- த்திற்கு +- fluss +- 岗 +- 現状 +- ▁但是当 +- ▁Operation +- فور +- ▁junto +- 你到底 +- ▁convenience +- 抑郁 +- ▁survived +- ▁образова +- 公寓 +- लि +- ▁mesure +- ització +- パラ +- ▁mourning +- ▁dart +- ▁Grün +- ސ +- ਿ +- ▁wednesday +- 外出 +- ▁hasty +- 完整的 +- ▁compre +- வரை +- 议会 +- ఏ +- 會 +- ▁farklı +- kracht +- 你可以在 +- カップ +- 无数 +- ▁Gute +- гийг +- ▁llarg +- ▁elevated +- ▁elsie +- ▁Kommunikation +- あたり +- impine +- 特殊的 +- ழி +- тере +- ▁そのため +- нием +- ▁armor +- ▁Weiter +- 在中国 +- ško +- É +- යට +- ▁thyself +- 沸 +- ▁achtzehn +- ▁extinct +- 太多了 +- ▁dresses +- ▁Prime +- ▁carrera +- ுகிறது +- 不认识 +- ▁expenditure +- ▁innumerable +- 気象庁 +- 公安 +- grown +- 不开 +- ▁infantry +- ▁abide +- に合わせて +- '39' +- 疲れ +- ▁schuld +- スキー +- ▁jog +- وضع +- ▁européen +- ▁seria +- 合格 +- いら +- ာ +- 伐 +- ▁உம்ம் +- రా +- 无关 +- ▁diffus +- দিন +- 的语言 +- ▁Sarah +- 书中 +- storm +- 受害者 +- 仕組み +- ▁banquet +- 早餐 +- кос +- 亿元 +- 10% +- 供給 +- アイデア +- технолог +- ▁diwujudke +- ่ง +- ▁energetic +- ▁bunny +- 从来不 +- burgh +- ிருக்கிற +- ▁glittering +- 嘘 +- 8% +- 留言 +- 二十五 +- CD +- さえ +- ▁geändert +- ▁увидел +- ▁roedd +- 你这么 +- BA +- ▁spray +- ことができます +- 有能力 +- alina +- ▁disposal +- ▁système +- ▁dreary +- ▁quarante +- ▁بأن +- ▁vient +- 第三个 +- ▁vacation +- ▁Ohne +- 币 +- 倡 +- ▁unnatural +- 결 +- 少なくとも +- ▁Another +- みんなが +- ▁fuss +- ▁خواهد +- ▁patro +- ▁personage +- ▁жыв +- ▁ddim +- альным +- ▁scheinen +- ▁probabil +- ▁Bewusstsein +- ▁Militär +- 裙 +- ▁কথা +- ▁Sagte +- ▁whe +- pola +- ▁missus +- 我觉得我 +- ▁quaint +- viel +- ▁telescope +- 涵 +- ▁тупик +- 在某种程度上 +- 言うと +- 传递 +- 的灵魂 +- दा +- ▁töten +- 事务 +- ▁demonstrated +- 教训 +- maro +- ▁figura +- しろ +- 痕 +- ▁предлага +- ▁metrics +- ண்டி +- ▁Iyo +- を前に +- 4% +- ▁marian +- hagen +- ▁ради +- цеп +- ▁слушай +- ▁демократ +- ▁ситуация +- ▁Drogen +- ▁dose +- افت +- ▁اول +- ▁suppress +- bril +- ▁beschlossen +- 涂 +- 謎 +- ಪ +- badde +- ▁있는데 +- ▁drunken +- ▁seule +- ▁afge +- 囲 +- 爸妈 +- 棚 +- 峡 +- ▁bacteria +- ▁erscheinen +- が続き +- ț +- قار +- хоз +- 紧急 +- 好朋友 +- рада +- ▁examining +- 同性恋 +- 韩国 +- 很高 +- ▁спец +- ヘル +- ере +- 一歩 +- batu +- ▁automobile +- 執 +- を含む +- ▁gerecht +- ▁welcomed +- ▁agricultural +- っていうのを +- ▁tudo +- 相信我 +- 喜欢你 +- ▁woorden +- 彻 +- তু +- ارات +- 这都是 +- 模糊 +- 逆転 +- ダブル +- ▁мае +- ショー +- ▁dirigi +- 检测 +- 哪怕 +- 我父亲 +- ▁eric +- із +- ▁parc +- dodd +- 饰 +- រ +- ▁December +- 겠지 +- ▁yali +- ▁gordon +- ▁Stamm +- बा +- ▁ikintu +- مین +- ச்சு +- 美好 +- ▁interrog +- Aplausos +- EM +- 警報 +- ▁Treffen +- ▁Tau +- ▁rive +- を食べ +- ▁sử +- ▁останови +- ▁oliver +- onian +- ▁Ez +- stuk +- 逛 +- ▁внутри +- ▁decisive +- ▁unglücklich +- の様子 +- 広がる +- 这个项目 +- ▁Klima +- ▁primero +- jang +- ▁Betrieb +- ▁sealed +- ▁insane +- ۔ +- ▁gewoon +- 为您 +- ▁tenderly +- ▁самый +- ▁oppose +- ▁ответил +- eremoni +- саб +- ▁correctly +- FIL +- าน +- ▁어디 +- ▁realidad +- behörde +- gerufen +- уха +- 房子里 +- ▁sujet +- ▁classroom +- ▁hübsch +- ▁sekolah +- ▁گروه +- ▁Gli +- 足以 +- ▁Carolina +- yorum +- ▁epidemi +- áz +- liwa +- ボン +- ▁feminine +- ▁które +- ▁primo +- ▁verdi +- кот +- ▁graham +- mele +- 你们两个 +- िक +- 感受到 +- 无人 +- 될 +- ▁knelt +- ▁tìm +- ▁hebrew +- ▁Meter +- กล +- ▁clothed +- 使える +- 陽 +- amazi +- Kanal +- ▁бага +- 心灵 +- 逸 +- ▁klingt +- ▁видео +- лоб +- 撤退 +- 景色 +- nect +- ▁vorsichtig +- ಗ +- ▁bachelor +- ▁хочешь +- ▁شرکت +- 見ていきましょう +- もあって +- 6% +- ▁Mah +- ▁Су +- லோ +- வேண்டும் +- 浓 +- ▁carpenter +- ▁shrub +- ▁nourish +- 始める +- ようになって +- しまして +- ▁awareness +- 闯 +- ▁невозможно +- ▁나오 +- boro +- ▁strife +- ▁dismiss +- 综合 +- িয়ে +- witz +- حدث +- pür +- 图片 +- 놀 +- 鍵 +- ▁subdued +- spoonful +- ▁Finally +- 看不到 +- 运动员 +- کات +- ▁rector +- 的角度 +- ▁faculties +- 麺 +- 円安 +- 緊急事態宣言 +- ▁molecule +- ▁plough +- ▁вчера +- ▁tiến +- Pierre +- مند +- 市では +- ▁Ми +- bika +- ▁obstinate +- ▁saviour +- 庞 +- pflicht +- 大海 +- ▁habitat +- 这是我的 +- urira +- 識 +- ですとか +- hani +- ▁candid +- 屁 +- ▁ممکن +- ▁এবং +- ▁ລະ +- tsinda +- شته +- 农业 +- 不同意 +- ▁Februar +- లో +- ிலிருந்து +- 太子 +- kleri +- ▁яму +- ▁draught +- 前提 +- ▁envia +- ▁também +- ▁crust +- ▁Калі +- ▁Verfahren +- ▁manifestation +- ▁verbringen +- ▁честно +- 做饭 +- 今天晚上 +- ▁видите +- kò +- ▁marshal +- ▁Bäume +- ▁astonishing +- ▁conjecture +- ▁embarrassment +- 畅 +- 眼泪 +- koli +- альные +- ▁concentrated +- 岩石 +- ười +- ▁amiable +- ▁hiyo +- ধ্য +- 自行车 +- ▁societies +- 舰 +- ▁አዎ +- ▁realise +- ▁pouvoir +- mico +- に移 +- 就行了 +- 合适的 +- ▁setanta +- fenster +- ▁dismal +- ▁Wunsch +- ▁wolves +- lil +- 建設 +- ▁rwose +- annu +- ▁aircraft +- イチ +- 拥抱 +- 電車 +- ▁sixteenth +- ▁Kurz +- Episode +- ▁فیلم +- ību +- 並んで +- 三点 +- cò +- ▁yella +- знача +- ▁حا +- この辺り +- альных +- いくと +- ▁Album +- ▁radiant +- ▁nossa +- 层面 +- хим +- ▁diversaj +- ▁imitate +- 谋杀 +- ▁resentment +- ▁shark +- 总结 +- 進化 +- 运作 +- ▁assertion +- ູ +- ▁Praxis +- にあります +- ▁confidential +- uğu +- wego +- ▁Ро +- ▁embraced +- nutri +- 与其 +- ▁buzz +- ▁camino +- يط +- 视觉 +- achtet +- 良い +- ▁скорее +- 珀 +- っていうふうに +- 继承 +- 你刚才 +- ▁صورت +- ▁países +- имся +- 是一样的 +- тэн +- ▁гэтай +- ▁находится +- ▁voilà +- ▁startling +- 我想要 +- 维持 +- ▁tray +- රු +- ▁повтор +- 的主题 +- contin +- 的人来说 +- ▁demanda +- 旧統一教会 +- ▁inspection +- 先ほどの +- ▁Senat +- ▁breadth +- sehn +- ального +- 明明 +- ▁respira +- جنوب +- 落在 +- 耻 +- 試験 +- ▁explaining +- 确 +- ▁perdu +- ▁gorgeous +- 陌生人 +- ▁Absicht +- ولد +- 遇见 +- шан +- 高級 +- ▁parlor +- хлоп +- ษ +- ▁Dijous +- ▁schlafen +- 改造 +- ▁miriam +- ▁Té +- ▁shipping +- そこは +- äck +- ステージ +- 十分钟 +- 太郎 +- ▁pasture +- ワード +- ▁nicely +- 増えて +- ▁beobachten +- 网上 +- ▁fröhlich +- ▁އަ +- தொடர் +- モー +- льны +- ▁стоял +- дзень +- ▁газет +- 名为 +- を認め +- 但这是 +- 决心 +- origine +- 느 +- Gelach +- foje +- ▁charter +- 这些问题 +- ▁vinden +- ▁Nieder +- yumba +- பர +- が出た +- ▁everlasting +- ▁trouver +- zí +- 成年人 +- ▁keer +- ▁Anwalt +- kaka +- ▁nosso +- ▁asserted +- овали +- AD +- 接到 +- କ +- ĥ +- 疫苗 +- 这一切都 +- 理性 +- ▁polished +- ▁flavor +- смотрел +- 産業 +- 你爸 +- ▁பய +- 逗 +- ▁Unión +- ▁rumor +- そうですか +- 我就不 +- ▁attributed +- ツー +- kları +- ▁passenger +- ▁bliss +- 喽 +- ሁ +- ▁verheiratet +- ▁mindestens +- ▁پنج +- ▁highness +- verfahren +- تَ +- 利润 +- ▁funkci +- ▁readiness +- ▁escala +- ▁канал +- ▁система +- ராக +- 抛 +- ▁Demokratie +- いただきたいと思います +- arbre +- 在此 +- ▁vind +- 我们有一个 +- ▁واحد +- ▁gosh +- 拨 +- ▁depressed +- ṛṛ +- ▁unlock +- の前で +- 俺が +- ▁거의 +- 小麦 +- ▁whereby +- ▁tint +- mizi +- ▁stretching +- 趋势 +- 名古屋 +- ภ +- ấu +- ▁putea +- 试验 +- ▁clergyman +- 劣 +- équipe +- খে +- 決まり +- ший +- ▁motiva +- ▁Atem +- ▁ئەم +- 遮 +- 천 +- 煙 +- ▁Bildschirm +- パパ +- 回到了 +- ▁await +- ▁voted +- 构成 +- 滅 +- ▁Hari +- ▁righteousness +- ▁женщина +- 白天 +- ▁gerald +- 旋转 +- 我想说 +- ▁surf +- 酱 +- ▁Tief +- দ্ +- ▁உள்ளது +- 尸 +- ứng +- boek +- brook +- ▁Erwachsene +- 激励 +- щик +- ▁acceptable +- ▁món +- ▁enthusiastic +- ▁upside +- ่ว +- umuryango +- 収穫 +- 欺负 +- ▁engaging +- ▁Reform +- ▁chop +- үнд +- 的需求 +- 很简单 +- loch +- ▁EBITDA +- ނު +- 龄 +- ▁Spring +- ▁logo +- ▁engel +- ▁fry +- 私たちが +- ▁stammt +- 焦点 +- ▁Mexico +- ▁kerja +- 都内の +- For +- 大厅 +- ▁noranta +- einheit +- ちゃんは +- 我们开始 +- ▁Option +- ▁사람이 +- 足够的 +- んだね +- SA +- ई +- ▁gewöhnlich +- 炒め +- ▁squeeze +- 技巧 +- ▁tyrant +- ▁کمک +- ▁animated +- ▁coverage +- 獲得 +- ▁кап +- ▁Schrift +- ауы +- 見えない +- ▁그치 +- カフェ +- が流れ +- 亲密 +- ▁purity +- 等一下 +- 就好了 +- ▁foremost +- ▁niedrige +- కు +- halen +- ட்டை +- zünd +- ▁olur +- ▁eliminate +- pez +- ▁xem +- 重视 +- ▁konzentriert +- ▁extinguish +- ▁cursed +- ▁louder +- ▁disdain +- strich +- の中から +- フライ +- Krista +- ▁الأول +- ▁plantation +- ▁eindeutig +- ▁einzigartig +- 弦 +- 訪れた +- рю +- 盒 +- ▁hauptsächlich +- ▁Тэрээр +- 保障 +- ▁সং +- ▁Norden +- ▁stamped +- ехать +- verkehr +- wszy +- ▁pleaded +- 忌 +- 熱中症 +- empi +- арга +- 一分钟 +- ▁kadın +- адзе +- 我妈妈 +- živ +- 袭 +- ▁меч +- ▁квартал +- ▁Garten +- ▁frantic +- ▁Hij +- ▁iraq +- がついて +- ▁ئې +- 凌 +- ▁squirrel +- ▁denomina +- ▁imposed +- цэн +- 他们已经 +- ▁Theater +- ▁yiwen +- ▁Pap +- 央 +- ▁tüm +- ▁depended +- 亦 +- ▁gerçek +- ▁berühmte +- hize +- ▁Veränderungen +- ▁unworthy +- feind +- дох +- Instagram +- ▁Benutzer +- ▁dernière +- ▁Biz +- ▁زیر +- ießen +- ▁attempting +- ▁процентов +- が見つか +- 接受了 +- ▁связи +- ▁слышал +- 你有什么 +- யூ +- ცი +- نے +- ▁nearby +- 踩 +- ▁nhw +- ▁درست +- شعر +- ▁waiter +- 容器 +- серьезн +- 前後 +- schijn +- ӧр +- environ +- ▁tiuj +- 壳 +- ▁افراد +- ▁Muster +- 会发生 +- ▁아무 +- ली +- से +- はどんな +- eeuw +- сидел +- 娃 +- 睁 +- sammlung +- குறி +- ▁shit +- пыт +- 营养 +- просил +- रो +- chè +- ▁complained +- ▁Szene +- оф +- ▁imitation +- цам +- runner +- 保罗 +- ▁بدون +- ▁Mol +- 痛み +- iĝo +- ▁tackle +- скіх +- ▁mehreren +- vance +- ▁öğren +- 本质上 +- ボード +- 隔离 +- ▁encouragement +- 政党 +- ▁үйл +- 文本 +- konna +- weiß +- 辜 +- 担忧 +- third +- อน +- бач +- ▁devote +- おいしく +- ▁January +- ▁consumed +- ▁pyramid +- ▁verursacht +- ▁banking +- コロナ禍で +- 決まって +- ▁realised +- ▁Syn +- 向こう +- 轩 +- ▁международн +- ▁orchestra +- 账户 +- ▁أيضا +- ▁привет +- ▁digo +- ▁мере +- ▁reaches +- ▁nhiên +- ▁aktuelle +- stow +- あそこ +- 况 +- 紀 +- ǧǧ +- ▁retten +- ▁stability +- ▁mož +- ▁يُ +- ▁waking +- ▁Cada +- 됐 +- 车站 +- 你想要 +- 並み +- ەڵ +- ▁collaboration +- 歳で +- 더라 +- ਤ +- ▁skeleton +- ▁Church +- ▁duration +- clav +- ▁другое +- ▁frère +- ▁Institute +- ▁quina +- இன் +- rijk +- 最新的歌 +- 我刚刚 +- актив +- ▁phần +- ▁wandte +- ▁Power +- ▁région +- ▁வந்து +- ▁cierto +- 基本上是 +- ▁Back +- が生まれ +- ▁whispering +- ▁страх +- ▁copies +- ▁rouge +- ▁убийств +- ▁eloquent +- ▁Hong +- ▁kuva +- ющим +- Net +- 晚了 +- ▁nostra +- 我们一起 +- 然后他们 +- движ +- 的反应 +- 这样的话 +- 考え方 +- 舒适 +- あるんですけど +- லில் +- 意味着什么 +- locat +- ▁boiled +- 不明 +- ▁fashionable +- ▁proprietor +- 複数の +- 框架 +- ▁beantworten +- ▁segundo +- 導入 +- альной +- おなか +- ▁cinquante +- 札 +- ▁guinea +- ▁gabriel +- 的作用 +- 買って +- わかる +- ▁geschah +- aquell +- ▁fino +- درا +- সু +- ▁Händen +- kamera +- ▁expertise +- ▁scenario +- ▁حيث +- 次々と +- 連携 +- 打って +- 我心里 +- 嫂 +- を出して +- 诈 +- 太棒了 +- を目指し +- 扩展 +- ▁concentration +- 修复 +- ▁boca +- fay +- 机制 +- లే +- ▁дверь +- 底下 +- 侦 +- 栗 +- ▁Interview +- ▁agitated +- 沃尔 +- みる +- ▁curios +- āka +- ▁solely +- хгүй +- 발 +- ▁Gedicht +- ▁klicken +- 到处 +- 不管你 +- 提示 +- 覚え +- zah +- ▁ayrı +- 捡 +- ▁warfare +- ▁colonial +- ▁аан +- ▁superintendent +- ▁放一首 +- 一顿 +- 这些都是 +- ▁répond +- 小学生 +- でもいい +- 가지구 +- ▁lawrence +- ایت +- legung +- sexual +- 詰ま +- アリ +- 敦 +- 验 +- மைய +- してしまう +- 谨慎 +- ▁difficile +- ▁конкрет +- ▁describing +- jährigen +- ▁bastante +- 诚实 +- ▁exercised +- furi +- ▁facile +- ี่ +- ▁celebrate +- Risate +- 金曜日 +- ▁Mission +- ▁спас +- umunsi +- 对他的 +- zelve +- 星星 +- ▁erano +- ▁Osten +- ▁gael +- 慧 +- ▁ප්‍ර +- 朋友圈 +- ▁tusschen +- yita +- 今度 +- 周年 +- 聚会 +- дні +- 漠 +- 耗 +- 毫无疑问 +- 轰 +- ▁скажите +- ▁sandwich +- ▁chambre +- ▁traveled +- ▁decidedly +- ▁حالا +- ▁despise +- nesi +- ŝa +- ▁Schauen +- 水果 +- ▁herald +- 婚礼 +- ▁overwhelmed +- ▁heathen +- 一堆 +- netz +- ▁mississippi +- 土曜日 +- ▁internacional +- あすの +- hydr +- 跳舞 +- ▁enthält +- ▁reel +- 按钮 +- 有效的 +- mayı +- ▁resigned +- ▁quantities +- ▁submission +- ваецца +- ▁stärker +- 倒れ +- estructura +- ▁Gegensatz +- ▁llibre +- 走过 +- ▁reminder +- وں +- щение +- Wow +- ▁içinde +- 还想 +- ▁contrived +- ▁ignore +- 我也不 +- 져 +- ▁gregory +- ▁hejuru +- ▁korea +- ▁realiza +- 娘娘 +- ▁cooked +- ▁Stimmen +- ▁satisf +- 脆弱 +- ▁vaguely +- 顶部 +- 误会 +- 無料 +- 受到了 +- 的时候呢 +- 把手 +- ▁subsidi +- ▁necesita +- 假装 +- ▁persecu +- ▁dintre +- ▁endured +- lender +- étais +- ▁litter +- 愧 +- なのです +- 我们发现 +- ▁Tamen +- ▁hopeful +- check +- 声称 +- 意义上 +- 僕ら +- 各个 +- ▁vertrauen +- පා +- ▁khu +- ▁pathetic +- 不清楚 +- 側は +- 一个很好的 +- 六月 +- kker +- ▁hả +- ▁harness +- ▁vanish +- geblieben +- 塚 +- ▁orchard +- 争议 +- තර +- 的核心 +- ▁bland +- ▁heftig +- ▁terrorism +- 并非 +- நிலை +- 中午 +- 衆 +- ▁arnold +- 貨 +- ▁gehabt +- 7% +- فكر +- 演唱的歌 +- 分布 +- 戦闘 +- ▁spake +- ▁negativ +- ▁kimwe +- 畏 +- 眼前 +- ▁بۇ +- ▁sorgen +- 圣经 +- 只要你 +- ▁flowed +- 当成 +- ▁önemli +- ▁zurückkehren +- 砲 +- ▁Soldaten +- はっきり +- energia +- 言われ +- が大きく +- ▁plein +- éré +- 彼女の +- ▁kasuta +- 战士 +- ▁repeating +- invest +- ▁virtuous +- ▁laboratory +- ネタ +- руп +- ად +- 贼 +- 殴 +- ▁буй +- ▁இர +- Video +- ىلى +- fydd +- 几乎没有 +- 山田 +- гуль +- ▁Pel +- 任命 +- ▁discontent +- ▁ຊິ +- ▁winner +- 可爱的 +- ▁verbreitet +- 星球 +- ▁ааа +- 耐心 +- ▁overtake +- 災 +- ▁подумал +- ▁hände +- 打扰 +- வெளி +- ▁wonderfully +- ▁staatliche +- 的房间 +- に来た +- ▁nursing +- ▁dunia +- 笼 +- ▁chưa +- ▁Verlust +- Domin +- kommst +- монт +- 逃跑 +- 估 +- 你还是 +- ▁stepping +- 驱动 +- ▁сначала +- しばらく +- 衝撃 +- ▁blake +- ▁Frankreich +- ▁exploration +- と思うんですが +- ▁clinic +- 違って +- 寒さ +- ▁какую +- ▁soort +- meid +- ▁slack +- ▁күр +- ց +- ▁Ozean +- ić +- 退出 +- ▁historically +- ▁punika +- 画像 +- ▁weighed +- 本地 +- ấp +- 济 +- ▁pouvait +- ヒント +- 레 +- ▁vuitanta +- ▁verantwortlich +- ▁neunzehn +- hampton +- alist +- ▁склад +- 時ごろ +- Comp +- '47' +- ▁Cafodd +- amategeko +- ▁mnie +- ওঁ +- ▁öffnete +- デー +- あなたが +- ▁enorm +- 明治 +- 今大会 +- '`' +- ▁archbishop +- ▁иногда +- ▁прежде +- ▁göz +- ▁entrar +- ▁знать +- числ +- 奇妙 +- ▁kuvuga +- ▁grub +- ▁rubber +- 坐着 +- に関しては +- ▁preaching +- işle +- ▁psychological +- ▁survivor +- ▁Oberfläche +- 这个想法 +- 脖子 +- 观看 +- ▁Verstand +- ▁кож +- ▁нужны +- ▁diff +- integra +- ▁Hinweis +- ▁maakte +- 我希望你 +- 循环 +- ▁Simon +- 中止 +- ▁crucial +- ▁праца +- ▁thông +- дук +- ▁ownership +- ந்தார் +- ▁Paar +- ▁carta +- 大変な +- ▁hayat +- ់ +- ▁ситуации +- 欺骗 +- ▁regime +- まるで +- مُ +- وص +- 一个女人 +- 資金 +- ം +- ▁kompliziert +- ▁Geburt +- 衝突 +- ▁Play +- ▁Ärzte +- ▁snatched +- خنده +- īgi +- vè +- ▁küçük +- ▁navig +- 両親 +- تحدث +- ▁attire +- ▁Pause +- 連れて +- ▁Einsatz +- kî +- ▁Free +- 认识到 +- லு +- 扩 +- 男生 +- 仓 +- ▁Laura +- ▁magnitude +- ацыя +- torial +- ▁tercer +- 岸田 +- テスト +- بى +- état +- ▁máy +- schläge +- 激烈 +- ▁같은데 +- ▁kep +- 这就像 +- পি +- φ +- 肩膀 +- ▁psychology +- ▁wünschen +- ▁wiped +- を求める +- ظهر +- ▁streak +- ▁Aktion +- لې +- ▁vấn +- ▁owed +- ▁assessment +- ▁solomon +- 魔法 +- ▁digging +- ▁Kleidung +- ▁волн +- піса +- 직 +- ښ +- 叠 +- 垫 +- ▁provoke +- ▁disturbance +- 范围内 +- 教学 +- ▁труб +- ▁Deutsch +- ێت +- ▁করা +- ▁Englisch +- fluent +- ▁какого +- 陪你 +- sulta +- ▁applause +- ▁тэгээд +- ას +- ▁mmhm +- ▁rascal +- тәр +- ▁honesty +- ▁Phase +- Risos +- ▁постоянно +- 申請 +- ັກ +- ▁hängt +- ▁affecting +- ▁Veränderung +- ▁опыт +- હ +- ▁اليوم +- ▁друж +- 碰到 +- ▁Bühne +- ▁порядк +- ҭа +- 新聞 +- ▁Stimm +- ▁Süden +- مام +- 演説 +- 世界上最 +- leitung +- 遣 +- 北日本 +- 감 +- 碳 +- ▁collecting +- っぽ +- ができて +- やりたい +- ▁vardı +- ▁reap +- 背中 +- ▁Farb +- 焼け +- ないよ +- 摄 +- 하다 +- 외 +- ▁appealed +- ッキー +- ▁prick +- 上手 +- お届け +- kono +- ▁мэдэ +- 顾问 +- 很清楚 +- 斑 +- ▁интернет +- 刃 +- һын +- ▁نور +- awal +- ▁flashing +- ▁Since +- 大师 +- ▁macro +- เก +- ▁unconsciously +- ▁passé +- ▁dreaded +- ძ +- ▁cependant +- 초 +- ▁Там +- ▁бело +- ▁personnel +- 犯行 +- ▁priorities +- шев +- ▁grote +- neuron +- ▁treating +- âme +- ▁Bach +- 有许多 +- සු +- ▁Pic +- ▁Ereignisse +- 感染対策 +- ▁discoveries +- spoiled +- lith +- 喝了 +- ታ +- ▁Geschlecht +- ▁excursion +- 保険 +- ▁fonction +- 場に +- maktadır +- ▁judicial +- 安倍元総理 +- ▁Sobald +- lardan +- кажет +- ディング +- ▁harmless +- 这么一个 +- ▁ministry +- ▁ຫັ້ນ +- ▁cotxe +- 嘉宾 +- を取る +- ىسى +- lomb +- という話 +- ▁siaj +- ambul +- ▁referring +- 小小的 +- ▁utterance +- 角落 +- ▁kehrte +- パリ +- 捐 +- ▁provincial +- 想出 +- ▁benefici +- ▁Aku +- ▁исслед +- ▁Kong +- ıp +- 激情 +- 周期 +- ▁Ruf +- 坐下 +- ▁ewig +- ▁African +- ▁çünkü +- ▁academy +- ▁Maybe +- 无限 +- čči +- ▁connu +- 这孩子 +- ▁banker +- 村上 +- ▁authentic +- 寂 +- 郷 +- ▁kết +- ヴィ +- ▁luncheon +- ▁알아 +- 冷凍 +- ▁resume +- андр +- ▁refined +- clus +- 这样的一个 +- ாளர் +- 鲍 +- ▁nobility +- ▁Ул +- ໍາ +- を重ね +- ▁嗯嗯 +- 談 +- ▁awaited +- فَ +- ▁Aussage +- ღ +- ▁vermute +- 涌 +- హ +- 月曜日 +- ▁tốt +- esque +- ▁جدید +- 選んだ +- ▁Wann +- 身后 +- アイス +- カ月 +- ▁beschreiben +- 诱 +- ▁chwarae +- 附近的 +- inclou +- 什么样 +- 請 +- කු +- ल् +- ▁initially +- 期节目 +- ▁roaring +- ▁Ар +- ▁другим +- ▁oven +- 必须要 +- 20% +- ▁saloon +- ▁врач +- せん +- ▁lewis +- ▁vicious +- ▁Zentrum +- ▁brazil +- 的权利 +- 美味 +- 不许 +- ▁பயன்படுத்த +- ▁вульф +- ▁видимо +- 先発 +- きれいに +- ▁ужас +- ▁obtaining +- ▁Aufnahme +- ▁podría +- ▁sadness +- 拿出来 +- 必要がある +- лыҡ +- 作业 +- 采用 +- ▁vya +- ▁feat +- ▁Although +- なければならない +- 大規模な +- 推进 +- 我只想 +- ▁durum +- 还有其他 +- どうする +- œuvre +- ▁eloquence +- ▁бөгөөд +- 栋 +- 鏡 +- būt +- günstig +- 开会 +- ▁Grab +- ▁அவர்கள் +- ロシアが +- voja +- ▁felicit +- ▁attendance +- 否认 +- ぇ +- ლა +- わずか +- ▁hunted +- ようやく +- 爵士 +- ހަ +- 然而 +- ▁mournful +- 長期 +- wamu +- 期限 +- 询问 +- ▁установ +- ▁rainbow +- 騒 +- ▁diligent +- ▁vergangen +- ▁asylum +- ▁yanjye +- koht +- ▁comfortably +- gerät +- 凶手 +- ▁armour +- pari +- ▁dignified +- ▁cuerpo +- ▁Prinzip +- associa +- つま +- ▁excite +- ▁matches +- ▁brauche +- ▁كې +- ddling +- ▁baggage +- ▁outstanding +- 秒钟 +- ▁vierzehn +- 克服 +- ▁blazing +- பின் +- 下がって +- ▁руку +- jící +- わたし +- න්නේ +- ▁consegui +- 他们正在 +- ▁qualified +- ▁tradi +- 统一 +- 人が死亡 +- buah +- ▁защит +- ▁donkey +- 新幹線 +- 欲しい +- クル +- ifuza +- miento +- ▁lumber +- jye +- ▁meteor +- ▁gradual +- களும் +- ▁crowned +- quisition +- ショート +- 糊 +- ही +- チャレンジ +- னும் +- ▁एक +- ▁sydney +- ▁Taylor +- 克莱 +- 拿起 +- リーダー +- 兔子 +- 其他地方 +- ▁Graf +- ▁ужо +- ël +- өнгө +- ▁fünfundzwanzig +- ▁estimated +- 一趟 +- ▁quoted +- த்தா +- spruch +- 激しく +- ▁Был +- čil +- トラブル +- пустил +- ▁seventeenth +- ▁thirteenth +- ▁compelling +- ▁seemingly +- ▁نگاه +- 更好地 +- ▁bunk +- のまま +- nev +- 借り +- ▁кре +- krist +- 七月 +- ▁Atom +- spezifisch +- 一直是 +- Orient +- йтесь +- ▁meilleur +- '120' +- ▁habt +- ▁liking +- ▁legislature +- どのような +- 一块儿 +- いくつか +- ▁romp +- ▁trench +- ▁сильн +- 凑 +- 鸣 +- 登録 +- ▁frail +- 获取 +- ▁Main +- いること +- 広く +- プリン +- 親子 +- 段階 +- 豆腐 +- 很长时间 +- ▁Castell +- 真理 +- ▁треб +- ▁endeavoured +- Institut +- 萌 +- Infrastruktur +- 堀 +- 诉讼 +- ▁прекрасно +- ってほしい +- キャン +- 徐々に +- ▁يجب +- ▁vall +- ზ +- eisen +- ▁Gewicht +- ▁العمل +- ▁contemporary +- 戦略 +- ▁wesentlich +- కి +- 予定です +- っけ +- ▁bello +- ▁socialist +- ということなんですね +- ▁cement +- ▁그걸 +- ▁shifting +- ▁Sup +- ▁дене +- ▁governed +- schäm +- ▁jurisdiction +- ▁giorno +- ▁triple +- funk +- ▁sneak +- 院长 +- 食料 +- чныя +- vira +- ▁spoon +- сця +- ▁silenci +- 出售 +- 几十年 +- geordnet +- ▁Philosophie +- ▁congratulate +- リズム +- ▁scheen +- ▁пятый +- ▁tidings +- ▁podem +- 北陸 +- 大姐 +- ▁hệ +- ▁Lind +- accus +- иров +- 另 +- 付いて +- ▁vegades +- ▁কৰি +- ▁inherent +- räumen +- ▁Vorschlag +- ▁Dabei +- ッジ +- ▁Interessen +- 得很好 +- неп +- ▁keel +- 一阵 +- ▁treasury +- ▁sculpture +- ▁vật +- ▁Beach +- できなかった +- ちょっと待って +- 巨人 +- ▁Verein +- 乗せ +- ▁Ple +- 冲动 +- 休み +- syll +- ත්ත +- ോ +- ▁غیر +- ロック +- чки +- 回答说 +- うまみ +- ලි +- thorpe +- 其中一些 +- をつか +- ▁outdoor +- に向けた +- ▁amuse +- К +- ▁bantu +- uwen +- 辅 +- lulu +- নী +- ativa +- 網 +- 詹姆斯 +- 懂得 +- 太空 +- 四处 +- いずれも +- ▁Vertrag +- ▁verbinden +- 脊 +- ఎ +- ▁обычно +- ▁dispatch +- 切った +- と指摘 +- ▁komplett +- 火事 +- ▁migration +- kintu +- 働 +- 札幌 +- ▁касается +- 告诉他们 +- ▁ingenious +- だとか +- عادة +- 金钱 +- ضع +- 般的 +- ▁fling +- 正如你 +- ▁durchführen +- コーヒー +- スケート +- 的意思是 +- 很多事情 +- ▁crisp +- ▁grunt +- ▁kutoka +- ES +- 爵 +- ▁dự +- ▁catastrophe +- ▁tưởng +- ▁disregard +- ▁gezegd +- ▁Kredit +- 強さ +- ▁بودم +- OS +- beruf +- ▁handling +- ▁pesca +- 根本不 +- ▁Champ +- ▁девят +- 晒 +- ▁evaluate +- ▁Dewi +- ▁ответствен +- щего +- 认知 +- ovna +- ▁paragraph +- 決めて +- ▁roared +- ▁Quindi +- 毫不 +- 름 +- ▁Sitzung +- கிறது +- ▁willow +- 欢迎来到 +- 船上 +- 维护 +- ▁tanta +- ▁Europäischen +- ▁Molt +- শ্ +- tiene +- 種類の +- を超えて +- ▁terminal +- ▁consulted +- ▁portal +- алды +- ▁المع +- assassinat +- 証明 +- 标记 +- يار +- 一起工作 +- ▁ئەو +- ▁Pflanzen +- ▁embarrassed +- kawa +- ▁serene +- ▁streaming +- ▁jason +- ▁stride +- ▁лиш +- 多次 +- භ +- ▁almighty +- ▁hurricane +- ▁Science +- ▁سره +- fashe +- quadra +- 常常 +- 国民の +- ▁dạ +- põ +- ▁discount +- を出す +- 到目前为止 +- fähigkeit +- 谈判 +- スパイ +- ▁patiently +- ▁lautet +- ▁болох +- 惊人的 +- fleur +- ▁prosperous +- 委屈 +- ică +- ▁Brian +- 两百 +- ▁ভাল +- ▁brandy +- 实在是 +- àng +- ▁produit +- палі +- 客厅 +- を示す +- ▁gezwungen +- исто +- stairs +- ▁lapse +- 镜头 +- 般 +- ▁Està +- operative +- ▁Veranstaltung +- 二人 +- දී +- ▁moll +- ▁courteous +- رَ +- ▁Oberst +- 谁呀 +- 車両 +- анг +- ▁série +- ▁behandeln +- பட்ட +- とかそういう +- лок +- ▁کړ +- ▁Austr +- 看起来很 +- 酒吧 +- ▁বলে +- пок +- インターネット +- 天皇 +- ▁estaban +- зур +- 极端 +- ▁distrust +- بری +- 去哪里 +- ▁сельсовет +- ▁نحن +- ▁erhöht +- ▁mặt +- 軒 +- ▁Abendessen +- ▁accusation +- 领导人 +- льная +- ▁görün +- 年生の +- 伊藤 +- 支払 +- 肌肉 +- ▁zitten +- したうえで +- chimp +- 恋爱 +- ▁ег +- ▁зелен +- 动机 +- ▁Konflikt +- 군 +- ▁sabbath +- '".""' +- ▁kapit +- セント +- ▁polish +- ▁simultaneously +- की +- ▁kugeza +- 相当于 +- ▁годы +- علوم +- итесь +- ▁expressing +- іла +- 美女 +- umugabo +- قطع +- ▁schickte +- ▁реша +- ▁Fälle +- ெய் +- migr +- 己 +- ální +- ▁людям +- ▁некоторые +- バーディー +- fungu +- ▁executing +- بحث +- schieben +- 引发 +- 质疑 +- ▁Gründen +- grenzen +- ▁persecution +- ▁Zitat +- 土砂災害 +- ▁besorgt +- ▁unfair +- 到这儿 +- 인데 +- عات +- ▁ребята +- ouvre +- 第二次 +- рыс +- ших +- ▁тус +- しまい +- 思われ +- 鹅 +- ▁Katze +- ▁strengthened +- kamu +- ▁Royal +- ombro +- ▁folgt +- ▁destaca +- ▁همان +- خورد +- 倦 +- スポット +- rechnung +- ▁inheritance +- ىدۇ +- ▁பிற +- ▁Kevin +- ▁behaved +- 数百 +- 明显的 +- roving +- ▁наконец +- 稚 +- 구나 +- 犹太人 +- 确认 +- ▁தீ +- لِ +- 二十年 +- 为何 +- ходил +- жат +- märk +- ұ +- ▁الوقت +- ▁depois +- ▁цар +- ▁despised +- 商人 +- ొ +- ▁besuchen +- 詐欺 +- スタイル +- ▁überzeugt +- ここの +- wili +- ▁Life +- 特别好 +- ▁ziet +- ラム +- を続ける +- rinda +- 호 +- kanya +- ▁chairman +- 木さん +- トイレ +- крыва +- ▁stooped +- ▁Schatten +- ▁kuwi +- 一本书 +- ebene +- вец +- ▁занят +- ▁garment +- ▁Danach +- ▁ăn +- ▁Как +- が続いています +- 遂 +- क्ष +- ▁acceptance +- ▁körperlich +- 義務 +- 该怎么 +- ائي +- ▁krista +- ителя +- ымі +- ▁Neuro +- ▁semble +- を進めて +- 見られる +- 遭受 +- ▁Einheit +- ▁ditch +- ▁Sydney +- ▁üzerinde +- 葛 +- ▁российской +- ▁шестьсот +- ▁advertisement +- ▁lucruri +- 伯特 +- 小林 +- ▁bamu +- հ +- ▁Pakistan +- ▁hành +- わからない +- ▁historische +- kiem +- ▁nghe +- かつ +- 约会 +- もらえる +- tsiooni +- ▁preached +- 울 +- 胳膊 +- ▁exaggerate +- ▁subscription +- ▁sworn +- ▁evolved +- 认可 +- verhalten +- ▁hạ +- нде +- ▁путина +- ▁accumulate +- いくら +- ▁Dž +- 先頭 +- ▁berlin +- 僅か +- ▁Knie +- 数据库 +- ▁жест +- ▁زیادی +- ▁envoy +- ▁самого +- väg +- 录音 +- جعل +- タイトル +- ▁protecting +- brian +- 緩 +- 勘 +- もしかしたら +- ▁shrugged +- willig +- ▁иә +- නය +- 三个月 +- 時代に +- 音频 +- 来看看 +- මි +- ▁vicinity +- ▁choosing +- ▁வழி +- 奇迹 +- ▁Schreiben +- лээ +- croft +- ▁kontrol +- бот +- ▁izmanto +- ▁좋은 +- пуск +- parent +- ▁container +- 疯了 +- 尼斯 +- 確認された +- ▁thicket +- ▁верн +- ▁dankbar +- 并将 +- 大陆 +- ▁comercial +- ▁vorhanden +- jev +- 对面 +- ▁tiefer +- ▁cama +- 不能再 +- だと思う +- 則 +- 鸭 +- ▁soutenir +- 幺 +- ▁Schlacht +- ▁chaos +- ▁meisje +- を行った +- ▁conjunt +- ▁Ansatz +- 皇后 +- 环境中 +- 님 +- 世紀 +- も含めて +- '98' +- ობ +- त्य +- ▁derecho +- ▁davis +- ▁Шу +- お酒 +- ▁verhindern +- ▁komunumo +- ▁mochte +- こだわり +- 设施 +- 天使 +- ▁schade +- позиц +- 9% +- пай +- ▁richmond +- ▁посмотрел +- eusement +- meester +- ỹ +- োৱা +- 久しぶり +- 候选人 +- ங்களில் +- ন্দ +- ▁Zusammenarbeit +- 少しずつ +- ▁Tausende +- 东方 +- いただき +- aquestes +- ▁gefällt +- гада +- 薇 +- ▁mathematics +- ▁처음 +- lago +- amara +- zentrum +- ▁forgiveness +- ▁Each +- ▁அதன் +- ▁Deci +- 他にも +- ▁mirth +- 建立了 +- Ɣ +- сор +- ▁Wörter +- Bahn +- ▁bajo +- ▁carne +- 可怜 +- thought +- größe +- ガラス +- ▁screaming +- ▁ändert +- 培 +- 给了我 +- અ +- ▁thôi +- ▁indicator +- ▁alfred +- ▁کنی +- ▁gezien +- جلس +- ▁disciplined +- ▁housekeeper +- 体操 +- 还挺 +- ▁submarine +- いきなり +- كرة +- ▁erneut +- ▁Medizin +- 资助 +- vå +- ▁lucru +- ▁разные +- ▁oars +- ливо +- 可惜 +- ▁Oxford +- Kampagne +- ▁generosity +- ▁무슨 +- ญ +- 縦 +- 偽 +- ível +- パワー +- ▁moviment +- 尽量 +- ▁universitat +- ME +- ễ +- ▁нравится +- ▁понимаешь +- ▁böyle +- 学术 +- こんにちは +- ▁kvar +- 摊 +- 棵 +- ▁hereafter +- Franc +- ▁prussia +- ஷ் +- 天哪 +- ▁Hügel +- 最新の +- ▁Korea +- ▁мөн +- ▁হয়ে +- ▁kaiser +- ático +- ▁mooi +- 晩 +- ึ +- ▁cambio +- holm +- ственно +- ▁implied +- ▁év +- 我个人 +- ▁jenny +- 就是因为 +- Ĉ +- を通じて +- ▁değiş +- ▁borrowed +- 是否有 +- ▁Tout +- ▁festgestellt +- きょうも +- ▁تک +- 短暂 +- ▁franklin +- ▁piled +- 还是要 +- 自主 +- یەک +- ▁contempor +- 狩 +- 불 +- نظام +- 亲戚 +- 活跃 +- 真心 +- 会让你 +- ▁کشور +- ování +- ▁stesso +- бег +- 临时 +- 八点 +- いろいろな +- घ +- 螺 +- க்கை +- ▁consultation +- ▁Wut +- ▁Personal +- ▁quedar +- ▁こうした中 +- ▁Ку +- ▁prolonged +- ▁folgenden +- ▁temporal +- ▁bleef +- ăng +- バター +- ▁Saya +- ▁detected +- ▁Про +- ▁translate +- 信念 +- асць +- ないんです +- ▁کوچک +- 両方 +- ▁contrari +- ▁அத +- ோம் +- お肉 +- ņa +- ▁Einstellung +- したいと思います +- ▁встреча +- wyl +- 侵攻 +- 我刚 +- ۱ +- 房地产 +- ষ্ট +- ▁ஆனால் +- 收藏 +- مثل +- ▁Philip +- ▁reliable +- ▁conspiracy +- ▁indispensable +- 日本海側 +- の歴史 +- ▁কোন +- ▁superiority +- 子弹 +- 的意见 +- ▁conqueror +- 帖 +- 迎え +- ▁одоо +- 優しい +- ическое +- wyth +- ▁одну +- wirkung +- ▁financing +- ▁ascended +- كتب +- 八月 +- ▁zoals +- ヶ +- ▁கட்ட +- ▁petty +- ▁cricket +- すぎて +- 得起 +- cross +- 加强 +- crypt +- ▁jünger +- ▁ຫວາ +- ▁considér +- ▁Studio +- вд +- 另外一个 +- ▁kennedy +- ▁castell +- าม +- ▁abrupt +- ▁buli +- identifi +- ▁disadvantage +- ▁නො +- ▁arasında +- ража +- ▁хотят +- ▁apron +- ▁damned +- 不在乎 +- ▁horace +- 帮助我们 +- communica +- жин +- 貸 +- たちに +- ▁complement +- ▁والم +- джи +- ▁Rick +- கிறார் +- ▁maximum +- อา +- ▁ҡара +- ▁lebendig +- ▁счита +- 毫 +- ▁mechanic +- ෑ +- ナンバー +- 餐厅 +- 援助 +- ▁khá +- ▁creu +- apport +- ▁continual +- 了多少 +- ところです +- 但我认为 +- ▁Villa +- ▁reagieren +- ▁нічога +- 筒 +- 贫困 +- ▁puerta +- ▁pathway +- 效率 +- 津波 +- ▁Europ +- ▁бесп +- ▁счет +- 对抗 +- 生物学 +- writer +- 認め +- ▁extravagant +- ▁umbrella +- ▁jullie +- ▁distressed +- ▁precisa +- 称为 +- ▁honorable +- ూ +- 伊斯兰 +- 尊敬 +- ▁clinging +- ▁бала +- льных +- pā +- ▁civilized +- 出てきて +- BI +- ▁apparatus +- ▁затем +- にわたって +- 道具 +- ▁Grenze +- ▁велико +- печат +- ▁babi +- ▁blunt +- ▁محل +- 漆 +- ছো +- ▁vegetable +- regierung +- かき +- ▁ocasi +- ▁lacking +- 颤抖 +- ▁thereupon +- 另一方面 +- 最後まで +- düğü +- 七点 +- basha +- bikora +- 共享 +- 存储 +- ▁clark +- 是什么意思 +- ▁schoon +- ▁Nahrung +- ▁Elektro +- ▁yapıyor +- ことば +- kibi +- ▁Tony +- hér +- 粮 +- 起床 +- :“ +- Râsete +- 萧 +- ハウス +- partei +- 分别 +- ▁principalment +- 戴着 +- ▁پرو +- occupa +- 部落 +- ▁favourable +- ▁expose +- 売り上げ +- ▁Marie +- 怪我 +- ▁практически +- ▁별로 +- 偷偷 +- ▁complexity +- eût +- vamo +- ▁automatic +- mysl +- ремен +- dimensional +- прям +- ▁Beweis +- 犠牲 +- нең +- anomena +- строй +- ▁طريق +- の間で +- ▁ethel +- 締め +- 只有一个 +- 分散 +- ▁alright +- プラ +- ▁approaches +- ြ +- 汪 +- овского +- человеческ +- ượ +- 発売 +- ▁quindi +- คน +- ▁diplomat +- ▁mulher +- 人才 +- ▁scold +- 灰色 +- 寸 +- 叙 +- ▁covenant +- ▁Mind +- ▁Four +- 气候 +- ▁kennt +- сер +- ▁pew +- guye +- валася +- ▁instructed +- ▁இல்லை +- 地看着 +- 国葬 +- ▁газар +- 掩 +- 筆 +- 艾伦 +- 飛ば +- ID +- ▁substitu +- tracht +- 名称 +- だと思って +- ▁mientras +- 相手に +- ▁Jason +- appropri +- ▁höre +- 捜 +- ▁தனது +- ▁مشکل +- بند +- 犹太 +- ジョ +- ▁Dienste +- 武装 +- ydı +- ▁இருந்தது +- ▁праз +- gemacht +- ▁feder +- 炊 +- 合理的 +- leuchtet +- ▁Bereit +- ▁taylor +- そうと +- ивают +- 惊喜 +- 知道吗 +- ▁constance +- あげる +- ворот +- 台上 +- plau +- 剥 +- 古老的 +- 也知道 +- ▁strategi +- ▁amateur +- ▁mettre +- 日军 +- んでしょうね +- ゥ +- ▁orleans +- 说出来 +- 眼里 +- ▁blunder +- あいつ +- 一个小时 +- ▁moist +- ▁teatr +- 以一种 +- ▁разве +- 欺 +- ▁vernünftig +- 疼痛 +- রের +- ▁Kohle +- géni +- ▁oyun +- ▁healing +- brä +- father +- 王国 +- 伸出 +- 就不能 +- 火山 +- ▁пару +- 最后一次 +- ▁Kö +- 巾 +- abaturage +- ▁defiance +- ▁москвы +- 観光客 +- 够了 +- ▁olw +- ▁açık +- ▁primi +- czas +- ▁المس +- ▁blev +- ▁sauber +- ▁voting +- ▁complicat +- ณ +- ▁través +- ▁optimize +- ▁melodi +- ▁lavoro +- ▁подожд +- ▁войны +- するのが +- ▁diminu +- と呼ばれ +- ▁самых +- ▁bijna +- ▁bildet +- つながり +- 棉 +- روس +- 始终 +- ▁yacht +- ▁packet +- šā +- しているんです +- ▁Wid +- ▁hose +- istisch +- ▁prezent +- ▁missionary +- ▁commonplace +- 駆け +- プロジェクト +- ▁circus +- クラブ +- ▁customary +- ▁exclusively +- 鑑 +- 枠 +- 吵架 +- ▁peine +- 一起来 +- 時まで +- いいね +- ▁mathematical +- 珍しい +- ▁иначе +- ▁depriv +- ▁venice +- ▁sitzt +- 留给 +- ▁Court +- ▁zooals +- ぷ +- ▁versteckt +- ▁stata +- ▁billig +- TA +- shima +- 树林 +- ▁iawn +- ▁plac +- ১ +- ▁memorial +- 在做什么 +- ▁thường +- ▁ladyship +- world +- 危険な +- ▁До +- の中でも +- ▁mostrar +- 昨晚 +- ▁appreciated +- ▁جنگ +- ▁bluff +- 庙 +- ▁emphasize +- ▁renown +- 沟 +- 陸上 +- 一点也不 +- lê +- сия +- 椅 +- œ +- 函 +- ▁admiring +- ▁sacrament +- 财务 +- 节奏 +- 礼貌 +- 广场 +- ▁implore +- ицы +- マリ +- 这个事情 +- いいのか +- があるので +- 年级 +- kiko +- ▁exam +- っていない +- ▁diameter +- ▁Palm +- бә +- 起诉 +- ▁ہو +- 大好きな +- ▁cetera +- ▁पर +- もう少し +- 瘾 +- 涙 +- вания +- ▁overflow +- ▁ожида +- 临床 +- ▁сябе +- männer +- ▁contradiction +- 吊 +- ▁사람들 +- ▁ساعت +- ▁العديد +- ▁никакого +- 的思想 +- ▁obstant +- andika +- ▁legion +- ▁cultiv +- ▁arriba +- ▁przed +- võt +- 行う +- ય +- ▁allerdings +- ogene +- schalten +- demokrat +- ▁traced +- ▁считает +- ▁produc +- 春天 +- ▁burada +- 赶快 +- င် +- ં +- ゼレンスキー大統領 +- ▁случилось +- ▁состав +- Ҡ +- ▁bemerkt +- 原本 +- 現金 +- Gerät +- のようなもの +- енә +- ▁Pur +- ▁kreativ +- ▁behauptet +- ▁للم +- ▁новый +- ▁hardware +- свет +- ければ +- 贫 +- 誰が +- ▁marque +- ▁stuart +- を見ると +- ▁Menschheit +- 深深 +- очку +- ব্য +- ▁roam +- ▁kujya +- 二百 +- 行不行 +- 慣れ +- ▁savu +- 原発 +- ▁hakkında +- 规矩 +- ▁stubborn +- ▁полно +- ▁übrigens +- ▁offenbar +- ▁tipus +- ▁strained +- madı +- ドン +- 朝から +- ロボット +- ▁verletzt +- 的说法 +- ண்ட் +- 尤 +- 我听说 +- 救助 +- 体調 +- ▁cooperation +- 做了一个 +- ▁junger +- 一点儿 +- ▁dusty +- 开枪 +- ▁Angebot +- 珊 +- ▁Тэд +- 义务 +- නු +- interest +- 血管 +- ▁trouva +- වැ +- истов +- ▁ҡал +- ģ +- ▁vulnerable +- ▁receipt +- 洗濯 +- تعلم +- 厕所 +- ▁conductor +- ▁schreibt +- ▁Verbrechen +- ▁замечательн +- ▁adviser +- ▁hostess +- 挙 +- ע +- ▁cylinder +- ▁امروز +- ▁treason +- ▁Sever +- ıyla +- ▁Vogel +- ▁wertvoll +- 书记 +- 跃 +- ▁gravel +- ▁preliminary +- ▁bảo +- 証拠 +- ▁solved +- ▁будто +- わよ +- 果然 +- вацца +- ことになりました +- 媒 +- یں +- ▁accuracy +- ▁commodity +- ▁District +- بيع +- ĵ +- ▁implemented +- 三月 +- バレ +- ▁краін +- цией +- 能看到 +- 或其他 +- 嗨 +- അ +- ▁belangrijk +- 舟 +- 포 +- 償 +- ▁komplexe +- ▁basketball +- ▁Sekunden +- ▁noisy +- ▁interruption +- 说完 +- ケア +- illus +- ▁compliance +- ▁اتفاق +- ▁psalm +- ▁electrical +- ენ +- ▁vragen +- ▁shun +- 逮捕されました +- ▁severity +- 之内 +- 么 +- half +- 找出 +- ٍ +- ▁موقع +- ▁Signal +- 我问你 +- ▁pobl +- цяг +- 契 +- 贯 +- ▁făcut +- ▁Đây +- 阴影 +- 南京 +- ▁pouvez +- ▁Spieler +- евой +- kipe +- тап +- 花钱 +- ▁doktor +- ▁вперед +- ▁обязательно +- ▁صحبت +- iyoruz +- 製品 +- ஞ +- 抬起 +- 合意 +- ▁quả +- ▁coch +- ковский +- 儀 +- する方針 +- ▁fringe +- geschrieben +- が起きた +- 価 +- ▁государство +- buye +- ▁внутрен +- 疑いが持たれています +- ▁мама +- угл +- ாவது +- になれ +- ▁salad +- 什么都不 +- ▁ghastly +- 匆忙 +- 忽视 +- ▁universities +- ▁Handlung +- cull +- ▁maggie +- ▁Papa +- ̀ +- 旺 +- ▁zerstört +- ▁vapor +- ▁bafite +- 欲望 +- ▁sicherzustellen +- ▁Voll +- টো +- ▁материал +- ▁gemein +- ▁sorrowful +- 诗歌 +- ibindi +- 保安 +- ▁đấy +- 不管怎样 +- ▁automatically +- まっている +- ムー +- ▁Shu +- 怎么着 +- 苏联 +- ▁Jersey +- ▁произошло +- ▁Bạn +- ▁Viertel +- exclusi +- 售 +- 唯 +- 取代 +- ▁handeln +- ▁blur +- 相机 +- 种植 +- ▁hark +- 污 +- ▁псих +- ▁ritual +- ▁потеря +- 你放心 +- ▁rejoiced +- طلب +- ▁visage +- ぶつ +- operation +- ▁камен +- ▁conseil +- ▁liable +- 蚊 +- эргэ +- ▁यस +- работал +- üßt +- ランク +- ▁occhi +- ▁Мин +- ▁beendet +- ▁kitten +- ▁зуб +- ▁Kenya +- ▁ikibazo +- ▁أيضًا +- デジタル +- ▁abbey +- 会觉得 +- ично +- ிருக்க +- を通して +- 那不是 +- жыць +- 通行 +- ▁longue +- ▁Heimat +- ▁intrigue +- قدر +- бен +- ▁joven +- bücher +- 山本 +- ▁priorit +- 承受 +- 结束时 +- wezi +- ▁regal +- ▁emit +- ▁анти +- 判決 +- ኝ +- ▁eyebrows +- ▁bicycle +- ▁çıkar +- дина +- みそ +- பர் +- 争取 +- 个性 +- 五分钟 +- ก็ +- ▁смотри +- kontroll +- 밖에 +- ▁exalted +- 消え +- ▁gebeten +- ER +- ▁прибыть +- 弾道ミサイル +- ▁решения +- ▁அவள் +- 火星 +- 怖 +- 预期 +- 衡 +- störung +- усь +- グルメ +- ▁minority +- ▁neighbouring +- ▁Leidenschaft +- ▁oppressed +- 你会看到 +- gène +- ▁tutor +- 陷 +- ▁äußerst +- 嘞 +- ▁començar +- objekt +- ▁proverb +- கம் +- anstalt +- ▁holiness +- ▁шүү +- ▁государства +- ▁мус +- ▁pregunt +- 砍 +- ▁überzeugen +- ▁다른 +- слух +- ▁twig +- зад +- analyse +- そうした +- 战场 +- 网友 +- ლ +- Ḥ +- ▁njegov +- ▁repeatedly +- ▁اولین +- ▁любой +- ▁archer +- ▁اور +- 積み +- étude +- 我总是 +- ▁zweihundert +- ▁komis +- 抚 +- ごとに +- ▁resurrection +- 杠 +- ▁Mehrheit +- ▁squadron +- frica +- 合理 +- 農家 +- sensibil +- ទ +- ▁структур +- ▁бүтэ +- 引き上げ +- ▁Innen +- нікаў +- 加工 +- ▁производ +- 单身 +- 呈现 +- ▁Schnee +- ▁برنامه +- ▁gleaming +- 応え +- ▁creeping +- ▁ligne +- ▁працу +- ▁corri +- เส +- 現れ +- ▁перш +- очки +- ▁genutzt +- 皆様 +- 総裁 +- ▁robinson +- ▁часов +- нена +- ▁kettle +- 诗人 +- شاهد +- äß +- ▁muerte +- ▁fake +- ▁société +- ▁микрорайон +- 밥 +- ブラジル +- ▁desirous +- 一个男人 +- ▁spectrum +- springen +- 孙子 +- ▁सम +- りません +- 不太好 +- stāv +- ▁prediction +- したところ +- ▁coil +- ▁Fast +- ゴン +- コーチ +- ▁proclaimed +- ▁jugador +- ▁توانم +- ஊ +- 体内 +- ▁interference +- 四百 +- が増えて +- 打つ +- wickelt +- ▁Мне +- ▁kvin +- дро +- ▁crab +- ▁Literatur +- ▁shawl +- ▁outfit +- 倾听 +- 不良 +- ▁Chef +- zuhalten +- 普通に +- ▁そんな中 +- ▁groaned +- の方は +- 艇 +- ▁Petr +- ▁Wach +- bole +- еньки +- 难受 +- 発信 +- 及其 +- ▁scatter +- ▁drifted +- ▁rejoicing +- ▁друзья +- ▁karakter +- 是一件 +- assemble +- を進める +- でしょうね +- ▁Befehl +- 直前 +- జ +- 亚马逊 +- 社交媒体 +- miseks +- 设计师 +- ▁majoria +- 很可能 +- 也许是 +- испол +- 飘 +- ø +- أصبح +- ▁orthodox +- ▁thieves +- 鹿児島 +- 难以置信 +- 明天早上 +- jū +- национальн +- 热爱 +- ுகிறார் +- ▁piety +- あれは +- 农场 +- AC +- ▁مرا +- ▁eleanor +- ▁prêt +- ▁کتاب +- 大谷選手 +- 行事 +- ▁allusion +- ▁yavuze +- ▁trá +- ▁суу +- ▁gọi +- 雀 +- மோ +- 不然 +- かしら +- 优秀的 +- blé +- リアル +- gewinn +- 导致了 +- 辩 +- 旬 +- リオ +- iddwa +- ブランド +- 内閣 +- ▁وقد +- 册 +- ▁concession +- 選択 +- ▁Cambridge +- 込 +- لەر +- ▁ĉefe +- ▁dragging +- ▁sparkling +- ▁consistently +- 吹き +- ▁пакуль +- holz +- ドア +- 做得很好 +- attend +- ▁benjamin +- ▁shifted +- ▁Spur +- ваюць +- ▁hynny +- ▁elevation +- 軽く +- ▁trình +- ボタン +- ganya +- операци +- ▁رسید +- 又不是 +- ▁frenchman +- 看着我 +- ▁suppressed +- kijk +- ▁perquè +- ▁জন্য +- ▁remarkably +- aĝo +- ▁ernest +- 军官 +- ▁download +- mette +- ▁Microsoft +- 沖 +- 勧 +- archiv +- سرع +- 一支 +- ひとつ +- ▁цаг +- dessus +- 当前 +- 释 +- wendung +- されたのは +- 意志 +- に近い +- 这是什么 +- スペース +- ▁ruling +- كۈ +- genomen +- ▁malheur +- سلام +- ▁выборы +- 県内 +- ▁australische +- ▁untersuchen +- 鎌倉 +- 促进 +- ▁Geschenk +- 诊断 +- ▁jeanne +- waż +- ▁groom +- を受ける +- ▁lettre +- ▁adjacent +- 砖 +- 挟 +- эль +- ▁presque +- 远远 +- 地理 +- 的感受 +- ▁Eric +- читыва +- concili +- ▁basil +- 配信 +- ▁desenvolup +- 桐 +- 縫 +- 跑到 +- 同じように +- ▁freuen +- 諦め +- 雨雲 +- ▁selben +- لج +- 三次 +- 平方 +- ▁vaig +- ▁Social +- カナダ +- ▁москве +- 定位 +- すり +- ▁getrennt +- bbling +- ▁syr +- ▁integrity +- UN +- پە +- エース +- ▁Verbraucher +- 舎 +- ▁caracter +- 見てみますと +- விய +- 听过 +- 谁能 +- 深度 +- 术语 +- と思うので +- 消除 +- 撑 +- ▁şimdi +- ▁savoir +- 代わりに +- حصل +- ▁Medikamente +- やっと +- ຫຼ +- を獲得 +- ▁pitiful +- ▁легко +- ▁besiege +- 有趣的是 +- 集合 +- generation +- ▁publisher +- жым +- ಡ +- 穆斯林 +- ▁declaring +- ビジネス +- ▁elkaar +- ▁visibility +- 争い +- ▁scary +- 慢点 +- ▁leiten +- って言った +- 我也不知道 +- ড়ি +- ▁westward +- ▁repress +- ▁fehlt +- ृ +- ▁installed +- ▁сожалению +- ▁언니 +- 雇佣 +- ▁repos +- ▁парк +- ▁accuse +- سپ +- みたいな感じ +- 飛行 +- 阿里 +- ▁demonstra +- ▁ridicule +- ▁மிகவும் +- 脑袋 +- ▁Company +- চে +- ▁Senator +- AT +- ▁veranda +- 征服 +- 布里 +- يَ +- 丈 +- ▁சேர் +- 崇拜 +- ivamente +- ▁Water +- ▁glimmer +- していること +- II +- 衛 +- 喜剧 +- 手紙 +- ▁집에 +- ējā +- ▁Block +- ▁väl +- undneunzig +- 詞 +- ▁слов +- ▁Kalifornien +- ει +- haza +- 趣 +- ▁Basis +- ▁Cela +- قۇ +- 动议 +- 是多么 +- やろう +- ▁neighboring +- ▁Hast +- алда +- вание +- どこまで +- ▁lavora +- ▁erstellt +- ▁кеше +- ▁Perspektive +- ▁cualquier +- ▁chemistry +- ліз +- ▁inherited +- もち +- ▁surge +- 消費 +- ώ +- ▁erforderlich +- 須 +- ▁обнаруж +- ▁descending +- avons +- mbri +- ▁televisi +- ▁europäischen +- ▁Está +- ▁rocket +- druž +- ခ +- ▁맨날 +- 従業員 +- ▁среди +- غو +- 穿上 +- ▁phụ +- 任何一个 +- ぱ +- вших +- ▁wizard +- レシピ +- 谁知道 +- ▁batteries +- historie +- ▁laquelle +- ▁svět +- тыя +- 질 +- ▁hợp +- ▁tiếp +- ▁نزدیک +- スイーツ +- ▁vermeiden +- ▁striving +- ▁aufmerksam +- 上课 +- 機械 +- ▁empower +- 決して +- 开门 +- ▁Gerechtigkeit +- ▁힘들 +- 療養 +- ▁Three +- existent +- abhängig +- ▁чём +- ▁peggy +- пресс +- ވެ +- ▁systematic +- ▁než +- ▁simplement +- ▁verwirrt +- せっかく +- されてる +- 赞助 +- 预防 +- ▁två +- 赋予 +- ▁существует +- ▁utility +- ▁Wesen +- soever +- ▁Alors +- 業務 +- 爪 +- ▁beschrieben +- ▁supernatural +- ▁فإن +- ▁analyze +- ▁rezult +- ອນ +- 流动 +- ▁listeners +- ▁futur +- Liber +- 残疾 +- 厌 +- 험 +- PA +- 輸入 +- يص +- ▁automatisch +- 欧米 +- ▁Belgi +- 引导 +- わけですよね +- ▁영화 +- ▁skilful +- ▁называется +- ēl +- دۇ +- sparen +- 歌词 +- ▁Schließlich +- 芒 +- 分かんない +- ப்படுத்த +- ▁Republic +- 公表 +- ীয় +- 几分钟 +- 晚餐 +- 桌子上 +- schlüssel +- скія +- ▁Цяпер +- ▁музыка +- ▁Russland +- ▁найд +- ▁merciful +- 迹象 +- ▁printing +- ▁growled +- ▁речь +- 気分 +- 可能性があります +- ▁plunge +- ▁பெண் +- ▁melhor +- ání +- ▁Fä +- ▁transit +- ▁гэсэн +- ▁Gesamt +- ándose +- artisan +- ▁Clark +- кле +- What +- 一个巨大的 +- ▁Dreh +- raad +- 给出 +- ▁perished +- ▁overthrow +- ▁mantle +- rides +- studie +- 为什么会 +- ▁lingered +- 完整 +- ▁scroll +- 底部 +- ▁Treppe +- provi +- 前往 +- 福利 +- 钢琴 +- صنع +- ▁подход +- だったので +- 遗产 +- ▁infirm +- පු +- するのか +- ▁Geschwindigkeit +- ▁contemplation +- ▁loneliness +- 芯 +- 토 +- 据说 +- acca +- நா +- ▁koran +- ▁schimb +- ңә +- ▁Тут +- ▁plug +- ▁torre +- decorat +- preservation +- ސް +- ▁трудно +- を巡る +- ائية +- 黒い +- ▁Mario +- ▁handled +- ▁biological +- 场所 +- ▁تأ +- 哲 +- ▁brightness +- យ +- ▁October +- ▁adjoining +- ▁irgendwann +- 虹 +- ▁schafft +- 问一下 +- ▁ethics +- 微妙 +- 総合 +- reißen +- ▁показыва +- ▁sparkle +- ▁faci +- ▁Brasil +- marsch +- ▁entrepreneur +- ucci +- 出会い +- плеч +- 목 +- ▁Schauspieler +- ▁largo +- 评价 +- ▁sniff +- ▁recibi +- こんな感じ +- 村庄 +- губ +- ▁bölge +- ▁چطور +- ▁avenge +- 派遣 +- ▁đồng +- ▁новая +- ▁achtzig +- 齢 +- ▁practised +- 老百姓 +- ▁plaça +- があれば +- 座位 +- 安倍 +- 车辆 +- 良く +- ▁друга +- ▁дежур +- ौ +- 自動 +- ▁وهو +- ▁fué +- legation +- あした +- ▁pip +- 디 +- ▁intimacy +- ▁пункт +- ▁ecosystem +- 网站上 +- ложить +- 凭什么 +- ▁aldı +- ▁wambaye +- フィー +- 発電 +- ▁regent +- になってくる +- 飛行機 +- stunden +- ▁Emma +- 回事 +- 比尔 +- 颠 +- ▁Gouverneur +- ▁delicacy +- ▁обсужда +- 絞 +- ▁removal +- 歩く +- getrieben +- ▁basta +- ▁ясно +- ковская +- ▁sasa +- ベン +- 职位 +- 盈 +- ▁furchtbar +- 致力于 +- 繁荣 +- 整備 +- ▁übernehmen +- ▁අප +- われわれ +- 小型 +- 深夜 +- ▁Manche +- 児童 +- 仕掛け +- ▁একটি +- ▁Bush +- ҡан +- ▁alleged +- 走路 +- を紹介 +- ▁promet +- େ +- ▁دختر +- ホームページ +- 約束 +- யு +- を起こし +- larına +- prinz +- ▁بأ +- 奋 +- 四月 +- 你会发现 +- 福島 +- 墨西哥 +- ▁latitude +- ▁እን +- 我就想 +- ▁horseback +- ரெ +- рская +- っていきます +- 哟 +- ▁psychische +- ▁dainty +- ▁inquiring +- ▁başladı +- ▁خاص +- 하니까 +- 好听的 +- ▁chiama +- ▁knocking +- ▁carelessly +- 达成 +- ▁понят +- ▁precept +- േ +- 债务 +- ▁schlimmer +- 最重要的是 +- 姥 +- 枯 +- 見た目 +- 转身 +- ħ +- 破壊 +- ▁Wichtig +- 典型的 +- ▁lawful +- ▁caravan +- 来找我 +- ▁самым +- rühm +- 凍 +- 描いた +- ޅ +- 新規感染者 +- 依頼 +- 不算 +- ▁forsake +- 密切 +- schieß +- ▁semana +- kuti +- ীর +- ▁geschafft +- ▁président +- ▁socrates +- 頑張り +- ▁malice +- က် +- ▁Million +- ▁revolutionary +- моў +- ▁tavern +- 島さん +- чала +- ▁Sco +- څ +- ▁Griff +- の様子を +- ▁fantastisch +- ▁максим +- ▁verlangen +- ▁verdict +- キャンプ +- を抱え +- 時間帯 +- ▁너가 +- ื +- ペア +- ▁шоссе +- 男の子 +- ▁Muslim +- 抑 +- ▁Dazu +- моло +- 搁 +- 秩序 +- ▁Schluss +- берег +- ▁რომ +- ▁поднял +- ▁athlete +- 慢慢地 +- pharma +- ▁bobby +- entreprise +- すき +- ▁könne +- ▁realizing +- 交换 +- ▁metaphor +- ▁Investor +- ્ય +- ▁nadie +- たいと思います +- ▁stitch +- ▁dimly +- คร +- 即便 +- 一応 +- ▁pedra +- ▁interface +- ▁قىل +- ància +- 把它放在 +- アーティスト +- ▁wußte +- spitze +- 很喜欢 +- って思って +- 艘 +- კა +- を訴え +- ▁Umugabo +- ▁shattered +- garuka +- 回复 +- saison +- 友人 +- biza +- ▁resign +- ▁renewal +- ছেন +- を止め +- ▁Dach +- 半島 +- ▁removing +- 是什么样子 +- 有人说 +- ビア +- 会話 +- 学位 +- ▁racing +- 哨 +- ▁секрет +- ▁pubblic +- скры +- ▁아직 +- geschnitten +- angwa +- 价值观 +- czą +- 有这样的 +- ウム +- باب +- өс +- ホント +- ▁cynnwys +- ▁restructuring +- 共和国 +- 亚洲 +- ▁metod +- ▁نفر +- ▁thích +- ビール +- zieh +- 業界 +- dringen +- niedrig +- と見られる +- ▁qualche +- 失礼 +- ฟ +- Ž +- ▁зүйл +- ▁measurement +- фарм +- เร +- ਲ +- ▁гораздо +- 鹏 +- ▁ہے +- sabye +- īga +- ходзіць +- öffentlich +- 暑い +- ▁roland +- ▁tariff +- 皆さんも +- ▁我想听 +- న్ +- 練 +- 冤 +- 阿拉伯 +- 幻灯片 +- ▁massacre +- 봤어 +- ▁Beine +- سوف +- ▁kritisch +- ▁frock +- ▁разных +- ▁Mama +- സ +- 拾 +- 録 +- ▁Đó +- ▁Betracht +- 同伴 +- 使命 +- ▁consisting +- бло +- ▁daddy +- ▁matrimoni +- プログラム +- 明智 +- 真诚 +- ▁rotten +- ▁convertir +- ▁смерт +- 墙上 +- 服用 +- appelle +- ▁twain +- ▁Dunkelheit +- ▁Identität +- ▁pharaoh +- ▁structural +- 겨 +- ธ +- سط +- ▁будуць +- 多年来 +- やってみ +- ▁Arthur +- 发行 +- 童年 +- 忘记了 +- ▁whim +- æ +- ▁என்பது +- ▁quivering +- 先制 +- 依靠 +- 那天晚上 +- тычна +- 兔 +- kārt +- stift +- 感染者数 +- ▁алло +- ▁влия +- 嫌疑人 +- ▁olympi +- ▁помню +- ▁توانید +- ▁keenly +- ▁Pflege +- กับ +- ▁около +- 広げ +- bido +- ▁Später +- アナウンサー +- 린 +- ছিলেন +- ટ +- ▁supplier +- ▁geistige +- 解散 +- ▁нашем +- 深く +- わかった +- Direct +- писать +- ▁ўсе +- ▁stimulate +- 六点 +- 稽 +- おすすめ +- 拝 +- әү +- 埃及 +- ▁avea +- ▁quoth +- ▁принял +- simila +- ▁posible +- 추 +- ▁città +- 收获 +- ▁Pflicht +- ▁Sehr +- ▁constable +- gaciro +- 通道 +- ▁jasper +- 된 +- ۇن +- ▁Avenue +- ▁hurled +- ▁چهار +- ıdır +- ▁пасля +- сцю +- ▁falsehood +- 好消息 +- ▁Golf +- 斯顿 +- ▁boundary +- 恰 +- ৌ +- β +- ▁beberapa +- 銭 +- uɣal +- ▁حو +- ▁stripped +- ałem +- சூ +- ▁Kommentare +- ▁countless +- გი +- 下がり +- għ +- ▁있다 +- 祈 +- ▁obedient +- ▁precedent +- ▁dialect +- ště +- を目指して +- ▁charley +- веж +- に警戒 +- どうなって +- 玄 +- 얘 +- ગ +- ▁Innovation +- ▁venerable +- ▁Schaden +- గా +- ▁deployment +- ▁discharged +- ▁bribe +- ▁choked +- เด +- ницы +- ▁Бер +- ▁shareholder +- ▁irresistible +- 색 +- ▁ertragen +- ▁دانش +- 猜测 +- håll +- ▁skr +- ▁начала +- jú +- حاول +- ិ +- ▁شدند +- してくれた +- ▁kombin +- درس +- ▁cuanto +- ▁fakt +- ▁loaf +- 후 +- 予測 +- 治愈 +- 细菌 +- escence +- ▁Diana +- 辰 +- ▁ermöglichen +- ▁области +- ▁apprehend +- ▁sincerity +- ▁Marine +- ▁conduc +- ▁глаз +- मि +- 字母 +- 午前中 +- 不止 +- ▁atrodas +- ▁встрет +- ▁coneix +- リップ +- europäische +- träger +- 日期 +- ▁splendour +- 準決勝 +- ▁Kauf +- ▁equipped +- 伊朗 +- ▁Verfassung +- ▁racial +- ▁wistful +- يست +- اقتصاد +- ▁begrijp +- ▁überprüfen +- 挣扎 +- ▁вижу +- 聊聊 +- ▁greet +- 躁 +- ק +- 创伤 +- ▁ведаю +- 旅程 +- ▁llegar +- етесь +- ▁mbili +- 寒い +- ▁calor +- ▁conoce +- ▁worte +- undsiebzig +- ▁stumbled +- 剣 +- ▁займа +- 楼梯 +- 市长 +- 低下 +- ▁вспомни +- ▁holmes +- 未知 +- ことになります +- ډ +- 辨 +- ▁contemptuous +- '......' +- ▁darted +- zustand +- ▁грани +- ビデオ +- ▁soothe +- 짜 +- 创始人 +- ▁imprisonment +- ▁intensely +- 在乎 +- leɣ +- traction +- ificació +- fellow +- ంది +- foli +- 対決 +- بِ +- 长官 +- 머 +- ▁Ankaŭ +- 纯粹 +- ▁unmittelbar +- ▁Ursache +- овское +- ▁granite +- ▁avem +- 一生中 +- گەن +- анс +- ▁epic +- ▁virtually +- ▁tylko +- を防ぐ +- ▁podia +- ▁snatch +- 替代 +- 費用 +- 购物 +- 組み合わせ +- 長崎 +- ▁لذا +- 더 +- ▁واقعا +- ▁maior +- ▁ieder +- をはじめ +- 点钟 +- ელ +- ▁Kontext +- ▁Verbesserung +- サポート +- geleitet +- ތަ +- ▁wickedness +- ▁kugirango +- 装饰 +- ▁azul +- コロナ禍 +- 集体 +- ▁Null +- Europe +- 幹部 +- ▁Umfrage +- 澄 +- স্থা +- ▁cafe +- 展开 +- пак +- ▁приходит +- 携 +- 教えてくれ +- 晚安 +- 夫妇 +- εί +- 如果不是 +- 谈过 +- ▁controversy +- ▁nyingi +- ▁lần +- まとめて +- につながる +- ようになりました +- ▁beeinflusst +- ▁Italien +- ▁classical +- スリー +- bilidad +- нув +- ピーク +- ▁erleben +- と述べ +- ▁humid +- 海军 +- brennen +- ▁henceforth +- ▁گرفته +- 栄養 +- йшоў +- ▁famine +- 之所以 +- ▁improvis +- жә +- ▁المست +- ▁burial +- ів +- ешься +- 冷たい +- 实话 +- ▁Fou +- ▁przez +- ▁Mathematik +- ▁furnace +- ▁ອື +- 舞蹈 +- ▁Abteilung +- ḥem +- ▁Fair +- ▁avut +- ▁dringend +- ▁Lincoln +- ▁вариант +- ▁bemerkenswert +- 困扰 +- ంద +- ▁fertile +- 另一边 +- ▁sangat +- 基金会 +- 注文 +- між +- ▁Sagen +- 告诉她 +- ಹ +- ▁instinctively +- อย่าง +- 恳求 +- 製造 +- ▁gratify +- ぼく +- ▁grit +- ▁Anderson +- ▁turtle +- ▁unusually +- 赢了 +- 会导致 +- ▁Karl +- ▁Wetter +- gültig +- ▁römische +- 摄影 +- 吃完 +- ▁declara +- '250' +- 团结 +- 每当 +- 知ってる +- 酵 +- ▁Kapital +- 职业生涯 +- 重症化 +- вернуть +- ambaye +- 洪水 +- observa +- ွ +- スペシャル +- ▁equation +- 恭喜 +- ▁инде +- 宪法 +- ▁northwest +- ▁Müll +- ▁oyster +- ▁devons +- 几年前 +- ந்தது +- ▁Verteidigung +- ミー +- ▁Details +- ▁gewann +- 蛋糕 +- ▁Kleid +- つながって +- ▁combina +- 被迫 +- ▁geldi +- ▁confronted +- 僵 +- 季节 +- ▁그건 +- ▁soothing +- ത്ത +- ▁хэрэг +- 牛肉 +- ▁papel +- ▁Meeres +- ▁Fox +- ▁Darüber +- 偏见 +- メール +- お茶 +- 卡尔 +- MA +- Tool +- 扮 +- ▁crise +- ▁efficiencies +- ▁participants +- ▁refusal +- ▁알바 +- ņēm +- ▁여기 +- BM +- école +- ▁upgrade +- ▁superb +- ते +- 言わ +- ▁черт +- ▁господин +- ▁fireplace +- ▁Campus +- ▁Hollywood +- ▁experiencing +- 震度 +- ▁никого +- ▁системы +- 可靠 +- klima +- 帽 +- 誕生日 +- ▁видим +- ブルー +- 惯 +- ▁biology +- ▁annoyance +- गा +- 回去吧 +- に入れて +- vogel +- ▁современн +- ▁Wolf +- சோ +- 失踪 +- ▁spill +- 埃尔 +- 这让我 +- 大众 +- チュ +- ▁ignored +- 变得更加 +- ▁beforehand +- ై +- ▁anticipation +- ▁imprisoned +- 伴侣 +- トランプ +- ▁ilgili +- ▁பண்ண +- ▁maggior +- ▁hydro +- ▁unexpectedly +- ▁opportun +- ▁jî +- 肢 +- ባ +- 孫 +- ▁entscheidend +- ▁விளையாட +- ▁salud +- 英語 +- ▁смысл +- কো +- ▁fui +- ▁pike +- こんなこと +- 分野 +- 艳 +- ը +- ▁staggered +- ▁League +- னால் +- 不幸的是 +- Datei +- mdash +- ▁cedar +- 部隊 +- おうち +- ▁biraz +- 慰 +- 拥 +- Community +- ▁gouvernement +- 暮らす +- ▁drog +- ▁இசை +- 打印 +- ▁turkish +- 过程当中 +- ▁кел +- М +- 这是关于 +- ▁barber +- ▁kinh +- ▁bezeichnen +- 松本 +- ▁subordinate +- 嘲笑 +- まれた +- 包围 +- 非法 +- 買い物 +- Ɛ +- ▁pequeño +- 忽略 +- 猛烈 +- kundig +- ▁бич +- ▁stockings +- 終わって +- бежал +- 王爷 +- าร +- ▁அல்லது +- ▁moore +- 跟你们 +- ▁인제 +- ▁Kiel +- ▁lúc +- ▁apology +- ロシア側 +- ▁eĉ +- が出ています +- 措 +- 昂 +- ແລ້ວ +- ▁phantom +- ▁població +- 吉尔 +- わかって +- getreten +- ▁exceeding +- ▁Management +- ▁Şimdi +- 虚拟 +- 这段时间 +- ▁communion +- っきり +- 植え +- 这个过程 +- ુ +- お伝えしました +- ▁встреч +- ▁besuchte +- ৰে +- したのが +- が発表され +- 胀 +- ▁remnant +- したのです +- нис +- mıştır +- ▁شدن +- ▁colleague +- 抑制 +- 润 +- ▁президента +- 環 +- 伞 +- ▁tecnologia +- ▁последние +- ▁restoration +- あらゆる +- まいります +- ▁qualcosa +- fleck +- ▁بیمار +- ▁vegetation +- ▁distracted +- ▁hamlet +- თი +- schneid +- satisfied +- నే +- கொள்ள +- bwenge +- ▁எனக்கு +- 玫瑰 +- なければいけない +- だからこそ +- 継続 +- ▁aufgewachsen +- ▁explicit +- ული +- ▁nightmare +- komeje +- 书籍 +- 려고 +- burton +- bär +- ▁chama +- girl +- பிடி +- 深圳 +- ▁Küche +- 实力 +- govor +- 努 +- ▁собственн +- ▁або +- 俄 +- ▁affliction +- ▁chancellor +- ▁suivant +- ▁Beide +- 輸 +- 电池 +- стоян +- ▁babylon +- ▁Ça +- こともある +- ▁kız +- ▁scoundrel +- ▁vorbereitet +- ▁apologize +- 折磨 +- ▁pierced +- ساعد +- ▁protector +- ▁lydia +- ▁connais +- ▁actress +- 患有 +- ▁tromp +- ▁rejoin +- ▁Kenn +- ▁quién +- 蕾 +- 격 +- わかりました +- を含め +- 反馈 +- ▁grandeur +- ▁maud +- ▁Pfund +- 几周 +- 格雷 +- しません +- ivität +- ▁brace +- ▁trọng +- 루 +- tempo +- گذاری +- ▁পরি +- liegt +- ▁Bang +- 婷 +- ▁Vietnam +- ▁cœur +- ▁doppelt +- へえ +- 言ってる +- ▁już +- 收到了 +- 幽 +- ▁nötig +- ▁четвёртая +- 민 +- ים +- 介護 +- ▁людзі +- گران +- ங் +- 家具 +- 動いて +- ▁isaac +- ▁першы +- সব +- RO +- 坐下来 +- ▁Investition +- ▁verzweifelt +- ▁Maschinen +- ▁솔직히 +- origen +- だけではなく +- ▁خب +- 遭遇 +- ▁crave +- 更快 +- ▁effi +- 大爷 +- 黙 +- ▁Canadian +- ▁aufgeregt +- 绅士 +- pathie +- 布朗 +- ▁devient +- 返回 +- ▁ooit +- 优秀 +- ▁Protest +- ▁predecessor +- 預 +- 티 +- ▁Stärke +- ▁dirige +- ▁sáng +- ることができます +- ▁бывает +- ▁faisait +- يقة +- 所以如果 +- undfünfzig +- 尔顿 +- 彦 +- built +- ้น +- держать +- ▁хамт +- ▁prodig +- යෙන් +- ια +- 椒 +- ▁tyranny +- ▁않아 +- ▁evolve +- ▁proprio +- ▁없는 +- ▁bombard +- ▁Ohio +- ырға +- 역 +- gespräch +- ▁хамгийн +- ▁мистер +- 困難 +- ▁Thu +- ほかにも +- therapie +- ▁revolu +- バイク +- ▁finanzielle +- 辩护 +- ▁scrub +- ▁judging +- ▁freue +- ▁крем +- wash +- 来到这里 +- 逃走 +- ▁última +- ▁انسان +- ▁Lä +- ▁müde +- 加盟 +- ணை +- 西安 +- 土著 +- ▁ministre +- 役割 +- ▁geholfen +- ▁hết +- ▁Madrid +- ▁Stuhl +- 疑問 +- 昨天晚上 +- 我的朋友 +- 跑步 +- ▁баб +- corp +- گشت +- ▁knapp +- 要素 +- Restaurant +- ▁kürzlich +- ▁voluntary +- ▁член +- ▁angst +- ▁ubwa +- ▁wartete +- ▁inhabited +- 分ほど +- 汤姆 +- ▁трав +- と見られ +- 初め +- গ্র +- ตร +- ▁پسر +- ▁woher +- koop +- technolog +- stelling +- 巢 +- ▁Michigan +- ▁hamilton +- 浑 +- iPhone +- ▁gekauft +- ▁아닌 +- ▁девочк +- ▁министр +- озер +- ▁boundaries +- ▁exploring +- シャン +- фар +- ▁repel +- バンド +- ▁volont +- ▁позвони +- ▁employee +- ▁trobar +- ▁paddle +- 黛 +- ▁обраща +- ▁identi +- ▁Einkommen +- ▁radiation +- راض +- 动手 +- ▁chú +- stehenden +- 递 +- ▁mcc +- 收看 +- ▁Clinton +- ▁Vorsitzende +- 运输 +- '900' +- ▁sincerely +- ▁Küste +- matur +- 取る +- 던데 +- ▁specialist +- ケン +- 搬到 +- ▁voet +- zulassen +- ▁ankoraŭ +- ▁grinned +- ▁municipi +- ▁zweimal +- ▁үҙе +- 抗議 +- ▁gorge +- ▁имею +- ▁Weltkrieg +- ируют +- ▁Patri +- ▁settlers +- ▁بچه +- 傅 +- قليل +- દ +- ▁Dimarts +- ▁오늘 +- ▁공부 +- ▁Вось +- ▁crawled +- ▁suspend +- ▁daudz +- 申し上げ +- ▁durfte +- ▁brake +- チン +- ぽ +- ▁Master +- ▁certificate +- ▁страшно +- ▁statute +- ▁Kaiser +- ▁Beau +- 有名な +- ҟ +- ẹ +- ▁profi +- ▁popularity +- 饶 +- ▁repetition +- ▁sechzehn +- effizient +- 差距 +- ▁cobert +- 突出 +- 选手 +- ▁bleeding +- ▁рабіць +- فرد +- 做些什么 +- ▁patrol +- 升级 +- 九月 +- ▁однако +- 味わい +- 微信公众号 +- 끼 +- ▁얼마 +- ▁фильм +- ▁drilling +- ström +- ▁মই +- 話し合 +- ▁plateau +- ▁komuni +- 今天早上 +- ▁tumor +- stritten +- 折り +- 当たり前 +- 時刻 +- ▁inevitably +- ▁kontraŭ +- ▁liệu +- 巣 +- 迷惑 +- ▁fascinated +- ючы +- 発展 +- 解答 +- ▁Doktor +- 지만 +- ▁wolle +- ▁gerçekten +- hagi +- brett +- 寨 +- ▁انتخاب +- ▁battalion +- ▁Európ +- 岸田総理大臣 +- ▁средств +- 巴黎 +- 站着 +- 有很大的 +- 越多 +- ▁sigui +- ▁жар +- 认为这是 +- ▁Schön +- ってきます +- ▁natuurlijk +- église +- 贈 +- ރި +- ▁specio +- ▁yankee +- 言われる +- 報じ +- ▁autour +- ▁Estados +- 也是如此 +- сцен +- IM +- ▁Pont +- வர்கள் +- ▁Notiz +- 感知 +- 如果你愿意 +- ỡ +- ▁어떤 +- グリーン +- ▁специальн +- ▁2010 +- ▁delegate +- ▁Depression +- ▁wallace +- 你能不能 +- 神社 +- 赞成 +- ībā +- trekken +- ▁Stone +- ▁cielo +- 僧 +- ▁Haufen +- بەر +- ▁nasty +- ▁placid +- ▁abbot +- ▁имел +- 这么好 +- ▁erfordert +- ▁отец +- ▁bên +- ▁trifling +- ▁angemessen +- 慈善 +- ▁legislative +- كَ +- ṭṭ +- 針 +- ▁Verkauf +- ▁Ле +- 江戸 +- 嶋 +- ථ +- パフォーマンス +- 猩 +- ▁взять +- 尽く +- 辉 +- ▁медведев +- ▁transcend +- ங்களுக்கு +- 局面 +- ▁glove +- ▁приехал +- ▁violation +- 昨年 +- 脇 +- ▁Health +- ক্র +- 企业家 +- ҙар +- 住房 +- lendi +- ▁mound +- ▁gestorben +- ▁ungewöhnlich +- ▁mouvement +- ベー +- 無事 +- 防御 +- ▁elementary +- ▁kneeling +- を広げ +- öffne +- 七个 +- важа +- ▁Pul +- ▁далеко +- 在这一点上 +- ▁reconstruct +- ▁одном +- 废话 +- рина +- ▁opini +- 静岡県 +- ▁стане +- 指标 +- 狐狸 +- ד +- ▁Ariko +- ▁Global +- ▁pretence +- 轨道 +- ▁magnetic +- ▁gravit +- CM +- 楽しく +- ▁столько +- ▁refusing +- きちんと +- 污染 +- ▁demokratische +- ▁принципе +- 布拉 +- ▁Dennoch +- 确切 +- ▁ivory +- ▁Bauern +- ▁Zucker +- やろ +- ▁frente +- ▁сельск +- ▁petrol +- 影响力 +- 差点 +- 海底 +- antrag +- ▁Bundesstaat +- яўля +- ▁роман +- রো +- ▁probablement +- ▁siebzig +- ▁antonio +- guna +- キック +- ▁strove +- röst +- ないこと +- ▁hiç +- litten +- ▁начинает +- ▁Führer +- ▁introducing +- ▁miglior +- ですもんね +- ▁apollo +- ▁relaxed +- ▁Го +- sinzi +- kunga +- 手臂 +- ▁домой +- ▁glitter +- 老太太 +- ▁dodge +- ▁бюджет +- ▁Fakten +- گار +- activitat +- ▁parecía +- ▁cradle +- ▁дуб +- добав +- خوان +- ▁viņu +- prej +- 模仿 +- ▁bazı +- коммун +- 写道 +- ▁treachery +- ▁vị +- ▁Looking +- espècie +- ▁거기서 +- కా +- ના +- 性质 +- LA +- 毅 +- ▁праблем +- ▁exclaim +- ▁aufhören +- 异常 +- 到最后 +- ▁courtyard +- 勢力 +- ▁prophecy +- ▁recipe +- ▁doomed +- 优雅 +- 迈克尔 +- ▁Ды +- ▁furiously +- ▁sicherstellen +- 尾巴 +- tempered +- 这样的事情 +- ▁thức +- 抱着 +- ۋە +- ▁американск +- пэўн +- ▁hội +- ▁Jordan +- 人工智能 +- ▁trenches +- レーン +- ზე +- ▁bridle +- ▁suspense +- ▁Schriftsteller +- 匹配 +- ▁binding +- プリ +- ▁heutige +- 感動 +- ▁depict +- きれいな +- dolf +- ▁Direktor +- ▁benötigt +- 등 +- ▁missouri +- ▁paradox +- ▁warehouse +- ▁Johann +- forschung +- やったら +- いかに +- 发射 +- ▁compel +- ▁massachusetts +- ▁وهذا +- ▁conosc +- ▁entschlossen +- ▁gaunt +- 仕上げ +- 徴 +- ơi +- ▁дети +- ▁dikontrak +- ▁néixer +- ▁долларов +- 塑造 +- ▁uplift +- لىرى +- 教徒 +- 任何地方 +- ▁камер +- chamber +- ▁marilla +- ▁Stell +- ▁haughty +- ▁sledge +- ▁facilit +- ▁каш +- 百五十 +- 在那儿 +- sicherheit +- 案内 +- 久保 +- ັ້ນ +- වල +- ▁monastery +- ▁Überzeugung +- ▁crooked +- ▁эксперт +- ▁intolerable +- 掃除 +- ▁холод +- 弗雷 +- вшие +- ҟа +- فعال +- 我第一次 +- 大楼 +- kirche +- ព +- ▁ammunition +- ▁applaud +- давал +- ▁medicina +- ▁schooner +- ▁Christi +- ▁orienta +- 一体何 +- っぽい +- 顺便说一句 +- ▁ເດ +- ▁necessita +- 代替 +- 浸水 +- 服从 +- ▁ethical +- 苍 +- 言います +- ▁многих +- ▁وإ +- حاضر +- ▁говорите +- ▁emphatic +- 聞きました +- 困境 +- ▁سے +- 拠点 +- 不记得 +- いらっしゃい +- 有什么事 +- arrell +- 楠 +- ▁survival +- ▁өмнө +- 碰巧 +- lož +- 抜き +- ▁outbreak +- streich +- 任何其他 +- ▁держа +- ▁plaster +- 崔 +- ▁Если +- キャプテン +- 來 +- 皿 +- ▁хотелось +- 步骤 +- ▁черн +- ▁hagati +- ▁surround +- ▁Twa +- ▁அதை +- ▁Nachmittag +- ▁baptism +- ▁секунд +- ごめんなさい +- 决策 +- ▁reasonably +- 介意 +- ▁eky +- という状況 +- ▁anfing +- 食べ物 +- ▁banyak +- ▁injuries +- ނަ +- 失礼します +- 病例 +- 甘い +- тверд +- ▁Fremde +- ▁الذين +- keneye +- ▁zaidi +- ▁ravine +- ▁accommodate +- 朴 +- ▁biscuit +- 衆議院 +- ▁victorious +- أخذ +- ▁Großteil +- そうなんですね +- ▁augustus +- ▁вызыва +- 初戦 +- 能找到 +- ▁நீங்கள் +- 二零零 +- mówi +- 举起 +- 服务器 +- freiheit +- structure +- 神経 +- 妥 +- 信頼 +- ゴルフ +- 经历过 +- 默默 +- ▁Creek +- ▁aṭas +- ▁Guerra +- 宮崎 +- ▁siguiente +- 兵器 +- ▁replica +- 赔偿 +- ▁hiểu +- 過去最多 +- 臂 +- ▁resol +- ▁panting +- жер +- 时尚 +- मु +- Qué +- 涼 +- ▁illustrious +- ▁indefinite +- 厄 +- ▁bedeckt +- ▁shrine +- 潜水 +- ▁exig +- ▁حتی +- дзіць +- ▁спин +- 竞 +- рист +- と比べて +- 케 +- ▁preocupa +- ▁preĝejo +- ▁vẫn +- ▁behaupten +- яўляецца +- ▁notamment +- 運転手 +- ▁weariness +- ▁rimwe +- 吉田 +- そっか +- ▁flint +- 衷 +- 豹 +- ▁زۆر +- ▁заметил +- gypt +- ▁Milch +- 大人気 +- 很多时候 +- рожд +- ▁второго +- 卸 +- 祝你 +- мель +- कु +- 被告知 +- ▁correspondent +- ▁propaga +- 读到 +- 作战 +- 燃え +- ▁우리가 +- ▁passionately +- ▁För +- ▁хор +- 甚 +- 頂いて +- ք +- ▁bệnh +- ▁offspring +- ▁Ancak +- トレーニング +- この時期 +- 買う +- 因为这是 +- 乗客 +- 强迫 +- 市長 +- ▁researchers +- が行われました +- freude +- ▁гэтыя +- ▁scenery +- ignit +- енько +- 物品 +- 紅 +- ▁Original +- 찍 +- hypno +- ▁режим +- ▁ahubwo +- honneur +- 行星 +- ▁imaginary +- winkel +- өгө +- ▁ваша +- ▁tâm +- ޑ +- ▁Président +- 見てください +- 奖励 +- ▁giống +- ▁حيا +- ▁clatter +- ▁circulation +- 調理 +- ございます +- ▁பாட +- 从哪里 +- 很酷 +- 对我说 +- ▁Urteil +- ▁Entdeckung +- ▁proclamation +- 查询 +- ▁wireless +- なと思いました +- ▁deixar +- ▁거는 +- مجموعة +- rühren +- 协调 +- 活発 +- schuh +- რო +- 른 +- そろそろ +- 支撑 +- ▁아니면 +- 有足够的 +- 品质 +- になりそうです +- لدى +- 裕 +- ▁grammar +- ▁lượng +- ▁преступлени +- 牛奶 +- ▁đường +- ▁만나 +- ▁ricevis +- ▁außerdem +- ▁wholesale +- 列車 +- ▁jupiter +- 和我一起 +- ▁acabar +- 液体 +- ▁있지 +- cyaha +- 碎片 +- ▁crater +- 十月 +- impuls +- したあと +- ▁elektron +- 分ごろ +- ある程度 +- 跟他说 +- ▁titre +- ▁своими +- ▁acuerdo +- නම් +- ▁бүх +- いませんでした +- 話す +- 大切に +- 認められ +- ▁хотели +- 放置 +- illard +- Mobil +- 그 +- ニュースをお伝えします +- 监督 +- ētā +- aardig +- ▁discrimination +- 延伸 +- รา +- 流量 +- ▁considerat +- 었는데 +- ▁pronto +- 贷 +- 素材 +- ▁алексей +- ▁caroline +- 屁股 +- 辞职 +- 占据 +- 我不得不 +- ಗಳ +- 很开心 +- eater +- ▁Ahnung +- ▁secular +- 理念 +- 貴重な +- ▁Abschnitt +- ▁hiring +- 寒気 +- ▁vigor +- ▁fick +- ▁decorated +- ดี +- 跟随 +- ▁español +- ▁помочь +- ▁entsprechend +- 인가 +- ächte +- ▁Zehn +- ▁quinze +- 双手 +- ▁đô +- yorsunuz +- 共通 +- ▁tutta +- 仰 +- ▁sentido +- ▁accommodation +- ▁frequency +- 友谊 +- ▁Nigeria +- 邮件 +- ▁публи +- ámos +- 就业 +- सि +- ▁fiddle +- ▁أول +- ▁northward +- 很奇怪 +- 这就是你 +- ▁бүл +- 机关 +- 愁 +- ▁Tränen +- ▁airplane +- சிய +- ▁moralische +- ▁දැ +- ▁luôn +- spetta +- ▁fiend +- 干预 +- ▁potenc +- 勃 +- ޓ +- ▁transparency +- ▁hypothesis +- 守備 +- 作为一名 +- ▁damsel +- 勝手に +- ▁fancies +- ▁bấ +- RE +- ▁cruz +- 不允许 +- お昼 +- ▁запис +- працоў +- ハハハ +- 한데 +- ▁realization +- 随机 +- 分解 +- köz +- ▁характер +- 轴 +- urukundo +- ▁surtout +- 印刷 +- 我从来没有 +- 现金 +- オフ +- ▁chị +- ▁lascia +- tropic +- ▁rwego +- ▁Carol +- ött +- と思っています +- فريق +- 弓 +- ▁recupera +- レストラン +- މު +- 宿泊 +- ▁abolish +- jumu +- ▁قم +- ▁diventa +- ▁chronicle +- 师兄 +- ▁умер +- 研讨会 +- 嘴唇 +- 一首歌 +- որ +- ▁allocation +- にならない +- ▁existiert +- ▁homeward +- gewicht +- 马车 +- ▁beneficial +- ▁Hunderte +- ▁Thor +- ▁различ +- धा +- 写信 +- undsechzig +- ಟ +- 随着时间的推移 +- ▁полностью +- ▁çoğu +- 駄目 +- シャツ +- kogu +- ▁mwana +- てくれました +- прыг +- ▁prolong +- なんですけども +- 起源 +- ▁Matthew +- 限り +- ▁repentance +- ▁hermano +- ▁dinero +- ▁oscar +- исты +- 氛 +- ▁securing +- ▁ukuthi +- ▁derjenige +- ▁Beitrag +- 上午 +- 난 +- ▁gibb +- ▁Evrop +- コントロール +- ▁Records +- 牙齿 +- ▁Ні +- ▁ғой +- ▁jimmie +- ultima +- ▁Earl +- ▁complac +- 相遇 +- 拘 +- ▁verlangt +- ēji +- 玩具 +- 出発 +- 框 +- ▁deceased +- ▁причем +- ▁geöffnet +- ▁melody +- ▁få +- ▁있을 +- ▁مرة +- important +- 投资者 +- ▁southward +- ▁உள்ளன +- 航行 +- 借口 +- ční +- េ +- ▁erheblich +- 視聴者 +- ▁heiraten +- 就是为了 +- ▁neunzig +- 復帰 +- 回顾 +- ▁dagger +- 言いました +- ▁feverish +- 尖叫 +- ▁Hass +- ▁fearless +- ▁programming +- yonna +- ▁extremity +- ▁avere +- ▁minimal +- гээд +- こない +- 났 +- ▁wondrous +- ▁دیگه +- すごいね +- losigkeit +- продукт +- ▁unaware +- ▁factories +- კი +- 起作用 +- ▁millionaire +- লের +- черед +- 躍 +- 钉 +- ▁varieties +- ▁mauvais +- ▁vairāk +- ▁booth +- ▁dónde +- ۇق +- service +- 最早 +- ▁unkind +- 이나 +- fisch +- ▁adverse +- ▁узнал +- ▁가고 +- ▁athos +- ח +- 乾燥 +- روب +- न्छ +- ▁darkened +- ▁applies +- 亨利 +- ▁приказ +- って言う +- ▁முன் +- વા +- ▁spontaneous +- ▁দিয়ে +- schrecken +- stancia +- ల్ +- ▁갔다 +- gefüllt +- 普段 +- ▁speck +- なんだろう +- ▁Вот +- 营地 +- டெ +- gelaufen +- 邻 +- ▁Acest +- 掲げ +- ▁corporal +- おかげで +- 呼んで +- নো +- ▁Fernsehen +- ▁galley +- 天主教 +- ▁precision +- ▁uneasiness +- ▁фотограф +- ▁pēc +- 遵守 +- ▁Again +- ▁kontrollieren +- ▁olabilir +- ▁luce +- ▁rubbing +- bwy +- ▁decoration +- ▁repay +- ▁kullanıl +- ▁immigration +- 毯 +- 蒋 +- ▁volatility +- ▁похоже +- 쪼 +- ▁grievous +- つなげ +- マリウポリ +- 一个地方 +- 進み +- 反复 +- ▁tiên +- ▁Waffe +- ▁высоко +- はありませんでした +- ▁expressive +- 増えている +- 皱 +- 돌 +- ▁نبود +- ▁Dutzend +- と思うんですね +- 对你来说 +- ▁geography +- steigt +- ▁variant +- 助理 +- ▁Vögel +- ▁احساس +- ▁Klin +- ▁residential +- Imperi +- ▁modified +- ▁solange +- ▁filings +- αν +- وظ +- ▁splendor +- ▁Kaffee +- әлә +- eficient +- 豊かな +- ▁معا +- ▁старш +- ▁сложно +- ▁хва +- หา +- πο +- ▁Burg +- ▁федеральн +- ▁лож +- ▁prostitu +- 伤心 +- ▁Howard +- опо +- まらない +- ▁vieux +- хватил +- 巫 +- 吕 +- ▁đúng +- ▁nightingale +- 选项 +- 同士 +- に到着 +- 設定 +- ▁postpone +- ▁нужен +- ▁крут +- 绝不 +- ▁robbery +- ▁Му +- ▁snarl +- ▁cél +- வான +- ▁Anthony +- ▁Krankheiten +- ▁reappear +- あるんですね +- 清醒 +- тянул +- 违反 +- ▁život +- ക്ക +- 琼 +- 防犯カメラ +- Effekt +- ▁elastic +- horaho +- 思え +- мәй +- ▁troy +- てみよう +- سطح +- kombe +- ▁Tanz +- ▁wipe +- 漢 +- ▁cherche +- 粮食 +- ▁držav +- 模様 +- 知識 +- ▁trả +- ▁mold +- ɣur +- ▁softened +- 絡 +- 袁 +- ▁기억 +- 忠诚 +- 预计 +- ▁descendants +- 結び +- 别忘了 +- 还有一些 +- ▁machst +- อบ +- ▁modification +- 挽 +- 刮 +- 不断地 +- klā +- ذكر +- 这两天 +- ▁Philipp +- 主持 +- ▁sıra +- 上涨 +- kreuz +- ▁அவன் +- трымліва +- ▁ເອົາ +- ▁sprinkle +- ▁hesitating +- 目撃 +- 資料 +- ▁chinesische +- ▁transmission +- ▁trebui +- 风景 +- cloud +- かかった +- 疫 +- ってくれる +- 傾 +- ebɣa +- ▁pregnant +- ▁memorable +- ▁Unterricht +- ▁majestic +- ▁Transport +- ▁abyss +- ▁voce +- 挺好 +- ▁Station +- 主人公 +- لىك +- ganira +- ▁geeignet +- ▁kentucky +- ▁telèfon +- 茨城県 +- 酢 +- よろしくお願いいたします +- ▁begeistert +- にもかかわらず +- ▁profesor +- 清理 +- ▁사실 +- ▁rumour +- ▁Forscher +- ▁cupboard +- 見つけた +- 千万别 +- と思ったら +- ▁нашу +- ▁хэсэг +- 翁 +- キャラクター +- ▁ນະ +- ▁охран +- ordinate +- 考えると +- ▁gelten +- ▁chalk +- ▁пути +- ▁competent +- 赠 +- ▁cecilia +- ▁спокойно +- ▁exempt +- 苦労 +- ▁cambridge +- 美洲 +- ゆっくりと +- ▁краіны +- 減ら +- 下一步 +- ▁cripple +- ▁sunrise +- 没法 +- ▁vincent +- かなと思って +- 毕 +- ரும் +- 平常 +- 祖先 +- ▁நெ +- lood +- 喘 +- ಬ +- ラジオ +- منطقة +- ▁civilian +- 快递 +- ัด +- 仆人 +- ▁liquidity +- ▁Onkel +- 地铁 +- ▁thiết +- 参观 +- 来自于 +- وست +- ▁jelly +- 爸爸妈妈 +- stunde +- 見ている +- 'ON' +- ▁Termin +- ដ +- 嘱 +- ▁hudson +- ▁நிற +- ▁fraction +- গু +- দ্ধ +- 媳妇儿 +- 近づいて +- ứ +- 支出 +- すてきな +- 贺 +- ▁ceremonies +- ▁поддержк +- ▁безопасности +- ▁말이야 +- ▁regió +- ▁obstruct +- ▁mercat +- 转移到 +- 领先 +- 美容 +- даецца +- 活力 +- ី +- ▁shrank +- ▁mañana +- այ +- ▁têm +- NN +- 広い範囲で +- 乐意 +- intensive +- 教団 +- 番号 +- ▁galv +- 약 +- ▁لذلك +- ▁ஆகும் +- ▁дахь +- ▁полковник +- ▁নিয়ে +- 谈恋爱 +- ▁nursery +- ▁flaming +- ▁Darwin +- ▁شکل +- 短期 +- 挫 +- ▁Georgia +- 霊 +- ▁negotiate +- ▁gahunda +- ▁fuerza +- ▁Kapitel +- ▁puritan +- 尊严 +- ▁এখন +- ▁இருக்கும் +- ブロック +- 撒谎 +- লাম +- ▁noticing +- ▁rebuke +- ▁vexed +- 年目 +- ĝoj +- вэр +- 生きる +- ▁выступа +- 赴 +- ▁очевидно +- gång +- 明らか +- liegenden +- 各自 +- зву +- 해가지고 +- ับ +- ▁Yani +- ▁матери +- ▁сделали +- ▁آنجا +- ▁Zunächst +- ▁Пасля +- ▁싶어 +- ▁наук +- ▁جوان +- ▁homoj +- 毛病 +- 几百 +- 重量 +- ޔ +- ▁Lächeln +- ▁vijf +- ▁imperative +- 财政 +- писыва +- 曲げ +- なのかな +- ハリ +- ▁Landschaft +- дорож +- ēju +- につなが +- ▁betroffen +- 貧 +- ▁یافت +- 修改 +- ▁Porque +- 懸 +- แล้ว +- ▁einschließlich +- ▁jüngste +- ▁übertragen +- ▁государстве +- ▁Мар +- ▁Señor +- եր +- 国民党 +- 目指 +- 可见 +- 闺女 +- 些什么 +- ▁resignation +- weichen +- ▁rusty +- ているということです +- 指南 +- 祖母 +- 侍 +- ▁منطقه +- ▁பின்னர் +- ވާ +- ▁utilization +- ▁nhỏ +- 野蛮 +- ▁Beck +- 我们确实 +- ▁hannah +- 飲んで +- diğini +- ▁зараз +- 虽 +- 全国各地 +- rigg +- ▁düş +- 督 +- ▁Sala +- 併 +- époque +- ▁malgranda +- ▁proclaim +- pferd +- ▁Anzeige +- ▁yardım +- jyanye +- ▁gait +- ନ +- ▁Bemühungen +- 洒 +- 翠 +- ▁싶은 +- 哭泣 +- technik +- 清洁 +- ▁Fac +- temperatur +- 光明 +- ติ +- ▁Lippen +- 僚 +- ばっかり +- ▁Roboter +- ாட்சி +- mahanga +- ▁dreizehn +- 站住 +- ▁Funktionen +- 自衛隊 +- 花费 +- 公布 +- ▁implant +- ▁murray +- 深处 +- ▁partake +- цаў +- 琪 +- ▁excellency +- ▁insignificant +- ご存じ +- ▁especie +- ▁deputy +- দেশ +- ъезд +- 物質 +- ▁verteilt +- ▁spinning +- spirited +- ▁fairies +- ▁Bydd +- ống +- ▁exerc +- ワイン +- yitibwa +- いらっしゃいます +- 喜び +- やってきた +- ▁humil +- ▁kumenya +- ическим +- 作られた +- 八百 +- えっと +- ▁alumni +- ▁отделения +- ▁kulturelle +- ▁headache +- 呼ばれ +- ▁zamanda +- ▁ekster +- වන +- થ +- ใจ +- ▁així +- gebunden +- 行列 +- ▁прошу +- ▁oblige +- ▁тады +- amenye +- 判决 +- 是时候 +- プレッシャー +- ▁Terror +- ▁jordan +- ▁погиб +- ība +- ▁ведае +- 時過ぎ +- ▁Pep +- 转换 +- を持っている +- ▁snug +- ▁долг +- bourne +- という意味 +- 尺 +- ▁Schicksal +- ▁hóa +- ポーランド +- ހު +- agrada +- ▁utilisé +- どれだけ +- ▁желез +- ▁może +- ▁oppression +- 因为它们 +- 自豪 +- 融合 +- schossen +- դ +- ▁grâce +- ▁посмотреть +- 枕 +- ▁foliage +- むしろ +- 损害 +- குதி +- ▁பிரி +- dığını +- ▁restaur +- 婆婆 +- ▁inizia +- ▁Leiter +- 拠 +- 分离 +- 侄 +- ▁geoffrey +- 깐 +- 遵循 +- ▁begrenzt +- riff +- ▁хозяйство +- ▁হবে +- ющей +- ▁Public +- ıyı +- お子さん +- Psycho +- ▁Glen +- 昨夜 +- 様々な +- نامه +- ▁twinkle +- strafe +- ▁healthcare +- 算法 +- ▁worthless +- 遠く +- 乐观 +- ▁vardır +- 著名 +- 象征 +- ▁مادر +- 显得 +- ▁worauf +- ▁چو +- '2011' +- puesta +- 締 +- ▁மிக +- āli +- ▁아빠 +- ▁fathom +- ▁новые +- ▁valiant +- ▁fanatic +- 很快就会 +- бросил +- ▁gusto +- ▁procura +- 傲 +- 喻 +- 火曜日 +- ▁scruple +- ▁unbekannt +- ▁몰라 +- ▁chronic +- ▁முன்ன +- ▁ziek +- 誇 +- ▁folosi +- juri +- ▁Anruf +- 恼 +- ▁оружие +- ▁eccentric +- ▁inconvenience +- ▁luxurious +- ▁đưa +- ▁benannt +- ▁puedo +- ▁defensive +- 同じような +- ▁звоните +- たりとか +- 艰 +- bearer +- 灌 +- ▁enclosed +- ▁lizzie +- verhältnis +- ▁አይ +- ▁pickwick +- ▁Armut +- ▁nelson +- ▁allemaal +- kumva +- ▁klub +- ▁commencement +- ▁discord +- alphabet +- ▁nördlich +- ポーズ +- 驳 +- ▁đối +- ▁чинь +- ‍ +- ▁südlich +- 郎さん +- ክ +- 項 +- ▁erfüllen +- ▁Что +- ▁головой +- 嘴里 +- ować +- ▁hinweg +- 拉丁 +- ▁самой +- を求めて +- 食べられる +- に当たる +- прашива +- シンプル +- ▁sarebbe +- 职责 +- 模拟 +- 国境 +- ▁다시 +- ▁titan +- テロ +- 藤井 +- builder +- ▁Massachusetts +- ▁gäbe +- ▁먹어 +- ▁сосед +- ▁heritage +- 早晨 +- ▁rappel +- ণে +- ▁ehren +- ▁politika +- ▁facilitate +- 卫星 +- ▁lächeln +- ▁erhöhen +- 严厉 +- おしゃれ +- ▁Pacific +- 康复 +- 暴行 +- と思うんですよね +- ▁prostrate +- 胡子 +- 这时候 +- ஃப் +- ▁antagonist +- ▁фед +- 权威 +- 眼镜 +- ▁Wang +- ▁депутат +- ▁существо +- ▁hubiera +- ლო +- ▁olacak +- 孤立 +- ▁affront +- 予防 +- ▁Susan +- klagen +- ▁parrot +- 日常生活 +- ▁měl +- ▁لطفا +- 茫 +- ▁موضوع +- 栽培 +- ▁Board +- ▁Northern +- しょうゆ +- 市にある +- ▁prosecution +- ▁можешь +- アニメ +- 边界 +- dependence +- американ +- 埋め +- alytic +- ▁animation +- ▁وكان +- 農業 +- 尻 +- จาก +- ラウンド +- ▁magician +- состоя +- ▁freak +- 再一次 +- ▁лидер +- ▁داره +- 子育て +- ▁verbal +- ▁benötigen +- 끔 +- பெயர் +- 貼 +- アイドル +- fleisch +- ▁Point +- ▁پیر +- ▁Branche +- 計算 +- ▁burglar +- খন +- 速い +- ▁furent +- 悪化 +- ▁wholesome +- 普及 +- ▁gaily +- 秘书 +- Produzent +- 悼 +- ▁enforcement +- ות +- 场合 +- 侵入 +- ▁nommé +- ▁아니라 +- ▁oggi +- ▁fiber +- 偉 +- ▁perceiving +- ▁dinosaur +- チャンピオン +- موسيق +- සේ +- yinza +- ▁들어가 +- killer +- ▁plump +- 进攻 +- いったん +- 婦 +- ▁HIV +- ▁haciendo +- ▁немножко +- ▁оппозици +- ▁thereafter +- богат +- سازی +- 会出现 +- ▁écrit +- ▁disappearance +- ▁хаце +- 百姓 +- ▁وهي +- говорил +- ▁prakti +- ต้อง +- ▁nerv +- ▁Kelly +- ▁Ausnahme +- 動く +- σε +- ▁reverend +- ホン +- ▁угодно +- 抄 +- ▁магчыма +- ▁எல்லா +- ▁Erstens +- ▁crag +- ▁машина +- ▁forthwith +- 携带 +- වත් +- ▁earnestness +- ▁interposed +- ▁представлен +- ▁trẻ +- 記事 +- hati +- ▁stieß +- ▁sponge +- ೇ +- ▁Columbia +- ▁Großbritannien +- ▁федерации +- ничтож +- ▁offense +- Bomb +- 吉姆 +- ێکی +- ▁estudio +- ▁darwin +- ▁viên +- ຸ +- ▁возвраща +- смеш +- 裁判所 +- 吾 +- ▁완전 +- 成千上万 +- ▁abilities +- 関係者によりますと +- 别动 +- 30% +- 武汉 +- ▁craig +- ▁economist +- わけじゃない +- ▁ülke +- ▁fung +- ▁cyose +- ▁herausgefunden +- ▁допустим +- 脑海中 +- ▁맛있 +- ▁دقیق +- ▁Truppen +- 連勝 +- ▁perilous +- 骨头 +- ▁هنوز +- カウント +- ▁unangenehm +- ▁exhort +- ▁heavier +- රා +- 流浪 +- 我爱你 +- 你也可以 +- ▁kijken +- 処分 +- '2012' +- ▁Walter +- ▁reflex +- 関心 +- ▁Teufel +- ▁congratulations +- ▁Dilluns +- 鶴 +- CEO +- ▁Tippett +- ▁achieving +- ▁Business +- roost +- 永久 +- замен +- ▁Clara +- このうち +- 身材 +- ▁junta +- 輸出 +- ▁دیگری +- ▁vendor +- が出ている +- ▁сёння +- 幽默 +- ▁Francis +- ▁regula +- পুর +- 兵士 +- ▁Normal +- sponde +- たらいい +- 段階で +- ▁composer +- ▁Junior +- ▁leonard +- されていて +- ▁Eindruck +- solució +- ▁southwest +- ▁equipo +- ▁Metall +- ▁voters +- வன் +- ▁mosquito +- ▁irgendetwas +- ▁següent +- ▁loại +- င်း +- 現役 +- alisierung +- 穿越 +- ▁fervent +- 描いて +- 电视台 +- nachricht +- 主流 +- 广东 +- waardig +- 필 +- ▁Toronto +- ▁alteration +- ▁diligence +- 閉じ +- との関係 +- государств +- ▁Wilson +- στ +- シア +- мовы +- ▁curr +- тып +- 主演 +- ▁neugierig +- ▁элемент +- ▁vibration +- お弁当 +- 甜蜜 +- ▁nikola +- ▁chacun +- 登记 +- ▁flirt +- ▁rapidity +- ▁pourrait +- ▁ومن +- быстр +- avion +- ব্ +- 几十 +- ▁людзей +- ▁Geschmack +- 構造 +- 日連続で +- が必要な +- 続けた +- כ +- ▁sequential +- ▁whistling +- 垣 +- ▁Gestalt +- ▁그래가지고 +- 交換 +- ▁compose +- праў +- ▁estudiant +- 憧れ +- ▁infernal +- ▁věc +- ▁navigation +- 选民 +- ▁recap +- 享 +- ▁америк +- ▁Hungar +- 天赋 +- ▁emerald +- ▁पनि +- ▁شامل +- ▁Motiv +- ▁aufregend +- 此刻 +- ▁generating +- وى +- ▁вялікі +- ▁оказыва +- myśl +- ▁fácil +- ▁treacherous +- 湘 +- そっち +- ▁harriet +- 雷雨 +- 一瞬 +- ▁pouco +- 特別な +- 智力 +- ගෙන +- ▁hunne +- 绩 +- ▁Emotionen +- ಅ +- に基づ +- 威廉 +- ▁beseech +- ▁dramatically +- 落ち着 +- 非難 +- 見通しです +- ▁срок +- んですけれど +- ulira +- プラン +- 搅 +- ▁advisor +- ▁knives +- acağım +- ▁Ла +- ▁警察によりますと +- 几个小时 +- 是正确的 +- ▁schrie +- ரின் +- 改正 +- ▁lyric +- ▁могла +- ବ +- ▁penetration +- ▁Nächste +- ▁být +- atrix +- ساز +- 你为什么不 +- ▁konata +- ётся +- たぶん +- ० +- ▁superficial +- ▁unreasonable +- ▁điểm +- ▁grotesque +- ▁coroner +- ▁Beschreibung +- ▁다음 +- ▁refreshment +- 昭 +- 传达 +- ▁надеюсь +- ំ +- ▁Ontario +- ▁divinity +- ▁vehement +- ▁settling +- 保育 +- ▁лучш +- ▁bekomme +- っていう感じ +- ▁Witz +- 歩き +- ضاء +- diagnose +- 沿岸 +- 衡量 +- げん +- ▁நல்ல +- 改进 +- ிடம் +- ▁большие +- ▁Vä +- ▁Stress +- ▁транс +- ▁dauern +- platte +- ఁ +- १ +- ▁humiliation +- ▁بیرون +- ▁Könnte +- 軍事侵攻 +- ことにしています +- लो +- れん +- டோ +- ждения +- ▁dickens +- 江湖 +- ▁ansieht +- ▁insgesamt +- ▁вещь +- ▁دنبال +- 寒冷 +- ▁lobby +- ハム +- 年ぶり +- 死刑 +- 在接下来的 +- 绘 +- פ +- ▁thú +- ▁millones +- ▁Presse +- コート +- エイ +- 右边 +- entrada +- liselt +- ▁Engagement +- 芋 +- ▁worüber +- ▁regretted +- 首席 +- そうなんだ +- ▁costru +- を決める +- fuß +- റ +- ▁Margaret +- 亭 +- 参议员 +- ▁Nutzen +- sluit +- étend +- gambi +- ▁workshop +- ▁Sprach +- schleunig +- બ +- ▁además +- ▁золот +- 聞かれ +- ▁endowed +- ▁strode +- крыты +- 하면은 +- '4000' +- ▁kommun +- ত্ত +- 总理 +- ▁миллионов +- ▁escaping +- န် +- ウクライナ侵攻 +- ▁முதல் +- ▁Provinz +- ▁Questa +- 有哪些 +- ▁occupant +- ▁rugged +- 調べに対し +- ▁البر +- ▁Gedanke +- 我只是想 +- 篮 +- 贩 +- ঝ +- ▁arguing +- ▁хлеб +- ▁Certain +- を巡り +- ▁پشت +- 生き物 +- ▁parola +- ▁수도 +- 主教 +- 包装 +- 遗传 +- เธอ +- 举办 +- 陥 +- 艦 +- ▁shabby +- 透露 +- скага +- ▁picnic +- ▁construcció +- 占领 +- ▁activist +- işim +- であること +- ▁davvero +- ▁crític +- 珍惜 +- ▁çalışma +- ▁другого +- ▁rogue +- ▁geliyor +- ্ট +- ▁todavía +- ▁ډېر +- ▁गर्न +- おかしい +- ▁действия +- こういうこと +- ին +- ▁примерно +- ▁Greg +- られていた +- 猴子 +- ▁adieu +- ▁готовы +- ▁akzeptieren +- 纱 +- ▁Bewertung +- おそれがあります +- ▁вопросов +- ▁hybrid +- ▁único +- ▁کردیم +- ▁reprit +- escena +- ▁Ҡа +- ▁hoặc +- ▁nostrils +- ▁champagne +- やり方 +- ▁smote +- 圧倒 +- ならば +- ▁babiri +- セカンド +- 才知道 +- 連覇 +- ▁идти +- ▁imposing +- Book +- waarde +- yczn +- らっしゃる +- ▁hoorde +- ▁verbessert +- ▁zooveel +- 形容 +- もらいました +- ▁inviting +- іўся +- ▁volcano +- 新潟県 +- ▁eastward +- froid +- ніз +- mauer +- lösung +- ▁undertook +- 伤口 +- ивается +- ▁زمانی +- කට +- イヤー +- 興 +- ▁militärische +- マイナス +- 这部电影 +- ▁trifft +- ▁доктор +- ▁analytics +- ્ર +- 领袖 +- ▁notorious +- ▁piercing +- ▁película +- ▁compara +- ▁молча +- ▁commentary +- ▁Morris +- станци +- チュー +- ▁conscientious +- 坠 +- ▁Stoff +- غۇ +- 对我们来说 +- серд +- 受け止め +- ▁Brüder +- 皇家 +- 提起 +- 検証 +- ގ +- rechnet +- ழை +- ▁yakın +- ▁alluded +- ▁Parlement +- ▁ripple +- ▁trocken +- вуча +- ▁Saison +- といわれて +- ▁Hugh +- 議長 +- 敞 +- શ +- ▁erscheint +- ▁خاطر +- ▁нужна +- sighted +- 做不到 +- ふた +- 向かい +- 分类 +- 見たこと +- ▁comparative +- 翅膀 +- 丛 +- ▁necklace +- 交往 +- 建築 +- 大伙 +- ▁станция +- ▁geraten +- ▁Gebet +- ▁peuple +- ▁weibliche +- 重症者 +- ▁Vortrag +- ▁Раз +- گذار +- ▁acerca +- பை +- してしまった +- どうでしょうか +- ▁জান +- ▁disclosure +- ▁geschieht +- ▁здравствуйте +- ▁apprentice +- ▁Blumen +- シングル +- ▁одним +- 入侵 +- ▁näi +- に関して +- ▁wakati +- ▁качестве +- ғыҙ +- ▁blickte +- ▁anecdote +- ایل +- ▁secund +- ▁سەر +- على +- ▁devout +- 整整 +- 现在正在 +- dzē +- 脆 +- 羡慕 +- ▁Houston +- ▁Erwartung +- ぴったり +- ▁genießen +- ▁شاید +- ▁nombreux +- ▁Bruce +- ▁genus +- 两周 +- パット +- ▁лежа +- gefahren +- ▁آس +- อยู่ +- ▁Pennsylvania +- ▁છે +- 佐々木 +- durchschnittlich +- 机械 +- 晴れて +- ▁humbly +- ▁afecta +- ▁тракт +- 屋根 +- ▁করেন +- 知らせ +- ▁diagram +- ▁evitar +- くなっている +- ▁intuition +- ▁jonathan +- blätter +- ▁default +- ▁measuring +- зван +- ▁어제 +- ▁protocol +- últim +- してくる +- 処理 +- ეს +- 发誓 +- ▁Mount +- autant +- 如果有人 +- ▁миров +- 障 +- ▁анализ +- ▁அழை +- 如果你能 +- 停電 +- 的角度来看 +- வரும் +- 친 +- 戚 +- ▁Präsentation +- ▁Festival +- 伊丽莎白 +- ▁Geräte +- ▁иметь +- ▁cherry +- ▁Vergnügen +- ▁بىلەن +- ▁때문에 +- 淹 +- ヴ +- ▁Portugal +- ▁Crist +- 尤其 +- ▁Major +- の様子です +- 趣味 +- gesteld +- 糊涂 +- 色んな +- ▁اصلی +- ▁Ausschuss +- వు +- ▁pluraj +- 室内 +- ировали +- 構え +- runde +- 棄 +- ▁گوش +- ▁михаил +- 医疗保健 +- ▁waarop +- を決めました +- 体现 +- ▁voiture +- ▁Ufer +- ▁Route +- もらいます +- ▁tác +- میر +- 拒 +- を果たし +- ▁nachgedacht +- 페 +- ▁комитет +- ▁ມີ +- ▁داستان +- 减肥 +- геҙ +- ジン +- 左边 +- ▁Sorge +- ▁чаго +- ▁incense +- ▁العام +- 旭 +- ▁đại +- ▁بنابراین +- ▁смотреть +- ▁دلیل +- キム +- 말 +- ▁investor +- 塞尔 +- 小伙子 +- 屎 +- ▁Jennifer +- ും +- ▁уровне +- ▁homage +- ▁видели +- 正しい +- ▁laboratori +- に住んで +- ▁illinois +- ▁tiền +- サラダ +- ▁boughs +- ▁russell +- ▁sagst +- 警備 +- zuziehen +- 甘み +- ▁sinister +- ரீ +- ような感じ +- ریک +- 姚 +- ▁Wähler +- ▁columbia +- ▁ekzistas +- ▁perplexed +- ▁братьев +- 渔 +- ▁grill +- ▁exalt +- kontakt +- ▁feit +- ▁governess +- ▁kurya +- ▁Kindheit +- ▁sichtbar +- پتۇ +- เรา +- ▁hump +- ▁پول +- spread +- 愈 +- ▁clumsy +- ▁plutôt +- 취 +- ▁Lewis +- 関東地方 +- ▁каманд +- 哲学家 +- ▁написал +- ▁jazz +- そのとき +- ▁tiel +- よろしく +- ▁Sekunde +- پوش +- 甲子園 +- ▁Widerstand +- jüdische +- ▁pretext +- ▁début +- ▁Standort +- ▁половин +- ▁shovel +- йшлі +- С +- ▁dennoch +- schwäch +- 毒品 +- 救命 +- ▁tiam +- ▁forbear +- ▁convincing +- ▁miraculous +- ▁поговорить +- ▁mugihe +- intérieur +- 睡着了 +- ▁여자 +- 100% +- 하기 +- 修理 +- ruḥ +- 翌日 +- ▁siebzehn +- ▁waistcoat +- 继续前进 +- ▁cuán +- ▁urging +- 給付 +- mıştı +- 茹 +- វ +- ピンチ +- 80% +- 缓慢 +- ▁Ли +- 保密 +- 镜子 +- ▁felix +- あると思います +- つらい +- ▁خودش +- ▁detachment +- ▁prescription +- 貢 +- 都道府県 +- ▁cavalier +- もしかして +- 尼克 +- ▁petersburg +- ▁zunehmend +- đ +- layan +- 哄 +- ō +- ▁zukünftige +- ▁declining +- ▁extern +- சொல் +- 积累 +- っていうのも +- europa +- स्त +- ▁starving +- 祭り +- 呼吁 +- ٌ +- ▁corazón +- ▁сталин +- ▁eugene +- ▁participating +- 做生意 +- ▁condens +- 描かれ +- łow +- できれば +- ▁zacht +- 删除 +- 適用 +- ▁скажи +- ▁Definition +- intérêt +- 滥 +- ▁Một +- schloß +- ▁প্রতি +- 取り組んで +- ▁tolerate +- ▁điện +- ▁auction +- ნე +- ▁Gefangene +- zungu +- ▁hieß +- 董事长 +- ▁calamity +- ▁precipice +- ▁ایجاد +- ▁hoffnung +- ▁nuovo +- 囚犯 +- ▁două +- タイムリー +- 主管 +- ▁Rw +- ▁حسنا +- ▁meditate +- ▁Fakat +- メダルを獲得 +- دعو +- 博客 +- ▁schweigen +- ▁cemetery +- ▁lloyd +- 審査 +- 啤酒 +- 成績 +- nął +- ▁rook +- ▁Association +- ▁Perezida +- ▁baltimore +- ▁endurance +- 洛杉矶 +- 消耗 +- 物理学 +- ющее +- стреля +- 很多人都 +- 揺 +- ច +- 这辈子 +- ▁Knochen +- ▁και +- ▁видно +- ▁Wirklichkeit +- ▁چشم +- ソフト +- ப்போ +- 弟子 +- 1,000 +- 干什么呀 +- գ +- ▁অব +- ▁unreal +- ▁Kristo +- gewandt +- ▁হয়েছে +- сроч +- ▁volgende +- ▁gelukkig +- 하면서 +- ▁زبان +- ▁arbitr +- ምን +- ▁Davis +- 書いた +- ергә +- ▁marcus +- を持った +- 尉 +- ▁hilfreich +- ▁вместо +- ▁څنګه +- ▁irgend +- ▁gambling +- ▁উপ +- ▁возможности +- просить +- ▁unterscheiden +- ▁feststellen +- ゴー +- 食堂 +- ▁gelebt +- んでしょ +- знания +- ▁estudiar +- زده +- ▁норм +- жир +- ▁shameful +- 열 +- ▁течение +- ▁stammered +- 阴谋 +- уулах +- ▁ransom +- kapital +- ▁franco +- 奈良 +- 顺便 +- ▁slipping +- ığın +- ალ +- ▁wichtigste +- 料金 +- 坛 +- ▁малая +- 属下的一个 +- 谐 +- 박 +- いかがでしょうか +- ▁ماشین +- 読んで +- ▁шестой +- Tabelle +- ۲ +- ▁algún +- ▁unanimous +- ▁thống +- ▁skupin +- 暮 +- やめて +- 曇り +- писал +- 驶 +- ▁fidelity +- ▁pouvons +- ▁mondiale +- 速報 +- ▁Überleben +- 離れて +- lardı +- ▁quitted +- ぴ +- 販 +- ▁느낌 +- ▁воздух +- ▁patriarch +- 沙漠 +- ▁развива +- глядзе +- 優先 +- ▁Má +- தான +- 你怎么知道 +- ▁dispense +- 変えて +- ီ +- 鸦 +- ▁Eigentum +- ▁discouraged +- 這 +- こういうふうに +- 阶级 +- せば +- ▁leitet +- theorie +- ▁cultivation +- leihen +- eceğim +- 巨大な +- ▁Lektion +- มาก +- らせる +- торгов +- ▁Empfehlung +- ▁celestial +- ▁occidental +- алтай +- ▁athletic +- 桁 +- affaire +- ものすごい +- ▁civilisation +- ▁اتاق +- 这几天 +- ▁Europäische +- 注定 +- 该地区 +- 析 +- 掏 +- ▁Mitgliedstaaten +- ▁recognizing +- 력 +- ▁казалось +- ▁Sturm +- パーク +- рабатыва +- ▁военно +- ▁sentinel +- どうしよう +- ▁spike +- 良心 +- временно +- ຖ +- 甄 +- 抛弃 +- ▁получить +- ▁abgeschlossen +- 伍德 +- 残念 +- ▁collector +- ▁микро +- ▁joshua +- ▁период +- ့ +- ▁பெரிய +- Source +- ющего +- くなっています +- ▁astronomi +- 汇报 +- 復活 +- țele +- デモ +- хир +- 仙台 +- 囊 +- 舱 +- ▁coincidence +- ▁compromis +- メイン +- inspiring +- ▁politeness +- 碧 +- ▁வழங்க +- 扉 +- ▁pudding +- ▁baptist +- ▁Vull +- ▁epoch +- ▁combusti +- entwicklung +- ▁дней +- 负面 +- 帰国 +- ▁байгуул +- ▁Nachbarn +- ▁대학 +- espér +- ▁Disney +- спя +- ডি +- なじみ +- ▁Bedürfnisse +- 极其 +- ▁بسیاری +- ▁zurückkommen +- うどん +- 悄悄 +- ▁зохио +- メダリスト +- ▁kesk +- ▁possono +- 棕色 +- 総理大臣 +- වෙන +- nummer +- 異なる +- 城堡 +- ғына +- ▁relaciona +- ▁hobby +- ▁людьми +- mektedir +- ▁caballero +- ▁του +- ▁ہے۔ +- ▁адрес +- ▁никакой +- ▁باشه +- ▁durchaus +- ▁außen +- ▁politician +- höchste +- を行いました +- عامل +- ણ +- ቀ +- যোগ +- 六个月 +- ▁sophia +- endroit +- どうでしょう +- ێر +- ファー +- је +- فضل +- 感染症 +- 让我们看看 +- 屋顶 +- 飛車 +- ▁ذات +- drž +- 泼 +- asanzwe +- ား +- 厚生労働省 +- ▁dungeon +- ▁جيد +- 押さえ +- ▁vollkommen +- క్క +- zwingen +- ведения +- ▁Mühe +- ▁seneng +- нести +- 幼儿园 +- 磅 +- 腔 +- 烦恼 +- ▁Fahrzeug +- 眼神 +- ▁чисто +- ▁далей +- を迎える +- ▁sexuelle +- オリジナル +- 马丁 +- ▁aufbauen +- ausschuss +- における +- 周囲 +- 狮子 +- できるだけ +- gegriffen +- ▁langue +- ウクライナ軍 +- ▁herzlich +- ▁suffi +- ▁İki +- ▁gehst +- 苦しい +- توانیم +- 塑料 +- ▁chơi +- ▁khó +- ▁არა +- ▁самые +- ▁tedious +- 感染状況 +- ước +- ▁întreb +- 每一次 +- 岭 +- ▁Vậy +- ▁discomfort +- ▁настолько +- 捐赠 +- ▁капитан +- konsum +- ▁رجل +- ポリ +- ходили +- ▁다니 +- ▁économique +- 敗れ +- génér +- ▁Cross +- ルート +- lumina +- 吸收 +- ▁косм +- 假期 +- klapp +- 验证 +- ▁Fond +- ▁bizim +- ▁portuguese +- ▁rubbish +- 복 +- oubli +- 干吗呀 +- ▁хот +- 运气 +- тыўна +- ▁இப்ப +- ▁kanggo +- ெட் +- 寡 +- ▁sanctuary +- 써 +- よろしい +- 邸 +- ▁tradicional +- ▁bandage +- ▁ukrain +- 渡辺 +- ミニ +- というわけで +- ▁mängi +- ちゃいます +- ▁рух +- abash +- ▁Gedächtnis +- ▁pièce +- 医療機関 +- ▁immune +- 火災 +- ▁forlorn +- genossen +- ▁хоча +- räsentiert +- ▁horribly +- ▁безусловно +- ▁кӱ +- ▁семьсот +- ▁sweetheart +- ▁مؤ +- 解雇 +- 涉及到 +- ▁воды +- 況 +- 塘 +- ▁harvard +- 罰 +- ▁Speicher +- ▁benedict +- ▁fellowship +- 在这方面 +- 英文 +- ▁pronounce +- ţ +- ▁proprie +- ▁болсон +- リュ +- ▁celebration +- ▁Güte +- 正在进行 +- 蔽 +- 청 +- 膝盖 +- ▁радио +- ▁rustic +- ▁общество +- ▁pulpit +- ▁Fußball +- ▁Josep +- cliffe +- ▁தெரி +- 現代 +- podobn +- ▁fascination +- ▁który +- ▁devait +- ▁دهند +- 再現 +- ▁geographical +- 变革 +- ▁мисс +- 史密斯 +- ニック +- ▁Egypt +- строить +- 精神病 +- ▁모르겠 +- ▁русско +- gegenwärtig +- 둘 +- 씩 +- ▁ĉirkaŭ +- 喫 +- एको +- 神话 +- ▁titul +- ▁Träume +- ▁আস +- 厳しく +- ▁dazzling +- ▁erwiderte +- ▁Überraschung +- ▁gedanken +- 增强 +- 基督 +- ાર +- ▁luggage +- ▁이번에 +- täuscht +- ড়ে +- ▁mwiza +- әҙер +- щим +- ▁marvelous +- 入り口 +- wahrscheinlich +- 述べ +- ▁velmi +- ർ +- ▁Londres +- ▁تولید +- ▁Sonntag +- ▁hôm +- 腐败 +- 갖고 +- 承認 +- 考验 +- ▁Chu +- ▁aisle +- ▁beauties +- ambigu +- ぼう +- ▁hippo +- 霉 +- ▁overlooked +- ▁Takže +- ▁moisture +- తా +- ▁hoàn +- ってみよう +- 太平洋側 +- ▁cultivate +- ▁wobei +- ▁ecclesiastical +- édé +- 爱尔兰 +- ▁пространств +- おばあちゃん +- ▁Training +- పో +- 餐馆 +- ▁dripping +- geschenk +- ▁auditor +- ▁unequal +- amatu +- 白宫 +- mutima +- ▁fisherman +- 疆 +- ないですか +- ▁drake +- 判定 +- ▁disseny +- kungu +- 買った +- ▁troublesome +- Blanc +- ▁доступ +- 证实 +- ▁mẹ +- ▁மனித +- ▁Vermögen +- 급 +- 引擎 +- づらい +- Unis +- ▁Anspruch +- 房屋 +- 引退 +- ▁борис +- માં +- ▁Kategorie +- ▁зусім +- 잡 +- 娅 +- ▁Spanish +- ▁thanksgiving +- లా +- ▁хороший +- ▁honom +- 隐私 +- ▁flip +- ▁occurring +- ▁Ereignis +- wheel +- ウォー +- 生み出 +- だと思うんです +- quote +- ▁Despite +- まいりましょう +- tumye +- ▁humorous +- 女優 +- ▁Voraus +- ってしまった +- ▁Köpfe +- 最終的に +- ▁rhyme +- ▁clump +- ▁видеть +- ▁luckily +- ▁رنگ +- ▁malaria +- 生涯 +- патрэб +- ప్ప +- ▁Foundation +- ▁secrecy +- 谜 +- 纤 +- ŝanĝ +- ▁Provi +- ▁дүр +- ご覧いただ +- беҙ +- ▁audit +- ▁spice +- ▁süd +- கல +- 吸引力 +- 色々 +- ▁drüben +- ▁schüttelte +- ▁completamente +- 決断 +- ▁думать +- 励 +- 塑 +- ▁novelty +- 龟 +- ▁Flügel +- ▁diferencia +- ▁cristian +- ▁urmă +- ▁jesuit +- ▁fördern +- َلَ +- と述べました +- 晴れる +- を発表しました +- 言える +- 陌生 +- ▁medication +- 季度 +- ▁lächelte +- 綱 +- ున్నా +- gratul +- ▁моего +- سې +- ▁اين +- 兄弟们 +- ▁ئەوە +- 卿 +- 荒谬 +- 弘 +- ▁제일 +- ▁будешь +- 适用于 +- 食べたい +- 40% +- ▁Ре +- 场比赛 +- ▁xả +- ▁kostet +- ▁bố +- Werbung +- ▁Academy +- ▁mohammed +- ▁آمریکا +- 唐纳德 +- 罗伯特 +- ▁помощью +- 自殺 +- ▁Vì +- ▁Rauch +- 剧院 +- ▁curate +- ▁Moore +- を越え +- 一件事情 +- ▁алма +- ▁distint +- ▁absolv +- ▁deceit +- ▁propriety +- 怪物 +- 根本就不 +- 度目の +- ▁Entfernung +- ▁Après +- ▁signifas +- 日ざし +- ▁Pläne +- ▁Nerven +- ▁güzel +- ビッグ +- ▁hydrogen +- ▁winzige +- farben +- 鞭 +- ▁thompson +- ঙ্গ +- ▁griechische +- ▁хөгж +- 観察 +- sloten +- ▁chunk +- ▁installation +- クリア +- 汚 +- 빠 +- ុ +- ▁elapsed +- ▁Government +- 毁灭 +- ▁rapture +- しさを +- ▁Symbol +- 不思議な +- gestiegen +- ▁practise +- ▁athens +- ▁recreation +- պ +- 猿 +- ▁موجود +- 現象 +- ▁крайней +- ▁morbid +- 感冒 +- ждение +- 引入 +- ▁делают +- ▁moustache +- 洗澡 +- ▁되는데 +- 選び +- flipp +- ならではの +- ▁chemist +- ▁rustle +- ▁Student +- ղ +- ▁longtemps +- ▁verschwunden +- 讽刺 +- ▁sturdy +- 游客 +- ▁arising +- ▁irritated +- ダム +- ▁твой +- عالم +- ▁heroine +- 見たい +- 税收 +- オレンジ +- ▁üret +- 耕 +- 恥ずかし +- ▁왜냐면 +- ▁sidewalk +- ▁никому +- ▁protože +- ▁involving +- ▁alguma +- krebs +- бель +- ▁geplant +- ść +- нюю +- torium +- ▁abnormal +- ▁condescend +- 滤 +- 参议院 +- 別れ +- ▁Cousin +- ▁kansas +- ▁contributing +- ▁ஆன் +- ▁волос +- 带领 +- ▁constantinople +- ▁inasmuch +- ում +- ▁Ähnlich +- 分かりません +- ▁spiral +- ▁tradici +- 追いかけ +- 睇 +- 水曜日 +- ވެސް +- ▁reassure +- ▁Melbourne +- ▁gegründet +- ▁водо +- 北京オリンピック +- ▁voyez +- 介入 +- 获胜 +- ▁سمت +- 虑 +- 溢 +- ▁která +- verwandt +- ▁බව +- ピンク +- میل +- ▁Kommentar +- 漬け +- lassung +- エビ +- 嫉妒 +- ▁Klimawandel +- ▁солдат +- 指责 +- ▁основан +- ▁implies +- 排名 +- 飼 +- ▁Rechnung +- ▁monotonous +- ▁spēlē +- ▁medieval +- ▁rhetoric +- ▁detached +- ▁Mountain +- ▁isolation +- ▁войск +- 解决这个问题 +- ▁хочется +- articula +- ▁umutima +- ▁curb +- ▁liefern +- 伯格 +- ▁Multi +- ▁russische +- 矮 +- ▁Zuhause +- ▁malcolm +- ▁nevoie +- läufig +- ▁shelves +- 落ち着いて +- ▁смерти +- ▁feudal +- 澤さん +- あえて +- klassi +- ▁constituent +- ▁другая +- ▁rabbi +- ライス +- ▁Sklaven +- ▁الواقع +- まもなく +- ▁dictator +- 丫头 +- 荷兰 +- ▁சீ +- ▁salmon +- ▁flores +- っていうところ +- 初期 +- 卧 +- ▁hypothe +- ▁entfernen +- ▁insolent +- 不合适 +- ▁মানে +- ρα +- ▁Dacă +- ▁Montag +- ▁чуж +- рожа +- 準 +- ▁Folie +- 慈 +- 抖 +- ▁Colorado +- ▁Nutzung +- ▁cognitive +- ▁după +- مدرسة +- 残忍 +- 요일 +- sexuell +- ▁القر +- 尋 +- ▁kemudian +- ▁persuasion +- 狄 +- 줘 +- お客様 +- ▁jefferson +- ▁pivot +- ▁машины +- نقل +- ▁استخدام +- ބަ +- ▁whipped +- ▁geleden +- ▁escucha +- ▁Could +- ▁остров +- ▁cavall +- quê +- 须 +- ជ +- ▁versteht +- 拭 +- interesse +- ▁eksp +- ▁disappoint +- ▁även +- 钩 +- katholisch +- ▁کودک +- 紫色 +- ▁cố +- 代の男性 +- Time +- 收益 +- ▁чад +- ▁elevat +- ▁hacía +- ▁Alkohol +- 蔑 +- 褒 +- 从那以后 +- ▁извините +- ▁тело +- ▁spirituelle +- யார் +- ▁sünd +- 设法 +- ▁geographic +- 獲 +- முக +- ▁impamvu +- ▁хэдэн +- ▁Physik +- ▁umfasst +- 反抗 +- ▁concede +- ▁обща +- ▁zwang +- 取引 +- ministerium +- 蹲 +- ০ +- ▁Prüfung +- ▁embedded +- ▁possiamo +- タクシー +- ▁пятая +- 出てきました +- ▁discrimina +- ェ +- 能做到 +- ▁clenched +- ▁pequeña +- ▁tennessee +- 哮 +- 煎 +- かっこいい +- ▁请播放 +- ▁așa +- ▁Jemand +- gehoben +- befehl +- ▁mildred +- ▁disrupt +- mètre +- コスト +- ▁нашим +- ใ +- 膝 +- ▁ausgewählt +- ▁nécessaire +- ▁eclipse +- 换句话说 +- 丼 +- 誠 +- جنس +- ▁daisy +- ▁dzīv +- மும் +- 納得 +- kräftig +- ▁merupakan +- コラボ +- 記者会見 +- 收购 +- ▁crusade +- 金額 +- höhe +- ایە +- ▁hína +- ▁snuff +- ▁социал +- möglichkeit +- ijoro +- ▁clamor +- 順位 +- ▁husk +- ▁Flüchtling +- 奥巴马 +- ▁duidelijk +- ▁குறை +- twenty +- ▁discut +- ▁пройд +- お待ち +- 发动机 +- 警官 +- ତ +- ▁aufzubauen +- 这个样子 +- 넘 +- ▁сергей +- 愛知県 +- ▁shroud +- コンビニ +- 行方不明 +- ▁люблю +- ▁rusange +- ▁твои +- となりそうです +- 訴 +- ▁augustine +- чёт +- ものすごく +- ▁Society +- 动态 +- ▁vierundzwanzig +- ▁ocurr +- ▁mitigate +- konomi +- ▁testify +- ▁чист +- ▁имеют +- ▁destructive +- ▁историю +- ▁мальчик +- ▁alcuni +- 渠道 +- 砂糖 +- ▁besagt +- علام +- waffen +- 原則 +- ▁agafar +- ▁supposition +- ▁diplomatic +- ▁marshall +- fünfhundert +- ▁pilgrimage +- 今のところ +- ālā +- ▁legitim +- ித்தார் +- ▁мысли +- ሚ +- ▁securities +- 辖 +- ▁bestätigt +- umukobwa +- ▁Therefore +- 軟 +- ▁problém +- 並ぶ +- ҙың +- ▁Họ +- 寄付 +- ченко +- gerissen +- ▁hâ +- ▁компьютер +- ▁முக்கிய +- こんなふうに +- 媛 +- 놓 +- ▁vigour +- ▁apparition +- ▁imbaraga +- ▁gratified +- symmetri +- ▁clash +- ▁milestone +- hundertfünf +- ▁Doctor +- ლებ +- ▁camí +- عيد +- 鸿 +- ▁disponible +- ▁butterfly +- ▁teenager +- ▁carlyle +- ▁Mereka +- ▁хэв +- ступил +- とみられています +- entendre +- 棘 +- ▁enabling +- ▁faltered +- ▁bizarre +- ▁nodding +- präg +- 重症 +- ▁cartoon +- ▁hareket +- とみられます +- ▁Republik +- பாடு +- ▁width +- ▁риск +- ▁Runde +- ẫ +- ڈ +- ▁zugänglich +- ျ +- 詩 +- مجتمع +- ゲット +- 散步 +- dämm +- ▁eigenlijk +- 菓子 +- 飛んで +- 级别 +- 厌恶 +- 齿 +- ▁ingenuity +- ▁последний +- ▁руководств +- ▁NASA +- ▁muffled +- ▁theoretical +- ▁நிறுவ +- 女孩儿 +- ▁shilling +- ▁ethnic +- ▁сделан +- 合わせた +- క్ +- счастлив +- 茅 +- ▁Indonesia +- ▁مدرسه +- ▁정말 +- ▁Fehl +- 豪華 +- ▁chestnut +- 伙计们 +- が止ま +- 新宿 +- ▁பெரு +- 了解更多 +- ▁серьезно +- 績 +- 面试 +- 结局 +- pflege +- Á +- թ +- ▁crouched +- フルーツ +- 최 +- ▁espacio +- خصوص +- ▁eindelijk +- 悲剧 +- zauber +- physiologi +- ▁подготов +- ▁лепш +- 一个例子 +- 远处 +- 合計 +- చ్చ +- 赎 +- ຢ +- ▁ecstasy +- ▁نمایش +- ӹн +- 実態 +- rechnen +- менять +- ▁новых +- 竟 +- ▁landlady +- 繊 +- ▁gutanga +- ▁ominous +- ▁voulu +- 証言 +- 演示 +- ▁junk +- ▁integrate +- 隠れ +- ▁Außer +- ▁Entschuldigung +- ▁Kommissar +- 扫描 +- ▁hoofs +- wäss +- اگه +- ▁лица +- 嘿 +- ▁merchandise +- ▁செயல் +- ▁elkander +- ▁spüren +- ▁clown +- ▁важна +- ▁calculate +- 収入 +- 続けている +- 灵活 +- ▁தனி +- ▁fügte +- ▁взаимо +- ▁갑자기 +- ▁Republikaner +- ▁infidel +- ▁desolation +- ▁längst +- 坚强 +- ▁cicl +- 行きたい +- lehrer +- ▁literal +- 韓 +- 非常有趣 +- ▁marcel +- ▁Intelligenz +- 冈 +- ▁пошли +- 气候变化 +- が必要だ +- ▁странно +- με +- 种族主义 +- の疑いで +- ▁yahweh +- 斥 +- 至关重要 +- ▁Kämpfe +- ▁detained +- ▁هنر +- ▁sovint +- ▁syllable +- ▁mittlere +- schalt +- aufnahme +- トルコ +- ▁цели +- ▁judith +- ▁spacious +- 海滩 +- کۆ +- ▁yazı +- ▁भए +- ▁Minnesota +- ▁использовать +- ▁languid +- ▁آورد +- ▁reiterate +- ▁Patrick +- ▁убива +- ▁توجه +- Europa +- ▁تواند +- 崎さん +- ▁Richtlinie +- ▁kibazo +- ▁potenziell +- ▁deferred +- ▁பிறகு +- ނެ +- ▁usurp +- 羽毛 +- schwor +- نوشت +- ▁appoint +- ▁sancho +- ▁குழந்தை +- ▁Үүний +- ▁línea +- ▁Studium +- ▁Ireland +- ▁Modern +- 病床 +- льныя +- ▁кровь +- 査 +- 心疼 +- 렸 +- ▁يوجد +- owski +- ▁konkret +- ▁பற்றி +- ▁categori +- ▁نقش +- дзь +- 炼 +- ▁நிகழ் +- ▁indicating +- ▁Gegenteil +- ▁Emily +- ▁война +- 行われている +- ▁presidential +- ▁Little +- கொள் +- 肤 +- ▁Existenz +- 拜访 +- ▁antony +- ▁Samuel +- 見つかり +- ▁může +- 垒 +- 慷慨 +- ▁Ernährung +- ▁displeasure +- ッグ +- 捉 +- ▁говорим +- ▁değiştir +- 必然 +- ▁condicion +- ▁welsh +- 拜拜 +- 失业 +- ▁sparrow +- アピール +- ▁sociedad +- ދަ +- ދު +- ▁사람들이 +- ▁mercado +- 見つけ +- 文書 +- ▁Auftrag +- ▁Annahme +- ▁Coast +- ներ +- 霜 +- ▁boyunca +- 時半ごろ +- ▁asteroid +- ▁коротк +- ▁قانون +- ிற்கு +- nshingano +- ▁musí +- 边境 +- ▁riddle +- 伍 +- 謝 +- ▁Illinois +- ▁دانشگاه +- schließt +- ▁पु +- イラン +- ▁ĉu +- ミング +- ジョー +- ▁comunidad +- ▁companionship +- 轻易 +- qqim +- ▁portray +- ▁үнэ +- ёшь +- 好奇心 +- になりたい +- 虾 +- bitekerezo +- ▁Pēc +- ▁antiquity +- ▁científic +- 淋 +- アルバム +- ▁acontece +- おととし +- 師匠 +- gemeinschaft +- 看一看 +- きょう午前 +- 抜いて +- 谢谢大家 +- ▁bırak +- versorgung +- ▁Konferenz +- GPS +- ▁혼자 +- ▁gracias +- ▁athenian +- ▁persoon +- ▁inaugur +- ▁менш +- 群众 +- ▁northeast +- ▁vorgeschlagen +- 雨が降って +- ▁patriotism +- 档案 +- luğu +- ໃຫ້ +- ▁defiant +- ▁malicious +- ▁Kansas +- ▁chaplain +- 残酷 +- ▁bertram +- 交付 +- 消化 +- ▁Felsen +- ▁bathroom +- おじさん +- ▁байр +- ▁palju +- ▁Alpha +- ▁Katastrophe +- ▁Respekt +- ▁обязан +- ツイッター +- ▁oyna +- ▁غذا +- ▁أفضل +- ▁لدينا +- filtr +- 层次 +- 主导 +- 속 +- ጥ +- ▁sophisticated +- ▁буквально +- ▁façana +- 侮辱 +- ▁дороги +- 前两天 +- 将棋 +- ▁너는 +- ريخ +- ුරු +- 労 +- 戴安娜 +- 逝 +- ▁سیستم +- ̃ +- 剥夺 +- ▁ensued +- 这是一件 +- schwimm +- 是不可能的 +- 辞め +- ▁pueda +- església +- süchtig +- ▁birçok +- 出租车 +- 귀 +- 麗 +- 적으로 +- 注射 +- schränkung +- ▁snare +- ▁skate +- ▁retard +- 一生懸命 +- ▁ängstlich +- ▁vegada +- ডা +- あるんですか +- 起訴 +- räte +- 徽 +- ▁Posteriorment +- ▁nyinshi +- ▁trabalho +- 코 +- ▁చె +- ▁Больш +- ロンドン +- ▁verwandelt +- ▁bagian +- 設計 +- zugreifen +- ▁பழ +- 语音 +- ▁naples +- 世の中 +- 括 +- 嚟 +- ఫ +- 挖掘 +- 世帯 +- ▁scottish +- 見直し +- ركز +- 現れた +- ▁Stich +- ▁refinement +- ▁keith +- 老虎 +- бега +- ▁temporarily +- コンピュータ +- 腸 +- 昆虫 +- アート +- '1.5' +- 維 +- ▁straightforward +- ঐ +- 凌晨 +- 繁殖 +- ধি +- beamte +- ▁руках +- ▁задерж +- ▁остава +- 積極的に +- 匆 +- ▁Interessant +- ▁законопроект +- liśmy +- ▁cantonada +- ▁مرکز +- 杭州 +- ▁verurteilt +- 噴火 +- ▁адказ +- ▁Nacional +- expliqu +- ▁rebuild +- people +- ıyordu +- 눈 +- 설 +- キッチン +- ▁لطفاً +- ▁decât +- ▁일본 +- ▁prodigious +- ▁Jacob +- 散歩 +- 传奇 +- ▁klassische +- ▁существу +- ▁форма +- 釣り +- ▁подпис +- 风暴 +- ▁Opera +- ▁институт +- ическом +- ▁michigan +- バッグ +- ▁clinton +- それこそ +- весел +- 商業 +- ハンド +- ipps +- ▁spouse +- ▁trustee +- ▁площад +- ▁uzata +- صاب +- geheimnis +- 披 +- ച +- ▁sorgfältig +- 현 +- แต่ +- ▁discreet +- chirurg +- といわれる +- ുന്ന +- ▁возраст +- ▁birkaç +- schirm +- 环节 +- ▁intact +- ▁Então +- طبق +- 亨 +- forderung +- 階段 +- 教导 +- auftrag +- kümme +- 所需的 +- ▁Jimmy +- ▁kümmert +- 대로 +- ▁aquellos +- እ +- ▁susceptible +- 痕迹 +- ▁fuerte +- トレー +- ▁invece +- ложения +- 静岡 +- kündigt +- ▁hoffentlich +- ▁audible +- 학년 +- ▁Finanzierung +- າມ +- ▁simbol +- rätt +- ாலும் +- ▁سخت +- ▁ĉefa +- ▁veröffentlichen +- ▁медицин +- ▁دوباره +- アスリート +- ▁건데 +- ordination +- あぁ +- ▁utawa +- 判明 +- マウンド +- 木曜日 +- PCR +- ▁produzieren +- ▁tactics +- 可能性もある +- ிங் +- هدف +- artista +- 違った +- 弊 +- ▁bijzonder +- ▁nghệ +- ▁boulder +- 逃避 +- 减轻 +- 唉呀 +- ▁Einfach +- ▁Hütte +- ▁Feli +- ▁Charlie +- 反発 +- ▁navigate +- 極めて +- ▁дожд +- ▁забыл +- ▁bourgeois +- ▁steadfast +- 졌 +- ሆ +- ▁voulez +- ▁силы +- فروش +- ▁Chief +- 想一想 +- າກ +- 항 +- 芸術 +- ▁सु +- ▁implicit +- ▁duncan +- ▁واحدة +- ▁humming +- muster +- 装备 +- ▁membership +- کشید +- ▁bequem +- ▁vieille +- ▁begleitet +- ▁empfind +- ▁果啲 +- ▁impulsive +- ▁அரச +- ▁позвонил +- ▁düster +- ▁bunlar +- ▁Offizier +- ▁دغه +- 贫穷 +- ▁করতে +- 多长时间 +- 赞美 +- ▁boost +- باد +- ▁успел +- 没见过 +- 変わらない +- 肾 +- ▁industrious +- ▁конфликт +- ▁беларускай +- ▁carrière +- ▁zgod +- ▁renounce +- 股份 +- глянул +- faktor +- 臨時 +- 拜托 +- building +- ▁demselben +- ▁Spiegel +- ▁enchanted +- ▁그럴 +- 抚养 +- ▁아예 +- ▁conserve +- 姐夫 +- ▁erwähnen +- ▁influential +- ▁первого +- ▁кандидат +- vermögen +- ▁penitent +- 受益 +- ▁wiederholen +- atangiye +- க்காக +- 面积 +- ▁aconsegui +- ▁columbus +- ▁verpflichtet +- 貫 +- ▁tournament +- 令人惊讶 +- ▁hinterlassen +- ▁servicio +- ▁словно +- 地板上 +- ىرى +- シート +- キーウ +- 训 +- ਜ +- ▁Ayrıca +- ▁bình +- ▁resembling +- ▁birlikte +- ▁আমার +- ▁vienna +- ▁retiring +- ▁Yagize +- 贵族 +- ▁mnoh +- 宿舍 +- 成为一名 +- 投降 +- ▁Zahn +- ▁Ня +- عيش +- ▁fritz +- крыл +- ▁execu +- 乏 +- 瓷 +- ס +- ▁gobierno +- ▁westminster +- ▁Усё +- 책 +- ▁temporada +- 隙 +- 昇 +- ಾಗ +- ▁мужик +- ლე +- լ +- ▁llavors +- シュー +- 教師 +- ランチ +- ▁тэг +- сурс +- 早已 +- ▁Bridge +- ▁geleistet +- ▁mỗi +- 水準 +- ▁되지 +- ▁triangle +- ▁fuori +- 玛丽拉 +- изова +- ▁Dichter +- 異常 +- 炸弹 +- ▁elevator +- ▁gateway +- ルーム +- 观念 +- ▁signify +- ▁distraction +- 推广 +- equilibri +- ▁wunderschön +- 哑 +- 弗兰克 +- 谣 +- ▁مكان +- 疑惑 +- ▁Bürgermeister +- ▁beetle +- রাজ +- ことはない +- verbrauch +- 風景 +- ▁kaldı +- zusammenarbeiten +- ▁appelé +- kandida +- ▁compost +- ▁заўсёды +- ▁степени +- ▁erstaunt +- ▁tödlich +- 对他来说 +- ▁seguro +- ッカー +- 怜 +- を対象に +- τι +- झ +- ▁requiring +- indirimbo +- ▁gufata +- förmig +- ▁thrice +- ▁piteous +- espai +- 百六十 +- 背叛 +- ▁برخی +- チェン +- ▁Prinz +- 暴風 +- ळ +- ▁развития +- ▁хүрэ +- ▁Firma +- 报仇 +- ▁chuckled +- ▁sacrifi +- されていない +- お疲れさま +- ▁Experten +- ▁республик +- ▁peninsula +- 乗用車 +- ▁좋아하 +- ▁parliamentary +- ල්ල +- ாமல் +- 简短 +- ▁forfeit +- ङ +- پذیر +- 畳 +- 冷蔵庫 +- ▁rôle +- بناء +- ▁Summe +- ▁любим +- ▁spars +- ▁konkur +- ើ +- ែ +- ੋ +- ▁Així +- ▁lấy +- ▁않았 +- 汀 +- డి +- 打败 +- ▁unendlich +- ▁гости +- ▁сабе +- ▁tehnolo +- بێت +- ▁posibil +- 揮 +- 逢 +- ▁chuyển +- 眞 +- ▁Kennedy +- ▁miliard +- ▁эфир +- ọ́ +- ▁метод +- なりません +- schäf +- ▁роль +- 这项工作 +- ېرى +- 虐 +- 恭 +- ▁Ukraine +- ▁gratification +- ▁सं +- ěl +- 另一件事 +- ▁teilweise +- 新潟 +- 並べ +- こいつ +- ġ +- ▁কিছু +- 태 +- ▁perchance +- グッズ +- ▁transplant +- ▁impartial +- 入ってる +- 小さく +- んねん +- 的一件事是 +- ▁lehnte +- ▁distingu +- ▁metropolitan +- 처럼 +- ▁gegessen +- 呈 +- ▁trouvé +- ▁recurring +- お菓子 +- ▁ຫຍັງ +- ホワイト +- 담 +- 兜 +- આ +- 阪 +- 塌 +- 锡 +- ढ +- २ +- 扛 +- ỳ +- 雌 +- 忽 +- 偿 +- И +- 捧 +- 釈 +- 滨 +- ሄ +- 娇 +- ូ +- 铭 +- 滩 +- ャ +- ύ +- ޯ +- 斌 +- 절 +- 종 +- 託 +- ޫ +- 缶 +- 崖 +- ദ +- 潰 +- 緊 +- ɗ +- 蔓 +- 仑 +- ஈ +- 브 +- ৎ +- 厦 +- 扰 +- អ +- 벌 +- 증 +- ২ +- ਵ +- 骚 +- 吨 +- 歓 +- 竖 +- 址 +- 瞥 +- ള +- 渋 +- 挪 +- 暇 +- 掛 +- յ +- 铅 +- 钓 +- 橡 +- 拡 +- 狐 +- 줬 +- 출 +- ٽ +- এ +- 柿 +- 络 +- 乙 +- ቃ +- 幾 +- 亜 +- 嗅 +- 咕 +- 喔 +- 畜 +- 茄 +- 글 +- ጠ +- Б +- 學 +- 플 +- 勉 +- 咸 +- 锤 +- ð +- 건 +- 능 +- ఉ +- 歧 +- 叨 +- ҿ +- 烫 +- 坤 +- 芦 +- $ +- 監 +- គ +- 践 +- 침 +- 蟹 +- 唠 +- 합 +- ຜ +- 堤 +- 肘 +- 宪 +- 임 +- 梳 +- 霞 +- 薛 +- 병 +- 순 +- 攀 +- 驴 +- 灣 +- 甩 +- 邊 +- 妄 +- 론 +- 軸 +- 메 +- 脈 +- 튼 +- 蓉 +- 赐 +- ਮ +- 葱 +- 魅 +- 盼 +- ံ +- 秃 +- 甭 +- է +- 란 +- ぺ +- ጣ +- ৱ +- 窟 +- 靖 +- 颈 +- 壶 +- 꾸 +- 앞 +- ኛ +- 浆 +- ঙ +- 仆 +- Д +- 叉 +- 亀 +- 猴 +- 茎 +- 삼 +- 嬉 +- 澳 +- 颁 +- 笛 +- 커 +- 稻 +- 엔 +- 筛 +- 魁 +- 閣 +- 渣 +- 蹴 +- 搏 +- ੰ +- 肆 +- ں +- ਆ +- 蛙 +- 磊 +- ସ +- 點 +- 汰 +- 棟 +- 陕 +- 憎 +- 绣 +- 歪 +- 頻 +- 趟 +- 岂 +- О +- ވ +- 胞 +- ష +- 표 +- 噴 +- 堕 +- 圏 +- 咳 +- 淑 +- 庸 +- 疚 +- 嘎 +- ג +- 滝 +- 譲 +- 炫 +- ପ +- 蓬 +- 绵 +- 谎 +- ዳ +- 碍 +- 巷 +- 驰 +- ኔ +- ጋ +- ξ +- 평 +- ű +- ါ +- 詳 +- 圭 +- 顽 +- 蹦 +- 枉 +- 頑 +- 慣 +- 鋭 +- 鲸 +- 栖 +- 姫 +- 嫩 +- 큰 +- 渊 +- 掠 +- ಳ +- ਂ +- 衔 +- 憋 +- 癖 +- 顧 +- 확 +- 얼 +- 宰 +- 厨 +- ડ +- բ +- ဆ +- 颖 +- ੱ +- 碌 +- 駐 +- 覇 +- 禅 +- 肿 +- 乞 +- 們 +- 듣 +- ਪ +- 匿 +- 梗 +- 幹 +- ޖ +- 俘 +- 접 +- 彪 +- 醋 +- 阅 +- 紋 +- ሉ +- ୁ +- 國 +- 袍 +- 癒 +- ° +- 夷 +- 腻 +- Î +- 愣 +- 堅 +- 賢 +- 沾 +- 贬 +- 绸 +- 먼 +- 맛 +- 灿 +- 끝 +- 吟 +- ണ +- 駆 +- 镖 +- 활 +- 妆 +- 硕 +- ჯ +- 硅 +- 몰 +- 纷 +- 彫 +- 渗 +- 陋 +- 賄 +- 陀 +- 셨 +- – +- ჰ +- 奎 +- 杏 +- ڑ +- ମ +- 译 +- ט +- 盾 +- 盔 +- 贞 +- 溺 +- 坪 +- 잠 +- 육 +- 쁘 +- 竭 +- 佢 +- 辽 +- 袜 +- 栈 +- ሎ +- ፈ +- ೊ +- Í +- ፍ +- 詹 +- 怎 +- 仿 +- 婶 +- 循 +- 백 +- 馅 +- 橙 +- 徹 +- 鍛 +- ሱ +- 儒 +- 恕 +- 耸 +- ೂ +- 淳 +- 翌 +- 餌 +- 庇 +- 捞 +- 斐 +- 膏 +- ۵ +- 럽 +- 隅 +- 啪 +- 辐 +- 熙 +- ඔ +- 紛 +- 捏 +- 떨 +- 손 +- 駒 +- 愚 +- 椎 +- 朽 +- ̉ +- 踪 +- ዚ +- 帘 +- 嘟 +- 颊 +- 惧 +- ኮ +- 藩 +- 筑 +- 廉 +- એ +- ሳ +- 葵 +- 慕 +- 泛 +- 窒 +- ધ +- 랬 +- 昧 +- 족 +- 屿 +- 죽 +- 팔 +- ယ +- 粥 +- ዋ +- 餅 +- 討 +- 廣 +- 붙 +- 씨 +- 犹 +- 叮 +- 萩 +- 歹 +- 咽 +- 湧 +- 侣 +- 蝶 +- 捆 +- В +- ڻ +- శ +- ખ +- 懲 +- ؛ +- 哩 +- 尹 +- 웃 +- ỷ +- 망 +- 즈 +- 贱 +- 瞅 +- 斎 +- П +- ሪ +- 졸 +- 貯 +- 郵 +- 频 +- 囚 +- 鲨 +- 凳 +- 缸 +- 짝 +- ۀ +- ɓ +- 뭘 +- 홍 +- 옷 +- 쳐 +- 참 +- 痒 +- 혼 +- 眨 +- 揉 +- Ғ +- 테 +- ծ +- 咒 +- 绒 +- 厘 +- 변 +- 십 +- 厢 +- 琐 +- ਼ +- ẳ +- 缴 +- 驼 +- ዲ +- 嵐 +- 礁 +- 粹 +- 독 +- 俳 +- 妞 +- 쉬 +- 毙 +- ዛ +- 岐 +- 闇 +- 肮 +- ـ +- 債 +- 盯 +- 銅 +- 卦 +- 莹 +- ။ +- ቅ +- 樱 +- 笠 +- 薯 +- 醇 +- 栓 +- ़ +- 崛 +- ካ +- 刹 +- 奨 +- 迅 +- њ +- җ +- 릴 +- 투 +- 谭 +- 俯 +- 帳 +- 帐 +- 瑶 +- 떡 +- ោ +- 溝 +- ೀ +- 谍 +- 습 +- 噩 +- ҷ +- ੁ +- 淀 +- 勺 +- 簿 +- 曝 +- ւ +- 饺 +- 棺 +- 斩 +- ። +- 貝 +- 鼎 +- Ё +- 뒤 +- Ŝ +- 별 +- ိ +- 殻 +- 舗 +- 婿 +- 韵 +- ੈ +- 충 +- 酔 +- 繋 +- 剛 +- 愤 +- 韧 +- 웠 +- ಣ +- ฐ +- 哺 +- 哼 +- ඟ +- 嗡 +- 緒 +- 姬 +- 慶 +- 匈 +- 懐 +- ഷ +- 挠 +- 氓 +- இ +- 桩 +- ۍ +- ៅ +- 纲 +- 妾 +- 軌 +- 渴 +- 聘 +- ם +- 衍 +- 랐 +- ŷ +- 奄 +- 酋 +- ူ +- ହ +- 睹 +- 拌 +- ຶ +- 绪 +- 瘫 +- 濱 +- 隧 +- 瞄 +- ൂ +- 耿 +- ൻ +- 吱 +- 喇 +- ഗ +- շ +- 嘻 +- ಷ +- ಚ +- 霧 +- 넣 +- 怠 +- 杖 +- 錦 +- 屠 +- 빼 +- 鞠 +- 眺 +- 藻 +- 栅 +- 矛 +- 冊 +- ထ +- 聆 +- ശ +- 怡 +- 宵 +- 악 +- Ы +- 嚷 +- 패 +- ァ +- 勋 +- 언 +- 慨 +- 赦 +- 萍 +- ռ +- 막 +- አ +- ζ +- 豁 +- 휴 +- 肚 +- 捣 +- ٿ +- 셔 +- 昨 +- 皓 +- 喃 +- എ +- 喉 +- 貿 +- 趴 +- 迭 +- 謀 +- 孩 +- ቤ +- 薦 +- 粛 +- 哒 +- ീ +- 趾 +- 酿 +- 섯 +- 痘 +- 茜 +- 蚀 +- 菇 +- எ +- 躬 +- 誌 +- 佬 +- ¿ +- 俵 +- ċ +- 꺼 +- 渐 +- 卒 +- 鸽 +- 發 +- ళ +- ហ +- 亩 +- 唇 +- 壇 +- ಶ +- 蝇 +- ચ +- 蜀 +- 隻 +- 俱 +- 泌 +- 剿 +- 磕 +- ቸ +- அ +- 衬 +- 처 +- 垮 +- 琉 +- 墅 +- 쯤 +- 畀 +- 険 +- 扁 +- 橱 +- 창 +- 咁 +- 婉 +- 특 +- 沒 +- 倫 +- 噜 +- 钦 +- 傍 +- ӷ +- 嗓 +- 枫 +- 답 +- ਗ +- 茸 +- 兑 +- 攒 +- צ +- 惰 +- 림 +- 숙 +- 榄 +- 氢 +- 喧 +- 览 +- 澜 +- 羅 +- 忏 +- 憩 +- 拱 +- 轿 +- Ú +- 슬 +- 倩 +- ਅ +- 剔 +- 距 +- 禀 +- 揍 +- ޒ +- 嵌 +- 瞬 +- 憲 +- 蹭 +- 凹 +- 판 +- ィ +- ९ +- 凸 +- 橘 +- 苔 +- 蕉 +- 浇 +- ৯ +- 獄 +- 穂 +- „ +- 贸 +- ʼ +- 읽 +- 聪 +- 료 +- 옆 +- 乜 +- 골 +- 對 +- 谨 +- 斧 +- 켜 +- 縄 +- 菱 +- '#' +- 吼 +- 허 +- 嗽 +- 蹄 +- 拇 +- ಜ +- 該 +- 텐 +- 북 +- 髓 +- ਬ +- 浄 +- 荘 +- Ô +- 죠 +- ះ +- 栃 +- 몸 +- 瓣 +- 莓 +- 굴 +- 塾 +- 遵 +- ן +- ۹ +- 甸 +- 娟 +- 蠢 +- 함 +- 獣 +- 缅 +- ೋ +- 틀 +- 각 +- 啫 +- 屯 +- 經 +- Г +- 餃 +- ੂ +- 療 +- 绍 +- 槛 +- ჭ +- ధ +- 겼 +- 曦 +- 涅 +- 涡 +- 鄙 +- 霖 +- 麟 +- ભ +- 冥 +- 谅 +- 희 +- 饲 +- 潇 +- 飽 +- 骆 +- 哉 +- ఒ +- ઓ +- 萎 +- 膚 +- 斉 +- 皂 +- 屑 +- 悯 +- 衫 +- 鉢 +- 축 +- ሞ +- 며 +- 법 +- 芙 +- 疤 +- 帜 +- 罕 +- 蝠 +- + +- 향 +- 寇 +- 丫 +- 힘 +- 朋 +- 拙 +- 荆 +- ஆ +- 늦 +- 황 +- 撇 +- 택 +- 戳 +- 랜 +- 撰 +- 璃 +- 釜 +- 혀 +- 盏 +- ォ +- 択 +- 沛 +- 臀 +- 莽 +- ሀ +- 酮 +- 록 +- 诵 +- 绊 +- 婪 +- ૂ +- 硫 +- 품 +- 碁 +- 郝 +- 匀 +- 颇 +- 聋 +- 賠 +- 删 +- 阐 +- ណ +- 妊 +- Х +- 辟 +- 丞 +- 牡 +- 석 +- 익 +- 噬 +- 拟 +- 瞪 +- 刈 +- 坝 +- 嵩 +- ۳ +- 욕 +- 详 +- ሩ +- 檬 +- 媚 +- 虏 +- 粪 +- 닐 +- ҽ +- 蜗 +- 惦 +- ൾ +- 鐘 +- 淮 +- զ +- 베 +- 铸 +- 綿 +- 缉 +- 蘑 +- 垄 +- 粤 +- 슷 +- 풀 +- 맨 +- 骸 +- ٬ +- 唬 +- 绞 +- 블 +- 婴 +- ധ +- 蒲 +- 넌 +- ួ +- У +- 综 +- 塊 +- 择 +- խ +- 膳 +- 蒜 +- 蝙 +- ਇ +- 嚼 +- 榴 +- 曽 +- 때 +- 枢 +- 於 +- 偵 +- 涩 +- ആ +- 诡 +- 鳄 +- 矩 +- 溯 +- 贿 +- 검 +- 쓸 +- 칠 +- 厉 +- 責 +- 靓 +- 송 +- 炖 +- 疹 +- 肃 +- 咧 +- ଲ +- 旱 +- ඹ +- 魄 +- 哋 +- ○ +- 션 +- 꼬 +- ञ +- 婢 +- 캐 +- 烘 +- 苛 +- ջ +- ខ +- ਟ +- 肇 +- 栽 +- 熄 +- 馨 +- ળ +- 紗 +- 채 +- 환 +- 窄 +- 禄 +- 탈 +- 권 +- 腥 +- 噌 +- 祐 +- 妓 +- ୟ +- 訓 +- 淫 +- 懦 +- 昊 +- 磯 +- 糕 +- 贡 +- 篷 +- ሺ +- 捍 +- ങ +- 광 +- 铲 +- ۴ +- 墟 +- 粧 +- 娥 +- ৫ +- ဖ +- 祁 +- 忆 +- 啸 +- 〈 +- ෘ +- 懈 +- ಇ +- 拧 +- 凿 +- 톡 +- չ +- 녀 +- ڤ +- 김 +- 汐 +- 糧 +- 谓 +- 瀑 +- ޝ +- 寓 +- ਣ +- 扒 +- 衅 +- ఈ +- ജ +- ۾ +- 剃 +- 腫 +- 勿 +- ញ +- 奕 +- 깨 +- 卜 +- 꼭 +- ඕ +- 砕 +- 澡 +- 嚣 +- 閥 +- Ĝ +- 邱 +- 簡 +- 飙 +- ৩ +- 芭 +- 떠 +- 庶 +- × +- 蛛 +- 麼 +- औ +- 째 +- 철 +- 锯 +- ぃ +- 鉱 +- 嗰 +- 鹤 +- 혹 +- 嘶 +- 舆 +- 穀 +- 冗 +- 诫 +- 恤 +- 箸 +- 鎮 +- ז +- ᱟ +- 巩 +- 彬 +- 嬢 +- 瘟 +- 诀 +- 埔 +- 砰 +- 舔 +- ષ +- 밤 +- 詰 +- 顕 +- ዘ +- 煽 +- 綾 +- 窥 +- 絆 +- 움 +- 宛 +- 撼 +- ಧ +- 咔 +- 與 +- 陳 +- 芹 +- 陡 +- 掷 +- 廓 +- 逻 +- ബ +- 唆 +- 寧 +- 怯 +- 鹦 +- 裹 +- 翰 +- ቶ +- ෞ +- 벽 +- 奮 +- 너 +- 齋 +- 승 +- ዎ +- ኩ +- 뽑 +- ഇ +- 讳 +- ភ +- 拽 +- ଦ +- 못 +- 彤 +- 當 +- 퍼 +- 缪 +- 唾 +- 渦 +- 跤 +- ዝ +- 掐 +- 峭 +- 梭 +- ށ +- 兮 +- 窑 +- 應 +- 屉 +- ঢ +- 伽 +- џ +- 菩 +- ฮ +- 潤 +- 辑 +- ៉ +- 께 +- 땐 +- 鈴 +- 暂 +- 廖 +- ॉ +- ഒ +- 屡 +- 峻 +- 鹉 +- 熏 +- 鞍 +- 呻 +- 雯 +- 곳 +- 搂 +- 蜡 +- ฉ +- ৪ +- 깔 +- 說 +- 헤 +- 缆 +- 涯 +- ធ +- 掀 +- 孽 +- ഹ +- 奠 +- 련 +- 짐 +- 樊 +- 粋 +- 衙 +- ҕ +- 녁 +- 叭 +- ڊ +- 멀 +- 큼 +- 詠 +- 劈 +- 높 +- আ +- 蕨 +- 掃 +- భ +- 驯 +- 篠 +- 뜨 +- 痪 +- 窮 +- 騎 +- ຟ +- ሮ +- Ř +- 촌 +- 歉 +- ణ +- ฝ +- 잔 +- 沦 +- 绽 +- Τ +- 樣 +- 暢 +- 폰 +- 窍 +- 條 +- 봉 +- 泵 +- ൽ +- 빨 +- 암 +- 纺 +- 寛 +- 悉 +- 潭 +- ୋ +- 焚 +- 畔 +- 嘲 +- 捂 +- 껴 +- 輔 +- 棕 +- 饥 +- ថ +- 籠 +- ဲ +- 佣 +- ଏ +- ڏ +- 泻 +- 柠 +- ഞ +- 류 +- ፣ +- ƙ +- ۽ +- 钞 +- 呜 +- 葫 +- ។ +- 嶽 +- ቢ +- 濁 +- 仨 +- ӣ +- 飓 +- ഭ +- 沐 +- ಆ +- 邀 +- 赁 +- 冕 +- 哗 +- 禽 +- 酶 +- 侃 +- 锈 +- 呪 +- 熔 +- 揚 +- 奢 +- Э +- 趋 +- 嗦 +- ផ +- 衝 +- 窖 +- 阀 +- 扳 +- 摂 +- 응 +- ඊ +- 쉽 +- 筷 +- 妍 +- ओ +- 斬 +- 肋 +- 클 +- 胺 +- 亵 +- 叽 +- 咎 +- 桨 +- ሥ +- 앉 +- 潔 +- ዬ +- 錯 +- 극 +- 宙 +- 禾 +- ৮ +- 궁 +- 넷 +- 丐 +- 睦 +- ଣ +- 끄 +- 딩 +- ફ +- 赋 +- 蘭 +- ۸ +- 논 +- 徊 +- 徘 +- Ш +- 琦 +- 빌 +- 颤 +- 颂 +- 착 +- 氨 +- ։ +- 썼 +- 擅 +- ‐ +- ぉ +- 蓮 +- ৬ +- 쿠 +- Κ +- 釣 +- 捅 +-  +- 拢 +- 鵬 +- 叱 +- ३ +- • +- 嚎 +- 싼 +- ഴ +- 苑 +- 놨 +- 啓 +- 冨 +- 嘢 +- 鷲 +- ଇ +- 킨 +- 邵 +- 狮 +- 燥 +- ޕ +- ಭ +- 犀 +- 馒 +- 癫 +- 沫 +- 늘 +- 瑜 +- љ +- 禧 +- 딸 +- 瘤 +- 咖 +- 抒 +- 棠 +- ५ +- ቱ +- 噂 +- 舵 +- 곤 +- 凄 +- 抠 +- Ņ +- ሌ +- 拷 +- 蓋 +- 寮 +- 斋 +- ४ +- ഉ +- 걱 +- 呦 +- ሬ +- 俭 +- 蚕 +- 揽 +- 컴 +- 舶 +- 맥 +- 焕 +- 倭 +- 睿 +- 瞳 +- 鹊 +- ಎ +- ಥ +- 辻 +- ☎ +- 铛 +- 弔 +- 락 +- 兩 +- 钙 +- 崽 +- Π +- 钝 +- 낫 +- 밀 +- 銘 +- 縛 +- 殊 +- 藍 +- 俞 +- 惩 +- 刁 +- 튜 +- 褪 +- 脾 +- 谤 +- 跋 +- ८ +- 쌤 +- 획 +- Ф +- 呕 +- 雁 +- 躯 +- 迦 +- 恳 +- 啱 +- 梵 +- 關 +- 孵 +- 晏 +- 鴨 +- ਉ +- 棱 +- 疎 +- 恍 +- 匂 +- 咀 +- 濒 +- 渲 +- 绷 +- 냈 +- 淆 +- 胰 +- ሻ +- 實 +- 팀 +- 坟 +- 龚 +- 쁜 +- 谊 +- 溃 +- ћ +- 髦 +- 诽 +- 拎 +- 醤 +- 曇 +- 阎 +- 찾 +- 娩 +- ଥ +- ሲ +- 渺 +- 骼 +- 蘇 +- ६ +- 啃 +- 揣 +- 椰 +- 嗑 +- 弧 +- 懵 +- 찌 +- 笘 +- 辙 +- 渎 +- 苟 +- ۷ +- ቆ +- 빵 +- ଗ +- 汹 +- ۶ +- 檐 +- 喵 +- 騰 +- 窦 +- 歼 +- 葩 +- 범 +- Ș +- 억 +- 隘 +- 襟 +- 逍 +- 攞 +- 櫻 +- ቻ +- 锚 +- 赃 +- 喀 +- 璐 +- 蔼 +- ဘ +- 區 +- 範 +- 绰 +- 沪 +- 碟 +- 沥 +- ଟ +- 딴 +- 쩌 +- ኧ +- ७ +- ਖ +- 胚 +- 篱 +- 幡 +- 嶺 +- 験 +- 掺 +- 蚁 +- ৭ +- ਚ +- 篤 +- 暫 +- 聡 +- 鷹 +- 茉 +- 氟 +- 叩 +- 擁 +- 掰 +- 嗎 +- 乍 +- Ṭ +- 溅 +- 煲 +- Ở +- உ +- 핑 +- 旷 +- 烬 +- 睫 +- 굉 +- 탄 +- 沧 +- 跷 +- 剰 +- 런 +- ๊ +- ઉ +- 岔 +- 枣 +- 渕 +- 扼 +- 咏 +- 佟 +- Ā +- 悚 +- 灶 +- ẵ +- 靳 +- Ο +- 醸 +- 褐 +- 愉 +- 媳 +- 筝 +- 觅 +- 彰 +- 逮 +- 逞 +- 矫 +- 殷 +- 센 +- 盎 +- ঃ +- 巅 +- 聽 +- 澈 +- 亞 +- 姗 +- 赂 +- 鑫 +- 聂 +- 闸 +- Ä +- 퇴 +- 螃 +- 冉 +- 簧 +- 疟 +- 갑 +- З +- 倔 +- 绎 +- 翅 +- 搵 +- 僻 +- 眷 +- 藓 +- ଅ +- ኑ +- Ǧ +- ௌ +- ଯ +- 萝 +- İ +- 芥 +- ٻ +- 壕 +- 謡 +- 媽 +- 긍 +- ձ +- 褶 +- 鉛 +- 첫 +- 惶 +- 笹 +- 徙 +- 搾 +- Ҳ +- 걍 +- 膀 +- 揪 +- ໊ +- 逾 +- 왕 +- ഡ +- 렌 +- 씬 +- 悖 +- 痩 +- 裡 +- 揃 +- 挚 +- 娄 +- 眩 +- 氣 +- ਈ +- ጀ +- 膛 +- ଜ +- ੍ +- ፋ +- 甥 +- 驸 +- 荧 +- 雞 +- 灸 +- 焉 +- 琅 +- 煌 +- 唧 +- 戮 +- 뛰 +- 쩔 +- 팅 +- 춰 +- 骏 +- 凛 +- 볶 +- 欄 +- 镶 +- 墜 +- 猶 +- 械 +- 酌 +- Α +- 듯 +- 瑛 +- 滕 +- 챙 +- 镯 +- 蠕 +- 丙 +- 灼 +- 訟 +- 鄂 +- 馈 +- 柬 +- 黏 +- 轶 +- 豫 +- 氯 +- 幫 +- 喚 +- 惚 +- ઈ +- 渠 +- 镀 +- ୀ +- 漱 +- Ý +- ӯ +- 皈 +- 咗 +- 莺 +- ឹ +- 柵 +- 碱 +- ጊ +- 徑 +- 隋 +- 啰 +- ሊ +- 祠 +- 층 +- 诏 +- 텔 +- 찬 +- 箇 +- 钧 +- 뉴 +- 體 +- 痫 +- 麒 +- փ +- ᱩ +- 녔 +- 搓 +- 柚 +- 竿 +- 轄 +- अ +- ಒ +- 榨 +- 립 +- 蛤 +- 惭 +- 炳 +- 飢 +- ဟ +- ቺ +- 帧 +- 鳞 +- 곱 +- 헬 +- ଆ +- 锣 +- 倪 +- 鸥 +- 錠 +- ڳ +- ဝ +- ๆ +- 견 +- 琶 +- 饵 +- 將 +- 怂 +- 蔭 +- 蛾 +- 榆 +- 鎌 +- 揾 +- 탕 +- ዐ +- 倘 +- 秉 +- 賭 +- 菠 +- 瑙 +- 囱 +- 훨 +- 缕 +- ఓ +- 撩 +- 篡 +- Ī +- 缀 +- 짓 +- 踝 +- 辫 +- Σ +- ၏ +- 邢 +- 氮 +- 존 +- 탁 +- 硝 +- 萱 +- 拴 +- 烛 +- ޗ +- 铝 +- 锥 +- 쇼 +- 暦 +- 焊 +- 릭 +- 腎 +- 瘩 +- 淼 +- Μ +- 乒 +- 牲 +- 疮 +- 蓓 +- 酪 +- 霄 +- ޢ +- ኪ +- 搐 +- 츠 +- 绅 +- ៃ +- 빡 +- 粟 +- 遏 +- 颅 +- ጉ +- 링 +- 퓨 +- 磷 +- 耽 +- 祟 +- 瘍 +- 염 +- 謙 +- 霾 +- 臻 +- 猟 +- 诞 +- ៊ +- 蔷 +- 賊 +- 訂 +- 贅 +- Щ +- 晾 +- Õ +- ଶ +- 霆 +- 喪 +- 剖 +- 嗒 +- 樋 +- 疙 +- 靶 +- 纬 +- ਡ +- 값 +- 娴 +- 貞 +- 擒 +- ൊ +- 跚 +- 厩 +- 烯 +- 炽 +- आ +- 駄 +- 侑 +- 袱 +- 픈 +- 玮 +- 朔 +- ኖ +- ዜ +- 滔 +- 겁 +- 맘 +- 漬 +- 俣 +- 羔 +- 囤 +- 烷 +- 嗣 +- 峠 +- ǎ +- 晗 +- 乓 +- 蹒 +- 髄 +- ڙ +- 睾 +- 兢 +- 咐 +- 铮 +- ೈ +- 睐 +- 蹊 +- 깝 +- 翘 +- 螂 +- 椭 +- ઇ +- 鈍 +- ္ +- 參 +- 眯 +- 秩 +- 敛 +- ଡ +- 鋼 +- 榈 +- 號 +- 掂 +- 磐 +- 萬 +- 裴 +- 阮 +- 蔚 +- 雍 +- 悍 +- 젠 +- ޙ +- 駿 +- 拂 +- 腊 +- 寞 +- 穹 +- 悴 +- 憔 +- 琥 +- 琵 +- 밑 +- 恥 +- ဂ +- 垢 +- 茬 +- 坨 +- 遛 +- 涕 +- 掲 +- 咚 +- 覺 +- 嘈 +- 峥 +- 꼈 +- 蝉 +- 麵 +- ٠ +- 땜 +- 祀 +- 譜 +- ൈ +- ᱱ +- 량 +- 酥 +- 橇 +- 靡 +- 槐 +- Ấ +- 錢 +- 槻 +- 暧 +- 侥 +- ଧ +- 척 +- 턴 +- 吠 +- 甫 +- 壌 +- 갖 +- 鳳 +- ኦ +- 놔 +- 쓴 +- 寅 +- 麓 +- Ö +- ഥ +- 驭 +- ቦ +- ጅ +- 낙 +- 鹃 +- Ա +- 屌 +- 壤 +- Å +- 낮 +- ဒ +- 隶 +- 讓 +- 豌 +- 憾 +- 噢 +- 闫 +- ฤ +- ժ +- ٔ +- 岬 +- 萤 +- ӳ +- ճ +- ଭ +- 匣 +- 효 +- 傑 +- 완 +- 瑾 +- 荫 +- ଷ +- ጨ +- 액 +- 諭 +- છ +- 痊 +- ऊ +- 羹 +- 漩 +- 砾 +- 岚 +- 裳 +- 규 +- థ +- ψ +- 콘 +- 惟 +- 렵 +- 짧 +- 钏 +- 窜 +- 臼 +- 闽 +- Ó +- 內 +- 诬 +- 樂 +- 煞 +- 蝎 +- 弛 +- 從 +- 닭 +- င +- 缔 +- 岌 +- 怼 +- Ò +- 巍 +- 곡 +- 啼 +- 桓 +- 谂 +- 賂 +- 鳍 +- 摧 +- ޤ +- 킹 +- 冀 +- 彗 +- 铐 +- 銚 +- Ṣ +- 깜 +- 烙 +- 蜱 +- 梶 +- 胴 +- 莞 +- Ọ +- Ӱ +- 呱 +- « +- 狸 +- 瑕 +- 痰 +- 纫 +- 臆 +- ዙ +- 紊 +- 肴 +- 迂 +- 隼 +- 稜 +- 꿀 +- 茁 +- 淌 +- ഫ +- 꽤 +- 믄 +- 赣 +- ๋ +- 洽 +- 농 +- 霹 +- 倚 +- 晦 +- 踹 +- ᱠ +- 덕 +- 嗖 +- 濡 +- 猬 +- 낼 +- 덜 +- Ε +- 撬 +- 呛 +- þ +- ጂ +- 珑 +- 瑠 +- 虜 +- 훈 +- 晤 +- 舘 +- 嗜 +- 渓 +- 瓢 +- 眶 +- 쳤 +- 瞰 +- 腌 +- 勲 +- 蕴 +- 韶 +- 뜻 +- 懿 +- 蕊 +- ቁ +- 黃 +- 陨 +- 鳌 +- 匕 +- 籽 +- 냄 +- 帶 +- 稠 +- 餓 +- 裾 +- 梧 +- ̇ +- ኬ +- Ḍ +- Я +- ় +- 닌 +- 荻 +- ਧ +- 烨 +- 瘸 +- 蜿 +- 齊 +- 團 +- 姻 +- ឡ +- 瞻 +- ฎ +- 捎 +- ሜ +- 嚇 +- ଙ +- 殉 +- ቼ +- 厥 +- ਫ +- ጎ +- 酗 +- 哔 +- 刨 +- 侨 +- 痹 +- 섭 +- 웬 +- 骡 +- 汝 +- 蜒 +- 桦 +- 嘣 +- 冶 +- 峙 +- 樽 +- 變 +- 湛 +- 雳 +- 呸 +- 數 +- 檀 +- 辍 +- 笋 +- ៀ +- 崭 +- 꿈 +- 藉 +- ຝ +- 悄 +- օ +- ଳ +- ಉ +- 롱 +- 쌓 +- ॅ +- 엽 +- 총 +- 寥 +- ՝ +- 롤 +- 沌 +- 允 +- 咄 +- 撂 +- ኋ +- 苇 +- 賣 +- 엄 +- 恙 +- 碾 +- 蜷 +- 닥 +- 觀 +- 겹 +- 茵 +- 蹑 +- 吝 +- 璇 +- ໋ +- ័ +- 墩 +- 猥 +- 널 +- 잤 +- 玷 +- 薫 +- 蹬 +- 弈 +- ፊ +- 俐 +- 頬 +- 秤 +- ଛ +- ၊ +- 쎄 +- 獅 +- 橫 +- ך +- 吏 +- 抨 +- 鯉 +- 腱 +- ඛ +- 缰 +- 秽 +- 렇 +- 锄 +- 呉 +- ሙ +- 찰 +- 苯 +- 람 +- 摁 +- 幣 +- 圍 +- 俏 +- 撵 +- Ś +- 혜 +- 炕 +- ଚ +- 猝 +- 쭉 +- 穏 +- 珂 +- ਭ +- 멋 +- 喳 +- 狡 +- 嘀 +- 韬 +- 瞭 +- 惺 +- ಖ +- 끌 +- 쌍 +- 讽 +- 缎 +- 庐 +- 拣 +- 槟 +- 侶 +- 嘆 +- 뻔 +- 單 +- 處 +- 殆 +- 噛 +- 庚 +- 뻐 +- 즐 +- 梓 +- 램 +- 빈 +- 雏 +- 諮 +- 嚏 +- 득 +- 蜥 +- 뿌 +- 鳩 +- 谕 +- 匮 +- 婊 +- 匙 +- 炬 +- 싱 +- 楓 +- 畸 +- 頓 +- ஒ +- 噪 +- 犁 +- 懊 +- 谚 +- 畴 +- < +- ቡ +- 讐 +- 鮭 +- 꿔 +- 隷 +- 梢 +- 鯛 +- 坷 +- 晟 +- 簸 +- 疵 +- 閲 +- 낸 +- 컨 +- 흥 +- 眸 +- 侏 +- 臺 +- '>' +- 짤 +- 胱 +- Γ +- 沁 +- 墳 +- 襄 +- 蛎 +- 빙 +- 矣 +- 湊 +- ಈ +- 믿 +- 잉 +- ෛ +- 蟑 +- 畠 +- 셋 +- 槿 +- 嬛 +- 狈 +- 羚 +- 隈 +- 泞 +- 荐 +- 吭 +- 剁 +- ٘ +- 炙 +- 蟆 +- 牽 +- 翡 +- 튀 +- ଁ +- ᱤ +- 嗷 +- 绮 +- 簇 +- 娱 +- 幌 +- 犊 +- 漓 +- ቴ +- 牟 +- 昕 +- 념 +- 诋 +- 俸 +- 翩 +- 钥 +- 淤 +- 玻 +- 绥 +- 칼 +- 澎 +- ٫ +- 攘 +- 溉 +- 瀚 +- 庵 +- ઘ +- 塀 +- 茧 +- 哆 +- 롯 +- 挿 +- 殡 +- 荃 +- 釉 +- 窯 +- 伶 +- 爺 +- 瞑 +- ڌ +- 厮 +- 汶 +- 풍 +- 팬 +- 兒 +- 絹 +- 薩 +- 祷 +- 慑 +- 憂 +- ฏ +- 嫉 +- 輩 +- 拯 +- 淇 +- 馋 +- ᱭ +- 啄 +- 猖 +- 絮 +- Δ +- 穗 +- 녹 +- 맡 +- 켓 +- Ē +- 辗 +- ఖ +- 嫣 +- Η +- ዊ +- 轉 +- 惮 +- 傀 +- 儡 +- 啬 +- 颓 +- 渭 +- 筐 +- ଉ +- ዱ +- 샤 +- ሸ +- ឺ +- 鞘 +- 驿 +- 푸 +- 桅 +- 浙 +- 俾 +- 叼 +- ቂ +- 愕 +- 聲 +- 넓 +- 赘 +- 蛊 +- 儲 +- 岖 +- 죄 +- È +- 蛍 +- 朦 +- ዕ +- 貂 +- 뀌 +- 폭 +- 權 +- 渉 +- 跺 +- 酝 +- ጭ +- 焙 +- 渇 +- 筱 +- ඝ +- 撸 +- 洼 +- 脐 +- 曖 +- 옮 +- ኳ +- 翟 +- 쟁 +- 蘸 +- 稔 +- 紳 +- 喱 +- 蚤 +- 雹 +- 鞅 +- 鲤 +- ☆ +- 妬 +- 蹈 +- 捋 +- 矜 +- ђ +- 털 +- 潼 +- ኒ +- ዶ +- 袒 +- 멘 +- 閑 +- 陌 +- অ +- 玺 +- 羁 +- 卤 +- 渝 +- 戎 +- ෆ +- ჟ +- 坍 +- 邑 +- 昵 +- 忒 +- 砌 +- 磋 +- 汲 +- 웨 +- 젤 +- 珈 +- 綻 +- 镰 +- 暁 +- 敖 +- 槌 +- 踱 +- 堺 +- ᱮ +- 摞 +- ቹ +- 钳 +- 倶 +- 诛 +- 寐 +- 邹 +- 缭 +- 솔 +- 撲 +- 醍 +- 樓 +- ः +- 胧 +- 讪 +- 醐 +- ݨ +- ඨ +- 蜴 +- 毗 +- 虞 +- 떼 +- 롭 +- 聯 +- 钠 +- 峯 +- 璋 +- 賓 +- 淵 +- ~ +- 蜚 +- ޚ +- 湃 +- ̍ +- ಫ +- 亢 +- 腑 +- 숨 +- ౌ +- 枷 +- 檜 +- 谬 +- 岑 +- 袄 +- 铀 +- Ì +- 鲑 +- \ +- 杵 +- 韭 +- 콜 +- 烹 +- ඬ +- ኸ +- ਥ +- 킬 +- ඥ +- 熨 +- 擂 +- 赡 +- 滿 +- ሷ +- 摯 +- 诠 +- 匡 +- 谟 +- 瞩 +- 腓 +- 黯 +- ڼ +- 帚 +- 뿐 +- 엑 +- 흐 +- ଂ +- 顷 +- ឆ +- 潦 +- 탔 +- ኘ +- 앙 +- 箔 +- 똑 +- 匾 +- 징 +- ሴ +- ጃ +- 邝 +- 딜 +- ဉ +- 漪 +- 胁 +- 羲 +- 耙 +- 馀 +- 訊 +- 氪 +- 瘠 +- ١ +- 닝 +- 젊 +- 흔 +- 邉 +- 骤 +- 슨 +- 骰 +- 滇 +- 繕 +- 辦 +- ஃ +- 抉 +- 渍 +- 彝 +- 曰 +- 顎 +- 랩 +- 슈 +- 씻 +- 냉 +- 율 +- 縣 +- 询 +- 럴 +- Մ +- 亥 +- 樟 +- 樫 +- 畫 +- 홀 +- 尧 +- 骄 +- 饷 +- 걘 +- 얻 +- 浊 +- 령 +- 씀 +- ぅ +- 鐵 +- 蔗 +- 遼 +- 谛 +- 杭 +- 毋 +- ၀ +- 땡 +- ሠ +- 憤 +- 涟 +- 芜 +- 鸳 +- 콩 +- 椿 +- 怦 +- 鸯 +- ઝ +- ၎ +- ऐ +- 擬 +- 酯 +- 灘 +- 钮 +- 痢 +- 醫 +- 餸 +- 꽃 +- 凱 +- 忡 +- 酎 +- 냥 +- 吮 +- 弩 +- 續 +- 荔 +- 狳 +- 產 +- ጆ +- 犰 +- 骇 +- ଖ +- 噼 +- 紡 +- 줌 +- 짱 +- 趕 +- 峨 +- 컬 +- 粑 +- 攸 +- ŋ +- 嗱 +- ኤ +- 槙 +- Ҫ +- ዓ +- 몬 +- 拗 +- 營 +- 帥 +- 曙 +- ጫ +- 锻 +- 浚 +- 幂 +- 俑 +- 笃 +- 鬱 +- 廿 +- 祺 +- 夠 +- 杞 +- 钾 +- ݙ +- 舷 +- 購 +- 瘀 +- 萃 +- 蜓 +- 즌 +- 筏 +- 涤 +- 曳 +- ฆ +- 랄 +- 蒼 +- 忑 +- ៍ +- 胭 +- ቲ +- ቷ +- 嬷 +- 釧 +- 鳗 +- 忐 +- 鼹 +- 緻 +- 轼 +- 벤 +- 傳 +- 悸 +- 렀 +- 訣 +- 暉 +- 锌 +- 哧 +- 娲 +- 禹 +- 窘 +- 蜻 +- Ł +- 嚓 +- 눠 +- 덴 +- 똥 +- 춤 +- 唄 +- 諾 +- 楔 +- 薗 +- 錮 +- 楷 +- 遡 +- ڀ +- 폴 +- 鱿 +- 嗝 +- 델 +- ഈ +- 뚫 +- 켰 +- 柑 +- 啡 +- 漕 +- 凪 +- 蹋 +- ഏ +- ─ +- 煩 +- 객 +- 專 +- 篝 +- Ż +- 깊 +- 댓 +- 웹 +- ੜ +- 迢 +- 钰 +- 芊 +- 薰 +- ੌ +- ᱢ +- 孜 +- Ķ +- 渤 +- 绯 +- 碇 +- 諏 +- Ĵ +- 帷 +- 涸 +- 蟋 +- 芮 +- 邋 +- 懇 +- 擎 +- 馍 +- 掖 +- 鯨 +- ዩ +- 燒 +- 钵 +- ૃ +- 瞌 +- ഖ +- 沽 +- 蟀 +- ќ +- 锂 +- 荚 +- 鼬 +- 덟 +- 딘 +- 쌀 +- 蟒 +- 嫦 +- 藝 +- 姊 +- 률 +- ఐ +- 漉 +- 誕 +- 寫 +- 憬 +- 萦 +- 균 +- 낀 +- 압 +- 옥 +- 卉 +- 焰 +- 偎 +- 殃 +- 肛 +- 噔 +- 鹭 +- ٺ +- 壺 +- 蝦 +- 멍 +- 윤 +- 컵 +- 픽 +- Ê +- 榊 +- 總 +- 灏 +- 噺 +- 紺 +- 捨 +- 厕 +- 盪 +- 脯 +- 驹 +- ᱜ +- 崴 +- 榛 +- 邯 +- 鬟 +- Հ +- ऱ +- 섬 +- 왠 +- 竺 +- 勅 +- 栾 +- 譬 +- 琛 +- 蕃 +- 홉 +- 骁 +- 栩 +- 攥 +- 俪 +- 刽 +- 笙 +- 遢 +- 삶 +- 걷 +- 눌 +- Š +- 菁 +- 輕 +- 妳 +- 汾 +- 磺 +- 醺 +- ሶ +- ፕ +- ᱚ +- 댄 +- 셀 +- 템 +- 憨 +- 錬 +- 喙 +- 氦 +- 땅 +- 릉 +- 肽 +- 颯 +- 黔 +- 锵 +- 릿 +- 밍 +- 绛 +- ヂ +- 嫖 +- 炜 +- 瘪 +- 臊 +- 벗 +- 봄 +- 쟤 +- 폐 +- 蒿 +- 엘 +- 詣 +- 羨 +- 캠 +- 孰 +- 铬 +- 恺 +- 恢 +- 佰 +- 蚱 +- 渥 +- 纂 +- 纶 +- 벅 +- 叡 +- 捶 +- 綺 +- 眾 +- 憧 +- ऑ +- ڄ +- 昴 +- 誹 +- 謗 +- 棣 +- 汕 +- 沏 +- ᱫ +- 빛 +- 馁 +- 鵜 +- 涮 +- ঈ +- ଼ +- 앤 +- 玟 +- 芷 +- 妒 +- 柊 +- 琊 +- 竣 +- 斟 +- 騙 +- Έ +- ዮ +- 瀧 +- 艮 +- ဗ +- 糙 +- 闵 +- ጓ +- 腳 +- 蜕 +- 韻 +- 뮤 +- ඵ +- 낭 +- 룸 +- 蝗 +- 蹂 +- ਏ +- 腮 +- 럭 +- 쁠 +- ඡ +- 诧 +- 镁 +- 鄉 +- 鍾 +- 窿 +- 蚪 +- 蝌 +- 疡 +- ዴ +- 砥 +- 뷰 +- 엉 +- 皙 +- 撅 +- 犟 +- 娯 +- 掴 +- 둥 +- 헐 +- 혈 +- 砺 +- ਯ +- 麹 +- ฬ +- 籔 +- 럼 +- 捻 +- 벨 +- 홈 +- 嫡 +- 睛 +- ぢ +- 遷 +- 伎 +- ᱾ +- 哽 +- ឈ +- 堰 +- 磡 +- 焱 +- 翎 +- 矗 +- 翊 +- Ν +- ೃ +- ၁ +- 腋 +- 舊 +- 豬 +- 꼐 +- 썰 +- 펜 +- 坞 +- ஏ +- 糯 +- ޞ +- 倣 +- 凋 +- 엠 +- 헌 +- 흘 +- 諜 +- ヅ +- 頸 +- ሂ +- ፎ +- 꼼 +- 둔 +- 삭 +- ♫ +- 貓 +- 踵 +- 惋 +- 價 +- 歡 +- 昱 +- 浣 +- 讹 +- 喆 +- 擔 +- ף +- 龛 +- 艶 +- 苣 +- 涓 +- 躏 +- 窪 +- 屹 +- 恬 +- 裘 +- 糗 +- 绚 +- 錄 +- 霓 +- 噱 +- 껄 +- 槍 +- 蹩 +- '~' +- 孢 +- 춘 +- 힐 +- 햄 +- 夯 +- 潟 +- 漾 +- 偃 +- 咣 +- 癞 +- 訃 +- 딨 +- Ն +- 찜 +- 촬 +- 춥 +- 罠 +- 麸 +- 獭 +- 镳 +- 铠 +- ጡ +- 吒 +- 삐 +- 잃 +- 찐 +- 틱 +- 핀 +- 皐 +- 闺 +- 榎 +- 娼 +- ୂ +- ឋ +- 阂 +- 몽 +- Ļ +- Ս +- ృ +- 詫 +- 铎 +- 僅 +- 菓 +- ៏ +- 卯 +- 噎 +- 榕 +- 馄 +- 樵 +- 랙 +- ᱛ +- 괴 +- 낳 +- 힌 +- 疱 +- 舜 +- 祛 +- 箍 +- 劉 +- 枸 +- 盹 +- 觑 +- ൃ +- 戯 +- 驗 +- 례 +- 핫 +- Җ +- Қ +- 醛 +- 嘩 +- 慵 +- 섞 +- 큐 +- 팩 +- ઠ +- ឌ +- 圖 +- 藕 +- 蚓 +- 呑 +- 喩 +- 곧 +- 닫 +- 밝 +- 앨 +- 毡 +- 跛 +- 秧 +- 嗮 +- 褛 +- 讷 +- 툰 +- '@' +- 虱 +- 蟾 +- 壱 +- 晖 +- 碜 +- 嫔 +- Ă +- Ģ +- ٢ +- 鋳 +- 협 +- 颚 +- 踮 +- 酰 +- 鳟 +- 禍 +- 阜 +- 挛 +- 箕 +- ᱧ +- 腩 +- 꽂 +- 쏘 +- 탑 +- 碘 +- 잖 +- 彷 +- 鸠 +- 缇 +- 绢 +- ฑ +- 猕 +- 밴 +- 퀴 +- 戟 +- 巳 +- 隕 +- 啤 +- 擢 +- 睽 +- 辘 +- 痉 +- ፖ +- 熠 +- 鞑 +- 饨 +- ሐ +- 褴 +- 阈 +- 묻 +- 烏 +- 酚 +- 惣 +- ຣ +- 阑 +- 犒 +- 碉 +- 龈 +- 靼 +- ਘ +- 蛰 +- 阙 +- 놈 +- 땠 +- 鬃 +- 또 +- 哝 +- Ồ +- 낄 +- 싹 +- 첨 +- 蔻 +- 鑼 +- 毀 +- 痣 +- 釘 +- 偕 +- 湍 +- 燎 +- 钗 +- 咫 +- 덩 +- 箋 +- 罹 +- 孚 +- 宓 +- ඤ +- ቋ +- 燈 +- 왼 +- 꿨 +- 흰 +- ၍ +- 庾 +- 盡 +- 躇 +- 鎧 +- 幢 +- 浒 +- 胤 +- 荤 +- 鼾 +- 孀 +- 蹿 +- 裝 +- 獾 +- 皖 +- 蛀 +- 蚯 +- 颐 +- 좌 +- 棲 +- ^ +- 獗 +- 睑 +- 苞 +- 鳕 +- 腦 +- 뒷 +- Ј +- 楞 +- ଠ +- ኞ +- ዞ +- 납 +- 떴 +- 쩍 +- 斷 +- 憶 +- 泸 +- 勸 +- 铰 +- 洱 +- 緯 +- 겸 +- ૌ +- 粽 +- 咤 +- 宕 +- 쿨 +- ֆ +- ڃ +- ‟ +- 鞦 +- 빤 +- 뼈 +- 슴 +- 엇 +- 칸 +- 莘 +- 挝 +- 韆 +- 夭 +- 腆 +- Β +- 뚱 +- 칭 +- 閃 +- 蜍 +- 謹 +- 迄 +- 坯 +- 傣 +- 谏 +- 祯 +- 羯 +- 鹑 +- ሃ +- Բ +- ഓ +- 寶 +- 戲 +- 轧 +- 拮 +- 椛 +- 佃 +- 蠣 +- 礎 +- 囧 +- 丕 +- 摒 +- 榻 +- ヱ +- 扈 +- 薙 +- 렁 +- ‧ +- 啷 +- 舉 +- 侬 +- 邃 +- 垛 +- 怔 +- 闰 +- ፓ +- 혔 +- ⁄ +- 氰 +- 끗 +- 덮 +- 證 +- 虻 +- 俚 +- 壑 +- 瞿 +- 藥 +- 衩 +- ѳ +- 喎 +- 醜 +- 갠 +- 뒀 +- 멜 +- 컸 +- 핸 +- 뚝 +- 晌 +- අ +- ೌ +- 扪 +- '|' +- 荨 +- 깎 +- 짬 +- 雙 +- 髅 +- 圃 +- 蓟 +- 鹫 +- 榮 +- 绫 +- 藐 +- 贻 +- ኢ +- 亂 +- 禮 +- 賜 +- 샵 +- 측 +- ฒ +- 胥 +- 骷 +- 앴 +- 褂 +- 較 +- 恃 +- 垦 +- 麝 +- 诲 +- 뜬 +- 갚 +- 턱 +- ፅ +- 媲 +- 馏 +- 駕 +- 톤 +- 닮 +- 壽 +- 剽 +- 篓 +- 馊 +- 鹂 +- 圓 +- 壹 +- 잊 +- Ե +- ٩ +- 亘 +- 缽 +- 翱 +- 貪 +- 얀 +- 펴 +- ঔ +- 罂 +- 鳖 +- 黝 +- 汞 +- 痺 +- 佯 +- 稷 +- 恪 +- 彌 +- 砦 +- ጪ +- 爭 +- 찔 +- 痞 +- 喰 +- 狒 +- 戬 +- 簪 +- 憑 +- ‒ +- 嗌 +- 嗤 +- 囉 +- 諒 +- 뚜 +- 팡 +- 罵 +- 楊 +- 噶 +- 凜 +- ≪ +- 〜 +- 匐 +- 芈 +- 鹌 +- 诃 +- 鳃 +- 】 +- 涎 +- 腼 +- Є +- ጤ +- 泷 +- 漸 +- 蚌 +- 끈 +- 땀 +- 띠 +- 爾 +- 脓 +- 髋 +- ૈ +- 廳 +- 虔 +- 缜 +- 楢 +- 褥 +- 暄 +- 禺 +- 怅 +- ፒ +- 阉 +- 끓 +- 렉 +- 벼 +- 뽀 +- 틴 +- 팠 +- Ӹ +- 褚 +- 啜 +- 雖 +- ୱ +- 【 +- 槲 +- ଫ +- 雉 +- 馥 +- 烊 +- ୃ +- 摹 +- 羟 +- 騨 +- 琢 +- 钊 +- ൺ +- ٥ +- ඈ +- 꼴 +- 댔 +- 豐 +- 廻 +- 沂 +- 啾 +- 埼 +- 徨 +- 剐 +- 唏 +- 轲 +- 牒 +- ဏ +- 븐 +- 샘 +- 據 +- 峪 +- 錫 +- 밖 +- 漳 +- 炅 +- 荼 +- ၂ +- 玖 +- 絢 +- 镍 +- 沓 +- 뺐 +- 칙 +- 桝 +- 啕 +- 紐 +- 讀 +- 凰 +- 麥 +- 吆 +- 淞 +- 瓮 +- 耦 +- 佘 +- 喋 +- 孺 +- 螨 +- ៈ +- 苫 +- 闩 +- Θ +- 醬 +- 뷔 +- 篆 +- 鉾 +- 蔬 +- 桔 +- 锢 +- 讣 +- 辕 +- 鸵 +- 꽁 +- Ԑ +- 赈 +- 遁 +- 隨 +- 掸 +- 暨 +- 陇 +- 宦 +- 戛 +- 睬 +- ፡ +- 嘚 +- 歲 +- 汛 +- 렛 +- 씹 +- 잇 +- 嚴 +- 檢 +- 흑 +- 麋 +- 佼 +- 랫 +- 鮎 +- 脖 +- 歷 +- 勞 +- 楂 +- 蚂 +- Կ +- 兀 +- ሏ +- 舛 +- 녕 +- 뇌 +- 릇 +- 짠 +- 힙 +- 冴 +- 蕎 +- 崗 +- 膿 +- 侮 +- 茛 +- 攪 +- 逅 +- 匍 +- 邂 +- 瘁 +- Ի +- ڇ +- ឃ +- △ +- ঋ +- ਝ +- 曬 +- 멈 +- 묵 +- 컷 +- 혁 +- 휘 +- 깃 +- 椋 +- ヵ +- 潺 +- 螳 +- 鳅 +- ಘ +- ဇ +- 迸 +- 拄 +- 浃 +- 钛 +- 낚 +- 얇 +- 헷 +- 흡 +- ਛ +- 搀 +- 렴 +- 黜 +- 闆 +- 惬 +- 帛 +- 戰 +- ৷ +- ଘ +- € +- 蜢 +- 鲈 +- 遐 +- 뽕 +- 캡 +- 砧 +- 碼 +- 邨 +- ឱ +- 溥 +- 咿 +- 锹 +- 砚 +- 熹 +- Ả +- ‚ +- 珺 +- 紬 +- Ẹ +- 凧 +- 戊 +- 곰 +- 畢 +- 鱗 +- 苹 +- 笞 +- 箫 +- Դ +- 瀕 +- Ū +- ፉ +- 谩 +- 겉 +- 쭈 +- 탐 +- Ό +- 廟 +- 怆 +- 絕 +- 꽉 +- 鬣 +- 塵 +- 羡 +- Λ +- 댕 +- 뜯 +- ጽ +- 稱 +- 覗 +- 꾼 +- 劃 +- 卻 +- 栞 +- 雛 +- 跆 +- 抿 +- 잘 +- 啧 +- 俨 +- 汴 +- 賽 +- 叟 +- Ҙ +- ଓ +- 渾 +- 糾 +- 긁 +- "\x93" +- Ġ +- ǹ +- ٰ +- ឿ +- 泯 +- 泾 +- 묘 +- 쪘 +- 쫓 +- 婧 +- 籁 +- 淄 +- 痨 +- 弑 +- 忱 +- 淨 +- 縞 +- 酣 +- 繼 +- Ι +- ѓ +- ଞ +- 壞 +- 겪 +- 烽 +- 묶 +- 썹 +- 풋 +- 宍 +- 苷 +- 靜 +- 羌 +- 矯 +- Χ +- 啮 +- 胯 +- 賺 +- 吖 +- 냅 +- 붕 +- 쉴 +- ૉ +- 獨 +- 덤 +- 詮 +- 臃 +- 焖 +- 獒 +- 紹 +- 諗 +- 岱 +- 璨 +- 讃 +- 둬 +- 璧 +- 痔 +- 冽 +- 舀 +- 弼 +- 徇 +- 綠 +- 繭 +- 镣 +- 驮 +- ऋ +- 搡 +- 搪 +- 砷 +- 닷 +- 닿 +- 땄 +- 욱 +- 웅 +- 찝 +- ဦ +- 噗 +- 醚 +- 谑 +- 紘 +- 炷 +- 枭 +- 罔 +- 蚣 +- 颌 +- 璞 +- 닦 +- ĺ +- ሕ +- 馴 +- 긋 +- 랍 +- 咨 +- 粱 +- ໆ +- 蛭 +- 骋 +- 囡 +- ץ +- 劵 +- 濟 +- 纣 +- 荟 +- 蛟 +- 뀐 +- 밟 +- Պ +- 膠 +- ៗ +- ൗ +- 狛 +- 琰 +- 畝 +- 觐 +- 擀 +- 蒔 +- 蚜 +- 귄 +- 빅 +- 쫄 +- 촉 +- 螈 +- 蚝 +- 郸 +- 飴 +- 鸞 +- 娓 +- 皎 +- 眈 +- 捺 +- 砒 +- 糞 +- 茱 +- 裆 +- 갤 +- 뺏 +- 쭐 +- 쿄 +- 팟 +- 赝 +- 犸 +- 蜊 +- 惆 +- 瘴 +- 笆 +- 讥 +- 钨 +- 驷 +- 宸 +- 戾 +- 賑 +- ڍ +- ሯ +- ጦ +- 랭 +- 룩 +- 뺄 +- 샐 +- 숫 +- 팝 +- Ո +- 桟 +- 罄 +- 槃 +- 捗 +- 轱 +- 濕 +- 谙 +- ሦ +- 榔 +- 溫 +- 璀 +- 诣 +- 늙 +- 썩 +- 쫙 +- 톱 +- 爛 +- 铂 +- 奧 +- 鹈 +- 赳 +- 膵 +- 渚 +- 缈 +- 耘 +- 唰 +- 綴 +- 豺 +- 龊 +- 龌 +- ٣ +- ඌ +- 犷 +- 葆 +- 颞 +- 馳 +- 릎 +- 숭 +- 쌩 +- 썸 +- 祇 +- 險 +- 蝓 +- 鴻 +- 熾 +- 蛞 +- 沱 +- 潍 +- 堇 +- ਐ +- 尬 +- 粕 +- 辄 +- 껍 +- 넨 +- 룹 +- 샌 +- 쌌 +- 좁 +- 핵 +- Գ +- 榉 +- 臥 +- 鹕 +- 蟻 +- 咝 +- 缥 +- ∞ +- 刍 +- 惘 +- 牦 +- 絲 +- ጁ +- 屬 +- 讧 +- 돋 +- 맙 +- ౦ +- ᱞ +- 啟 +- 뺀 +- 埗 +- 悶 +- 毂 +- 贋 +- 顆 +- 鲟 +- 孬 +- 昙 +- 薮 +- 壓 +- 狀 +- 缤 +- 藜 +- 鹽 +- 麩 +- 갓 +- 멤 +- 믹 +- 뱅 +- 붓 +- 윗 +- 쩐 +- 췄 +- 斓 +- 莴 +- 펙 +- ヲ +- 釋 +- 袅 +- 躊 +- 阚 +- 囔 +- 铆 +- Ț +- ሑ +- ጌ +- 兎 +- 戍 +- 涝 +- 诟 +- 铿 +- 쨌 +- 쩨 +- Ĥ +- Ӧ +- ፀ +- 冑 +- 廠 +- 앱 +- 秆 +- 糠 +- 鮫 +- 桧 +- 垩 +- 耷 +- 镐 +- 엊 +- 夙 +- 宥 +- 濠 +- 繍 +- ઢ +- 佗 +- 戶 +- 皑 +- 蝾 +- 쫍 +- 莆 +- 饉 +- 懷 +- එ +- 啁 +- 赊 +- 鸪 +- 挞 +- 鹧 +- ඓ +- 蔫 +- 뜩 +- 띄 +- 략 +- 뤄 +- 맵 +- 폼 +- 甬 +- 烩 +- 碴 +- 钍 +- 掇 +- 閒 +- 奘 +- 羿 +- 趙 +- Ō +- Ά +- ഘ +- ၉ +- ቪ +- 弋 +- 斡 +- 衲 +- 辿 +- 쥐 +- 쪄 +- 珞 +- 瓯 +- 壬 +- 鬧 +- 忖 +- ¥ +- ဓ +- 肓 +- 薅 +- 靈 +- 靛 +- ఘ +- ಏ +- 轭 +- 윙 +- ÿ +- 亟 +- 呲 +- 咻 +- 硒 +- 絨 +- 魯 +- 껌 +- 덥 +- 듬 +- 빽 +- 飒 +- 迥 +- Վ +- 彙 +- 즘 +- ϊ +- 蜈 +- 嗲 +- 觎 +- 轟 +- 귤 +- 낯 +- 쌈 +- 찢 +- 쾌 +- 팍 +- ဥ +- 揄 +- 煦 +- 熵 +- 淺 +- 玫 +- 哐 +- 藪 +- Ñ +- Φ +- Ԥ +- ٤ +- 埠 +- 拈 +- 炯 +- 굽 +- 뻤 +- 뿔 +- 셜 +- Į +- Թ +- 珏 +- 疽 +- 缨 +- 揶 +- 囃 +- 梱 +- 餡 +- 鰹 +- 燻 +- Ħ +- 撥 +- 爻 +- 脫 +- 雫 +- 霁 +- ኙ +- 擇 +- 踌 +- 鬓 +- 겐 +- 쩡 +- 텀 +- 텍 +- ਓ +- 뭉 +- 햇 +- 鯖 +- 髭 +- 傭 +- 蛐 +- 鰻 +- 遜 +- ഠ +- › +- 怄 +- 裟 +- 啩 +- 恣 +- 斛 +- 檻 +- 谔 +- 踞 +- 닉 +- 맹 +- 잼 +- 詐 +- 櫃 +- 浏 +- 綬 +- 攫 +- 冢 +- 綜 +- 芃 +- 歆 +- 殇 +- 鄭 +- 鲱 +- 黨 +- ፃ +- ᱨ +- Ụ +- ‹ +- 滓 +- 濤 +- 갱 +- 앗 +- 쵸 +- 캔 +- 抡 +- 輿 +- 擊 +- 苓 +- 歎 +- 幔 +- 愫 +- 萼 +- 檸 +- 嵇 +- 薏 +- 蘿 +- Ӓ +- ፌ +- 딪 +- Ք +- ሔ +- 憐 +- 洸 +- 燧 +- 珩 +- 껏 +- 셉 +- 즉 +- 펌 +- 珐 +- 瘙 +- 粵 +- 膽 +- 荏 +- 镊 +- 劾 +- 妲 +- 缮 +- 靚 +- 鳏 +- Ţ +- ఠ +- ቄ +- 昀 +- 椀 +- 袤 +- 遽 +- 흠 +- Џ +- 仃 +- 婵 +- 诩 +- 鍼 +- 쉐 +- 탱 +- 奚 +- 饯 +- 桢 +- 樺 +- 锭 +- 蚬 +- 跻 +- ޠ +- 膺 +- ԑ +- ޏ +- ဤ +- 哂 +- 攰 +- 葦 +- 錐 +- "\x94" +- ỵ +- 靭 +- 뺑 +- 엥 +- 탠 +- 帼 +- 〇 +- 姪 +- 晰 +- 摺 +- ឬ +- 恻 +- 惡 +- 蹉 +- à +- ၅ +- 궈 +- 멸 +- 빴 +- 쇠 +- 푼 +- Տ +- 巌 +- 掳 +- 撚 +- 膈 +- 蛹 +- 胛 +- 舫 +- 缚 +- 舐 +- 鲫 +- 荞 +- 豉 +- 叻 +- 骛 +- 龋 +- 糜 +- 둑 +- 뢰 +- 륵 +- 얹 +- 煉 +- 痤 +- 蝽 +- 煨 +- 膦 +- 嚿 +- 蛆 +- 蟲 +- 钴 +- 顯 +- '}' +- ᱴ +- 歸 +- 湄 +- Ő +- Լ +- Ռ +- ٦ +- 銷 +- 깥 +- 뱃 +- 嶙 +- 鄱 +- 錣 +- 烃 +- 謁 +- 炀 +- 潢 +- 煜 +- 娑 +- 痿 +- ၆ +- ቨ +- 跎 +- 꼽 +- 댁 +- 밭 +- 섹 +- 숏 +- 쎈 +- 쥬 +- 츄 +- 칵 +- 콤 +- ૅ +- 瑰 +- 襷 +- 楕 +- 瞠 +- 酉 +- 鹬 +- 叵 +- 婕 +- 庖 +- 觊 +- 謂 +- 闊 +- ٨ +- 偌 +- 挎 +- 锏 +- 룰 +- 뭣 +- 봇 +- 빔 +- 융 +- 찼 +- 퉁 +- 헛 +- 汎 +- 蟠 +- ゞ +- 箏 +- 峋 +- 堑 +- 痍 +- 纥 +- 勵 +- 粼 +- 钚 +- 퀄 +- ᱥ +- 窩 +- 螯 +- 髻 +- 鱲 +- ′ +- 巽 +- 谄 +- 꼰 +- 뇨 +- 뜰 +- 볍 +- 빚 +- 툭 +- 펑 +- ਊ +- 涣 +- 淬 +- 稅 +- 魇 +- 姣 +- 疣 +- 胫 +- 酊 +- 檗 +- 猾 +- 跄 +- 踉 +- 瓒 +- 骊 +- 鬆 +- ґ +- 咦 +- 肱 +- 臉 +- 鞄 +- 넉 +- 빗 +- 뻥 +- 얄 +- 엎 +- 칩 +- 훔 +- Ə +- ઊ +- 泱 +- 狞 +- 윈 +- 欽 +- 涧 +- 匝 +- 籌 +- 鲶 +- 嘗 +- 鰂 +- 鹩 +- 濮 +- 姦 +- 恿 +- 袈 +- £ +- 撐 +- 曉 +- 聰 +- 蔥 +- 郴 +- ʿ +- ໌ +- ၈ +- ጄ +- ឥ +- 戌 +- 蕙 +- 蠻 +- 贮 +- 铵 +- 깄 +- 앵 +- 혐 +- 檎 +- 緋 +- 桉 +- 骞 +- 坳 +- 箴 +- 桀 +- 鏑 +- 瀛 +- 礴 +- 芪 +- ঊ +- 倖 +- 谵 +- '{' +- Þ +- ၄ +- 喹 +- 燔 +- 芍 +- 詢 +- 遙 +- 깡 +- 뀔 +- 넥 +- 젝 +- 핏 +- 횟 +- Օ +- ઞ +- 洩 +- 颧 +- 燭 +- 뭐 +- ঞ +- 繰 +- 呷 +- 鲻 +- ங +- 鳝 +- 鹪 +- 偻 +- 珥 +- 铡 +- ಞ +- 戀 +- 狰 +- 璜 +- 纭 +- 蝈 +- ሟ +- ‽ +- 敝 +- 砝 +- 삿 +- 샷 +- 쏠 +- 쿼 +- 揸 +- 锰 +- 掟 +- 葭 +- 鸚 +- 謳 +- 罷 +- 湮 +- 蜃 +- Œ +- ಠ +- 诙 +- ਠ +- ಐ +- 厭 +- 咛 +- 掻 +- 揿 +- 纏 +- 荀 +- 菏 +- 蓦 +- 袂 +- 镫 +- 뱀 +- 뱉 +- 짰 +- 嘔 +- 歐 +- 礒 +- 葡 +- 鋸 +- 匯 +- 滉 +- 倹 +- ៌ +- 擺 +- 痱 +- 篑 +- 遲 +- 鹳 +- 嬴 +- 惴 +- 鰺 +- ၃ +- 彈 +- 滟 +- 簾 +- 苋 +- ٧ +- ਢ +- ၌ +- ★ +- ゑ +- 窈 +- 葺 +- 谪 +- 랗 +- 맣 +- 틈 +- 耆 +- 苅 +- 铉 +- 鹋 +- 妩 +- 塹 +- 牆 +- 獐 +- Չ +- ଵ +- 怵 +- 獻 +- 硌 +- 磴 +- ୌ +- 绌 +- 굿 +- 껀 +- 띵 +- 뻘 +- 슐 +- 쩜 +- 툴 +- 椽 +- 濂 +- 焗 +- 裱 +- 챔 +- 穩 +- 茗 +- 橿 +- 镑 +- 脷 +- 錆 +- 寰 +- 阡 +- 忻 +- 矾 +- 镭 +- 骜 +- 駛 +- 詔 +- 냬 +- 뉘 +- 듀 +- 횡 +- ȋ +- ቧ +- ᱷ +- 厲 +- 屐 +- 徵 +- 谗 +- 貰 +- 렬 +- 쿵 +- 唸 +- 嚥 +- 塙 +- 澪 +- 櫓 +- 燦 +- అ +- І +- 噚 +- 榷 +- 孪 +- 揀 +- 擞 +- 纜 +- Ø +- Ρ +- ⠀ +- 伢 +- 缄 +- 翳 +- 蛳 +- 諫 +- 谥 +- 賦 +- 雜 +- 鮑 +- Ζ +- Ї +- Ֆ +- ٪ +- 丟 +- 獎 +- 秸 +- 郦 +- 隱 +- 깼 +- 므 +- 팽 +- 푹 +- 仄 +- 廈 +- 杳 +- 涞 +- 淅 +- 袴 +- 繳 +- 撫 +- 嘤 +- 笺 +- 髮 +- 穣 +- 纾 +- 鲭 +- ኃ +- 垠 +- 牠 +- 睨 +- ၇ +- ጻ +- 佞 +- 櫛 +- 虛 +- 鲷 +- 갇 +- 똘 +- 쇄 +- 쑥 +- 젖 +- 탭 +- 훌 +- 淚 +- 贏 +- 镂 +- 阖 +- 夥 +- 滲 +- 簽 +- 菰 +- 鹹 +- 绗 +- 牝 +- 霏 +- 逵 +- 鹜 +- 鸸 +- 噏 +- 忤 +- 瞓 +- 啖 +- Ω +- ՛ +- ޟ +- ሹ +- ᱵ +- 殼 +- 礫 +- 簌 +- 蛔 +- 蛯 +- 铤 +- 곽 +- 귈 +- 됩 +- 벳 +- 숱 +- 숲 +- 첩 +- 탓 +- 틸 +- 펼 +- Ҷ +- ጸ +- 鋪 +- 쁨 +- 饽 +- 忿 +- 濾 +- 畿 +- 澁 +- 穢 +- 矶 +- 绉 +- 嚢 +- 犄 +- 筵 +- 茴 +- 莅 +- Ջ +- ଢ +- 嗔 +- 诓 +- 隍 +- 셰 +- ŕ +- ఛ +- 悌 +- 槇 +- 蘋 +- 鵝 +- 녜 +- 맻 +- 벙 +- 섰 +- 썬 +- 쏟 +- 퀘 +- 흉 +- Ď +- Ь +- 寵 +- 廢 +- 祓 +- 麽 +- 蹼 +- 鋒 +- 槭 +- 懋 +- 窕 +- ̂ +- 嵜 +- 掣 +- 灞 +- 襯 +- 邈 +- 锱 +- 魷 +- Շ +- ޘ +- ቫ +- 峽 +- 碓 +- 謠 +- 遴 +- 颦 +- 멕 +- 킥 +- ዥ +- ឧ +- 叢 +- 鍮 +- 黐 +- 갸 +- 뎅 +- 옵 +- 훠 +- 覽 +- 暹 +- 甾 +- 疸 +- 鴎 +- 缛 +- 烁 +- 猁 +- 猞 +- ឯ +- 佝 +- 欖 +- 瀝 +- 罡 +- 萸 +- 藿 +- ̄ +- 咂 +- 螢 +- 铢 +- 頚 +- 饗 +- 鸢 +- ઑ +- Ừ +- 嗬 +- 嘥 +- 嚕 +- 爲 +- 纨 +- 겟 +- 굔 +- 냠 +- 콕 +- 텝 +- 훅 +- Ң +- 悻 +- 潛 +- 苺 +- 藁 +- 鶯 +- 黍 +- 넛 +- 濫 +- 鄰 +- 蠅 +- 襖 +- 枇 +- 盧 +- 廚 +- 褓 +- 賤 +- 幄 +- 栀 +- 盃 +- 鑊 +- 珅 +- 绾 +- 蔦 +- 遨 +- Ҩ +- ۂ +- 嬲 +- 繫 +- 膊 +- 룬 +- 맺 +- 옴 +- 쭤 +- 팁 +- 폈 +- 瑪 +- 癸 +- 삽 +- 첼 +- 锑 +- 龜 +- 嵯 +- 氚 +- 蓼 +- ຼ +- 珪 +- 揖 +- 瑚 +- 膻 +- 霎 +- 飕 +- Ή +- Խ +- 峦 +- 廁 +- 蘆 +- 衢 +- 蹟 +- 锉 +- ሼ +- 啵 +- 恆 +- 焯 +- 诿 +- 깅 +- 뛸 +- 륨 +- 밸 +- 쉰 +- 텅 +- 壯 +- 夾 +- 峒 +- 蝋 +- 餘 +- 勁 +- 哏 +- 檄 +- 赭 +- 毓 +- 燗 +- 鮨 +- 榭 +- 啶 +- 梆 +- 嵘 +- 轢 +- 嗟 +- ጮ +- 嬰 +- 捱 +- 蹶 +- 꺾 +- 텨 +- Ӑ +- ኗ +- ዤ +- ዷ +- ፤ +- 冚 +- 搖 +- 楣 +- 浔 +- 瞟 +- 诨 +- 骥 +- 닙 +- 젓 +- 펐 +- 繞 +- 鹸 +- 瀞 +- 燮 +- 苜 +- 湎 +- 靱 +- 閻 +- 杷 +- 臧 +- 噻 +- 囫 +- 溴 +- 阄 +- Ҵ +- 簑 +- 薔 +- 蠔 +- 頁 +- ፐ +- 〔 +- 檔 +- 閱 +- 겄 +- 괄 +- 굶 +- 귓 +- 깠 +- 꽈 +- 넜 +- 럿 +- 옹 +- 욜 +- 쬐 +- 漑 +- 潸 +- 唷 +- 笈 +- 鱈 +- 蓿 +- 剌 +- 酩 +- 佇 +- 唑 +- 嶼 +- 钒 +- 胝 +- 胼 +- 蛱 +- 圩 +- 礙 +- 趨 +- Υ +- 櫂 +- 玥 +- 瑄 +- 绺 +- 蔔 +- 鸬 +- 鹚 +- Æ +- ୈ +- 墾 +- 搶 +- 盅 +- 绡 +- 蚩 +- 閪 +- "\x9E" +- ­ +- ̈ +- ۖ +- ଝ +- ሾ +- ዪ +- 琏 +- 굵 +- 눅 +- 늬 +- 됨 +- 붉 +- 샴 +- 씌 +- 얜 +- 옳 +- 욘 +- 傥 +- 蜣 +- 迴 +- 鱧 +- 唢 +- 殒 +- 菫 +- 沣 +- 爐 +- 泗 +- 揆 +- 靉 +- 倏 +- 疥 +- 卞 +- 噉 +- 囵 +- 殘 +- 氙 +- 腚 +- 銮 +- ᱣ +- 慘 +- 搔 +- 犠 +- 盥 +- 綫 +- 蒐 +- 褲 +- 訝 +- 辊 +- © +- ® +- ቭ +- 〕 +- 吡 +- 啉 +- 痂 +- 觞 +- 貘 +- 鷺 +- 눕 +- 늑 +- 늫 +- 렷 +- 벚 +- 뻗 +- 얌 +- 얗 +- 왓 +- 짖 +- Ư +- 唁 +- 圀 +- 鐔 +- 륜 +- 뻑 +- 쓱 +- 왤 +- 滘 +- 濑 +- 岷 +- 疋 +- 蓑 +- 譚 +- 铯 +- 毘 +- 諦 +- 襁 +- 讴 +- 鄞 +- 緣 +- 膘 +- 禰 +- 泮 +- 璎 +- 莊 +- 蔺 +- 裨 +- 陂 +- 馗 +- ڦ +- ಃ +- ጩ +- 渫 +- 溧 +- 獠 +- 祢 +- 诌 +- 赅 +- 괌 +- 렘 +- 렙 +- ኚ +- Ủ +- 兇 +- 彿 +- 荠 +- 谀 +- 댈 +- 룡 +- 륙 +- 및 +- 뿜 +- 셈 +- 읍 +- 찡 +- 毬 +- 辋 +- 箩 +- 饅 +- 拚 +- 紆 +- 葚 +- 儺 +- 籾 +- 菀 +- 呤 +- 煸 +- 琲 +- 胍 +- 玳 +- 谴 +- 镉 +- 俎 +- 洵 +- 锲 +- 颉 +- 僱 +- 柘 +- 栎 +- 疝 +- 萢 +- 鑽 +- 骶 +- 〆 +- 儘 +- 汩 +- 腭 +- Փ +- 佈 +- 掮 +- 梏 +- 歙 +- 毽 +- 涿 +- 矬 +- 엮 +- Û +- Ѐ +- ዣ +- ᱡ +- ᱦ +- 喬 +- 嫲 +- 嬌 +- 懶 +- 筲 +- 糅 +- 辭 +- 霭 +- 낑 +- 뎌 +- 뛴 +- 봅 +- 솜 +- 엣 +- 왁 +- 찹 +- 칫 +- 懼 +- 禎 +- ဌ +- 娆 +- 鬚 +- 荥 +- 笏 +- 嶌 +- 癣 +- 攣 +- 鍬 +- 嘌 +- 捌 +- 孑 +- 淦 +- 瑁 +- 硼 +- 擾 +- 泓 +- 閾 +- 楯 +- 蝕 +- ゐ +- 哙 +- 姝 +- 孖 +- 盂 +- 胄 +- Ɓ +- ଃ +- ഊ +- ዌ +- ፆ +- 倜 +- 卅 +- 卍 +- 柩 +- 鲅 +- 갛 +- 껑 +- 껜 +- 륭 +- 뭇 +- 슝 +- 싯 +- 쏴 +- 잎 +- 콧 +- 팜 +- 펀 +- ඞ +- 婀 +- 톨 +- 洙 +- 硤 +- 梠 +- 锆 +- 筧 +- 鵤 +- 菖 +- 邬 +- 軋 +- 栉 +- 忪 +- 桎 +- 筠 +- 脍 +- 锃 +- 佔 +- 儆 +- 掬 +- 旮 +- 荊 +- ᱹ +- 隽 +- 饴 +- 훑 +- Ċ +- Է +- ቬ +- ጧ +- 奂 +- 滷 +- 癮 +- 蝼 +- 슥 +- 쏙 +- 왈 +- 팥 +- 핥 +- Ը +- 乸 +- 擤 +- 縱 +- 铍 +- 멧 +- Ў +- 嘹 +- 埴 +- 悅 +- 欅 +- 谒 +- 鴛 +- ឲ +- 嘭 +- 箪 +- 鴦 +- 恫 +- 覃 +- 穎 +- 郜 +- 韋 +- 僭 +- 痙 +- 邁 +- 哌 +- 疇 +- 惇 +- 侗 +- 箒 +- 埂 +- 讶 +- 邺 +- 鲹 +- 稞 +- 蒡 +- 賴 +- Զ +- 绶 +- 贖 +- 铱 +- Ҭ +- 亳 +- 坩 +- 柒 +- 纰 +- 觸 +- Ɗ +- ፏ +- ⋯ +- 劑 +- 擴 +- 殲 +- 溏 +- 茯 +- 깍 +- 붐 +- 뻣 +- 샹 +- 줍 +- 쯔 +- 펠 +- 敕 +- 깬 +- 꾹 +- 뮬 +- 빰 +- 숍 +- 즙 +- 쭝 +- 쾅 +- 퀸 +- 킵 +- 펭 +- 헝 +- 俥 +- 滂 +- 瘘 +- 캘 +- 嗪 +- 衞 +- 睢 +- 铣 +- 韮 +- 翦 +- 娠 +- 旛 +- 翫 +- 蕈 +- 譯 +- 吽 +- 囿 +- ͘ +- 讚 +- 钹 +- Ƙ +- ǔ +- Ұ +- 阕 +- 阱 +- 麿 +- 쫑 +- 쿡 +- ဧ +- ሣ +- 嬤 +- 懺 +- 晁 +- 殓 +- 滾 +- 苻 +- 钯 +- 饬 +- 껐 +- 꿋 +- 덧 +- 뵈 +- 엌 +- 잌 +- Ë +- 沅 +- 瑩 +- 撻 +- 笥 +- 尕 +- 簀 +- 竈 +- 縷 +- 鮪 +- 糀 +- 謄 +- 侘 +- 鰭 +- 氩 +- 籐 +- 舖 +- 皺 +- 伫 +- 弭 +- 欸 +- 泙 +- Ύ +- 祚 +- 缢 +- 聒 +- 诰 +- 鄢 +- 鴫 +- 鹄 +- 齡 +- Ξ +- ಓ +- ᱰ +- 垓 +- 燉 +- 筈 +- 贊 +- 鬥 +- Ĩ +- Ź +- ഐ +- ඖ +- ᱲ +- 侩 +- 惱 +- 杓 +- 涪 +- 漿 +- 炆 +- 觥 +- 颍 +- 餵 +- 麾 +- 겜 +- 괘 +- 꿍 +- 돕 +- 돗 +- 딲 +- 릏 +- 맑 +- 뵙 +- 솥 +- 앚 +- 쫀 +- 쭘 +- 펄 +- Ũ +- Ӗ +- ┐ +- 榧 +- 癜 +- 缱 +- 饕 +- 驅 +- 鲇 +- 젯 +- 퍽 +- 갯 +- 憫 +- 爍 +- 鄧 +- 萘 +- 廼 +- 吁 +- 茲 +- 鉤 +- 埚 +- 墉 +- 慳 +- 泔 +- 猢 +- 瑭 +- 旌 +- 孱 +- 屆 +- 弐 +- 珉 +- 祗 +- 薑 +- Ŵ +- ʽ +- Њ +- ѐ +- ഛ +- ቾ +- Ị +- 唞 +- 囁 +- 搽 +- 旯 +- 绻 +- 腧 +- 膣 +- 謊 +- 谆 +- 谌 +- 蹤 +- 钽 +- 靂 +- 뚤 +- 몫 +- 삥 +- 웜 +- 줏 +- 쩰 +- 츤 +- 캉 +- 큘 +- 팸 +- 펍 +- 펫 +- 헨 +- 崑 +- 瑤 +- 痧 +- 轍 +- 顛 +- 飚 +- 鵑 +- 龅 +- 롬 +- 잣 +- 횐 +- ಛ +- ඍ +- 滯 +- 薹 +- 譴 +- 桿 +- 氤 +- 蹙 +- ÷ +- 鵯 +- 臘 +- 鲼 +- 甑 +- 鯵 +- 嬬 +- 婺 +- 杈 +- 鬶 +- 鲠 +- 鳶 +- 嬸 +- 骅 +- ઋ +- 啐 +- 嗫 +- 尴 +- 徉 +- 抻 +- 煬 +- 瓊 +- 祜 +- 虢 +- 鈿 +- 俶 +- 倌 +- 撳 +- 棗 +- 樸 +- 珲 +- 癬 +- 笪 +- 錶 +- 삘 +- 씽 +- ኡ +- ፔ +- 剱 +- 彎 +- 獰 +- 甕 +- 綁 +- 腍 +- 芡 +- 薈 +- 蜆 +- 逑 +- 겔 +- 곈 +- 뤘 +- 뾰 +- 옇 +- 윽 +- 잭 +- 텃 +- 텼 +- 픔 +- 兖 +- 勳 +- 擰 +- 朧 +- 桤 +- 睏 +- 迩 +- 흙 +- 舩 +- 訛 +- 馮 +- 撈 +- 攬 +- 祎 +- 饒 +- 儚 +- ឍ +- 纈 +- 纐 +- 莳 +- 氘 +- 鑓 +- 葳 +- 莪 +- 儂 +- 繇 +- 苒 +- 恸 +- 舢 +- 刎 +- 徜 +- 桠 +- 繹 +- 芫 +- 杢 +- 榫 +- 氲 +- 睜 +- 箜 +- 篌 +- 貅 +- 閖 +- ᱼ +- 屙 +- 敘 +- 暈 +- 梾 +- 籤 +- 謬 +- 낌 +- 씁 +- 씸 +- Ĕ +- Ŭ +- Ӡ +- ቿ +- 傢 +- 呟 +- 悭 +- 溟 +- 璽 +- 瓴 +- 绔 +- 芩 +- 貔 +- 酞 +- 釀 +- 鍊 +- 鲃 +- 깁 +- 돔 +- 둡 +- 랴 +- 썪 +- 짭 +- 짼 +- 퀵 +- 폿 +- 홋 +- ఞ +- 潞 +- 癲 +- 鋲 +- 캄 +- 퐁 +- 瀾 +- 訶 +- 贄 +- ಢ +- 羰 +- 羸 +- 麂 +-  +- 剋 +- 滁 +- 瑳 +- 谶 +- 荸 +- 좀 +- 碲 +- 楳 +- 鲳 +- 煕 +- 戇 +- 溲 +- 膑 +- ޣ +- 壷 +- 擠 +- 聿 +- 伉 +- 滦 +- 睥 +- 繩 +- 脘 +- 荽 +- 崙 +- 攤 +- 柾 +- 砀 +- 籮 +- 蠡 +- 谧 +- ഔ +- 挲 +- 晔 +- 琮 +- 瘋 +- 藨 +- 钣 +- Ơ +- Ҟ +- ಔ +- ዑ +- ጵ +- Ứ +- ‫ +- ∈ +- 凇 +- 懑 +- 掙 +- 揼 +- 涜 +- 炔 +- 繪 +- 腟 +- 芾 +- 錘 +- 頒 +- 驟 +- 鹞 +- 꽝 +- 넬 +- 눴 +- 뜸 +- 밉 +- 뵀 +- 삔 +- 샜 +- 셌 +- 쑤 +- 엿 +- 콸 +- Ҥ +- Ҽ +- ဿ +- 捩 +- 禿 +- 竇 +- 譽 +- 郫 +- 둠 +- 뒹 +- 렐 +- 맴 +- 뽈 +- 첸 +- 拋 +- 淙 +- 盞 +- 丶 +- 寬 +- 獵 +- 窰 +- 舳 +- 註 +- ઃ +- 诅 +- 閤 +- 鴇 +- 嘧 +- 慄 +- 攝 +- 蝨 +- 鰯 +- 貶 +- 臾 +- 笕 +- 頷 +- 镌 +- 竪 +- 噤 +- 诘 +- 锗 +- 閘 +- 嗚 +- 壩 +- 撺 +- 晷 +- 桡 +- 棹 +- 耧 +- 趸 +- → +- 妁 +- 牯 +- 瓿 +- 笄 +- 蛄 +- 豈 +- 铖 +- 骐 +- 鷉 +- 鸾 +- 屍 +- 楸 +- 踽 +- 锒 +- 鲲 +- 섀 +- 켄 +- Ľ +- ӊ +- ጇ +- ጬ +- ◎ +- 嚨 +- 姒 +- 蒺 +- 蝸 +- 輻 +- 鸨 +- 齟 +- 깰 +- 끽 +- 낵 +- 눔 +- 닳 +- 밋 +- 밲 +- 벡 +- 뺨 +- 쉘 +- 슉 +- 쌔 +- 짚 +- 촛 +- 춧 +- 캣 +- 캥 +- 튕 +- 휙 +- ਔ +- ఢ +- ೧ +- ᱯ +- 偲 +- 劍 +- 枱 +- 膩 +- 艷 +- 菸 +- 詛 +- 豇 +- 낡 +- 됬 +- 둣 +- 쌰 +- 撷 +- 贰 +- 躙 +- 辯 +- 遑 +- Յ +- 楮 +- 誼 +- 瞞 +- 祿 +- 绦 +- 廬 +- 皋 +- 妝 +- 鸮 +- 떤 +- 圳 +- 捲 +- 陝 +- 獺 +- 媾 +- 魍 +- 鼩 +- 鴈 +- ゝ +- 狲 +- 釐 +- 铄 +- 沮 +- 蘼 +- 邕 +- 钎 +- 靥 +- 鞣 +- ♥ +- 姘 +- 娣 +- 稹 +- 胳 +- 郅 +- 阆 +- 颱 +- 餮 +- ־ +- 儋 +- 厝 +- 肅 +- 誊 +- 騷 +- 숟 +- "\x92" +- "\x97" +- Ճ +- ՞ +- ኜ +- ዢ +- ዦ +- Ố +- 嘍 +- 揩 +- 曆 +- 栢 +- 潋 +- 箬 +- 糍 +- 遞 +- 髡 +- 鰐 +- 鲡 +- 鲢 +- 齬 +- 걀 +- 꺄 +- 꿉 +- 뗄 +- 빕 +- 얽 +- 읏 +- 잰 +- 쟀 +- 컥 +- 킷 +- 햐 +- 흩 +- ඣ +- ፑ +- ៣ +- 寳 +- 淖 +- 灑 +- 錨 +- 駁 +- 랠 +- 썽 +- 웰 +- 젬 +- 탬 +- 툼 +- 핍 +- 檳 +- 籃 +- 僑 +- 橼 +- 脹 +- 銛 +- 钜 +- 盱 +- 籲 +- 陲 +- 颔 +- 勖 +- 蓖 +- 郢 +- 檯 +- 粂 +- 獏 +- 燿 +- 祕 +- 鯊 +- 枡 +- 惕 +- 兌 +- 钼 +- 鞆 +- ● +- 綦 +- 蕗 +- 埜 +- 焘 +- 劭 +- 愎 +- 橈 +- 鎚 +- 锷 +- 鞏 +- 齁 +- 龇 +- ဍ +- ♂ +- 侪 +- 窠 +- 肪 +- 蜇 +- 逹 +- 邛 +- 卟 +- 撓 +- 燐 +- 纖 +- 郓 +- 闱 +- 餞 +- 鹓 +- 俬 +- 呔 +- 澧 +- 燴 +- 犍 +- 羧 +- 葶 +- 谲 +- ¬ +- Ć +- ː +- ̓ +- ڱ +- ۚ +- ඪ +- ፁ +- ᱪ +- Ẩ +- 呎 +- 哣 +- 噃 +- 搣 +- 淒 +- 苕 +- 萋 +- 襪 +- 訇 +- 諄 +- 謢 +- 邳 +- 鉈 +- 鴉 +- 鸻 +- 갭 +- 곶 +- 넹 +- 뗐 +- 룽 +- 맷 +- 샾 +- 쐈 +- 쨍 +- 챠 +- 컹 +- 튠 +- 푠 +- ˮ +- Ί +- Ҿ +- ޛ +- ዟ +- 悗 +- 耒 +- 躾 +- 鏟 +- 閂 +- 곁 +- 맏 +- 뮌 +- 찻 +- 睪 +- 礦 +- 筺 +- 艱 +- 賬 +- 镕 +- 蕕 +- 炝 +- 聾 +- 逡 +- ฌ +- 瀋 +- 詭 +- 鲣 +- 侉 +- 埙 +- 慟 +- 蜉 +- 钡 +- 輯 +- 諧 +- 吳 +- 鐙 +- 陛 +- 撹 +- 苧 +- 劔 +- 濛 +- 齧 +- Ժ +- 剝 +- 吩 +- 徕 +- 镓 +- ൌ +- 佻 +- 嚅 +- 岘 +- 窨 +- 跬 +- 銜 +- 骢 +- 魉 +- 鰓 +- 㩒 +- 嬗 +- 旎 +- 旖 +- 氫 +- 洄 +- 牺 +- 篙 +- 舂 +- 闌 +- 飄 +- Ծ +- ḿ +- 仞 +- 嘯 +- 噓 +- 囹 +- 圄 +- 岿 +- 恁 +- 揦 +- 殚 +- 沆 +- 簕 +- 莠 +- 莼 +- 萊 +- 鰆 +- ɔ +- ≡ +- 砣 +- 辇 +- 궐 +- 뽐 +- "\x84" +- "\x9A" +- § +- Ť +- Ձ +- ۓ +- ጢ +- ፂ +- ፄ +- Ổ +- Ờ +- 僆 +- 棂 +- 獸 +- 瓏 +- 瘢 +- 聳 +- 荛 +- 衿 +- 遒 +- 鑰 +- 镬 +- 깽 +- 꺠 +- 끙 +- 늪 +- 댐 +- 딥 +- 딧 +- 랖 +- 룻 +- 릅 +- 봔 +- 봬 +- 뼛 +- 섣 +- 쉼 +- 싣 +- 쎘 +- 얏 +- 윌 +- 쥴 +- 쯧 +- 챈 +- 챌 +- 촥 +- 톰 +- 핬 +- 圪 +- 屜 +- 捽 +- 珮 +- 碛 +- 臟 +- 螫 +- 輋 +- 醪 +- 骠 +- 똠 +- 맸 +- 샬 +- 沔 +- 禊 +- 襦 +- 趄 +- 邇 +- 剜 +- 筍 +- 緞 +- 虧 +- 趔 +- 铩 +- 埒 +- 憚 +- 扦 +- 罟 +- 囮 +- 賈 +- 匁 +- 吲 +- 哚 +- 雎 +- 鄒 +- 飫 +- 縊 +- 讼 +- 濯 +- 竊 +- 铕 +- 蓣 +- ๅ +- 潑 +- 瀉 +- Ґ +- ಊ +- 屓 +- 碣 +- 粳 +- 苈 +- 蕤 +- 誨 +- 跖 +- 騾 +- 魑 +- ⸺ +- 倅 +- 幇 +- 廂 +- 柺 +- 楡 +- 瀨 +- 狆 +- 籏 +- 籬 +- 跣 +- 锶 +- 镆 +- 韌 +- ΐ +- 佚 +- 汜 +- 牍 +- 牴 +- 癱 +- 蟬 +- 顏 +- ϋ +- ዉ +- ▪ +- 佥 +- 刿 +- 噙 +- 孭 +- 洮 +- 漲 +- 猷 +- 瓤 +- 疊 +- 癡 +- 矍 +- 硯 +- 稃 +- 讫 +- 贔 +- 꾀 +- 떵 +- 맬 +- 빳 +- 챕 +- "\x91" +- "\x96" +- ƴ +- ؔ +- ઔ +- ෲ +- ኣ +- ១ +- 啞 +- 夘 +- 嵋 +- 徬 +- 慾 +- 斂 +- 渌 +- 滌 +- 漯 +- 燶 +- 砵 +- 稟 +- 笤 +- 蓆 +- 螞 +- 覓 +- 諺 +- 诳 +- 谡 +- 踎 +- 躉 +- 鈔 +- 铋 +- 陞 +- 顼 +- 麪 +- 갬 +- 궜 +- 궤 +- 꿇 +- 덱 +- 떳 +- 띨 +- 룐 +- 몹 +- 삑 +- 슁 +- 쏭 +- 앰 +- 욤 +- 웩 +- 잦 +- 죙 +- 챘 +- 첵 +- 촘 +- 쿤 +- 킴 +- 텁 +- 퓸 +- 훼 +- ઍ +- 冧 +- 勐 +- 擸 +- 晉 +- 汨 +- 燊 +- 瘡 +- 癇 +- 眀 +- 鎹 +- 铷 +- 鯰 +- 鱒 +- 딤 +- 앓 +- 얍 +- 윷 +- 쟈 +- 팎 +- 囗 +- 諌 +- 鋤 +- 壆 +- 嶄 +- 碕 +- 綵 +- 闢 +- 鳐 +- 秣 +- 簗 +- 蕪 +- 氹 +- 兪 +- 恹 +- 鈕 +- 钇 +- 蝣 +- 軀 +- 畲 +- 埕 +- 潅 +- 瞼 +- 褄 +- 詈 +- 邏 +- 颶 +- 莟 +- 艙 +- 碩 +- 筅 +- 钐 +- 寤 +- 徭 +- 銑 +- 朊 +- 楝 +- 澩 +- 竽 +- 褌 +- 覲 +- 铑 +- 鵠 +- 捭 +- 哞 +- 墊 +- 忾 +- 杼 +- 玑 +- 砭 +- 芨 +- 菡 +- 锇 +- 埓 +- 壅 +- 峅 +- 崧 +- 徠 +- 悱 +- 瑧 +- 脩 +- 邙 +- 铨 +- 鱸 +- 鸩 +- ẅ +- 壢 +- 泫 +- 爰 +- 箝 +- 耄 +- 耋 +- ▲ +- 垭 +- 巒 +- 捯 +- 撿 +- 攋 +- 梼 +- 璟 +- 疖 +- 痦 +- 紥 +- 缬 +- 腈 +- 菝 +- 逓 +- 铒 +- 鬢 +- 魃 +- 뎁 +- ѝ +- 垚 +- 擲 +- 眦 +- 絃 +- 舄 +- 蘅 +- 隸 +- 髯 +- 鲛 +- 鹱 +- 뎠 +- 딛 +- 몄 +- 쨈 +- 휠 +- 휩 +- ȃ +- Ց +- ۃ +- ॠ +- ḅ +- ヮ +- 勻 +- 卌 +- 吋 +- 噸 +- 囝 +- 奀 +- 戆 +- 揈 +- 揞 +- 搲 +- 攏 +- 昶 +- 暅 +- 椶 +- 榲 +- 橞 +- 涠 +- 珙 +- 琬 +- 磚 +- 粝 +- 糰 +- 緬 +- 罫 +- 羈 +- 葜 +- 蒹 +- 蕁 +- 薷 +- 蠱 +- 襴 +- 轸 +- 邰 +- 鏈 +- 鬘 +- 龐 +- 긱 +- 꺽 +- 늠 +- 뎀 +- 딕 +- 띡 +- 뵐 +- 셧 +- 슌 +- 웍 +- 윳 +- 짙 +- 쫒 +- 텄 +- 헉 +- 헹 +- 훗 +- Ώ +- ♯ +- 刪 +- 妯 +- 廪 +- 瀟 +- 犧 +- 畦 +- 癪 +- 矽 +- 禪 +- 腴 +- 袢 +- 鉦 +- 鏝 +- 뽁 +- 켈 +- 휜 +- 沭 +- 漣 +- 磔 +- 蕩 +- ଐ +- 仟 +- 壟 +- 妪 +- 淝 +- 紓 +- 苴 +- 莜 +- 隴 +- 饌 +- 駭 +- 鹘 +- 黢 +- ઐ +- 浛 +- ㄟ +- 剷 +- 圻 +- 澹 +- 砻 +- 肄 +- 崂 +- 痾 +- 稗 +- 褻 +- 迨 +- 镧 +- 霰 +- 顰 +- 輦 +- 輛 +- 焔 +- 篭 +- 踐 +- 坻 +- 왜 +- 殯 +- 靄 +- 琨 +- 闖 +- 騭 +- 蝿 +- 頤 +- 厠 +- 夲 +- 嫪 +- 玘 +- 蘊 +- 黚 +- 黧 +- 媞 +- 咥 +- 嘜 +- 嵊 +- 椴 +- 濞 +- 緘 +- 藺 +- 蝮 +- 醴 +- 鉉 +- 鹗 +- 贲 +- ഃ +- ဠ +- 偈 +- 唪 +- 嗳 +- 姶 +- 嫻 +- 孥 +- 崁 +- 彧 +- 徂 +- 枞 +- 狽 +- 皲 +- 紮 +- 缦 +- 莒 +- 裃 +- ṃ +- 穫 +- ゚ +- 喑 +- 摟 +- 擋 +- 氡 +- 篾 +- 絣 +- 绐 +- 聩 +- 蚶 +- 螟 +- 襞 +- 賁 +- 踟 +- 蹰 +- 鈷 +- 镛 +- 闾 +- 髂 +- 鲆 +- 齒 +- 쌋 +- 췌 +- ॊ +- ఔ +- ဩ +- ኅ +- ※ +- 俅 +- 唖 +- 尷 +- 洇 +- 澆 +- 绀 +- 蕭 +- 틋 +- ኻ +- 佷 +- 侈 +- 뉜 +- 쉑 +- 쑈 +- "\x8A" +- "\x9D" +- Ğ +- ǐ +- ಝ +- ೯ +- ඃ +- ฯ +- ဈ +- ሒ +- ኼ +- ጴ +- ៖ +- ៦ +- ᱬ +- ᱶ +- ᱸ +- □ +- 䁅 +- 呯 +- 唈 +- 唳 +- 喐 +- 嗄 +- 噹 +- 娌 +- 娛 +- 寢 +- 嶂 +- 恽 +- 慚 +- 懞 +- 懣 +- 抌 +- 攜 +- 曚 +- 枥 +- 柽 +- 樑 +- 樞 +- 樾 +- 牀 +- 狍 +- 稙 +- 繚 +- 舸 +- 芎 +- 衾 +- 訕 +- 豢 +- 躝 +- 轎 +- 酐 +- 鎏 +- 鏊 +- 钆 +- 钪 +- 钶 +- 雋 +- 饋 +- 鬠 +- 鸫 +- 龠 +- 갰 +- 겅 +- 곗 +- 곪 +- 굼 +- 낱 +- 냇 +- 넒 +- 닛 +- 댑 +- 덨 +- 듦 +- 땔 +- 떄 +- 뗀 +- 똔 +- 롷 +- 롹 +- 묽 +- 볐 +- 빢 +- 뼌 +- 뽂 +- 샛 +- 샥 +- 솟 +- 숄 +- 숑 +- 슛 +- 쐬 +- 쑨 +- 쓕 +- 앳 +- 얕 +- 옅 +- 웁 +- 윰 +- 쟨 +- 젼 +- 짹 +- 쫘 +- 쭌 +- 챗 +- 펩 +- 푯 +- 핌 +- 𢱕 +- 櫚 +- 煅 +- 甌 +- 莢 +- 驕 +- 髌 +- 랏 +- 쏜 +- 옐 +- 핼 +- ஔ +- 僖 +- 恊 +- 滙 +- 澍 +- 癢 +- 粿 +- 翹 +- 蔀 +- 蛸 +- 躓 +- 鏃 +- 飩 +- 髀 +- 吶 +- 垃 +- 巉 +- 巔 +- 怩 +- 搗 +- 楦 +- 琚 +- 篁 +- 脲 +- 誡 +- 阊 +- 鬻 +- 鸱 +- 叺 +- 湟 +- 頗 +- 魟 +- 狢 +- 畐 +- 畷 +- 椹 +- 諍 +- 醮 +- 鐸 +- 釗 +- 镗 +- 锴 +- ゙ +- 戕 +- 稈 +- 纒 +- 亓 +- 庹 +- 氖 +- 祉 +- 鉗 +- 础 +- 嚯 +- 堉 +- 桫 +- 椤 +- 楋 +- 瀣 +- 珧 +- 礬 +- 舾 +- 邾 +- 鵺 +- 鼱 +- 滢 +- 臍 +- 堝 +- 弍 +- 晞 +- 椁 +- 濺 +- 睄 +- 礇 +- 笫 +- 蠟 +- 鎂 +- 閨 +- 怏 +- 慷 +- 瀏 +- 綸 +- 罎 +- 閩 +- ጐ +- ឫ +- 伧 +- 僂 +- 冼 +- 夔 +- 媠 +- 嵴 +- 幟 +- 畊 +- 磬 +- 窺 +- 簷 +- 胿 +- 臬 +- 蚵 +- 蹚 +- 鋏 +- 鏖 +- 霑 +- 騮 +- 鲔 +- 끅 +- ̋ +- Љ +- ѕ +- ២ +- 佶 +- 唻 +- 抾 +- 柞 +- 澱 +- 錙 +- 늄 +- 뒨 +- 믈 +- 콰 +- ± +- ¶ +- ʾ +- ̊ +- ଈ +- ଔ +- ஶ +- ኀ +- ጳ +- ጼ +- ጾ +- ጿ +- ፥ +- ឮ +- ០ +- ៤ +- ៨ +- ᱝ +- 㓤 +- 仝 +- 倧 +- 刄 +- 厍 +- 咇 +- 唥 +- 喏 +- 嗞 +- 囍 +- 圜 +- 埞 +- 塬 +- 塱 +- 墀 +- 墮 +- 壸 +- 婭 +- 岫 +- 崃 +- 崋 +- 弶 +- 愜 +- 憊 +- 挈 +- 揜 +- 摮 +- 擘 +- 擱 +- 昐 +- 枘 +- 枳 +- 椚 +- 槁 +- 樒 +- 櫸 +- 淸 +- 溘 +- 溼 +- 燙 +- 痈 +- 硎 +- 篩 +- 簒 +- 縝 +- 縻 +- 纔 +- 荪 +- 葯 +- 蚴 +- 蛏 +- 蛻 +- 蝰 +- 蠹 +- 裇 +- 裥 +- 誅 +- 豎 +- 貲 +- 踭 +- 踴 +- 蹌 +- 蹣 +- 鑿 +- 铼 +- 锺 +- 镲 +- 颙 +- 駈 +- 駱 +- 鮓 +- 鮟 +- 鯇 +- 鰈 +- 鰜 +- 鱇 +- 鲀 +- 鵲 +- 괭 +- 굘 +- 긌 +- 깟 +- 깻 +- 꼿 +- 넙 +- 뉸 +- 뗘 +- 뚠 +- 띃 +- 렜 +- 룔 +- 멓 +- 멱 +- 뭄 +- 뺌 +- 뿅 +- 뿍 +- 숯 +- 슘 +- 쎌 +- 얠 +- 옌 +- 잴 +- 쩝 +- 쳇 +- 췻 +- 츰 +- 캇 +- 켔 +- 퀭 +- 킁 +- 탤 +- 튄 +- 팰 +- 혓 +- 홧 +- 훤 +- 휑 +- 힉 +- ȇ +- ˎ +- 躼 +- 곯 +- 덫 +- 햅 +- Ě +- 狹 +- 睚 +- 觜 +- 겡 +- 셴 +- 쌜 +- ಋ +- 壘 +- 孛 +- 忟 +- 旻 +- 榑 +- 煥 +- 狎 +- 眇 +- 罘 +- 胪 +- 脛 +- 舨 +- 镒 +- 餼 +- 馐 +- 촤 +- 歃 +- 禛 +- ♭ +- 垌 +- 尭 +- 晝 +- 楹 +- 滄 +- 砜 +- 菟 +- 蒨 +- 藷 +- 鏢 +- 鐡 +- 頌 +- 馕 +- 鰲 +- 鳉 +- 豕 +- 蜘 +- ㄧ +- 嵬 +- 忸 +- 暝 +- 盜 +- 螣 +- 謐 +- 嘬 +- 圾 +- 洟 +- 舁 +- 醗 +- 铟 +- 颏 +- 黌 +- 栂 +- 瘻 +- 瞋 +- 窣 +- 窸 +- 絋 +- 鶫 +- 銕 +- √ +- 蚺 +- 蹕 +- 窶 +- 牻 +- 擯 +- 愼 +- 榾 +- 癩 +- 筜 +- 筼 +- 聶 +- 蟄 +- 鍔 +- 頽 +- 黠 +- 梛 +- 莨 +- 骈 +- 鸊 +- 倬 +- 唛 +- 嗶 +- 嘰 +- 嚐 +- 媪 +- 徛 +- 憺 +- 揠 +- 甦 +- 翃 +- 肭 +- 芗 +- 茔 +- 萁 +- 葎 +- 蓠 +- 蛉 +- 蜮 +- 贶 +- 趖 +- 轡 +- 釁 +- 鈉 +- 隹 +- 餉 +- 饪 +- 騅 +- 橹 +- 篳 +- 蟯 +- Ъ +- ឦ +- ∠ +- 〝 +- ヰ +- 俠 +- 冪 +- 埤 +- 墘 +- 嬅 +- 峤 +- 巿 +- 扻 +- 搦 +- 攔 +- 昰 +- 枋 +- 槊 +- 渑 +- 燵 +- 猊 +- 簋 +- 肼 +- 臚 +- 艄 +- 茆 +- 茼 +- 菘 +- 菪 +- 諷 +- 譟 +- 躑 +- 輓 +- 郯 +- 郾 +- 鄄 +- 鋆 +- 铳 +- 锨 +- 閏 +- 颪 +- 馭 +- 髒 +- 鱔 +- ǰ +- ॲ +- ୫ +- ឪ +- 愠 +- 歛 +- 皚 +- 硲 +- 稣 +- 蛚 +- 輾 +- 馩 +- 꽌 +- 롸 +- 밧 +- 뱄 +- "\x80" +- "\x99" +- Ï +- ǒ +- ȏ +- ̌ +- ̔ +- ̟ +- Ӯ +- ٗ +- ۗ +- ޡ +- ऍ +- ॆ +- ॔ +- ૢ +- ୪ +- ೦ +- ೨ +- ೩ +- ෳ +- ቮ +- ጹ +- ḉ +- ḫ +- ṇ +- ṉ +- ẃ +- Ạ +- Ầ +- Ậ +- Ệ +- Ự +- ⁠ +- ∙ +- ⊙ +- ◯ +- ⸻ +- 〟 +- 㧎 +- 䒏 +- 䒐 +- 佮 +- 俟 +- 倯 +- 倻 +- 偢 +- 僥 +- 儍 +- 凊 +- 匱 +- 叁 +- 嗐 +- 嘏 +- 噁 +- 囪 +- 埵 +- 堯 +- 奓 +- 姍 +- 娉 +- 尣 +- 弸 +- 怍 +- 悽 +- 挜 +- 挹 +- 揗 +- 摈 +- 斃 +- 昉 +- 曵 +- 梣 +- 棧 +- 楫 +- 橐 +- 欒 +- 殭 +- 殳 +- 洎 +- 浐 +- 涷 +- 玭 +- 瑋 +- 璁 +- 璈 +- 甙 +- 畈 +- 瘓 +- 眙 +- 硃 +- 碚 +- 磧 +- 竅 +- 筥 +- 篦 +- 粲 +- 糒 +- 繻 +- 罅 +- 胗 +- 舺 +- 艋 +- 艤 +- 艪 +- 艸 +- 茕 +- 荜 +- 莵 +- 菉 +- 菔 +- 萠 +- 蓺 +- 蔣 +- 蘂 +- 蟥 +- 覯 +- 訐 +- 訥 +- 詡 +- 誣 +- 誦 +- 誻 +- 謨 +- 譖 +- 豂 +- 赧 +- 趌 +- 趺 +- 躅 +- 軚 +- 輘 +- 輷 +- 迾 +- 鄣 +- 醌 +- 鎅 +- 鎔 +- 鎝 +- 鏨 +- 鑄 +- 鑲 +- 钋 +- 闕 +- 陉 +- 頰 +- 餋 +- 餒 +- 餛 +- 馯 +- 骘 +- 鬍 +- 鬨 +- 魎 +- 鲮 +- 鲿 +- 鳫 +- 鵞 +- 鵡 +- 鶉 +- 鹛 +- 鼆 +- 鼐 +- 걜 +- 겋 +- 곌 +- 굥 +- 귐 +- 꽐 +- 꽥 +- 꿩 +- 끍 +- 냔 +- 냘 +- 냡 +- 넝 +- 넴 +- 놉 +- 놋 +- 놘 +- 뇽 +- 뉩 +- 늉 +- 댜 +- 듈 +- 땋 +- 떰 +- 띤 +- 맽 +- 멩 +- 몀 +- 믕 +- 볕 +- 뵌 +- 빻 +- 뿡 +- 샨 +- 숀 +- 숴 +- 슾 +- 쌕 +- 쌨 +- 썅 +- 썜 +- 쎅 +- 쏼 +- 쒀 +- 씰 +- 옉 +- 옫 +- 웟 +- 읊 +- 읜 +- 좆 +- 짯 +- 쨋 +- 쨰 +- 쩄 +- 쮸 +- 촐 +- 캬 +- 켁 +- 켐 +- 켸 +- 콥 +- 쿱 +- 퉤 +- 튬 +- 팹 +- 퐉 +- 푤 +- 퓰 +- 픕 +- 휀 +- 𢳂 +- ʺ +- 꾜 +- 꿰 +- 쇳 +- 잽 +- Ǹ +- ೫ +- ኟ +- ṅ +- † +- 凈 +- 垪 +- 拵 +- 曷 +- 梘 +- 漚 +- 絚 +- 鯪 +- 넚 +- 쌉 +- 엡 +- ೮ +- 䢢 +- 佤 +- 凫 +- 煖 +- 獪 +- 瘆 +- 癆 +- 秬 +- 糋 +- 躹 +- 迳 +- 钌 +- 陜 +- 韪 +- 驛 +- 髙 +- 鹼 +- 갉 +- 뷴 +- 寃 +- 刳 +- 劏 +- 嚡 +- 杮 +- 槎 +- 槤 +- 樅 +- 沤 +- 炴 +- 煊 +- 熒 +- 珎 +- 璉 +- 痼 +- 簔 +- 苄 +- 苳 +- 菴 +- 蘚 +- 虬 +- 詆 +- 赍 +- 跶 +- 铪 +- 闔 +- 顱 +- 颢 +- 飜 +- 骹 +- 伜 +- 柝 +- 聟 +- 釵 +- 崆 +- 畋 +- 笸 +- 膾 +- 蕲 +- 靫 +- 頴 +- 髷 +- 鵙 +- 鸷 +- 錺 +- 蒟 +- 愴 +- 腘 +- 鯱 +- 샀 +- 끊 +- 굳 +- 拶 +- Ẓ +- 橄 +- Ṛ +- 惫 +- 咆 +- 옛 +- ఊ +- 싫 +- 밌 +- 雰 +- 괜 +- 떻 +- 뭔 +- 伥 +- 飪 +- 鬪 +- 鼈 +- 걔 +- 椙 +- 蒎 +- 锿 +- 鲵 +- 亰 +- 啻 +- 囂 +- 峁 +- 弖 +- 憮 +- 桴 +- 瓘 +- 瘧 +- 秭 +- 簓 +- 薖 +- 蝴 +- 谯 +- 趿 +- 镨 +- 闳 +- 馑 +- 骺 +- 鱚 +- 鲐 +- ఋ +- 咙 +- Ÿ +- ഋ +- ഢ +- ဋ +- 丨 +- 丱 +- 仱 +- 傈 +- 傩 +- 僳 +- 劊 +- 嗆 +- 嗹 +- 嘁 +- 岈 +- 嵖 +- 巖 +- 庠 +- 廸 +- 戔 +- 扂 +- 拏 +- 挾 +- 掗 +- 摰 +- 撣 +- 攑 +- 敍 +- 旃 +- 旒 +- 栻 +- 槓 +- 歕 +- 歨 +- 殂 +- 泠 +- 渀 +- 潲 +- 潷 +- 澀 +- 瓩 +- 甓 +- 疃 +- 癀 +- 癔 +- 竦 +- 筊 +- 篥 +- 籟 +- 籼 +- 糬 +- 緹 +- 縉 +- 縢 +- 膕 +- 臈 +- 臙 +- 艏 +- 苡 +- 莩 +- 蓊 +- 薀 +- 薜 +- 蘓 +- 裈 +- 褧 +- 覕 +- 諡 +- 謇 +- 诒 +- 诤 +- 贽 +- 軼 +- 迤 +- 逶 +- 邡 +- 醅 +- 釼 +- 錚 +- 鍚 +- 鐃 +- 鐐 +- 钺 +- 铇 +- 锕 +- 镎 +- 靑 +- 顫 +- 髖 +- 鰊 +- 鳎 +- 鳔 +- 鷽 +- 鼙 +- ኰ +- 䖙 +- 俢 +- 儉 +- 啍 +- 埲 +- 屄 +- 戥 +- 掞 +- 枦 +- 爿 +- 笳 +- 綢 +- 繄 +- 翕 +- 芘 +- 蛣 +- 豔 +- 蹐 +- 鉀 +- 闞 +- 鵪 +- 鸝 +- 됭 +- 싰 +- 옭 +- 좔 +- ̧ +- ☉ +- 떫 +- 뱌 +- 벘 +- 씉 +- 엷 +- 읐 +- Ƴ +- "\x81" +- "\x8D" +- "\x8E" +- "\x98" +- ¦ +- Ð +- Ù +- Ŋ +- ƒ +- Ǥ +- ǫ +- Ʉ +- ˊ +- ˋ +- ̕ +- ̱ +- ̲ +- ̶ +- Ψ +- Ђ +- Ћ +- Ќ +- Ѹ +- Ӌ +- Ӳ +- Ղ +- Ր +- ַ +- ּ +- ؓ +- ٓ +- ऩ +- ॐ +- ৗ +- ઼ +- ૧ +- ૮ +- ୗ +- ୨ +- ୯ +- ఝ +- ఱ +- ೪ +- ഝ +- ෴ +- ་ +- ན +- ሓ +- ሿ +- ቐ +- ቓ +- ቯ +- ዒ +- ዖ +- ዡ +- ጯ +- ፗ +- ៎ +- ៥ +- ៧ +- ḏ +- ḡ +- ḩ +- Ḫ +- ṁ +- ẞ +- Ắ +- Ể +- Ỉ +- Ỗ +- Ộ +- Ớ +- Ὑ +- ῖ +- ‰ +- ₹ +- ⃗ +- ↑ +- ↓ +- ∇ +- ∼ +- ≈ +- ▼ +- ☺ +- ✅ +- Ⱅ +- Ⱎ +- ゎ +- ゔ +- 㶶 +- 䁯 +- 䆀 +- 䱽 +- 䴕 +- 亍 +- 佉 +- 侷 +- 傃 +- 傉 +- 傱 +- 僉 +- 僊 +- 僮 +- 凩 +- 刋 +- 剎 +- 劖 +- 劼 +- 勰 +- 勼 +- 匏 +- 厴 +- 厶 +- 叅 +- 吿 +- 呓 +- 咹 +- 哓 +- 唂 +- 唎 +- 喟 +- 喲 +- 喼 +- 嗇 +- 嗿 +- 嚀 +- 嚒 +- 囑 +- 圷 +- 坜 +- 坵 +- 坼 +- 埆 +- 埭 +- 塢 +- 塭 +- 墁 +- 奬 +- 妗 +- 妠 +- 妡 +- 妣 +- 妤 +- 姹 +- 娗 +- 嫐 +- 嬶 +- 尓 +- 尙 +- 屢 +- 屣 +- 岀 +- 峄 +- 峇 +- 崞 +- 崮 +- 帙 +- 廍 +- 弌 +- 弢 +- 彥 +- 彳 +- 悒 +- 惝 +- 愔 +- 愷 +- 愾 +- 慤 +- 戞 +- 戽 +- 扴 +- 抆 +- 抔 +- 抦 +- 拃 +- 捹 +- 掁 +- 掕 +- 掼 +- 摙 +- 摳 +- 摵 +- 摷 +- 擏 +- 擷 +- 斝 +- 旳 +- 昃 +- 晡 +- 晧 +- 暸 +- 杙 +- 杣 +- 杻 +- 枧 +- 枰 +- 柸 +- 棔 +- 椏 +- 椟 +- 榙 +- 樁 +- 樗 +- 檪 +- 櫈 +- 殁 +- 殄 +- 毵 +- 氾 +- 汱 +- 洐 +- 洹 +- 淥 +- 淪 +- 湫 +- 溋 +- 溷 +- 滸 +- 潴 +- 澗 +- 澶 +- 濉 +- 瀍 +- 烝 +- 煆 +- 熈 +- 燜 +- 爨 +- 牾 +- 猗 +- 玜 +- 玠 +- 珒 +- 珣 +- 瑨 +- 瓠 +- 疔 +- 疠 +- 疴 +- 睞 +- 硚 +- 硨 +- 磲 +- 礑 +- 祆 +- 禳 +- 穐 +- 笮 +- 筌 +- 筿 +- 箆 +- 箓 +- 篋 +- 簟 +- 簫 +- 糉 +- 絅 +- 綖 +- 綯 +- 綷 +- 綽 +- 緁 +- 緲 +- 縒 +- 縹 +- 繆 +- 繏 +- 缑 +- 缙 +- 罨 +- 羂 +- 羣 +- 羶 +- 翙 +- 聼 +- 肟 +- 艀 +- 艹 +- 芰 +- 芻 +- 苎 +- 茏 +- 茖 +- 茭 +- 莚 +- 莸 +- 莾 +- 萜 +- 萡 +- 蒽 +- 蓀 +- 蓁 +- 蓥 +- 蕘 +- 蕞 +- 薟 +- 藳 +- 蛲 +- 蜑 +- 蜞 +- 蝥 +- 螋 +- 蟇 +- 蟳 +- 衒 +- 衮 +- 袛 +- 袰 +- 裄 +- 裎 +- 褦 +- 褫 +- 襤 +- 觔 +- 觚 +- 詬 +- 諚 +- 諤 +- 謔 +- 譫 +- 讒 +- 诮 +- 谘 +- 谳 +- 貉 +- 貮 +- 赀 +- 赓 +- 赟 +- 踅 +- 蹺 +- 輊 +- 輟 +- 輳 +- 轾 +- 辎 +- 辶 +- 迍 +- 郃 +- 郗 +- 郛 +- 郧 +- 鄯 +- 醯 +- 釆 +- 釿 +- 鈪 +- 鉅 +- 鉎 +- 銥 +- 銳 +- 鎭 +- 鐇 +- 鐶 +- 鑛 +- 鑢 +- 钕 +- 钤 +- 钫 +- 钬 +- 钿 +- 铙 +- 铧 +- 铽 +- 锝 +- 锟 +- 镝 +- 镡 +- 闼 +- 隗 +- 雺 +- 霈 +- 韃 +- 韜 +- 韫 +- 餚 +- 餾 +- 饑 +- 馔 +- 駝 +- 驺 +- 驽 +- 骝 +- 髧 +- 鮒 +- 鮖 +- 鯣 +- 鰌 +- 鰒 +- 鱉 +- 鱷 +- 鲗 +- 鲩 +- 鲾 +- 鳀 +- 鳊 +- 鳚 +- 鳜 +- 鳢 +- 鳰 +- 鴿 +- 鹀 +- 鹟 +- 麭 +- 黩 +- 鼢 +- 鼷 +- 齴 +- 龢 +- ꞌ +- 갼 +- 겝 +- 겻 +- 곘 +- 괍 +- 괏 +- 궂 +- 귯 +- 꺅 +- 꺤 +- 껒 +- 꽨 +- 꽷 +- 꾿 +- 뀨 +- 끕 +- 낏 +- 넵 +- 녘 +- 놥 +- 눟 +- 늗 +- 늣 +- 닪 +- 닸 +- 덷 +- 뎄 +- 뎡 +- 돚 +- 됑 +- 듭 +- 듶 +- 딫 +- 땍 +- 땟 +- 떈 +- 떱 +- 뗏 +- 똫 +- 뙤 +- 뚸 +- 뛌 +- 뜹 +- 띌 +- 띔 +- 럤 +- 롄 +- 뤃 +- 뤼 +- 맀 +- 먀 +- 먙 +- 멨 +- 묀 +- 뭍 +- 뭥 +- 뭬 +- 뭰 +- 믁 +- 믐 +- 밈 +- 밎 +- 뱁 +- 뱡 +- 벋 +- 벛 +- 볻 +- 봥 +- 뵤 +- 붜 +- 뷘 +- 뺘 +- 뻬 +- 뼘 +- 뼜 +- 뿕 +- 뿟 +- 쁩 +- 쁸 +- 삣 +- 삧 +- 삯 +- 셤 +- 셥 +- 셸 +- 솝 +- 솨 +- 쇽 +- 쉪 +- 쉭 +- 쌘 +- 쎼 +- 쏸 +- 쐐 +- 쐴 +- 쑬 +- 쒯 +- 씃 +- 앎 +- 앏 +- 앝 +- 얉 +- 얋 +- 얐 +- 얬 +- 옙 +- 옜 +- 왝 +- 왯 +- 윅 +- 읒 +- 잿 +- 쟝 +- 젭 +- 젱 +- 졀 +- 좃 +- 좇 +- 좐 +- 죈 +- 죵 +- 줜 +- 줴 +- 쥔 +- 쥘 +- 짢 +- 쩟 +- ํ +- ଋ +- 닯 +- 뜀 +- 룟 +- 뭡 +- 쌂 +- Ѓ +- ઁ +- ః +- 摅 +- 欉 +- 洶 +- 牘 +- 篪 +- 繃 +- 艻 +- 跩 +- 鷯 +- 뫼 +- 왐 +- ఙ +- 仂 +- 俍 +- 埖 +- 堊 +- 尅 +- 悾 +- 掅 +- 摎 +- 柢 +- 樨 +- 橂 +- 歁 +- 殕 +- 狯 +- 珜 +- 珰 +- 瑆 +- 畭 +- 穰 +- 箨 +- 缳 +- 罌 +- 耨 +- 臌 +- 苁 +- 萄 +- 蠓 +- 蠖 +- 蠶 +- 褸 +- 襠 +- 觴 +- 謖 +- 酺 +- 铊 +- 駟 +- 鰍 +- 黾 +- ♡ +- 僢 +- 剉 +- 噘 +- 圞 +- 圹 +- 岨 +- 弉 +- 昺 +- 橢 +- 濶 +- 焮 +- 禩 +- 秡 +- 秫 +- 笊 +- 茌 +- 蕖 +- 藹 +- 螅 +- 袆 +- 郏 +- 鉋 +- 銹 +- 铌 +- 駸 +- 墻 +- 悋 +- 暱 +- 櫨 +- 浬 +- 筬 +- 糺 +- 紑 +- 誂 +- 賎 +- 跹 +- 蹁 +- 蹠 +- 鰤 +- ằ +- 蒻 +- 鞨 +- ắ +- 笵 +- +- +- +init: null +input_size: null +ctc_conf: + dropout_rate: 0.0 + ctc_type: builtin + reduce: true + ignore_nan_grad: null + zero_infinity: true +use_preprocessor: true +token_type: bpe +bpemodel: data/token_list/bpe_unigram50000/bpe.model +non_linguistic_symbols: null +cleaner: null +g2p: null +speech_volume_normalize: null +rir_scp: null +rir_apply_prob: 1.0 +noise_scp: null +noise_apply_prob: 1.0 +noise_db_range: '13_15' +short_noise_thres: 0.5 +frontend: default +frontend_conf: + n_fft: 512 + win_length: 400 + hop_length: 160 + fs: 16k +specaug: specaug +specaug_conf: + apply_time_warp: false + time_warp_window: 5 + time_warp_mode: bicubic + apply_freq_mask: true + freq_mask_width_range: + - 0 + - 27 + num_freq_mask: 1 + apply_time_mask: true + time_mask_width_ratio_range: + - 0.0 + - 0.05 + num_time_mask: 1 +normalize: global_mvn +normalize_conf: + stats_file: exp/s2t_stats_raw_bpe50000/train/feats_stats.npz +model: espnet +model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 + length_normalized_loss: false + sym_na: +preencoder: null +preencoder_conf: {} +encoder: e_branchformer +encoder_conf: + output_size: 384 + attention_heads: 6 + attention_layer_type: selfattn + pos_enc_layer_type: abs_pos + rel_pos_type: latest + cgmlp_linear_units: 1536 + cgmlp_conv_kernel: 31 + use_linear_after_conv: false + gate_activation: identity + num_blocks: 6 + dropout_rate: 0.05 + positional_dropout_rate: 0.05 + attention_dropout_rate: 0.05 + input_layer: conv2d + layer_drop_rate: 0.0 + linear_units: 1536 + positionwise_layer_type: linear + use_ffn: true + macaron_ffn: true + merge_conv_kernel: 31 +postencoder: null +postencoder_conf: {} +decoder: transformer +decoder_conf: + attention_heads: 6 + linear_units: 1536 + num_blocks: 6 + dropout_rate: 0.05 + positional_dropout_rate: 0.05 + self_attention_dropout_rate: 0.05 + src_attention_dropout_rate: 0.05 +preprocessor: s2t +preprocessor_conf: + text_prev_name: text_prev + text_ctc_name: text_ctc + fs: 16000 + na_symbol: + speech_length: 30 + speech_resolution: 0.02 + speech_init_silence: 30 + text_prev_apply_prob: 0.5 + time_apply_prob: 0.5 + notime_symbol: + first_time_symbol: <0.00> + last_time_symbol: <30.00> +required: +- output_dir +- token_list +version: '202308' +distributed: true diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/acc.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/acc.png new file mode 100644 index 0000000000000000000000000000000000000000..57844d8aa5a97da74baed8227e81f5080f6f4c68 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/acc.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/backward_time.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/backward_time.png new file mode 100644 index 0000000000000000000000000000000000000000..8c22d6d0fde9361e4c8e450ee1f115ef7c5cf061 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/backward_time.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/cer.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/cer.png new file mode 100644 index 0000000000000000000000000000000000000000..c48ba9e3d5346cb809110e5fb348548747df618a Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/cer.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/cer_ctc.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/cer_ctc.png new file mode 100644 index 0000000000000000000000000000000000000000..9ddba276de567461d3cffad60f183022dbca6667 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/cer_ctc.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/clip.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/clip.png new file mode 100644 index 0000000000000000000000000000000000000000..e34eb28db5d0f3f6482a42953b8132762cadbe59 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/clip.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/forward_time.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/forward_time.png new file mode 100644 index 0000000000000000000000000000000000000000..07f086dbe92cf650e99acd472ed7d41698f9964d Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/forward_time.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/gpu_max_cached_mem_GB.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/gpu_max_cached_mem_GB.png new file mode 100644 index 0000000000000000000000000000000000000000..4423f118f5808565c557d492c2ad35b61f519b3c Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/gpu_max_cached_mem_GB.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/grad_norm.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/grad_norm.png new file mode 100644 index 0000000000000000000000000000000000000000..e37cfb811e006b592b593d92a5234349bdc7436a Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/grad_norm.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/iter_time.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/iter_time.png new file mode 100644 index 0000000000000000000000000000000000000000..6d2c8e11782c120c27eefbed50bd6a663899aaab Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/iter_time.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss.png new file mode 100644 index 0000000000000000000000000000000000000000..e5dfc938a7b0552f2ffa3f2d6833ebabb90bb343 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_att.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_att.png new file mode 100644 index 0000000000000000000000000000000000000000..848a7864eb0580bfeddc0cd05a6d0ac71dc0ea46 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_att.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_ctc.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_ctc.png new file mode 100644 index 0000000000000000000000000000000000000000..65d1e4818fb024a8c9a55a964ab1c1a29131d094 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_ctc.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_scale.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_scale.png new file mode 100644 index 0000000000000000000000000000000000000000..185e60ee01ad7d694dcd26782de97fe619869eb7 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/loss_scale.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/optim0_lr0.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/optim0_lr0.png new file mode 100644 index 0000000000000000000000000000000000000000..24bc9281d4af556b5980c8f573aa029d8c8a7c9d Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/optim0_lr0.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/optim_step_time.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/optim_step_time.png new file mode 100644 index 0000000000000000000000000000000000000000..543a08169f300c4022f66a650ec613ccc5ceeae9 Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/optim_step_time.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/train_time.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/train_time.png new file mode 100644 index 0000000000000000000000000000000000000000..6b43bd3fe7839fe3afa98068a09e22d974fe193b Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/train_time.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/wer.png b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/wer.png new file mode 100644 index 0000000000000000000000000000000000000000..d6b47987ebedcec7ae376f416eddc0fab767e94c Binary files /dev/null and b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/images/wer.png differ diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.1.log b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.1.log new file mode 100644 index 0000000000000000000000000000000000000000..babb830444943641fe80fa382cc3652d1baa6441 --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.1.log @@ -0,0 +1,5256 @@ +# Running on gpuc02.delta.ncsa.illinois.edu +# Started at Sun Jan 14 12:48:05 CST 2024 +# SLURMD_NODENAME=gpuc02 +# SLURM_CLUSTER_NAME=delta +# SLURM_CONF=/var/spool/slurmd/conf-cache/slurm.conf +# SLURM_CPUS_ON_NODE=128 +# SLURM_CPUS_PER_TASK=128 +# SLURM_EXPORT_ENV=PATH +# SLURM_GET_USER_ENV=1 +# SLURM_GPUS_ON_NODE=8 +# SLURM_GTIDS=0 +# SLURM_JOBID=2858112 +# SLURM_JOB_ACCOUNT=bbjs-delta-gpu +# SLURM_JOB_CPUS_PER_NODE='128(x2)' +# SLURM_JOB_END_TIME=1705430862 +# SLURM_JOB_GID=202 +# SLURM_JOB_GPUS=0,1,2,3,4,5,6,7 +# SLURM_JOB_ID=2858112 +# SLURM_JOB_NAME=exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log +# SLURM_JOB_NODELIST='gpuc[02,04]' +# SLURM_JOB_NUM_NODES=2 +# SLURM_JOB_PARTITION=gpuA100x8 +# SLURM_JOB_QOS=bbjs-delta-gpu +# SLURM_JOB_START_TIME=1705258062 +# SLURM_JOB_UID=68077 +# SLURM_JOB_USER=peng6 +# SLURM_LOCALID=0 +# SLURM_MEM_PER_NODE=2000000 +# SLURM_NNODES=2 +# SLURM_NODEID=0 +# SLURM_NODELIST='gpuc[02,04]' +# SLURM_NODE_ALIASES='(null)' +# SLURM_OPEN_MODE=a +# SLURM_PRIO_PROCESS=0 +# SLURM_PROCID=0 +# SLURM_SUBMIT_DIR=/scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1 +# SLURM_SUBMIT_HOST=dt-login01.delta.ncsa.illinois.edu +# SLURM_TASKS_PER_NODE='1(x2)' +# SLURM_TASK_PID=1518488 +# SLURM_TOPOLOGY_ADDR=ss00.ss05.gpuc02 +# SLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.node +# SLURM_WORKING_CLUSTER=delta:dt-sched:6817:9984:109 +# srun --export=ALL python3 -m espnet2.bin.s2t_train --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_bea4c054-f27d-4c8f-a870-da9e26899632 +/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/spe/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_bea4c054-f27d-4c8f-a870-da9e26899632 +ech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_bea4c054-f27d-4c8f-a870-da9e26899632 +[gpuc02:0/16] 2024-01-14 12:51:26,855 (distributed_c10d:319) INFO: Added key: store_based_barrier_key:1 to store for rank: 0 +[gpuc02:0/16] 2024-01-14 12:51:27,207 (distributed_c10d:353) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. +[gpuc02:0/16] 2024-01-14 12:51:27,285 (s2t:464) INFO: Vocabulary size: 50002 +[gpuc02:0/16] 2024-01-14 12:51:35,860 (abs_task:1231) INFO: pytorch.version=1.13.1, cuda.available=True, cudnn.version=8500, cudnn.benchmark=False, cudnn.deterministic=True +[gpuc02:0/16] 2024-01-14 12:51:35,865 (abs_task:1232) INFO: Model structure: +ESPnetS2TModel( + (frontend): DefaultFrontend( + (stft): Stft(n_fft=512, win_length=400, hop_length=160, center=True, normalized=False, onesided=True) + (frontend): Frontend() + (logmel): LogMel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000.0, htk=False) + ) + (specaug): SpecAug( + (freq_mask): MaskAlongAxis(mask_width_range=[0, 27], num_mask=1, axis=freq) + (time_mask): MaskAlongAxisVariableMaxWidth(mask_width_ratio_range=[0.0, 0.05], num_mask=1, axis=time) + ) + (normalize): GlobalMVN(stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz, norm_means=True, norm_vars=True) + (encoder): EBranchformerEncoder( + (embed): Conv2dSubsampling( + (conv): Sequential( + (0): Conv2d(1, 384, kernel_size=(3, 3), stride=(2, 2)) + (1): ReLU() + (2): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2)) + (3): ReLU() + ) + (out): Sequential( + (0): Linear(in_features=7296, out_features=384, bias=True) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (encoders): MultiSequential( + (0): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (1): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (2): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (3): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (4): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (5): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + ) + (decoder): TransformerDecoder( + (embed): Sequential( + (0): Embedding(50002, 384) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (output_layer): Linear(in_features=384, out_features=50002, bias=True) + (decoders): MultiSequential( + (0): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (1): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (2): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (3): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (4): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (5): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (criterion_att): LabelSmoothingLoss( + (criterion): KLDivLoss() + ) + (ctc): CTC( + (ctc_lo): Linear(in_features=384, out_features=50002, bias=True) + (ctc_loss): CTCLoss() + ) +) + +Model summary: + Class Name: ESPnetS2TModel + Total Number of model parameters: 101.18 M + Number of trainable parameters: 101.18 M (100.0%) + Size: 404.73 MB + Type: torch.float32 +[gpuc02:0/16] 2024-01-14 12:51:35,865 (abs_task:1235) INFO: Optimizer: +AdamW ( +Parameter Group 0 + amsgrad: False + betas: [0.9, 0.98] + capturable: False + eps: 1e-06 + foreach: None + initial_lr: 0.001 + lr: 3.3333333333333334e-09 + maximize: False + weight_decay: 0.0 +) +[gpuc02:0/16] 2024-01-14 12:51:35,865 (abs_task:1236) INFO: Scheduler: PiecewiseLinearWarmupLR(warmup_steps_list=[0, 30000, 60000], warmup_lr_list=[0.0, 0.0001, 0.001]) +[gpuc02:0/16] 2024-01-14 12:51:35,882 (abs_task:1245) INFO: Saving the configuration in exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml +[gpuc02:0/16] 2024-01-14 12:51:42,175 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 12:51:43,341 (abs_task:1616) INFO: [valid] dataset: +ESPnetDataset( + speech: {"path": "dump/raw/dev_v3/wav.scp", "type": "kaldi_ark"} + text_prev: {"path": "dump/raw/dev_v3/text.prev", "type": "text"} + text_ctc: {"path": "dump/raw/dev_v3/text.ctc", "type": "text"} + text: {"path": "dump/raw/dev_v3/text", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 12:51:43,341 (abs_task:1617) INFO: [valid] Batch sampler: UnsortedBatchSampler(N-batch=4671, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/valid/speech_shape, +[gpuc02:0/16] 2024-01-14 12:51:43,342 (abs_task:1618) INFO: [valid] mini-batch sizes summary: N-batch=4671, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 12:51:48,755 (trainer:159) INFO: The training was resumed using exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/checkpoint.pth +gpuc02:1518661:1518661 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518661:1518661 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518661:1518661 [0] NCCL INFO cudaDriverVersion 12020 +NCCL version 2.14.3+cuda11.7 +[gpuc02:0/16] 2024-01-14 12:51:56,353 (trainer:284) INFO: 19/45epoch started +[gpuc02:0/16] 2024-01-14 12:51:56,402 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 12:52:15,250 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 12:52:19,180 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 12:52:19,180 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 12:52:19,184 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +gpuc02:1518662:1518662 [1] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518662:1518662 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518662:1518662 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518662:1518748 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518662:1518748 [1] NCCL INFO Using network IB +gpuc02:1518662:1518748 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc02:1518662:1518748 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0 +gpuc02:1518662:1518748 [1] NCCL INFO Channel 00/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc02:1518662:1518748 [1] NCCL INFO Channel 01/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc02:1518662:1518748 [1] NCCL INFO Connected all rings +gpuc02:1518662:1518748 [1] NCCL INFO Channel 00/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc02:1518662:1518748 [1] NCCL INFO Channel 01/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc02:1518662:1518748 [1] NCCL INFO Connected all trees +gpuc02:1518662:1518748 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518662:1518748 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518662:1518748 [1] NCCL INFO comm 0xa20ed60 rank 1 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc04:2116782:2116782 [7] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116782:2116782 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116782:2116782 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116782:2116869 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116782:2116869 [7] NCCL INFO Using network IB +gpuc04:2116782:2116869 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc04:2116782:2116869 [7] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] -1/-1/-1->15->14 +gpuc04:2116782:2116869 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc04:2116782:2116869 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc04:2116782:2116869 [7] NCCL INFO Connected all rings +gpuc04:2116782:2116869 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc04:2116782:2116869 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc04:2116782:2116869 [7] NCCL INFO Connected all trees +gpuc04:2116782:2116869 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116782:2116869 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116782:2116869 [7] NCCL INFO comm 0xcf70770 rank 15 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc04:2116777:2116777 [2] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116777:2116777 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116777:2116777 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116777:2116870 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116777:2116870 [2] NCCL INFO Using network IB +gpuc04:2116777:2116870 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc04:2116777:2116870 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/-1/-1->10->9 +gpuc04:2116777:2116870 [2] NCCL INFO Channel 00/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc04:2116777:2116870 [2] NCCL INFO Channel 01/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc04:2116777:2116870 [2] NCCL INFO Connected all rings +gpuc04:2116777:2116870 [2] NCCL INFO Channel 00/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc04:2116777:2116870 [2] NCCL INFO Channel 01/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc04:2116777:2116870 [2] NCCL INFO Connected all trees +gpuc04:2116777:2116870 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116777:2116870 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116777:2116870 [2] NCCL INFO comm 0xa3c4a90 rank 10 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc02:1518668:1518668 [7] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518668:1518668 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518668:1518668 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518668:1518752 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518668:1518752 [7] NCCL INFO Using network IB +gpuc02:1518668:1518752 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc02:1518668:1518752 [7] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] -1/-1/-1->7->6 +gpuc02:1518668:1518752 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1518668:1518752 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1518668:1518752 [7] NCCL INFO Connected all rings +gpuc02:1518668:1518752 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc02:1518668:1518752 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc02:1518668:1518752 [7] NCCL INFO Connected all trees +gpuc02:1518668:1518752 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518668:1518752 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518668:1518752 [7] NCCL INFO comm 0x9870110 rank 7 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc02:1518661:1518750 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518661:1518750 [0] NCCL INFO Using network IB +gpuc02:1518661:1518750 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 00/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 01/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc02:1518661:1518750 [0] NCCL INFO Trees [0] 1/8/-1->0->-1 [1] 1/-1/-1->0->8 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 00/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc02:1518661:1518750 [0] NCCL INFO Channel 01/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc02:1518661:1518750 [0] NCCL INFO Connected all rings +gpuc02:1518661:1518750 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1518661:1518750 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1518661:1518750 [0] NCCL INFO Connected all trees +gpuc02:1518661:1518750 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518661:1518750 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518661:1518750 [0] NCCL INFO comm 0x5176b470 rank 0 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc02:1518667:1518667 [6] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518667:1518667 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518667:1518667 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518667:1518754 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518667:1518754 [6] NCCL INFO Using network IB +gpuc02:1518667:1518754 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc02:1518667:1518754 [6] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->5 +gpuc02:1518667:1518754 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc02:1518667:1518754 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc02:1518667:1518754 [6] NCCL INFO Connected all rings +gpuc02:1518667:1518754 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc02:1518667:1518754 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc02:1518667:1518754 [6] NCCL INFO Connected all trees +gpuc02:1518667:1518754 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518667:1518754 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518667:1518754 [6] NCCL INFO comm 0x10a94dc0 rank 6 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc04:2116778:2116778 [3] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116778:2116778 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116778:2116778 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116778:2116874 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116778:2116874 [3] NCCL INFO Using network IB +gpuc04:2116778:2116874 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc04:2116778:2116874 [3] NCCL INFO Trees [0] 12/-1/-1->11->10 [1] 12/-1/-1->11->10 +gpuc04:2116778:2116874 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc04:2116778:2116874 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc04:2116778:2116874 [3] NCCL INFO Connected all rings +gpuc04:2116778:2116874 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc04:2116778:2116874 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc04:2116778:2116874 [3] NCCL INFO Connected all trees +gpuc04:2116778:2116874 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116778:2116874 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116778:2116874 [3] NCCL INFO comm 0x5a7148d0 rank 11 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc04:2116775:2116775 [0] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116775:2116775 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116775:2116775 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116775:2116873 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116775:2116873 [0] NCCL INFO Using network IB +gpuc04:2116775:2116873 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc04:2116775:2116873 [0] NCCL INFO Trees [0] 9/-1/-1->8->0 [1] 9/0/-1->8->-1 +gpuc04:2116775:2116873 [0] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:2116775:2116873 [0] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:2116775:2116873 [0] NCCL INFO Channel 00/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc04:2116775:2116873 [0] NCCL INFO Channel 01/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc04:2116775:2116873 [0] NCCL INFO Connected all rings +gpuc04:2116775:2116873 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:2116775:2116873 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:2116775:2116873 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc04:2116775:2116873 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc04:2116775:2116873 [0] NCCL INFO Connected all trees +gpuc04:2116775:2116873 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116775:2116873 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116775:2116873 [0] NCCL INFO comm 0x55a524c0 rank 8 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc04:2116779:2116779 [4] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116779:2116779 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116779:2116779 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116779:2116871 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116779:2116871 [4] NCCL INFO Using network IB +gpuc04:2116779:2116871 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc04:2116779:2116871 [4] NCCL INFO Trees [0] 13/-1/-1->12->11 [1] 13/-1/-1->12->11 +gpuc04:2116779:2116871 [4] NCCL INFO Channel 00/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc04:2116779:2116871 [4] NCCL INFO Channel 01/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc04:2116779:2116871 [4] NCCL INFO Connected all rings +gpuc04:2116779:2116871 [4] NCCL INFO Channel 00/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc04:2116779:2116871 [4] NCCL INFO Channel 01/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc04:2116779:2116871 [4] NCCL INFO Connected all trees +gpuc04:2116779:2116871 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116779:2116871 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116779:2116871 [4] NCCL INFO comm 0x58a7d720 rank 12 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +gpuc04:2116776:2116776 [1] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116776:2116776 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116776:2116776 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116776:2116872 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116776:2116872 [1] NCCL INFO Using network IB +gpuc04:2116776:2116872 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc04:2116776:2116872 [1] NCCL INFO Trees [0] 10/-1/-1->9->8 [1] 10/-1/-1->9->8 +gpuc04:2116776:2116872 [1] NCCL INFO Channel 00/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc04:2116776:2116872 [1] NCCL INFO Channel 01/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc04:2116776:2116872 [1] NCCL INFO Connected all rings +gpuc04:2116776:2116872 [1] NCCL INFO Channel 00/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc04:2116776:2116872 [1] NCCL INFO Channel 01/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc04:2116776:2116872 [1] NCCL INFO Connected all trees +gpuc04:2116776:2116872 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116776:2116872 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116776:2116872 [1] NCCL INFO comm 0x54562740 rank 9 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc02:1518666:1518666 [5] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518666:1518666 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518666:1518666 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518666:1518751 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518666:1518751 [5] NCCL INFO Using network IB +gpuc02:1518666:1518751 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc02:1518666:1518751 [5] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] 6/-1/-1->5->4 +gpuc02:1518666:1518751 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc02:1518666:1518751 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc02:1518666:1518751 [5] NCCL INFO Connected all rings +gpuc02:1518666:1518751 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc02:1518666:1518751 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc02:1518666:1518751 [5] NCCL INFO Connected all trees +gpuc02:1518666:1518751 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518666:1518751 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518666:1518751 [5] NCCL INFO comm 0x512dbbe0 rank 5 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc02:1518664:1518664 [3] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518664:1518664 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518664:1518664 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518664:1518749 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518664:1518749 [3] NCCL INFO Using network IB +gpuc02:1518664:1518749 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc02:1518664:1518749 [3] NCCL INFO Trees [0] 4/-1/-1->3->2 [1] 4/-1/-1->3->2 +gpuc02:1518664:1518749 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc02:1518664:1518749 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc02:1518664:1518749 [3] NCCL INFO Connected all rings +gpuc02:1518664:1518749 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc02:1518664:1518749 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc02:1518664:1518749 [3] NCCL INFO Connected all trees +gpuc02:1518664:1518749 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518664:1518749 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518664:1518749 [3] NCCL INFO comm 0x6322dd70 rank 3 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc02:1518663:1518663 [2] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518663:1518663 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518663:1518663 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518663:1518747 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518663:1518747 [2] NCCL INFO Using network IB +gpuc02:1518663:1518747 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc02:1518663:1518747 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1 +gpuc02:1518663:1518747 [2] NCCL INFO Channel 00/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc02:1518663:1518747 [2] NCCL INFO Channel 01/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc02:1518663:1518747 [2] NCCL INFO Connected all rings +gpuc02:1518663:1518747 [2] NCCL INFO Channel 00/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc02:1518663:1518747 [2] NCCL INFO Channel 01/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc02:1518663:1518747 [2] NCCL INFO Connected all trees +gpuc02:1518663:1518747 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518663:1518747 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518663:1518747 [2] NCCL INFO comm 0xe9d0500 rank 2 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc04:2116780:2116780 [5] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116780:2116780 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116780:2116780 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116780:2116875 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116780:2116875 [5] NCCL INFO Using network IB +gpuc04:2116780:2116875 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc04:2116780:2116875 [5] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] 14/-1/-1->13->12 +gpuc04:2116780:2116875 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc04:2116780:2116875 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc04:2116780:2116875 [5] NCCL INFO Connected all rings +gpuc04:2116780:2116875 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc04:2116780:2116875 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc04:2116780:2116875 [5] NCCL INFO Connected all trees +gpuc04:2116780:2116875 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116780:2116875 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116780:2116875 [5] NCCL INFO comm 0x127fab20 rank 13 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc04:2116781:2116781 [6] NCCL INFO cudaDriverVersion 12020 +gpuc04:2116781:2116781 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:2116781:2116781 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:2116781:2116868 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:2116781:2116868 [6] NCCL INFO Using network IB +gpuc04:2116781:2116868 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc04:2116781:2116868 [6] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->13 +gpuc04:2116781:2116868 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc04:2116781:2116868 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc04:2116781:2116868 [6] NCCL INFO Connected all rings +gpuc04:2116781:2116868 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc04:2116781:2116868 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc04:2116781:2116868 [6] NCCL INFO Connected all trees +gpuc04:2116781:2116868 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:2116781:2116868 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:2116781:2116868 [6] NCCL INFO comm 0x53813a20 rank 14 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc02:1518665:1518665 [4] NCCL INFO cudaDriverVersion 12020 +gpuc02:1518665:1518665 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1518665:1518665 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1518665:1518753 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1518665:1518753 [4] NCCL INFO Using network IB +gpuc02:1518665:1518753 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc02:1518665:1518753 [4] NCCL INFO Trees [0] 5/-1/-1->4->3 [1] 5/-1/-1->4->3 +gpuc02:1518665:1518753 [4] NCCL INFO Channel 00/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc02:1518665:1518753 [4] NCCL INFO Channel 01/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc02:1518665:1518753 [4] NCCL INFO Connected all rings +gpuc02:1518665:1518753 [4] NCCL INFO Channel 00/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc02:1518665:1518753 [4] NCCL INFO Channel 01/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc02:1518665:1518753 [4] NCCL INFO Connected all trees +gpuc02:1518665:1518753 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1518665:1518753 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1518665:1518753 [4] NCCL INFO comm 0x576209f0 rank 4 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +[gpuc02:0/16] 2024-01-14 12:56:25,244 (distributed:1027) INFO: Reducer buckets have been rebuilt in this iteration. +[gpuc02:0/16] 2024-01-14 12:57:09,047 (trainer:737) INFO: 19epoch:train:1-100batch: iter_time=2.540, forward_time=0.188, loss_ctc=42.663, loss_att=46.521, acc=0.744, loss=45.363, backward_time=0.111, grad_norm=35.667, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=4.714e-04, train_time=3.125 +[gpuc02:0/16] 2024-01-14 12:57:55,392 (trainer:737) INFO: 19epoch:train:101-200batch: iter_time=1.431e-04, forward_time=0.106, loss_ctc=63.155, loss_att=72.110, acc=0.706, loss=69.424, backward_time=0.100, grad_norm=50.583, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.713e-04, train_time=0.464 +[gpuc02:0/16] 2024-01-14 12:58:37,550 (trainer:737) INFO: 19epoch:train:201-300batch: iter_time=1.556e-04, forward_time=0.104, loss_ctc=49.167, loss_att=55.610, acc=0.721, loss=53.677, backward_time=0.098, grad_norm=37.109, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.712e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 12:59:19,587 (trainer:737) INFO: 19epoch:train:301-400batch: iter_time=1.282e-04, forward_time=0.103, loss_ctc=43.666, loss_att=44.551, acc=0.741, loss=44.286, backward_time=0.097, grad_norm=33.828, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.711e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 13:00:01,600 (trainer:737) INFO: 19epoch:train:401-500batch: iter_time=1.148e-04, forward_time=0.103, loss_ctc=55.486, loss_att=63.983, acc=0.693, loss=61.434, backward_time=0.097, grad_norm=44.118, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.710e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 13:00:43,642 (trainer:737) INFO: 19epoch:train:501-600batch: iter_time=1.228e-04, forward_time=0.103, loss_ctc=55.845, loss_att=54.945, acc=0.715, loss=55.215, backward_time=0.098, grad_norm=45.648, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.709e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 13:01:25,621 (trainer:737) INFO: 19epoch:train:601-700batch: iter_time=1.207e-04, forward_time=0.104, loss_ctc=47.211, loss_att=52.040, acc=0.734, loss=50.591, backward_time=0.097, grad_norm=35.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.709e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 13:02:07,590 (trainer:737) INFO: 19epoch:train:701-800batch: iter_time=1.075e-04, forward_time=0.103, loss_ctc=42.165, loss_att=44.128, acc=0.742, loss=43.539, backward_time=0.096, grad_norm=33.529, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.708e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 13:02:49,652 (trainer:737) INFO: 19epoch:train:801-900batch: iter_time=1.247e-04, forward_time=0.103, loss_ctc=61.894, loss_att=62.045, acc=0.701, loss=62.000, backward_time=0.096, grad_norm=60.288, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.707e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 13:03:31,593 (trainer:737) INFO: 19epoch:train:901-1000batch: iter_time=1.113e-04, forward_time=0.103, loss_ctc=49.577, loss_att=53.009, acc=0.740, loss=51.980, backward_time=0.097, grad_norm=38.686, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.706e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 13:04:13,882 (trainer:737) INFO: 19epoch:train:1001-1100batch: iter_time=1.199e-04, forward_time=0.108, loss_ctc=40.038, loss_att=47.764, acc=0.726, loss=45.446, backward_time=0.096, grad_norm=32.542, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.705e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 13:04:55,726 (trainer:737) INFO: 19epoch:train:1101-1200batch: iter_time=1.231e-04, forward_time=0.104, loss_ctc=41.041, loss_att=47.028, acc=0.728, loss=45.232, backward_time=0.096, grad_norm=35.630, clip=100.000, loss_scale=2.700e+34, optim_step_time=0.040, optim0_lr0=4.704e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-14 13:05:31,740 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 13:05:50,707 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 13:05:54,212 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 13:05:54,212 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 13:05:54,215 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 13:09:59,338 (trainer:737) INFO: 19epoch:train:1201-1300batch: iter_time=2.544, forward_time=0.105, loss_ctc=51.048, loss_att=52.927, acc=0.727, loss=52.363, backward_time=0.097, grad_norm=42.484, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.703e-04, train_time=3.036 +[gpuc02:0/16] 2024-01-14 13:10:42,092 (trainer:737) INFO: 19epoch:train:1301-1400batch: iter_time=1.227e-04, forward_time=0.105, loss_ctc=57.835, loss_att=61.129, acc=0.731, loss=60.141, backward_time=0.098, grad_norm=42.086, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.703e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 13:11:24,913 (trainer:737) INFO: 19epoch:train:1401-1500batch: iter_time=1.211e-04, forward_time=0.104, loss_ctc=43.884, loss_att=58.745, acc=0.723, loss=54.287, backward_time=0.097, grad_norm=36.121, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.702e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 13:12:10,124 (trainer:737) INFO: 19epoch:train:1501-1600batch: iter_time=1.287e-04, forward_time=0.105, loss_ctc=49.194, loss_att=47.852, acc=0.732, loss=48.255, backward_time=0.098, grad_norm=35.624, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.701e-04, train_time=0.452 +[gpuc02:0/16] 2024-01-14 13:12:52,977 (trainer:737) INFO: 19epoch:train:1601-1700batch: iter_time=1.303e-04, forward_time=0.104, loss_ctc=47.879, loss_att=58.553, acc=0.710, loss=55.351, backward_time=0.098, grad_norm=37.948, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.700e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 13:12:56,321 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 13:13:35,414 (trainer:737) INFO: 19epoch:train:1701-1800batch: iter_time=1.511e-04, forward_time=0.103, loss_ctc=54.818, loss_att=51.836, acc=0.713, loss=52.731, backward_time=0.097, grad_norm=45.928, clip=100.000, loss_scale=2.224e+34, optim_step_time=0.041, optim0_lr0=4.699e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 13:14:18,085 (trainer:737) INFO: 19epoch:train:1801-1900batch: iter_time=1.388e-04, forward_time=0.104, loss_ctc=47.663, loss_att=54.000, acc=0.738, loss=52.099, backward_time=0.098, grad_norm=36.821, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.698e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:15:00,560 (trainer:737) INFO: 19epoch:train:1901-2000batch: iter_time=1.377e-04, forward_time=0.104, loss_ctc=42.627, loss_att=44.326, acc=0.734, loss=43.816, backward_time=0.097, grad_norm=34.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.697e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:15:43,102 (trainer:737) INFO: 19epoch:train:2001-2100batch: iter_time=1.406e-04, forward_time=0.104, loss_ctc=50.445, loss_att=55.701, acc=0.716, loss=54.124, backward_time=0.098, grad_norm=40.253, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.696e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:16:25,769 (trainer:737) INFO: 19epoch:train:2101-2200batch: iter_time=1.310e-04, forward_time=0.104, loss_ctc=58.434, loss_att=63.006, acc=0.722, loss=61.634, backward_time=0.098, grad_norm=53.947, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.696e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:17:08,212 (trainer:737) INFO: 19epoch:train:2201-2300batch: iter_time=1.396e-04, forward_time=0.103, loss_ctc=39.658, loss_att=48.255, acc=0.746, loss=45.676, backward_time=0.098, grad_norm=31.304, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.695e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 13:17:50,624 (trainer:737) INFO: 19epoch:train:2301-2400batch: iter_time=1.783e-04, forward_time=0.106, loss_ctc=41.157, loss_att=47.997, acc=0.728, loss=45.945, backward_time=0.099, grad_norm=33.142, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.694e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 13:18:33,214 (trainer:737) INFO: 19epoch:train:2401-2500batch: iter_time=1.963e-04, forward_time=0.106, loss_ctc=48.677, loss_att=49.408, acc=0.723, loss=49.189, backward_time=0.101, grad_norm=45.504, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=4.693e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:18:38,612 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 13:18:58,396 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 13:19:02,324 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 13:19:02,325 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 13:19:02,328 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 13:23:24,229 (trainer:737) INFO: 19epoch:train:2501-2600batch: iter_time=2.474, forward_time=0.105, loss_ctc=41.908, loss_att=47.479, acc=0.734, loss=45.808, backward_time=0.098, grad_norm=35.494, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.692e-04, train_time=2.910 +[gpuc02:0/16] 2024-01-14 13:24:07,120 (trainer:737) INFO: 19epoch:train:2601-2700batch: iter_time=1.293e-04, forward_time=0.105, loss_ctc=58.531, loss_att=70.685, acc=0.705, loss=67.039, backward_time=0.099, grad_norm=46.637, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.691e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 13:24:49,744 (trainer:737) INFO: 19epoch:train:2701-2800batch: iter_time=1.494e-04, forward_time=0.104, loss_ctc=47.840, loss_att=56.663, acc=0.711, loss=54.016, backward_time=0.098, grad_norm=36.114, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.690e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:25:32,297 (trainer:737) INFO: 19epoch:train:2801-2900batch: iter_time=1.282e-04, forward_time=0.103, loss_ctc=42.704, loss_att=44.597, acc=0.729, loss=44.029, backward_time=0.097, grad_norm=34.257, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.690e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:26:14,991 (trainer:737) INFO: 19epoch:train:2901-3000batch: iter_time=1.379e-04, forward_time=0.103, loss_ctc=53.496, loss_att=64.211, acc=0.690, loss=60.996, backward_time=0.097, grad_norm=44.224, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.689e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 13:26:57,825 (trainer:737) INFO: 19epoch:train:3001-3100batch: iter_time=1.352e-04, forward_time=0.103, loss_ctc=50.011, loss_att=51.923, acc=0.715, loss=51.350, backward_time=0.097, grad_norm=42.820, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.688e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 13:27:43,638 (trainer:737) INFO: 19epoch:train:3101-3200batch: iter_time=1.581e-04, forward_time=0.104, loss_ctc=46.205, loss_att=48.044, acc=0.736, loss=47.492, backward_time=0.097, grad_norm=34.542, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.687e-04, train_time=0.458 +[gpuc02:0/16] 2024-01-14 13:28:26,320 (trainer:737) INFO: 19epoch:train:3201-3300batch: iter_time=1.342e-04, forward_time=0.103, loss_ctc=41.562, loss_att=43.690, acc=0.735, loss=43.052, backward_time=0.096, grad_norm=32.945, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.686e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 13:29:08,808 (trainer:737) INFO: 19epoch:train:3301-3400batch: iter_time=1.288e-04, forward_time=0.103, loss_ctc=61.053, loss_att=63.257, acc=0.702, loss=62.596, backward_time=0.097, grad_norm=56.972, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.685e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:29:51,366 (trainer:737) INFO: 19epoch:train:3401-3500batch: iter_time=1.231e-04, forward_time=0.102, loss_ctc=48.640, loss_att=51.611, acc=0.732, loss=50.719, backward_time=0.097, grad_norm=37.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.684e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:30:33,763 (trainer:737) INFO: 19epoch:train:3501-3600batch: iter_time=1.322e-04, forward_time=0.102, loss_ctc=38.911, loss_att=47.007, acc=0.725, loss=44.578, backward_time=0.096, grad_norm=31.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.684e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 13:31:16,131 (trainer:737) INFO: 19epoch:train:3601-3700batch: iter_time=1.277e-04, forward_time=0.102, loss_ctc=39.958, loss_att=47.036, acc=0.724, loss=44.913, backward_time=0.096, grad_norm=36.396, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.683e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 13:31:43,353 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 13:32:02,339 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 13:32:05,895 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 13:32:05,895 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 13:32:05,898 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 13:36:09,083 (trainer:737) INFO: 19epoch:train:3701-3800batch: iter_time=2.436, forward_time=0.104, loss_ctc=50.612, loss_att=52.656, acc=0.722, loss=52.042, backward_time=0.097, grad_norm=43.374, clip=100.000, loss_scale=3.988e+34, optim_step_time=0.040, optim0_lr0=4.682e-04, train_time=2.929 +[gpuc02:0/16] 2024-01-14 13:36:51,929 (trainer:737) INFO: 19epoch:train:3801-3900batch: iter_time=1.050e-04, forward_time=0.103, loss_ctc=55.505, loss_att=62.286, acc=0.714, loss=60.252, backward_time=0.098, grad_norm=45.054, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.681e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 13:37:34,513 (trainer:737) INFO: 19epoch:train:3901-4000batch: iter_time=1.194e-04, forward_time=0.104, loss_ctc=42.949, loss_att=57.708, acc=0.720, loss=53.280, backward_time=0.096, grad_norm=36.014, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.680e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:38:17,157 (trainer:737) INFO: 19epoch:train:4001-4100batch: iter_time=1.226e-04, forward_time=0.102, loss_ctc=48.435, loss_att=47.795, acc=0.722, loss=47.987, backward_time=0.097, grad_norm=36.054, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.679e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:38:54,637 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 13:38:59,747 (trainer:737) INFO: 19epoch:train:4101-4200batch: iter_time=1.216e-04, forward_time=0.103, loss_ctc=47.400, loss_att=58.468, acc=0.697, loss=55.148, backward_time=0.096, grad_norm=39.589, clip=100.000, loss_scale=3.902e+34, optim_step_time=0.041, optim0_lr0=4.678e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:39:42,316 (trainer:737) INFO: 19epoch:train:4201-4300batch: iter_time=1.166e-04, forward_time=0.103, loss_ctc=50.627, loss_att=49.551, acc=0.722, loss=49.874, backward_time=0.096, grad_norm=42.606, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.678e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:40:24,859 (trainer:737) INFO: 19epoch:train:4301-4400batch: iter_time=1.205e-04, forward_time=0.104, loss_ctc=47.178, loss_att=51.352, acc=0.733, loss=50.100, backward_time=0.096, grad_norm=34.606, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.677e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:41:07,360 (trainer:737) INFO: 19epoch:train:4401-4500batch: iter_time=1.299e-04, forward_time=0.103, loss_ctc=42.152, loss_att=42.397, acc=0.736, loss=42.323, backward_time=0.096, grad_norm=33.057, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.676e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:41:49,921 (trainer:737) INFO: 19epoch:train:4501-4600batch: iter_time=1.302e-04, forward_time=0.104, loss_ctc=49.152, loss_att=54.157, acc=0.710, loss=52.656, backward_time=0.096, grad_norm=39.625, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.675e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:42:32,595 (trainer:737) INFO: 19epoch:train:4601-4700batch: iter_time=1.257e-04, forward_time=0.104, loss_ctc=57.344, loss_att=61.913, acc=0.713, loss=60.542, backward_time=0.097, grad_norm=55.116, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.674e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 13:43:15,121 (trainer:737) INFO: 19epoch:train:4701-4800batch: iter_time=1.317e-04, forward_time=0.103, loss_ctc=39.093, loss_att=48.043, acc=0.743, loss=45.358, backward_time=0.096, grad_norm=30.834, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.673e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:43:59,555 (trainer:737) INFO: 19epoch:train:4801-4900batch: iter_time=1.128e-04, forward_time=0.103, loss_ctc=40.197, loss_att=47.020, acc=0.724, loss=44.973, backward_time=0.096, grad_norm=32.751, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.673e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-14 13:44:43,186 (trainer:737) INFO: 19epoch:train:4901-5000batch: iter_time=1.050e-04, forward_time=0.103, loss_ctc=47.594, loss_att=49.483, acc=0.714, loss=48.916, backward_time=0.096, grad_norm=43.663, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.672e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-14 13:44:47,613 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 13:45:06,889 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 13:45:10,608 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 13:45:10,608 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 13:45:10,611 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 13:50:16,722 (trainer:737) INFO: 19epoch:train:5001-5100batch: iter_time=2.877, forward_time=0.124, loss_ctc=41.358, loss_att=43.539, acc=0.746, loss=42.885, backward_time=0.097, grad_norm=34.580, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.671e-04, train_time=3.335 +[gpuc02:0/16] 2024-01-14 13:50:59,612 (trainer:737) INFO: 19epoch:train:5101-5200batch: iter_time=1.020e-04, forward_time=0.103, loss_ctc=57.842, loss_att=69.754, acc=0.707, loss=66.180, backward_time=0.097, grad_norm=44.877, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.670e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 13:51:42,216 (trainer:737) INFO: 19epoch:train:5201-5300batch: iter_time=1.030e-04, forward_time=0.102, loss_ctc=47.669, loss_att=53.821, acc=0.719, loss=51.975, backward_time=0.096, grad_norm=34.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.669e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 13:52:24,762 (trainer:737) INFO: 19epoch:train:5301-5400batch: iter_time=1.068e-04, forward_time=0.102, loss_ctc=42.417, loss_att=42.701, acc=0.734, loss=42.616, backward_time=0.096, grad_norm=33.108, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.668e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:53:07,329 (trainer:737) INFO: 19epoch:train:5401-5500batch: iter_time=1.224e-04, forward_time=0.102, loss_ctc=52.274, loss_att=61.355, acc=0.698, loss=58.631, backward_time=0.096, grad_norm=41.376, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.667e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:53:49,821 (trainer:737) INFO: 19epoch:train:5501-5600batch: iter_time=1.190e-04, forward_time=0.102, loss_ctc=47.425, loss_att=50.837, acc=0.718, loss=49.813, backward_time=0.096, grad_norm=43.223, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.667e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:54:32,758 (trainer:737) INFO: 19epoch:train:5601-5700batch: iter_time=1.044e-04, forward_time=0.106, loss_ctc=46.100, loss_att=47.576, acc=0.737, loss=47.133, backward_time=0.096, grad_norm=36.459, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.666e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 13:55:15,277 (trainer:737) INFO: 19epoch:train:5701-5800batch: iter_time=1.166e-04, forward_time=0.102, loss_ctc=41.236, loss_att=43.896, acc=0.735, loss=43.098, backward_time=0.096, grad_norm=32.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.665e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:55:57,735 (trainer:737) INFO: 19epoch:train:5801-5900batch: iter_time=1.225e-04, forward_time=0.102, loss_ctc=57.970, loss_att=59.001, acc=0.705, loss=58.692, backward_time=0.096, grad_norm=57.517, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.664e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 13:56:40,219 (trainer:737) INFO: 19epoch:train:5901-6000batch: iter_time=1.214e-04, forward_time=0.103, loss_ctc=47.511, loss_att=50.962, acc=0.734, loss=49.926, backward_time=0.096, grad_norm=38.251, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.663e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 13:57:22,388 (trainer:737) INFO: 19epoch:train:6001-6100batch: iter_time=1.175e-04, forward_time=0.102, loss_ctc=38.587, loss_att=47.208, acc=0.728, loss=44.621, backward_time=0.095, grad_norm=30.709, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.662e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 13:58:04,676 (trainer:737) INFO: 19epoch:train:6101-6200batch: iter_time=1.234e-04, forward_time=0.101, loss_ctc=39.059, loss_att=47.076, acc=0.724, loss=44.671, backward_time=0.096, grad_norm=33.527, clip=100.000, loss_scale=2.326e+34, optim_step_time=0.040, optim0_lr0=4.661e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 13:58:30,661 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 13:58:49,687 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 13:58:53,238 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 13:58:53,239 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 13:58:53,242 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 14:02:57,180 (trainer:737) INFO: 19epoch:train:6201-6300batch: iter_time=2.414, forward_time=0.104, loss_ctc=49.137, loss_att=52.243, acc=0.724, loss=51.311, backward_time=0.097, grad_norm=40.277, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.661e-04, train_time=2.925 +[gpuc02:0/16] 2024-01-14 14:03:40,149 (trainer:737) INFO: 19epoch:train:6301-6400batch: iter_time=1.033e-04, forward_time=0.104, loss_ctc=54.930, loss_att=61.563, acc=0.716, loss=59.573, backward_time=0.097, grad_norm=42.582, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.660e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 14:04:22,964 (trainer:737) INFO: 19epoch:train:6401-6500batch: iter_time=9.844e-05, forward_time=0.102, loss_ctc=42.963, loss_att=58.352, acc=0.720, loss=53.735, backward_time=0.096, grad_norm=33.058, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.659e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 14:05:05,646 (trainer:737) INFO: 19epoch:train:6501-6600batch: iter_time=1.042e-04, forward_time=0.103, loss_ctc=48.447, loss_att=47.672, acc=0.723, loss=47.905, backward_time=0.096, grad_norm=35.560, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.658e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 14:05:48,268 (trainer:737) INFO: 19epoch:train:6601-6700batch: iter_time=1.017e-04, forward_time=0.103, loss_ctc=46.845, loss_att=58.460, acc=0.699, loss=54.976, backward_time=0.097, grad_norm=37.241, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.657e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:06:30,794 (trainer:737) INFO: 19epoch:train:6701-6800batch: iter_time=9.743e-05, forward_time=0.102, loss_ctc=49.215, loss_att=48.723, acc=0.724, loss=48.871, backward_time=0.096, grad_norm=43.324, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.656e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:07:13,409 (trainer:737) INFO: 19epoch:train:6801-6900batch: iter_time=1.003e-04, forward_time=0.103, loss_ctc=46.979, loss_att=50.660, acc=0.734, loss=49.556, backward_time=0.097, grad_norm=36.122, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.656e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:07:56,012 (trainer:737) INFO: 19epoch:train:6901-7000batch: iter_time=1.037e-04, forward_time=0.103, loss_ctc=42.267, loss_att=42.433, acc=0.736, loss=42.383, backward_time=0.096, grad_norm=32.782, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.655e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:08:38,543 (trainer:737) INFO: 19epoch:train:7001-7100batch: iter_time=1.077e-04, forward_time=0.103, loss_ctc=49.150, loss_att=53.362, acc=0.714, loss=52.098, backward_time=0.097, grad_norm=40.380, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.654e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:09:21,142 (trainer:737) INFO: 19epoch:train:7101-7200batch: iter_time=1.029e-04, forward_time=0.102, loss_ctc=55.345, loss_att=58.905, acc=0.716, loss=57.837, backward_time=0.097, grad_norm=52.859, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.653e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:10:03,636 (trainer:737) INFO: 19epoch:train:7201-7300batch: iter_time=1.110e-04, forward_time=0.103, loss_ctc=38.943, loss_att=47.366, acc=0.745, loss=44.839, backward_time=0.096, grad_norm=30.614, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.652e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:10:45,968 (trainer:737) INFO: 19epoch:train:7301-7400batch: iter_time=1.230e-04, forward_time=0.102, loss_ctc=40.220, loss_att=47.511, acc=0.723, loss=45.323, backward_time=0.096, grad_norm=33.086, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.651e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 14:11:28,378 (trainer:737) INFO: 19epoch:train:7401-7500batch: iter_time=1.029e-04, forward_time=0.102, loss_ctc=47.081, loss_att=48.754, acc=0.716, loss=48.252, backward_time=0.096, grad_norm=42.512, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.651e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 14:11:33,074 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 14:11:53,362 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 14:11:57,405 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 14:11:57,405 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 14:11:57,408 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 14:16:29,089 (trainer:737) INFO: 19epoch:train:7501-7600batch: iter_time=2.402, forward_time=0.107, loss_ctc=41.181, loss_att=45.997, acc=0.748, loss=44.552, backward_time=0.097, grad_norm=35.401, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.650e-04, train_time=3.007 +[gpuc02:0/16] 2024-01-14 14:17:11,918 (trainer:737) INFO: 19epoch:train:7601-7700batch: iter_time=1.047e-04, forward_time=0.104, loss_ctc=56.284, loss_att=69.957, acc=0.717, loss=65.855, backward_time=0.098, grad_norm=43.999, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.649e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 14:17:55,196 (trainer:737) INFO: 19epoch:train:7701-7800batch: iter_time=1.049e-04, forward_time=0.104, loss_ctc=47.428, loss_att=56.009, acc=0.725, loss=53.435, backward_time=0.097, grad_norm=35.791, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.648e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 14:18:38,200 (trainer:737) INFO: 19epoch:train:7801-7900batch: iter_time=1.242e-04, forward_time=0.104, loss_ctc=42.403, loss_att=44.641, acc=0.743, loss=43.969, backward_time=0.098, grad_norm=34.682, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.647e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 14:18:53,215 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 14:19:22,261 (trainer:737) INFO: 19epoch:train:7901-8000batch: iter_time=1.223e-04, forward_time=0.104, loss_ctc=51.904, loss_att=62.354, acc=0.701, loss=59.219, backward_time=0.098, grad_norm=44.067, clip=100.000, loss_scale=2.748e+34, optim_step_time=0.040, optim0_lr0=4.646e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-14 14:20:05,783 (trainer:737) INFO: 19epoch:train:8001-8100batch: iter_time=1.094e-04, forward_time=0.105, loss_ctc=46.950, loss_att=53.250, acc=0.718, loss=51.360, backward_time=0.097, grad_norm=42.018, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.646e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-14 14:20:49,003 (trainer:737) INFO: 19epoch:train:8101-8200batch: iter_time=1.050e-04, forward_time=0.105, loss_ctc=45.764, loss_att=51.991, acc=0.736, loss=50.123, backward_time=0.098, grad_norm=35.608, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.645e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-14 14:21:32,076 (trainer:737) INFO: 19epoch:train:8201-8300batch: iter_time=1.167e-04, forward_time=0.104, loss_ctc=40.794, loss_att=43.519, acc=0.745, loss=42.702, backward_time=0.097, grad_norm=33.197, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.644e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 14:22:14,975 (trainer:737) INFO: 19epoch:train:8301-8400batch: iter_time=1.172e-04, forward_time=0.104, loss_ctc=57.356, loss_att=60.654, acc=0.706, loss=59.665, backward_time=0.097, grad_norm=54.394, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.643e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 14:22:57,767 (trainer:737) INFO: 19epoch:train:8401-8500batch: iter_time=1.047e-04, forward_time=0.104, loss_ctc=47.469, loss_att=52.945, acc=0.741, loss=51.303, backward_time=0.098, grad_norm=37.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.642e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 14:23:40,296 (trainer:737) INFO: 19epoch:train:8501-8600batch: iter_time=1.084e-04, forward_time=0.103, loss_ctc=37.808, loss_att=47.544, acc=0.732, loss=44.623, backward_time=0.097, grad_norm=30.785, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.641e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:24:22,755 (trainer:737) INFO: 19epoch:train:8601-8700batch: iter_time=1.042e-04, forward_time=0.103, loss_ctc=39.102, loss_att=46.730, acc=0.733, loss=44.441, backward_time=0.097, grad_norm=33.210, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.641e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 14:24:47,590 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 14:25:07,152 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 14:25:10,813 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 14:25:10,814 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 14:25:10,817 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 14:29:15,086 (trainer:737) INFO: 19epoch:train:8701-8800batch: iter_time=2.416, forward_time=0.105, loss_ctc=47.996, loss_att=51.205, acc=0.736, loss=50.242, backward_time=0.097, grad_norm=40.701, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.640e-04, train_time=2.923 +[gpuc02:0/16] 2024-01-14 14:29:57,806 (trainer:737) INFO: 19epoch:train:8801-8900batch: iter_time=9.169e-05, forward_time=0.104, loss_ctc=54.465, loss_att=62.906, acc=0.717, loss=60.374, backward_time=0.097, grad_norm=43.488, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.639e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 14:30:40,687 (trainer:737) INFO: 19epoch:train:8901-9000batch: iter_time=9.259e-05, forward_time=0.106, loss_ctc=42.341, loss_att=58.135, acc=0.722, loss=53.397, backward_time=0.096, grad_norm=34.583, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.638e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 14:31:23,216 (trainer:737) INFO: 19epoch:train:9001-9100batch: iter_time=9.689e-05, forward_time=0.103, loss_ctc=48.236, loss_att=48.702, acc=0.723, loss=48.562, backward_time=0.096, grad_norm=36.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.637e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:32:05,721 (trainer:737) INFO: 19epoch:train:9101-9200batch: iter_time=1.037e-04, forward_time=0.103, loss_ctc=46.577, loss_att=58.284, acc=0.700, loss=54.772, backward_time=0.097, grad_norm=39.683, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.636e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:32:48,116 (trainer:737) INFO: 19epoch:train:9201-9300batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=48.462, loss_att=49.262, acc=0.722, loss=49.022, backward_time=0.096, grad_norm=44.789, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.636e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 14:33:30,670 (trainer:737) INFO: 19epoch:train:9301-9400batch: iter_time=1.085e-04, forward_time=0.103, loss_ctc=46.843, loss_att=51.044, acc=0.734, loss=49.784, backward_time=0.097, grad_norm=36.791, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.635e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:34:13,072 (trainer:737) INFO: 19epoch:train:9401-9500batch: iter_time=1.230e-04, forward_time=0.104, loss_ctc=42.411, loss_att=42.988, acc=0.735, loss=42.815, backward_time=0.097, grad_norm=34.245, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.634e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 14:34:55,547 (trainer:737) INFO: 19epoch:train:9501-9600batch: iter_time=1.132e-04, forward_time=0.103, loss_ctc=47.941, loss_att=53.363, acc=0.713, loss=51.737, backward_time=0.097, grad_norm=40.179, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.633e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:35:38,157 (trainer:737) INFO: 19epoch:train:9601-9700batch: iter_time=1.142e-04, forward_time=0.103, loss_ctc=55.384, loss_att=60.517, acc=0.715, loss=58.977, backward_time=0.098, grad_norm=53.142, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.632e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:36:20,706 (trainer:737) INFO: 19epoch:train:9701-9800batch: iter_time=1.256e-04, forward_time=0.103, loss_ctc=38.742, loss_att=47.156, acc=0.746, loss=44.632, backward_time=0.097, grad_norm=30.508, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.631e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:37:03,294 (trainer:737) INFO: 19epoch:train:9801-9900batch: iter_time=1.213e-04, forward_time=0.103, loss_ctc=40.072, loss_att=47.406, acc=0.725, loss=45.205, backward_time=0.097, grad_norm=32.574, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.631e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:37:45,896 (trainer:737) INFO: 19epoch:train:9901-10000batch: iter_time=1.079e-04, forward_time=0.102, loss_ctc=46.031, loss_att=49.303, acc=0.712, loss=48.321, backward_time=0.096, grad_norm=41.338, clip=100.000, loss_scale=3.468e+34, optim_step_time=0.040, optim0_lr0=4.630e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:37:50,769 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 14:38:09,911 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 14:38:13,576 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 14:38:13,576 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 14:38:13,580 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 14:42:37,578 (trainer:737) INFO: 19epoch:train:10001-10100batch: iter_time=2.423, forward_time=0.103, loss_ctc=41.580, loss_att=45.307, acc=0.751, loss=44.189, backward_time=0.097, grad_norm=33.964, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.629e-04, train_time=2.917 +[gpuc02:0/16] 2024-01-14 14:43:08,804 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 14:43:20,379 (trainer:737) INFO: 19epoch:train:10101-10200batch: iter_time=1.205e-04, forward_time=0.104, loss_ctc=55.889, loss_att=68.733, acc=0.717, loss=64.880, backward_time=0.098, grad_norm=42.778, clip=100.000, loss_scale=3.587e+34, optim_step_time=0.041, optim0_lr0=4.628e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 14:44:02,956 (trainer:737) INFO: 19epoch:train:10201-10300batch: iter_time=1.289e-04, forward_time=0.104, loss_ctc=46.669, loss_att=54.094, acc=0.729, loss=51.866, backward_time=0.097, grad_norm=33.211, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.627e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:44:45,589 (trainer:737) INFO: 19epoch:train:10301-10400batch: iter_time=1.270e-04, forward_time=0.103, loss_ctc=41.831, loss_att=43.400, acc=0.747, loss=42.929, backward_time=0.097, grad_norm=33.106, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.626e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:45:28,171 (trainer:737) INFO: 19epoch:train:10401-10500batch: iter_time=1.248e-04, forward_time=0.104, loss_ctc=51.289, loss_att=61.892, acc=0.703, loss=58.711, backward_time=0.097, grad_norm=42.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.626e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:46:10,762 (trainer:737) INFO: 19epoch:train:10501-10600batch: iter_time=1.247e-04, forward_time=0.102, loss_ctc=45.677, loss_att=52.393, acc=0.720, loss=50.378, backward_time=0.097, grad_norm=42.470, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.625e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:46:53,405 (trainer:737) INFO: 19epoch:train:10601-10700batch: iter_time=1.100e-04, forward_time=0.103, loss_ctc=45.479, loss_att=50.915, acc=0.740, loss=49.284, backward_time=0.097, grad_norm=34.968, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.624e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:47:35,975 (trainer:737) INFO: 19epoch:train:10701-10800batch: iter_time=1.160e-04, forward_time=0.102, loss_ctc=40.648, loss_att=43.363, acc=0.747, loss=42.549, backward_time=0.097, grad_norm=32.657, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.623e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 14:48:18,563 (trainer:737) INFO: 19epoch:train:10801-10900batch: iter_time=1.178e-04, forward_time=0.103, loss_ctc=58.422, loss_att=62.784, acc=0.708, loss=61.475, backward_time=0.097, grad_norm=55.453, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.622e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 14:49:01,237 (trainer:737) INFO: 19epoch:train:10901-11000batch: iter_time=1.224e-04, forward_time=0.103, loss_ctc=47.044, loss_att=51.601, acc=0.745, loss=50.234, backward_time=0.097, grad_norm=37.800, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.622e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 14:49:43,599 (trainer:737) INFO: 19epoch:train:11001-11100batch: iter_time=1.279e-04, forward_time=0.103, loss_ctc=37.898, loss_att=46.939, acc=0.733, loss=44.227, backward_time=0.096, grad_norm=31.029, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.621e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 14:50:26,361 (trainer:737) INFO: 19epoch:train:11101-11200batch: iter_time=1.255e-04, forward_time=0.104, loss_ctc=38.928, loss_att=46.285, acc=0.732, loss=44.078, backward_time=0.096, grad_norm=34.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.620e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 14:50:52,153 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 14:51:11,145 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 14:51:14,684 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 14:51:14,684 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 14:51:14,687 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 14:55:21,978 (trainer:737) INFO: 19epoch:train:11201-11300batch: iter_time=2.432, forward_time=0.103, loss_ctc=48.118, loss_att=52.068, acc=0.732, loss=50.883, backward_time=0.097, grad_norm=37.665, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.619e-04, train_time=2.956 +[gpuc02:0/16] 2024-01-14 14:56:04,940 (trainer:737) INFO: 19epoch:train:11301-11400batch: iter_time=1.091e-04, forward_time=0.104, loss_ctc=54.842, loss_att=59.681, acc=0.734, loss=58.229, backward_time=0.097, grad_norm=42.309, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.618e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 14:56:48,787 (trainer:737) INFO: 19epoch:train:11401-11500batch: iter_time=1.131e-04, forward_time=0.104, loss_ctc=42.119, loss_att=57.416, acc=0.728, loss=52.827, backward_time=0.097, grad_norm=33.645, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.617e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-14 14:57:32,126 (trainer:737) INFO: 19epoch:train:11501-11600batch: iter_time=1.149e-04, forward_time=0.104, loss_ctc=47.789, loss_att=48.473, acc=0.734, loss=48.268, backward_time=0.097, grad_norm=35.620, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.617e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 14:58:15,274 (trainer:737) INFO: 19epoch:train:11601-11700batch: iter_time=1.111e-04, forward_time=0.102, loss_ctc=46.219, loss_att=57.392, acc=0.714, loss=54.040, backward_time=0.097, grad_norm=38.906, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.616e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 14:58:58,078 (trainer:737) INFO: 19epoch:train:11701-11800batch: iter_time=1.222e-04, forward_time=0.102, loss_ctc=47.711, loss_att=50.132, acc=0.718, loss=49.405, backward_time=0.096, grad_norm=43.251, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.615e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 14:59:40,770 (trainer:737) INFO: 19epoch:train:11801-11900batch: iter_time=1.125e-04, forward_time=0.103, loss_ctc=46.910, loss_att=53.599, acc=0.742, loss=51.592, backward_time=0.097, grad_norm=37.093, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.614e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 15:00:23,654 (trainer:737) INFO: 19epoch:train:11901-12000batch: iter_time=1.128e-04, forward_time=0.102, loss_ctc=41.976, loss_att=44.814, acc=0.736, loss=43.962, backward_time=0.097, grad_norm=32.957, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.613e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 15:01:06,244 (trainer:737) INFO: 19epoch:train:12001-12100batch: iter_time=1.053e-04, forward_time=0.103, loss_ctc=48.240, loss_att=54.375, acc=0.719, loss=52.534, backward_time=0.097, grad_norm=38.524, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.612e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 15:01:48,926 (trainer:737) INFO: 19epoch:train:12101-12200batch: iter_time=1.140e-04, forward_time=0.103, loss_ctc=55.969, loss_att=59.975, acc=0.725, loss=58.773, backward_time=0.097, grad_norm=55.995, clip=100.000, loss_scale=2.638e+34, optim_step_time=0.041, optim0_lr0=4.612e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 15:02:31,471 (trainer:737) INFO: 19epoch:train:12201-12300batch: iter_time=1.190e-04, forward_time=0.103, loss_ctc=38.328, loss_att=47.982, acc=0.748, loss=45.086, backward_time=0.096, grad_norm=30.759, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.611e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:03:13,876 (trainer:737) INFO: 19epoch:train:12301-12400batch: iter_time=1.192e-04, forward_time=0.102, loss_ctc=39.812, loss_att=47.058, acc=0.733, loss=44.885, backward_time=0.096, grad_norm=31.507, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.610e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 15:03:56,376 (trainer:737) INFO: 19epoch:train:12401-12500batch: iter_time=1.084e-04, forward_time=0.104, loss_ctc=46.217, loss_att=48.141, acc=0.727, loss=47.564, backward_time=0.096, grad_norm=39.221, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.609e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:04:01,663 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 15:04:20,824 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 15:04:24,431 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 15:04:24,431 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 15:04:24,434 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 15:08:48,570 (trainer:737) INFO: 19epoch:train:12501-12600batch: iter_time=2.439, forward_time=0.107, loss_ctc=40.801, loss_att=43.186, acc=0.752, loss=42.471, backward_time=0.098, grad_norm=33.189, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.608e-04, train_time=2.922 +[gpuc02:0/16] 2024-01-14 15:09:31,303 (trainer:737) INFO: 19epoch:train:12601-12700batch: iter_time=1.134e-04, forward_time=0.104, loss_ctc=55.849, loss_att=67.721, acc=0.719, loss=64.160, backward_time=0.098, grad_norm=43.226, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.608e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 15:10:13,815 (trainer:737) INFO: 19epoch:train:12701-12800batch: iter_time=1.151e-04, forward_time=0.104, loss_ctc=47.106, loss_att=54.459, acc=0.728, loss=52.253, backward_time=0.097, grad_norm=35.378, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.607e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:10:56,356 (trainer:737) INFO: 19epoch:train:12801-12900batch: iter_time=1.209e-04, forward_time=0.104, loss_ctc=42.323, loss_att=43.292, acc=0.746, loss=43.001, backward_time=0.097, grad_norm=34.108, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.606e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:11:38,864 (trainer:737) INFO: 19epoch:train:12901-13000batch: iter_time=1.165e-04, forward_time=0.103, loss_ctc=51.406, loss_att=61.488, acc=0.704, loss=58.463, backward_time=0.097, grad_norm=42.056, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.605e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:12:21,324 (trainer:737) INFO: 19epoch:train:13001-13100batch: iter_time=1.217e-04, forward_time=0.104, loss_ctc=45.790, loss_att=51.414, acc=0.722, loss=49.727, backward_time=0.097, grad_norm=42.942, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.604e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 15:13:03,796 (trainer:737) INFO: 19epoch:train:13101-13200batch: iter_time=1.142e-04, forward_time=0.102, loss_ctc=45.315, loss_att=51.240, acc=0.739, loss=49.463, backward_time=0.097, grad_norm=35.736, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.604e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:13:46,186 (trainer:737) INFO: 19epoch:train:13201-13300batch: iter_time=1.151e-04, forward_time=0.102, loss_ctc=40.697, loss_att=42.920, acc=0.747, loss=42.253, backward_time=0.096, grad_norm=32.798, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.603e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 15:14:28,754 (trainer:737) INFO: 19epoch:train:13301-13400batch: iter_time=9.684e-05, forward_time=0.103, loss_ctc=57.020, loss_att=59.758, acc=0.709, loss=58.937, backward_time=0.097, grad_norm=54.371, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.602e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:15:11,317 (trainer:737) INFO: 19epoch:train:13401-13500batch: iter_time=1.031e-04, forward_time=0.103, loss_ctc=47.073, loss_att=51.355, acc=0.747, loss=50.070, backward_time=0.097, grad_norm=36.824, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.601e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:15:53,854 (trainer:737) INFO: 19epoch:train:13501-13600batch: iter_time=1.033e-04, forward_time=0.102, loss_ctc=37.822, loss_att=46.481, acc=0.736, loss=43.883, backward_time=0.096, grad_norm=31.909, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.600e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:16:36,388 (trainer:737) INFO: 19epoch:train:13601-13700batch: iter_time=1.101e-04, forward_time=0.103, loss_ctc=38.811, loss_att=46.054, acc=0.737, loss=43.881, backward_time=0.096, grad_norm=34.423, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.599e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:17:02,754 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 15:17:22,146 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 15:17:25,845 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 15:17:25,846 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 15:17:25,849 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 15:21:34,920 (trainer:737) INFO: 19epoch:train:13701-13800batch: iter_time=2.428, forward_time=0.106, loss_ctc=47.122, loss_att=50.727, acc=0.738, loss=49.645, backward_time=0.098, grad_norm=40.090, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.599e-04, train_time=2.985 +[gpuc02:0/16] 2024-01-14 15:22:17,867 (trainer:737) INFO: 19epoch:train:13801-13900batch: iter_time=1.112e-04, forward_time=0.104, loss_ctc=53.714, loss_att=64.211, acc=0.715, loss=61.062, backward_time=0.098, grad_norm=40.907, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.598e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 15:23:00,543 (trainer:737) INFO: 19epoch:train:13901-14000batch: iter_time=1.111e-04, forward_time=0.104, loss_ctc=42.180, loss_att=57.986, acc=0.723, loss=53.244, backward_time=0.098, grad_norm=35.349, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.597e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 15:23:43,138 (trainer:737) INFO: 19epoch:train:14001-14100batch: iter_time=1.170e-04, forward_time=0.103, loss_ctc=47.749, loss_att=48.698, acc=0.723, loss=48.413, backward_time=0.097, grad_norm=35.546, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.596e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 15:24:25,699 (trainer:737) INFO: 19epoch:train:14101-14200batch: iter_time=1.209e-04, forward_time=0.103, loss_ctc=46.349, loss_att=58.526, acc=0.702, loss=54.873, backward_time=0.098, grad_norm=38.433, clip=100.000, loss_scale=5.275e+34, optim_step_time=0.041, optim0_lr0=4.595e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:25:08,179 (trainer:737) INFO: 19epoch:train:14201-14300batch: iter_time=1.084e-04, forward_time=0.102, loss_ctc=47.783, loss_att=49.342, acc=0.723, loss=48.874, backward_time=0.097, grad_norm=41.968, clip=100.000, loss_scale=8.308e+34, optim_step_time=0.041, optim0_lr0=4.595e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:25:35,804 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 15:25:50,760 (trainer:737) INFO: 19epoch:train:14301-14400batch: iter_time=1.195e-04, forward_time=0.104, loss_ctc=46.467, loss_att=50.985, acc=0.735, loss=49.629, backward_time=0.098, grad_norm=36.035, clip=100.000, loss_scale=6.839e+34, optim_step_time=0.041, optim0_lr0=4.594e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 15:26:33,186 (trainer:737) INFO: 19epoch:train:14401-14500batch: iter_time=1.225e-04, forward_time=0.103, loss_ctc=41.365, loss_att=42.462, acc=0.738, loss=42.133, backward_time=0.097, grad_norm=33.891, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.593e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 15:27:15,735 (trainer:737) INFO: 19epoch:train:14501-14600batch: iter_time=1.097e-04, forward_time=0.104, loss_ctc=48.637, loss_att=54.385, acc=0.714, loss=52.661, backward_time=0.097, grad_norm=42.909, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.592e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:28:01,726 (trainer:737) INFO: 19epoch:train:14601-14700batch: iter_time=1.069e-04, forward_time=0.123, loss_ctc=56.205, loss_att=61.793, acc=0.716, loss=60.116, backward_time=0.111, grad_norm=55.604, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.591e-04, train_time=0.460 +[gpuc02:0/16] 2024-01-14 15:28:44,216 (trainer:737) INFO: 19epoch:train:14701-14800batch: iter_time=1.163e-04, forward_time=0.103, loss_ctc=38.268, loss_att=47.570, acc=0.746, loss=44.780, backward_time=0.097, grad_norm=30.303, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.591e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 15:29:29,749 (trainer:737) INFO: 19epoch:train:14801-14900batch: iter_time=1.237e-04, forward_time=0.103, loss_ctc=39.830, loss_att=48.154, acc=0.726, loss=45.657, backward_time=0.097, grad_norm=33.435, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.590e-04, train_time=0.455 +[gpuc02:0/16] 2024-01-14 15:30:13,115 (trainer:737) INFO: 19epoch:train:14901-15000batch: iter_time=1.084e-04, forward_time=0.108, loss_ctc=46.440, loss_att=49.507, acc=0.713, loss=48.587, backward_time=0.097, grad_norm=42.501, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.589e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 15:52:42,926 (trainer:343) INFO: 19epoch results: [train] iter_time=0.199, forward_time=0.104, loss_ctc=47.019, loss_att=52.524, acc=0.725, loss=50.873, backward_time=0.097, grad_norm=38.835, clip=100.000, loss_scale=2.937e+34, optim_step_time=0.041, optim0_lr0=4.651e-04, train_time=0.633, time=2 hours, 38 minutes and 39.4 seconds, total_count=285000, gpu_max_cached_mem_GB=24.980, [valid] loss_ctc=56.202, cer_ctc=0.287, loss_att=56.914, acc=0.577, cer=0.344, wer=0.999, loss=56.700, time=22 minutes and 6.9 seconds, total_count=88749, gpu_max_cached_mem_GB=24.980 +[gpuc02:0/16] 2024-01-14 15:52:52,030 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-14 15:52:52,098 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/14epoch.pth +[gpuc02:0/16] 2024-01-14 15:52:52,098 (trainer:272) INFO: 20/45epoch started. Estimated time to finish: 3 days, 6 hours and 24 minutes +[gpuc02:0/16] 2024-01-14 15:52:52,109 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 15:53:10,882 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 15:53:14,336 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 15:53:14,336 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 15:53:14,340 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 15:57:49,836 (trainer:737) INFO: 20epoch:train:1-100batch: iter_time=2.388, forward_time=0.131, loss_ctc=39.873, loss_att=48.220, acc=0.716, loss=45.716, backward_time=0.104, grad_norm=35.381, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=4.588e-04, train_time=2.977 +[gpuc02:0/16] 2024-01-14 15:58:32,029 (trainer:737) INFO: 20epoch:train:101-200batch: iter_time=1.207e-04, forward_time=0.105, loss_ctc=40.991, loss_att=46.428, acc=0.732, loss=44.797, backward_time=0.099, grad_norm=35.191, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.587e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 15:59:16,408 (trainer:737) INFO: 20epoch:train:201-300batch: iter_time=1.247e-04, forward_time=0.116, loss_ctc=47.437, loss_att=50.480, acc=0.732, loss=49.567, backward_time=0.101, grad_norm=38.525, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=4.587e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-14 15:59:59,164 (trainer:737) INFO: 20epoch:train:301-400batch: iter_time=1.398e-04, forward_time=0.106, loss_ctc=55.261, loss_att=56.613, acc=0.724, loss=56.208, backward_time=0.099, grad_norm=44.773, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.586e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:00:16,118 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 16:00:41,784 (trainer:737) INFO: 20epoch:train:401-500batch: iter_time=1.233e-04, forward_time=0.106, loss_ctc=48.823, loss_att=54.133, acc=0.741, loss=52.540, backward_time=0.099, grad_norm=38.472, clip=100.000, loss_scale=2.895e+34, optim_step_time=0.042, optim0_lr0=4.585e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 16:01:33,774 (trainer:737) INFO: 20epoch:train:501-600batch: iter_time=1.263e-04, forward_time=0.104, loss_ctc=46.233, loss_att=48.064, acc=0.723, loss=47.515, backward_time=0.099, grad_norm=38.927, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.584e-04, train_time=0.520 +[gpuc02:0/16] 2024-01-14 16:02:17,000 (trainer:737) INFO: 20epoch:train:601-700batch: iter_time=1.194e-04, forward_time=0.106, loss_ctc=56.825, loss_att=63.194, acc=0.706, loss=61.283, backward_time=0.099, grad_norm=43.276, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.583e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-14 16:02:59,704 (trainer:737) INFO: 20epoch:train:701-800batch: iter_time=1.198e-04, forward_time=0.105, loss_ctc=46.640, loss_att=64.783, acc=0.699, loss=59.340, backward_time=0.099, grad_norm=41.863, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.583e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:03:42,591 (trainer:737) INFO: 20epoch:train:801-900batch: iter_time=1.304e-04, forward_time=0.106, loss_ctc=51.718, loss_att=64.628, acc=0.704, loss=60.755, backward_time=0.099, grad_norm=41.795, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.582e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 16:04:25,420 (trainer:737) INFO: 20epoch:train:901-1000batch: iter_time=1.195e-04, forward_time=0.108, loss_ctc=63.962, loss_att=66.841, acc=0.693, loss=65.978, backward_time=0.099, grad_norm=46.831, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.581e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 16:05:07,994 (trainer:737) INFO: 20epoch:train:1001-1100batch: iter_time=1.061e-04, forward_time=0.105, loss_ctc=48.338, loss_att=49.428, acc=0.722, loss=49.101, backward_time=0.099, grad_norm=37.370, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.580e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 16:05:50,693 (trainer:737) INFO: 20epoch:train:1101-1200batch: iter_time=1.117e-04, forward_time=0.105, loss_ctc=50.914, loss_att=57.291, acc=0.700, loss=55.378, backward_time=0.098, grad_norm=43.172, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.579e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:06:28,298 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 16:06:47,271 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 16:06:50,857 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 16:06:50,857 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 16:06:50,861 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 16:11:45,578 (trainer:737) INFO: 20epoch:train:1201-1300batch: iter_time=3.108, forward_time=0.109, loss_ctc=43.781, loss_att=47.820, acc=0.744, loss=46.608, backward_time=0.104, grad_norm=32.910, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.579e-04, train_time=3.549 +[gpuc02:0/16] 2024-01-14 16:12:28,272 (trainer:737) INFO: 20epoch:train:1301-1400batch: iter_time=1.510e-04, forward_time=0.105, loss_ctc=41.787, loss_att=53.855, acc=0.733, loss=50.234, backward_time=0.098, grad_norm=35.997, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.578e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:13:10,805 (trainer:737) INFO: 20epoch:train:1401-1500batch: iter_time=1.347e-04, forward_time=0.105, loss_ctc=43.100, loss_att=44.030, acc=0.752, loss=43.751, backward_time=0.098, grad_norm=35.691, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.577e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 16:13:53,795 (trainer:737) INFO: 20epoch:train:1501-1600batch: iter_time=1.239e-04, forward_time=0.107, loss_ctc=45.154, loss_att=56.252, acc=0.721, loss=52.923, backward_time=0.098, grad_norm=37.392, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.576e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 16:14:37,095 (trainer:737) INFO: 20epoch:train:1601-1700batch: iter_time=1.210e-04, forward_time=0.106, loss_ctc=51.945, loss_att=58.242, acc=0.741, loss=56.353, backward_time=0.098, grad_norm=41.956, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.575e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 16:15:19,536 (trainer:737) INFO: 20epoch:train:1701-1800batch: iter_time=1.255e-04, forward_time=0.105, loss_ctc=48.991, loss_att=49.709, acc=0.741, loss=49.494, backward_time=0.098, grad_norm=42.281, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.575e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:16:02,270 (trainer:737) INFO: 20epoch:train:1801-1900batch: iter_time=1.191e-04, forward_time=0.105, loss_ctc=46.707, loss_att=54.979, acc=0.734, loss=52.498, backward_time=0.098, grad_norm=35.643, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.574e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:16:44,962 (trainer:737) INFO: 20epoch:train:1901-2000batch: iter_time=1.318e-04, forward_time=0.105, loss_ctc=54.001, loss_att=65.211, acc=0.704, loss=61.848, backward_time=0.098, grad_norm=45.982, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.573e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:17:27,508 (trainer:737) INFO: 20epoch:train:2001-2100batch: iter_time=1.171e-04, forward_time=0.106, loss_ctc=46.673, loss_att=66.667, acc=0.712, loss=60.669, backward_time=0.098, grad_norm=39.009, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.572e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 16:18:10,797 (trainer:737) INFO: 20epoch:train:2101-2200batch: iter_time=1.221e-04, forward_time=0.105, loss_ctc=47.835, loss_att=59.421, acc=0.725, loss=55.945, backward_time=0.099, grad_norm=35.342, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.571e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 16:18:53,831 (trainer:737) INFO: 20epoch:train:2201-2300batch: iter_time=1.265e-04, forward_time=0.105, loss_ctc=61.622, loss_att=63.402, acc=0.716, loss=62.868, backward_time=0.098, grad_norm=44.284, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.571e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 16:19:36,715 (trainer:737) INFO: 20epoch:train:2301-2400batch: iter_time=1.435e-04, forward_time=0.104, loss_ctc=47.731, loss_att=52.890, acc=0.720, loss=51.342, backward_time=0.097, grad_norm=35.813, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.570e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 16:20:19,483 (trainer:737) INFO: 20epoch:train:2401-2500batch: iter_time=1.141e-04, forward_time=0.105, loss_ctc=53.322, loss_att=63.376, acc=0.715, loss=60.359, backward_time=0.098, grad_norm=44.275, clip=100.000, loss_scale=3.323e+34, optim_step_time=0.041, optim0_lr0=4.569e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:20:32,221 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 16:20:51,200 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 16:20:55,132 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 16:20:55,132 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 16:20:55,135 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 16:25:32,843 (trainer:737) INFO: 20epoch:train:2501-2600batch: iter_time=2.667, forward_time=0.105, loss_ctc=38.582, loss_att=47.989, acc=0.735, loss=45.167, backward_time=0.097, grad_norm=32.255, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.568e-04, train_time=3.133 +[gpuc02:0/16] 2024-01-14 16:26:15,233 (trainer:737) INFO: 20epoch:train:2601-2700batch: iter_time=1.474e-04, forward_time=0.104, loss_ctc=39.602, loss_att=45.943, acc=0.739, loss=44.041, backward_time=0.097, grad_norm=34.699, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.567e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:26:57,930 (trainer:737) INFO: 20epoch:train:2701-2800batch: iter_time=1.500e-04, forward_time=0.105, loss_ctc=44.336, loss_att=48.416, acc=0.747, loss=47.192, backward_time=0.099, grad_norm=35.819, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.567e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:27:40,642 (trainer:737) INFO: 20epoch:train:2801-2900batch: iter_time=1.287e-04, forward_time=0.106, loss_ctc=51.906, loss_att=55.456, acc=0.737, loss=54.391, backward_time=0.099, grad_norm=42.782, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.566e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:28:23,317 (trainer:737) INFO: 20epoch:train:2901-3000batch: iter_time=1.334e-04, forward_time=0.104, loss_ctc=47.322, loss_att=55.035, acc=0.745, loss=52.721, backward_time=0.098, grad_norm=39.353, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.565e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:29:05,862 (trainer:737) INFO: 20epoch:train:3001-3100batch: iter_time=1.454e-04, forward_time=0.105, loss_ctc=44.943, loss_att=47.728, acc=0.736, loss=46.892, backward_time=0.098, grad_norm=36.244, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.564e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 16:29:48,707 (trainer:737) INFO: 20epoch:train:3101-3200batch: iter_time=1.416e-04, forward_time=0.105, loss_ctc=53.551, loss_att=62.608, acc=0.717, loss=59.891, backward_time=0.098, grad_norm=40.296, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.563e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 16:30:31,700 (trainer:737) INFO: 20epoch:train:3201-3300batch: iter_time=1.391e-04, forward_time=0.105, loss_ctc=46.360, loss_att=63.855, acc=0.715, loss=58.607, backward_time=0.098, grad_norm=41.946, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.563e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 16:31:14,842 (trainer:737) INFO: 20epoch:train:3301-3400batch: iter_time=1.342e-04, forward_time=0.106, loss_ctc=49.553, loss_att=63.517, acc=0.723, loss=59.328, backward_time=0.099, grad_norm=38.008, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.562e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 16:31:57,598 (trainer:737) INFO: 20epoch:train:3401-3500batch: iter_time=1.340e-04, forward_time=0.105, loss_ctc=61.846, loss_att=68.604, acc=0.699, loss=66.576, backward_time=0.099, grad_norm=43.708, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.561e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:32:40,512 (trainer:737) INFO: 20epoch:train:3501-3600batch: iter_time=1.545e-04, forward_time=0.106, loss_ctc=46.736, loss_att=47.772, acc=0.744, loss=47.461, backward_time=0.098, grad_norm=36.810, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.560e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 16:33:22,930 (trainer:737) INFO: 20epoch:train:3601-3700batch: iter_time=1.409e-04, forward_time=0.105, loss_ctc=49.411, loss_att=57.167, acc=0.705, loss=54.840, backward_time=0.097, grad_norm=40.966, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.559e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:33:33,193 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 16:33:49,148 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 16:34:08,148 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 16:34:11,854 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 16:34:11,854 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 16:34:11,858 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 16:39:08,857 (trainer:737) INFO: 20epoch:train:3701-3800batch: iter_time=3.000, forward_time=0.119, loss_ctc=42.767, loss_att=51.425, acc=0.737, loss=48.828, backward_time=0.099, grad_norm=32.883, clip=100.000, loss_scale=2.559e+34, optim_step_time=0.042, optim0_lr0=4.559e-04, train_time=3.459 +[gpuc02:0/16] 2024-01-14 16:39:51,579 (trainer:737) INFO: 20epoch:train:3801-3900batch: iter_time=1.295e-04, forward_time=0.108, loss_ctc=41.485, loss_att=51.075, acc=0.740, loss=48.198, backward_time=0.097, grad_norm=34.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.558e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:40:34,292 (trainer:737) INFO: 20epoch:train:3901-4000batch: iter_time=1.542e-04, forward_time=0.104, loss_ctc=42.547, loss_att=43.230, acc=0.755, loss=43.025, backward_time=0.097, grad_norm=35.884, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.557e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:41:16,744 (trainer:737) INFO: 20epoch:train:4001-4100batch: iter_time=1.466e-04, forward_time=0.105, loss_ctc=44.144, loss_att=53.992, acc=0.726, loss=51.038, backward_time=0.097, grad_norm=36.617, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.556e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:41:59,398 (trainer:737) INFO: 20epoch:train:4101-4200batch: iter_time=1.416e-04, forward_time=0.104, loss_ctc=50.847, loss_att=57.356, acc=0.745, loss=55.404, backward_time=0.098, grad_norm=40.372, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.556e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 16:42:41,805 (trainer:737) INFO: 20epoch:train:4201-4300batch: iter_time=1.535e-04, forward_time=0.104, loss_ctc=48.099, loss_att=49.311, acc=0.742, loss=48.948, backward_time=0.097, grad_norm=38.075, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.555e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:43:24,408 (trainer:737) INFO: 20epoch:train:4301-4400batch: iter_time=1.414e-04, forward_time=0.105, loss_ctc=46.160, loss_att=53.878, acc=0.736, loss=51.563, backward_time=0.098, grad_norm=36.348, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.554e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 16:44:06,871 (trainer:737) INFO: 20epoch:train:4401-4500batch: iter_time=1.680e-04, forward_time=0.104, loss_ctc=51.959, loss_att=63.898, acc=0.708, loss=60.316, backward_time=0.097, grad_norm=44.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.553e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:44:49,511 (trainer:737) INFO: 20epoch:train:4501-4600batch: iter_time=1.682e-04, forward_time=0.105, loss_ctc=45.713, loss_att=65.765, acc=0.715, loss=59.750, backward_time=0.098, grad_norm=38.261, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.552e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 16:45:32,210 (trainer:737) INFO: 20epoch:train:4601-4700batch: iter_time=1.558e-04, forward_time=0.106, loss_ctc=47.125, loss_att=57.952, acc=0.729, loss=54.704, backward_time=0.098, grad_norm=34.594, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.552e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 16:46:14,781 (trainer:737) INFO: 20epoch:train:4701-4800batch: iter_time=1.450e-04, forward_time=0.105, loss_ctc=60.932, loss_att=63.242, acc=0.717, loss=62.549, backward_time=0.098, grad_norm=44.829, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.551e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 16:46:57,158 (trainer:737) INFO: 20epoch:train:4801-4900batch: iter_time=1.419e-04, forward_time=0.105, loss_ctc=46.867, loss_att=52.953, acc=0.720, loss=51.127, backward_time=0.097, grad_norm=36.391, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.550e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:47:40,038 (trainer:737) INFO: 20epoch:train:4901-5000batch: iter_time=1.379e-04, forward_time=0.105, loss_ctc=53.143, loss_att=62.594, acc=0.718, loss=59.758, backward_time=0.098, grad_norm=42.080, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.549e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 16:47:46,148 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 16:48:05,766 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 16:48:09,522 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 16:48:09,522 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 16:48:09,526 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 16:53:02,659 (trainer:737) INFO: 20epoch:train:5001-5100batch: iter_time=2.599, forward_time=0.168, loss_ctc=38.346, loss_att=50.238, acc=0.715, loss=46.670, backward_time=0.115, grad_norm=33.953, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.548e-04, train_time=3.226 +[gpuc02:0/16] 2024-01-14 16:53:45,017 (trainer:737) INFO: 20epoch:train:5101-5200batch: iter_time=1.591e-04, forward_time=0.105, loss_ctc=39.205, loss_att=46.255, acc=0.735, loss=44.140, backward_time=0.096, grad_norm=33.788, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.548e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 16:54:28,100 (trainer:737) INFO: 20epoch:train:5201-5300batch: iter_time=1.461e-04, forward_time=0.107, loss_ctc=44.154, loss_att=49.583, acc=0.737, loss=47.955, backward_time=0.097, grad_norm=37.734, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.547e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 16:55:10,586 (trainer:737) INFO: 20epoch:train:5301-5400batch: iter_time=1.431e-04, forward_time=0.106, loss_ctc=50.693, loss_att=55.725, acc=0.724, loss=54.215, backward_time=0.097, grad_norm=41.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.546e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 16:55:53,019 (trainer:737) INFO: 20epoch:train:5401-5500batch: iter_time=1.441e-04, forward_time=0.105, loss_ctc=46.656, loss_att=52.961, acc=0.744, loss=51.069, backward_time=0.097, grad_norm=36.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.545e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:56:35,353 (trainer:737) INFO: 20epoch:train:5501-5600batch: iter_time=1.241e-04, forward_time=0.105, loss_ctc=43.744, loss_att=47.619, acc=0.729, loss=46.457, backward_time=0.096, grad_norm=36.387, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.545e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 16:57:18,320 (trainer:737) INFO: 20epoch:train:5601-5700batch: iter_time=1.306e-04, forward_time=0.105, loss_ctc=53.139, loss_att=62.557, acc=0.709, loss=59.732, backward_time=0.097, grad_norm=41.489, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.544e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 16:58:00,728 (trainer:737) INFO: 20epoch:train:5701-5800batch: iter_time=1.270e-04, forward_time=0.105, loss_ctc=45.317, loss_att=64.517, acc=0.702, loss=58.757, backward_time=0.097, grad_norm=41.514, clip=100.000, loss_scale=3.655e+34, optim_step_time=0.041, optim0_lr0=4.543e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 16:58:43,565 (trainer:737) INFO: 20epoch:train:5801-5900batch: iter_time=1.250e-04, forward_time=0.108, loss_ctc=49.515, loss_att=63.923, acc=0.708, loss=59.601, backward_time=0.097, grad_norm=37.995, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.542e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 16:59:26,104 (trainer:737) INFO: 20epoch:train:5901-6000batch: iter_time=1.102e-04, forward_time=0.106, loss_ctc=61.186, loss_att=66.254, acc=0.693, loss=64.734, backward_time=0.097, grad_norm=42.963, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.541e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:00:08,517 (trainer:737) INFO: 20epoch:train:6001-6100batch: iter_time=1.192e-04, forward_time=0.104, loss_ctc=46.237, loss_att=47.535, acc=0.732, loss=47.145, backward_time=0.097, grad_norm=36.370, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.541e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:00:50,910 (trainer:737) INFO: 20epoch:train:6101-6200batch: iter_time=1.190e-04, forward_time=0.106, loss_ctc=48.402, loss_att=54.293, acc=0.710, loss=52.526, backward_time=0.096, grad_norm=39.601, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.540e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:01:18,251 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 17:01:37,353 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 17:01:40,931 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 17:01:40,931 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 17:01:40,934 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 17:05:48,857 (trainer:737) INFO: 20epoch:train:6201-6300batch: iter_time=2.442, forward_time=0.104, loss_ctc=42.519, loss_att=47.650, acc=0.736, loss=46.111, backward_time=0.097, grad_norm=32.311, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.539e-04, train_time=2.979 +[gpuc02:0/16] 2024-01-14 17:06:31,261 (trainer:737) INFO: 20epoch:train:6301-6400batch: iter_time=1.258e-04, forward_time=0.105, loss_ctc=40.763, loss_att=49.003, acc=0.730, loss=46.531, backward_time=0.097, grad_norm=36.436, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.538e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:07:14,025 (trainer:737) INFO: 20epoch:train:6401-6500batch: iter_time=1.298e-04, forward_time=0.106, loss_ctc=41.712, loss_att=41.342, acc=0.758, loss=41.453, backward_time=0.097, grad_norm=32.981, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.538e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 17:07:56,809 (trainer:737) INFO: 20epoch:train:6501-6600batch: iter_time=1.333e-04, forward_time=0.105, loss_ctc=43.734, loss_att=54.580, acc=0.715, loss=51.326, backward_time=0.097, grad_norm=37.687, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.537e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:08:39,963 (trainer:737) INFO: 20epoch:train:6601-6700batch: iter_time=1.342e-04, forward_time=0.106, loss_ctc=49.846, loss_att=56.018, acc=0.736, loss=54.167, backward_time=0.097, grad_norm=40.071, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.536e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 17:09:22,783 (trainer:737) INFO: 20epoch:train:6701-6800batch: iter_time=1.275e-04, forward_time=0.106, loss_ctc=47.463, loss_att=46.922, acc=0.742, loss=47.085, backward_time=0.097, grad_norm=38.838, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.535e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:10:05,993 (trainer:737) INFO: 20epoch:train:6801-6900batch: iter_time=1.156e-04, forward_time=0.107, loss_ctc=45.577, loss_att=54.153, acc=0.724, loss=51.580, backward_time=0.098, grad_norm=37.316, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.534e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-14 17:10:49,090 (trainer:737) INFO: 20epoch:train:6901-7000batch: iter_time=1.142e-04, forward_time=0.106, loss_ctc=50.998, loss_att=63.636, acc=0.698, loss=59.845, backward_time=0.097, grad_norm=43.828, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.534e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 17:11:31,947 (trainer:737) INFO: 20epoch:train:7001-7100batch: iter_time=1.369e-04, forward_time=0.106, loss_ctc=44.950, loss_att=64.385, acc=0.700, loss=58.555, backward_time=0.097, grad_norm=38.396, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.533e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:12:14,886 (trainer:737) INFO: 20epoch:train:7101-7200batch: iter_time=1.111e-04, forward_time=0.105, loss_ctc=46.700, loss_att=54.714, acc=0.726, loss=52.309, backward_time=0.098, grad_norm=35.028, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.532e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 17:12:40,032 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 17:12:57,468 (trainer:737) INFO: 20epoch:train:7201-7300batch: iter_time=1.091e-04, forward_time=0.105, loss_ctc=59.343, loss_att=63.090, acc=0.706, loss=61.966, backward_time=0.097, grad_norm=43.979, clip=100.000, loss_scale=3.294e+34, optim_step_time=0.042, optim0_lr0=4.531e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:13:39,932 (trainer:737) INFO: 20epoch:train:7301-7400batch: iter_time=1.123e-04, forward_time=0.106, loss_ctc=46.866, loss_att=51.382, acc=0.726, loss=50.027, backward_time=0.097, grad_norm=36.297, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.531e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:14:22,626 (trainer:737) INFO: 20epoch:train:7401-7500batch: iter_time=1.140e-04, forward_time=0.106, loss_ctc=53.188, loss_att=57.860, acc=0.721, loss=56.459, backward_time=0.098, grad_norm=42.355, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.530e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 17:14:28,424 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 17:14:47,419 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 17:14:50,979 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 17:14:50,979 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 17:14:50,982 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 17:19:17,712 (trainer:737) INFO: 20epoch:train:7501-7600batch: iter_time=2.427, forward_time=0.104, loss_ctc=37.966, loss_att=46.400, acc=0.724, loss=43.870, backward_time=0.097, grad_norm=32.334, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.529e-04, train_time=2.951 +[gpuc02:0/16] 2024-01-14 17:20:00,021 (trainer:737) INFO: 20epoch:train:7601-7700batch: iter_time=1.118e-04, forward_time=0.104, loss_ctc=38.783, loss_att=43.953, acc=0.741, loss=42.402, backward_time=0.097, grad_norm=33.607, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.528e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 17:20:42,511 (trainer:737) INFO: 20epoch:train:7701-7800batch: iter_time=1.044e-04, forward_time=0.105, loss_ctc=43.830, loss_att=48.268, acc=0.739, loss=46.937, backward_time=0.097, grad_norm=36.352, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.527e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:21:24,984 (trainer:737) INFO: 20epoch:train:7801-7900batch: iter_time=1.060e-04, forward_time=0.105, loss_ctc=50.465, loss_att=54.217, acc=0.728, loss=53.091, backward_time=0.097, grad_norm=41.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.527e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:22:07,820 (trainer:737) INFO: 20epoch:train:7901-8000batch: iter_time=1.041e-04, forward_time=0.106, loss_ctc=46.492, loss_att=52.238, acc=0.747, loss=50.514, backward_time=0.097, grad_norm=37.043, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.526e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:22:50,280 (trainer:737) INFO: 20epoch:train:8001-8100batch: iter_time=1.063e-04, forward_time=0.105, loss_ctc=43.944, loss_att=46.505, acc=0.732, loss=45.737, backward_time=0.097, grad_norm=35.281, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.525e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:23:33,111 (trainer:737) INFO: 20epoch:train:8101-8200batch: iter_time=9.876e-05, forward_time=0.105, loss_ctc=52.534, loss_att=61.369, acc=0.714, loss=58.719, backward_time=0.097, grad_norm=41.245, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.524e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:24:15,622 (trainer:737) INFO: 20epoch:train:8201-8300batch: iter_time=1.120e-04, forward_time=0.105, loss_ctc=44.665, loss_att=62.730, acc=0.705, loss=57.311, backward_time=0.097, grad_norm=38.938, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.524e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:24:58,522 (trainer:737) INFO: 20epoch:train:8301-8400batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=48.537, loss_att=62.036, acc=0.711, loss=57.987, backward_time=0.098, grad_norm=36.341, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.523e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 17:25:41,360 (trainer:737) INFO: 20epoch:train:8401-8500batch: iter_time=1.156e-04, forward_time=0.105, loss_ctc=60.966, loss_att=64.997, acc=0.701, loss=63.788, backward_time=0.098, grad_norm=45.391, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.522e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:26:24,155 (trainer:737) INFO: 20epoch:train:8501-8600batch: iter_time=1.264e-04, forward_time=0.105, loss_ctc=46.217, loss_att=48.204, acc=0.730, loss=47.608, backward_time=0.097, grad_norm=35.233, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.521e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:27:06,793 (trainer:737) INFO: 20epoch:train:8601-8700batch: iter_time=1.172e-04, forward_time=0.104, loss_ctc=46.872, loss_att=55.173, acc=0.706, loss=52.683, backward_time=0.097, grad_norm=39.997, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.520e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:27:34,132 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 17:27:53,785 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 17:27:57,497 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 17:27:57,497 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 17:27:57,500 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 17:32:04,990 (trainer:737) INFO: 20epoch:train:8701-8800batch: iter_time=2.434, forward_time=0.105, loss_ctc=42.517, loss_att=47.764, acc=0.746, loss=46.190, backward_time=0.097, grad_norm=32.468, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.520e-04, train_time=2.982 +[gpuc02:0/16] 2024-01-14 17:32:47,484 (trainer:737) INFO: 20epoch:train:8801-8900batch: iter_time=1.337e-04, forward_time=0.107, loss_ctc=40.329, loss_att=53.258, acc=0.735, loss=49.379, backward_time=0.097, grad_norm=36.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.519e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:33:29,924 (trainer:737) INFO: 20epoch:train:8901-9000batch: iter_time=1.407e-04, forward_time=0.105, loss_ctc=41.716, loss_att=43.227, acc=0.755, loss=42.774, backward_time=0.096, grad_norm=33.847, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.518e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:34:12,557 (trainer:737) INFO: 20epoch:train:9001-9100batch: iter_time=1.424e-04, forward_time=0.106, loss_ctc=43.796, loss_att=55.662, acc=0.721, loss=52.102, backward_time=0.097, grad_norm=36.813, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.517e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:34:55,189 (trainer:737) INFO: 20epoch:train:9101-9200batch: iter_time=1.633e-04, forward_time=0.106, loss_ctc=50.002, loss_att=57.588, acc=0.745, loss=55.312, backward_time=0.097, grad_norm=40.012, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.517e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:35:37,648 (trainer:737) INFO: 20epoch:train:9201-9300batch: iter_time=1.535e-04, forward_time=0.105, loss_ctc=47.196, loss_att=49.091, acc=0.746, loss=48.522, backward_time=0.096, grad_norm=37.477, clip=100.000, loss_scale=2.928e+34, optim_step_time=0.041, optim0_lr0=4.516e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:36:20,377 (trainer:737) INFO: 20epoch:train:9301-9400batch: iter_time=1.428e-04, forward_time=0.107, loss_ctc=44.952, loss_att=53.881, acc=0.738, loss=51.203, backward_time=0.097, grad_norm=36.369, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.515e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 17:37:02,959 (trainer:737) INFO: 20epoch:train:9401-9500batch: iter_time=1.638e-04, forward_time=0.106, loss_ctc=50.546, loss_att=63.922, acc=0.708, loss=59.909, backward_time=0.097, grad_norm=42.749, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.514e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:37:45,913 (trainer:737) INFO: 20epoch:train:9501-9600batch: iter_time=1.322e-04, forward_time=0.109, loss_ctc=44.996, loss_att=65.775, acc=0.717, loss=59.541, backward_time=0.098, grad_norm=38.954, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.514e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 17:38:28,628 (trainer:737) INFO: 20epoch:train:9601-9700batch: iter_time=1.334e-04, forward_time=0.106, loss_ctc=46.866, loss_att=58.950, acc=0.730, loss=55.325, backward_time=0.098, grad_norm=35.147, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.513e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 17:39:11,201 (trainer:737) INFO: 20epoch:train:9701-9800batch: iter_time=1.464e-04, forward_time=0.106, loss_ctc=59.554, loss_att=62.587, acc=0.721, loss=61.677, backward_time=0.097, grad_norm=44.024, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.512e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:39:53,635 (trainer:737) INFO: 20epoch:train:9801-9900batch: iter_time=1.311e-04, forward_time=0.105, loss_ctc=46.503, loss_att=53.375, acc=0.721, loss=51.313, backward_time=0.096, grad_norm=37.823, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.511e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:40:36,506 (trainer:737) INFO: 20epoch:train:9901-10000batch: iter_time=1.293e-04, forward_time=0.106, loss_ctc=52.373, loss_att=62.163, acc=0.717, loss=59.226, backward_time=0.097, grad_norm=41.978, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.511e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 17:40:41,919 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 17:41:00,811 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 17:41:04,275 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 17:41:04,275 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 17:41:04,278 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 17:45:34,745 (trainer:737) INFO: 20epoch:train:10001-10100batch: iter_time=2.425, forward_time=0.104, loss_ctc=38.114, loss_att=48.730, acc=0.720, loss=45.545, backward_time=0.096, grad_norm=32.790, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.510e-04, train_time=2.982 +[gpuc02:0/16] 2024-01-14 17:46:17,239 (trainer:737) INFO: 20epoch:train:10101-10200batch: iter_time=1.263e-04, forward_time=0.103, loss_ctc=38.694, loss_att=45.004, acc=0.740, loss=43.111, backward_time=0.096, grad_norm=33.552, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.509e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:46:59,989 (trainer:737) INFO: 20epoch:train:10201-10300batch: iter_time=1.305e-04, forward_time=0.105, loss_ctc=43.266, loss_att=48.780, acc=0.739, loss=47.126, backward_time=0.097, grad_norm=35.521, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.508e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 17:47:42,729 (trainer:737) INFO: 20epoch:train:10301-10400batch: iter_time=1.292e-04, forward_time=0.104, loss_ctc=49.987, loss_att=54.077, acc=0.729, loss=52.850, backward_time=0.096, grad_norm=42.753, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.507e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 17:48:13,802 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 17:48:25,728 (trainer:737) INFO: 20epoch:train:10401-10500batch: iter_time=1.412e-04, forward_time=0.105, loss_ctc=46.173, loss_att=52.096, acc=0.747, loss=50.319, backward_time=0.097, grad_norm=42.567, clip=100.000, loss_scale=3.566e+34, optim_step_time=0.041, optim0_lr0=4.507e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 17:49:08,094 (trainer:737) INFO: 20epoch:train:10501-10600batch: iter_time=1.383e-04, forward_time=0.105, loss_ctc=43.592, loss_att=46.522, acc=0.732, loss=45.643, backward_time=0.096, grad_norm=34.789, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.506e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 17:49:50,553 (trainer:737) INFO: 20epoch:train:10601-10700batch: iter_time=1.436e-04, forward_time=0.105, loss_ctc=52.433, loss_att=61.961, acc=0.713, loss=59.103, backward_time=0.097, grad_norm=41.744, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.505e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:50:33,018 (trainer:737) INFO: 20epoch:train:10701-10800batch: iter_time=1.428e-04, forward_time=0.105, loss_ctc=44.816, loss_att=63.174, acc=0.706, loss=57.667, backward_time=0.097, grad_norm=40.205, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.504e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:51:16,329 (trainer:737) INFO: 20epoch:train:10801-10900batch: iter_time=1.471e-04, forward_time=0.106, loss_ctc=48.983, loss_att=62.485, acc=0.712, loss=58.435, backward_time=0.098, grad_norm=39.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.504e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 17:51:58,880 (trainer:737) INFO: 20epoch:train:10901-11000batch: iter_time=1.357e-04, forward_time=0.105, loss_ctc=61.128, loss_att=65.252, acc=0.698, loss=64.015, backward_time=0.097, grad_norm=43.663, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.503e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 17:52:41,312 (trainer:737) INFO: 20epoch:train:11001-11100batch: iter_time=1.377e-04, forward_time=0.106, loss_ctc=45.904, loss_att=48.401, acc=0.729, loss=47.652, backward_time=0.097, grad_norm=36.549, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.502e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 17:53:23,658 (trainer:737) INFO: 20epoch:train:11101-11200batch: iter_time=1.316e-04, forward_time=0.105, loss_ctc=46.666, loss_att=55.296, acc=0.708, loss=52.707, backward_time=0.096, grad_norm=38.273, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.501e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 17:53:50,323 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 17:54:09,331 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 17:54:12,873 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 17:54:12,873 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 17:54:12,877 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 17:58:24,639 (trainer:737) INFO: 20epoch:train:11201-11300batch: iter_time=2.405, forward_time=0.105, loss_ctc=42.067, loss_att=47.250, acc=0.739, loss=45.695, backward_time=0.097, grad_norm=33.548, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.501e-04, train_time=3.010 +[gpuc02:0/16] 2024-01-14 17:59:07,274 (trainer:737) INFO: 20epoch:train:11301-11400batch: iter_time=1.228e-04, forward_time=0.104, loss_ctc=40.749, loss_att=48.762, acc=0.732, loss=46.358, backward_time=0.097, grad_norm=36.661, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.500e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 17:59:49,568 (trainer:737) INFO: 20epoch:train:11401-11500batch: iter_time=1.069e-04, forward_time=0.105, loss_ctc=41.381, loss_att=41.102, acc=0.758, loss=41.185, backward_time=0.097, grad_norm=33.744, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.499e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 18:00:32,313 (trainer:737) INFO: 20epoch:train:11501-11600batch: iter_time=1.061e-04, forward_time=0.105, loss_ctc=43.471, loss_att=53.701, acc=0.717, loss=50.632, backward_time=0.096, grad_norm=37.635, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.498e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 18:01:15,079 (trainer:737) INFO: 20epoch:train:11601-11700batch: iter_time=1.158e-04, forward_time=0.105, loss_ctc=49.598, loss_att=55.899, acc=0.737, loss=54.009, backward_time=0.097, grad_norm=41.094, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.498e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 18:01:57,328 (trainer:737) INFO: 20epoch:train:11701-11800batch: iter_time=1.228e-04, forward_time=0.103, loss_ctc=47.151, loss_att=46.651, acc=0.744, loss=46.801, backward_time=0.096, grad_norm=37.119, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.497e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 18:02:39,760 (trainer:737) INFO: 20epoch:train:11801-11900batch: iter_time=1.110e-04, forward_time=0.104, loss_ctc=45.004, loss_att=53.490, acc=0.728, loss=50.945, backward_time=0.097, grad_norm=36.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.496e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 18:03:22,387 (trainer:737) INFO: 20epoch:train:11901-12000batch: iter_time=1.189e-04, forward_time=0.104, loss_ctc=50.628, loss_att=64.174, acc=0.700, loss=60.110, backward_time=0.096, grad_norm=44.036, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.495e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 18:04:05,039 (trainer:737) INFO: 20epoch:train:12001-12100batch: iter_time=1.293e-04, forward_time=0.105, loss_ctc=44.412, loss_att=64.034, acc=0.701, loss=58.147, backward_time=0.097, grad_norm=39.817, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.495e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 18:04:47,493 (trainer:737) INFO: 20epoch:train:12101-12200batch: iter_time=1.265e-04, forward_time=0.105, loss_ctc=46.545, loss_att=54.815, acc=0.728, loss=52.334, backward_time=0.097, grad_norm=36.366, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.494e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 18:05:30,740 (trainer:737) INFO: 20epoch:train:12201-12300batch: iter_time=1.093e-04, forward_time=0.104, loss_ctc=58.990, loss_att=62.443, acc=0.707, loss=61.407, backward_time=0.097, grad_norm=45.347, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.493e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-14 18:06:13,564 (trainer:737) INFO: 20epoch:train:12301-12400batch: iter_time=1.086e-04, forward_time=0.104, loss_ctc=46.481, loss_att=50.534, acc=0.728, loss=49.318, backward_time=0.096, grad_norm=36.213, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.492e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 18:06:56,695 (trainer:737) INFO: 20epoch:train:12401-12500batch: iter_time=1.099e-04, forward_time=0.104, loss_ctc=51.139, loss_att=56.789, acc=0.727, loss=55.094, backward_time=0.097, grad_norm=39.716, clip=100.000, loss_scale=2.658e+34, optim_step_time=0.041, optim0_lr0=4.492e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 18:07:01,253 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 18:07:20,259 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 18:07:23,909 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 18:07:23,909 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 18:07:23,912 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 18:11:50,801 (trainer:737) INFO: 20epoch:train:12501-12600batch: iter_time=2.409, forward_time=0.104, loss_ctc=37.813, loss_att=49.545, acc=0.734, loss=46.025, backward_time=0.097, grad_norm=32.410, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.491e-04, train_time=2.941 +[gpuc02:0/16] 2024-01-14 18:12:33,106 (trainer:737) INFO: 20epoch:train:12601-12700batch: iter_time=1.132e-04, forward_time=0.104, loss_ctc=38.428, loss_att=46.364, acc=0.741, loss=43.983, backward_time=0.097, grad_norm=32.979, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.490e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 18:12:33,916 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 18:13:15,793 (trainer:737) INFO: 20epoch:train:12701-12800batch: iter_time=1.167e-04, forward_time=0.106, loss_ctc=43.259, loss_att=48.719, acc=0.749, loss=47.081, backward_time=0.098, grad_norm=37.392, clip=100.000, loss_scale=2.098e+34, optim_step_time=0.041, optim0_lr0=4.489e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 18:13:58,384 (trainer:737) INFO: 20epoch:train:12801-12900batch: iter_time=1.259e-04, forward_time=0.106, loss_ctc=50.385, loss_att=54.877, acc=0.741, loss=53.529, backward_time=0.097, grad_norm=41.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.489e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 18:14:40,953 (trainer:737) INFO: 20epoch:train:12901-13000batch: iter_time=1.193e-04, forward_time=0.106, loss_ctc=45.571, loss_att=54.164, acc=0.750, loss=51.586, backward_time=0.097, grad_norm=35.991, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.488e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 18:15:23,371 (trainer:737) INFO: 20epoch:train:13001-13100batch: iter_time=1.243e-04, forward_time=0.106, loss_ctc=43.008, loss_att=47.312, acc=0.738, loss=46.021, backward_time=0.097, grad_norm=34.338, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.487e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 18:16:06,299 (trainer:737) INFO: 20epoch:train:13101-13200batch: iter_time=1.207e-04, forward_time=0.106, loss_ctc=51.490, loss_att=61.343, acc=0.723, loss=58.387, backward_time=0.097, grad_norm=39.351, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.486e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 18:16:48,819 (trainer:737) INFO: 20epoch:train:13201-13300batch: iter_time=1.372e-04, forward_time=0.106, loss_ctc=44.023, loss_att=63.552, acc=0.720, loss=57.693, backward_time=0.097, grad_norm=39.632, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.486e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 18:17:31,555 (trainer:737) INFO: 20epoch:train:13301-13400batch: iter_time=1.443e-04, forward_time=0.107, loss_ctc=48.399, loss_att=64.054, acc=0.722, loss=59.358, backward_time=0.098, grad_norm=37.344, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.485e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 18:18:14,164 (trainer:737) INFO: 20epoch:train:13401-13500batch: iter_time=1.359e-04, forward_time=0.106, loss_ctc=59.182, loss_att=68.431, acc=0.702, loss=65.656, backward_time=0.098, grad_norm=42.931, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.484e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 18:18:56,673 (trainer:737) INFO: 20epoch:train:13501-13600batch: iter_time=1.341e-04, forward_time=0.106, loss_ctc=45.776, loss_att=47.939, acc=0.743, loss=47.290, backward_time=0.097, grad_norm=36.895, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.483e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 18:19:40,779 (trainer:737) INFO: 20epoch:train:13601-13700batch: iter_time=1.258e-04, forward_time=0.105, loss_ctc=46.741, loss_att=55.217, acc=0.712, loss=52.674, backward_time=0.096, grad_norm=38.579, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.482e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-14 18:20:08,184 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 18:20:27,431 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 18:20:31,431 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 18:20:31,431 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 18:20:31,434 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 18:25:30,281 (trainer:737) INFO: 20epoch:train:13701-13800batch: iter_time=2.466, forward_time=0.105, loss_ctc=41.681, loss_att=51.304, acc=0.739, loss=48.417, backward_time=0.098, grad_norm=33.291, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.482e-04, train_time=3.495 +[gpuc02:0/16] 2024-01-14 18:26:12,941 (trainer:737) INFO: 20epoch:train:13801-13900batch: iter_time=9.169e-05, forward_time=0.105, loss_ctc=40.628, loss_att=50.486, acc=0.743, loss=47.528, backward_time=0.098, grad_norm=34.527, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.481e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 18:26:55,931 (trainer:737) INFO: 20epoch:train:13901-14000batch: iter_time=1.133e-04, forward_time=0.105, loss_ctc=41.419, loss_att=42.474, acc=0.758, loss=42.157, backward_time=0.097, grad_norm=34.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.480e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 18:28:01,515 (trainer:737) INFO: 20epoch:train:14001-14100batch: iter_time=1.173e-04, forward_time=0.106, loss_ctc=42.780, loss_att=53.910, acc=0.724, loss=50.571, backward_time=0.097, grad_norm=35.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.479e-04, train_time=0.656 +[gpuc02:0/16] 2024-01-14 18:28:43,992 (trainer:737) INFO: 20epoch:train:14101-14200batch: iter_time=1.217e-04, forward_time=0.106, loss_ctc=49.577, loss_att=56.518, acc=0.748, loss=54.435, backward_time=0.097, grad_norm=43.148, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.479e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 18:29:26,869 (trainer:737) INFO: 20epoch:train:14201-14300batch: iter_time=1.206e-04, forward_time=0.105, loss_ctc=46.861, loss_att=48.761, acc=0.746, loss=48.191, backward_time=0.097, grad_norm=38.497, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.478e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 18:30:09,957 (trainer:737) INFO: 20epoch:train:14301-14400batch: iter_time=1.034e-04, forward_time=0.106, loss_ctc=44.730, loss_att=53.739, acc=0.739, loss=51.036, backward_time=0.098, grad_norm=35.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.477e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 18:30:52,453 (trainer:737) INFO: 20epoch:train:14401-14500batch: iter_time=1.202e-04, forward_time=0.105, loss_ctc=50.135, loss_att=62.742, acc=0.710, loss=58.960, backward_time=0.098, grad_norm=42.120, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.477e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 18:31:35,455 (trainer:737) INFO: 20epoch:train:14501-14600batch: iter_time=1.259e-04, forward_time=0.106, loss_ctc=44.951, loss_att=65.250, acc=0.718, loss=59.160, backward_time=0.098, grad_norm=38.036, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.476e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 18:32:18,210 (trainer:737) INFO: 20epoch:train:14601-14700batch: iter_time=1.234e-04, forward_time=0.105, loss_ctc=46.317, loss_att=57.873, acc=0.734, loss=54.406, backward_time=0.098, grad_norm=34.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.475e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 18:33:01,009 (trainer:737) INFO: 20epoch:train:14701-14800batch: iter_time=1.060e-04, forward_time=0.106, loss_ctc=58.240, loss_att=62.376, acc=0.721, loss=61.135, backward_time=0.098, grad_norm=43.426, clip=100.000, loss_scale=4.112e+34, optim_step_time=0.042, optim0_lr0=4.474e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 18:33:43,510 (trainer:737) INFO: 20epoch:train:14801-14900batch: iter_time=1.102e-04, forward_time=0.105, loss_ctc=45.734, loss_att=52.122, acc=0.723, loss=50.205, backward_time=0.097, grad_norm=36.511, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.474e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 18:34:26,879 (trainer:737) INFO: 20epoch:train:14901-15000batch: iter_time=1.127e-04, forward_time=0.105, loss_ctc=50.757, loss_att=61.946, acc=0.717, loss=58.590, backward_time=0.098, grad_norm=41.786, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.473e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 18:54:52,157 (trainer:343) INFO: 20epoch results: [train] iter_time=0.205, forward_time=0.106, loss_ctc=47.358, loss_att=55.124, acc=0.726, loss=52.795, backward_time=0.098, grad_norm=38.352, clip=100.000, loss_scale=2.769e+34, optim_step_time=0.042, optim0_lr0=4.530e-04, train_time=0.646, time=2 hours, 41 minutes and 45.41 seconds, total_count=300000, gpu_max_cached_mem_GB=26.227, [valid] loss_ctc=57.394, cer_ctc=0.284, loss_att=55.944, acc=0.579, cer=0.389, wer=0.998, loss=56.379, time=20 minutes and 14.46 seconds, total_count=93420, gpu_max_cached_mem_GB=26.227 +[gpuc02:0/16] 2024-01-14 18:54:57,278 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-14 18:54:57,332 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/15epoch.pth +[gpuc02:0/16] 2024-01-14 18:54:57,333 (trainer:272) INFO: 21/45epoch started. Estimated time to finish: 3 days, 3 hours and 37 minutes +[gpuc02:0/16] 2024-01-14 18:54:57,343 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 18:55:16,180 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 18:55:19,883 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 18:55:19,883 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 18:55:19,886 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 18:59:43,965 (trainer:737) INFO: 21epoch:train:1-100batch: iter_time=2.296, forward_time=0.111, loss_ctc=47.508, loss_att=51.453, acc=0.713, loss=50.269, backward_time=0.099, grad_norm=40.127, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.045, optim0_lr0=4.472e-04, train_time=2.866 +[gpuc02:0/16] 2024-01-14 19:00:30,783 (trainer:737) INFO: 21epoch:train:101-200batch: iter_time=9.681e-05, forward_time=0.124, loss_ctc=48.500, loss_att=56.311, acc=0.716, loss=53.967, backward_time=0.103, grad_norm=41.453, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.044, optim0_lr0=4.471e-04, train_time=0.468 +[gpuc02:0/16] 2024-01-14 19:01:17,392 (trainer:737) INFO: 21epoch:train:201-300batch: iter_time=1.014e-04, forward_time=0.105, loss_ctc=44.675, loss_att=51.271, acc=0.720, loss=49.292, backward_time=0.098, grad_norm=35.168, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.471e-04, train_time=0.466 +[gpuc02:0/16] 2024-01-14 19:02:00,337 (trainer:737) INFO: 21epoch:train:301-400batch: iter_time=1.009e-04, forward_time=0.106, loss_ctc=46.899, loss_att=53.766, acc=0.745, loss=51.706, backward_time=0.098, grad_norm=38.600, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.470e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 19:02:45,395 (trainer:737) INFO: 21epoch:train:401-500batch: iter_time=1.050e-04, forward_time=0.111, loss_ctc=35.049, loss_att=39.087, acc=0.756, loss=37.876, backward_time=0.111, grad_norm=30.777, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.044, optim0_lr0=4.469e-04, train_time=0.450 +[gpuc02:0/16] 2024-01-14 19:03:27,384 (trainer:737) INFO: 21epoch:train:501-600batch: iter_time=1.084e-04, forward_time=0.103, loss_ctc=39.365, loss_att=44.240, acc=0.736, loss=42.777, backward_time=0.097, grad_norm=35.166, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.468e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 19:04:10,357 (trainer:737) INFO: 21epoch:train:601-700batch: iter_time=1.082e-04, forward_time=0.104, loss_ctc=49.150, loss_att=53.615, acc=0.736, loss=52.276, backward_time=0.099, grad_norm=46.319, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.468e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 19:04:52,342 (trainer:737) INFO: 21epoch:train:701-800batch: iter_time=1.141e-04, forward_time=0.104, loss_ctc=47.761, loss_att=48.262, acc=0.724, loss=48.111, backward_time=0.097, grad_norm=40.031, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.467e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 19:05:42,040 (trainer:737) INFO: 21epoch:train:801-900batch: iter_time=1.065e-04, forward_time=0.103, loss_ctc=52.454, loss_att=59.542, acc=0.681, loss=57.415, backward_time=0.098, grad_norm=42.706, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.466e-04, train_time=0.497 +[gpuc02:0/16] 2024-01-14 19:06:25,947 (trainer:737) INFO: 21epoch:train:901-1000batch: iter_time=1.038e-04, forward_time=0.105, loss_ctc=45.267, loss_att=60.224, acc=0.723, loss=55.737, backward_time=0.098, grad_norm=36.568, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.465e-04, train_time=0.439 +[gpuc02:0/16] 2024-01-14 19:07:08,010 (trainer:737) INFO: 21epoch:train:1001-1100batch: iter_time=1.194e-04, forward_time=0.104, loss_ctc=46.974, loss_att=62.980, acc=0.709, loss=58.178, backward_time=0.098, grad_norm=38.728, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.465e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 19:07:50,338 (trainer:737) INFO: 21epoch:train:1101-1200batch: iter_time=1.189e-04, forward_time=0.104, loss_ctc=45.596, loss_att=55.235, acc=0.741, loss=52.343, backward_time=0.098, grad_norm=38.174, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.464e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:08:25,051 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 19:08:44,478 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 19:08:47,980 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 19:08:47,980 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 19:08:47,983 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 19:13:59,179 (trainer:737) INFO: 21epoch:train:1201-1300batch: iter_time=3.214, forward_time=0.120, loss_ctc=46.007, loss_att=50.094, acc=0.701, loss=48.868, backward_time=0.099, grad_norm=41.265, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.463e-04, train_time=3.688 +[gpuc02:0/16] 2024-01-14 19:14:41,542 (trainer:737) INFO: 21epoch:train:1301-1400batch: iter_time=1.052e-04, forward_time=0.105, loss_ctc=46.293, loss_att=46.597, acc=0.761, loss=46.506, backward_time=0.097, grad_norm=40.196, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.462e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:14:49,176 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 19:15:23,912 (trainer:737) INFO: 21epoch:train:1401-1500batch: iter_time=1.210e-04, forward_time=0.105, loss_ctc=43.820, loss_att=53.143, acc=0.723, loss=50.346, backward_time=0.098, grad_norm=36.510, clip=100.000, loss_scale=2.434e+34, optim_step_time=0.042, optim0_lr0=4.462e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:16:06,363 (trainer:737) INFO: 21epoch:train:1501-1600batch: iter_time=1.267e-04, forward_time=0.105, loss_ctc=46.051, loss_att=55.161, acc=0.732, loss=52.428, backward_time=0.099, grad_norm=36.580, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.461e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:16:49,309 (trainer:737) INFO: 21epoch:train:1601-1700batch: iter_time=1.338e-04, forward_time=0.105, loss_ctc=41.400, loss_att=48.074, acc=0.761, loss=46.072, backward_time=0.099, grad_norm=34.871, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.460e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 19:17:31,473 (trainer:737) INFO: 21epoch:train:1701-1800batch: iter_time=1.290e-04, forward_time=0.104, loss_ctc=37.933, loss_att=39.638, acc=0.759, loss=39.127, backward_time=0.098, grad_norm=33.827, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.459e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 19:18:13,801 (trainer:737) INFO: 21epoch:train:1801-1900batch: iter_time=1.190e-04, forward_time=0.105, loss_ctc=42.911, loss_att=54.800, acc=0.735, loss=51.234, backward_time=0.098, grad_norm=39.717, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.459e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:18:56,222 (trainer:737) INFO: 21epoch:train:1901-2000batch: iter_time=1.190e-04, forward_time=0.105, loss_ctc=47.826, loss_att=50.394, acc=0.741, loss=49.623, backward_time=0.098, grad_norm=38.346, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.458e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:19:38,259 (trainer:737) INFO: 21epoch:train:2001-2100batch: iter_time=1.023e-04, forward_time=0.104, loss_ctc=47.806, loss_att=47.781, acc=0.725, loss=47.789, backward_time=0.097, grad_norm=38.669, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.457e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 19:20:20,498 (trainer:737) INFO: 21epoch:train:2101-2200batch: iter_time=1.293e-04, forward_time=0.104, loss_ctc=44.848, loss_att=57.222, acc=0.721, loss=53.510, backward_time=0.097, grad_norm=33.227, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.456e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 19:21:03,221 (trainer:737) INFO: 21epoch:train:2201-2300batch: iter_time=1.052e-04, forward_time=0.105, loss_ctc=50.002, loss_att=68.421, acc=0.723, loss=62.895, backward_time=0.098, grad_norm=40.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.456e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 19:21:46,105 (trainer:737) INFO: 21epoch:train:2301-2400batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=46.002, loss_att=56.407, acc=0.735, loss=53.285, backward_time=0.098, grad_norm=36.351, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.455e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 19:22:28,187 (trainer:737) INFO: 21epoch:train:2401-2500batch: iter_time=1.181e-04, forward_time=0.103, loss_ctc=40.021, loss_att=47.853, acc=0.732, loss=45.503, backward_time=0.097, grad_norm=35.462, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.454e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 19:22:33,941 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 19:22:53,924 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 19:22:57,661 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 19:22:57,661 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 19:22:57,664 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 19:30:14,604 (trainer:737) INFO: 21epoch:train:2501-2600batch: iter_time=2.390, forward_time=0.141, loss_ctc=45.949, loss_att=47.315, acc=0.737, loss=46.905, backward_time=0.102, grad_norm=37.792, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.454e-04, train_time=4.664 +[gpuc02:0/16] 2024-01-14 19:30:57,092 (trainer:737) INFO: 21epoch:train:2601-2700batch: iter_time=1.204e-04, forward_time=0.104, loss_ctc=47.722, loss_att=53.296, acc=0.741, loss=51.624, backward_time=0.098, grad_norm=40.649, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.453e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 19:31:40,059 (trainer:737) INFO: 21epoch:train:2701-2800batch: iter_time=1.179e-04, forward_time=0.105, loss_ctc=42.980, loss_att=49.241, acc=0.735, loss=47.363, backward_time=0.098, grad_norm=33.338, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.452e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 19:32:23,104 (trainer:737) INFO: 21epoch:train:2801-2900batch: iter_time=9.530e-05, forward_time=0.108, loss_ctc=45.920, loss_att=53.899, acc=0.757, loss=51.505, backward_time=0.098, grad_norm=36.610, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.451e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 19:33:05,366 (trainer:737) INFO: 21epoch:train:2901-3000batch: iter_time=1.270e-04, forward_time=0.104, loss_ctc=34.442, loss_att=39.148, acc=0.764, loss=37.736, backward_time=0.097, grad_norm=29.725, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.451e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 19:33:47,634 (trainer:737) INFO: 21epoch:train:3001-3100batch: iter_time=1.318e-04, forward_time=0.104, loss_ctc=38.217, loss_att=44.173, acc=0.747, loss=42.386, backward_time=0.098, grad_norm=34.833, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.450e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 19:34:30,469 (trainer:737) INFO: 21epoch:train:3101-3200batch: iter_time=1.208e-04, forward_time=0.105, loss_ctc=46.540, loss_att=52.012, acc=0.750, loss=50.371, backward_time=0.098, grad_norm=39.558, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.449e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 19:35:13,214 (trainer:737) INFO: 21epoch:train:3201-3300batch: iter_time=1.277e-04, forward_time=0.104, loss_ctc=46.201, loss_att=47.882, acc=0.731, loss=47.378, backward_time=0.097, grad_norm=37.120, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.448e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 19:35:55,613 (trainer:737) INFO: 21epoch:train:3301-3400batch: iter_time=1.248e-04, forward_time=0.105, loss_ctc=50.764, loss_att=56.608, acc=0.705, loss=54.854, backward_time=0.098, grad_norm=39.554, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.448e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:36:38,194 (trainer:737) INFO: 21epoch:train:3401-3500batch: iter_time=1.225e-04, forward_time=0.105, loss_ctc=44.122, loss_att=60.260, acc=0.735, loss=55.418, backward_time=0.099, grad_norm=36.359, clip=100.000, loss_scale=3.780e+34, optim_step_time=0.042, optim0_lr0=4.447e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 19:37:20,546 (trainer:737) INFO: 21epoch:train:3501-3600batch: iter_time=1.214e-04, forward_time=0.104, loss_ctc=46.061, loss_att=63.169, acc=0.718, loss=58.037, backward_time=0.098, grad_norm=36.030, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.446e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:38:02,977 (trainer:737) INFO: 21epoch:train:3601-3700batch: iter_time=1.189e-04, forward_time=0.104, loss_ctc=44.779, loss_att=55.413, acc=0.747, loss=52.223, backward_time=0.098, grad_norm=35.653, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.445e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:38:30,026 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 19:38:50,183 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 19:38:53,957 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 19:38:53,957 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 19:38:53,960 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 19:43:56,614 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 19:43:58,748 (trainer:737) INFO: 21epoch:train:3701-3800batch: iter_time=2.778, forward_time=0.108, loss_ctc=44.914, loss_att=49.044, acc=0.713, loss=47.805, backward_time=0.099, grad_norm=38.769, clip=100.000, loss_scale=4.049e+34, optim_step_time=0.041, optim0_lr0=4.445e-04, train_time=3.557 +[gpuc02:0/16] 2024-01-14 19:44:41,464 (trainer:737) INFO: 21epoch:train:3801-3900batch: iter_time=1.056e-04, forward_time=0.104, loss_ctc=45.524, loss_att=48.284, acc=0.741, loss=47.456, backward_time=0.097, grad_norm=40.515, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.444e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 19:45:24,352 (trainer:737) INFO: 21epoch:train:3901-4000batch: iter_time=1.068e-04, forward_time=0.104, loss_ctc=43.011, loss_att=53.943, acc=0.712, loss=50.663, backward_time=0.097, grad_norm=36.870, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.443e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 19:46:07,187 (trainer:737) INFO: 21epoch:train:4001-4100batch: iter_time=1.008e-04, forward_time=0.104, loss_ctc=45.647, loss_att=54.542, acc=0.722, loss=51.873, backward_time=0.098, grad_norm=36.796, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.443e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 19:46:49,685 (trainer:737) INFO: 21epoch:train:4101-4200batch: iter_time=1.014e-04, forward_time=0.104, loss_ctc=40.344, loss_att=47.816, acc=0.752, loss=45.575, backward_time=0.098, grad_norm=33.891, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.442e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 19:47:31,965 (trainer:737) INFO: 21epoch:train:4201-4300batch: iter_time=1.106e-04, forward_time=0.103, loss_ctc=36.834, loss_att=38.506, acc=0.760, loss=38.005, backward_time=0.097, grad_norm=32.433, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.441e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:48:14,333 (trainer:737) INFO: 21epoch:train:4301-4400batch: iter_time=9.781e-05, forward_time=0.103, loss_ctc=41.472, loss_att=54.328, acc=0.727, loss=50.471, backward_time=0.097, grad_norm=40.247, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.440e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 19:48:57,356 (trainer:737) INFO: 21epoch:train:4401-4500batch: iter_time=1.052e-04, forward_time=0.105, loss_ctc=46.895, loss_att=50.725, acc=0.733, loss=49.576, backward_time=0.097, grad_norm=37.936, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.440e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 19:49:39,761 (trainer:737) INFO: 21epoch:train:4501-4600batch: iter_time=9.819e-05, forward_time=0.103, loss_ctc=46.427, loss_att=46.509, acc=0.723, loss=46.484, backward_time=0.097, grad_norm=39.319, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.439e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:50:22,267 (trainer:737) INFO: 21epoch:train:4601-4700batch: iter_time=9.791e-05, forward_time=0.103, loss_ctc=44.659, loss_att=59.725, acc=0.698, loss=55.205, backward_time=0.098, grad_norm=35.022, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.438e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 19:51:05,171 (trainer:737) INFO: 21epoch:train:4701-4800batch: iter_time=1.009e-04, forward_time=0.108, loss_ctc=49.166, loss_att=68.964, acc=0.718, loss=63.025, backward_time=0.099, grad_norm=40.515, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.437e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 19:51:47,897 (trainer:737) INFO: 21epoch:train:4801-4900batch: iter_time=9.533e-05, forward_time=0.104, loss_ctc=45.679, loss_att=54.289, acc=0.730, loss=51.706, backward_time=0.098, grad_norm=36.800, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.437e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 19:52:30,659 (trainer:737) INFO: 21epoch:train:4901-5000batch: iter_time=9.571e-05, forward_time=0.103, loss_ctc=39.718, loss_att=49.110, acc=0.719, loss=46.293, backward_time=0.097, grad_norm=35.959, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.436e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 19:52:36,576 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 19:52:56,357 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 19:53:00,031 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 19:53:00,031 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 19:53:00,034 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 19:57:36,638 (trainer:737) INFO: 21epoch:train:5001-5100batch: iter_time=2.358, forward_time=0.127, loss_ctc=45.562, loss_att=47.942, acc=0.722, loss=47.228, backward_time=0.103, grad_norm=37.504, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.435e-04, train_time=3.060 +[gpuc02:0/16] 2024-01-14 19:58:19,043 (trainer:737) INFO: 21epoch:train:5101-5200batch: iter_time=1.076e-04, forward_time=0.104, loss_ctc=47.742, loss_att=54.347, acc=0.721, loss=52.365, backward_time=0.097, grad_norm=42.173, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.435e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:59:01,434 (trainer:737) INFO: 21epoch:train:5201-5300batch: iter_time=1.109e-04, forward_time=0.104, loss_ctc=43.233, loss_att=49.502, acc=0.728, loss=47.621, backward_time=0.097, grad_norm=36.225, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.434e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 19:59:43,946 (trainer:737) INFO: 21epoch:train:5301-5400batch: iter_time=1.172e-04, forward_time=0.105, loss_ctc=46.278, loss_att=52.434, acc=0.751, loss=50.587, backward_time=0.098, grad_norm=40.762, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.433e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 20:00:26,382 (trainer:737) INFO: 21epoch:train:5401-5500batch: iter_time=1.272e-04, forward_time=0.103, loss_ctc=34.555, loss_att=38.120, acc=0.760, loss=37.051, backward_time=0.096, grad_norm=29.884, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.432e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:01:09,376 (trainer:737) INFO: 21epoch:train:5501-5600batch: iter_time=1.110e-04, forward_time=0.103, loss_ctc=38.145, loss_att=43.825, acc=0.741, loss=42.121, backward_time=0.096, grad_norm=35.208, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.432e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 20:01:51,829 (trainer:737) INFO: 21epoch:train:5601-5700batch: iter_time=1.059e-04, forward_time=0.105, loss_ctc=46.641, loss_att=52.254, acc=0.742, loss=50.570, backward_time=0.097, grad_norm=41.732, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.431e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:02:34,255 (trainer:737) INFO: 21epoch:train:5701-5800batch: iter_time=1.091e-04, forward_time=0.103, loss_ctc=45.412, loss_att=47.364, acc=0.727, loss=46.779, backward_time=0.096, grad_norm=36.092, clip=100.000, loss_scale=2.181e+34, optim_step_time=0.041, optim0_lr0=4.430e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:03:17,049 (trainer:737) INFO: 21epoch:train:5801-5900batch: iter_time=1.055e-04, forward_time=0.103, loss_ctc=49.822, loss_att=57.972, acc=0.688, loss=55.527, backward_time=0.097, grad_norm=40.685, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.429e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 20:03:59,553 (trainer:737) INFO: 21epoch:train:5901-6000batch: iter_time=1.000e-04, forward_time=0.104, loss_ctc=43.690, loss_att=59.144, acc=0.730, loss=54.507, backward_time=0.098, grad_norm=35.068, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.429e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 20:04:41,964 (trainer:737) INFO: 21epoch:train:6001-6100batch: iter_time=1.123e-04, forward_time=0.104, loss_ctc=45.973, loss_att=62.087, acc=0.713, loss=57.253, backward_time=0.097, grad_norm=37.930, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.428e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:05:24,333 (trainer:737) INFO: 21epoch:train:6101-6200batch: iter_time=1.014e-04, forward_time=0.104, loss_ctc=43.978, loss_att=54.557, acc=0.744, loss=51.383, backward_time=0.097, grad_norm=34.375, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.427e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:05:49,966 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 20:06:09,962 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 20:06:13,650 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 20:06:13,651 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 20:06:13,654 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 20:10:27,209 (trainer:737) INFO: 21epoch:train:6201-6300batch: iter_time=2.304, forward_time=0.103, loss_ctc=45.123, loss_att=49.072, acc=0.701, loss=47.887, backward_time=0.096, grad_norm=41.481, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.427e-04, train_time=3.029 +[gpuc02:0/16] 2024-01-14 20:10:30,569 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 20:11:09,615 (trainer:737) INFO: 21epoch:train:6301-6400batch: iter_time=9.633e-05, forward_time=0.104, loss_ctc=44.613, loss_att=45.618, acc=0.746, loss=45.317, backward_time=0.097, grad_norm=36.484, clip=100.000, loss_scale=2.224e+34, optim_step_time=0.042, optim0_lr0=4.426e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:11:52,276 (trainer:737) INFO: 21epoch:train:6401-6500batch: iter_time=1.066e-04, forward_time=0.104, loss_ctc=43.149, loss_att=53.037, acc=0.713, loss=50.071, backward_time=0.097, grad_norm=36.991, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.425e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:12:35,022 (trainer:737) INFO: 21epoch:train:6501-6600batch: iter_time=1.057e-04, forward_time=0.104, loss_ctc=45.894, loss_att=54.036, acc=0.724, loss=51.594, backward_time=0.098, grad_norm=38.515, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.424e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 20:13:17,622 (trainer:737) INFO: 21epoch:train:6601-6700batch: iter_time=1.193e-04, forward_time=0.104, loss_ctc=40.372, loss_att=47.201, acc=0.755, loss=45.152, backward_time=0.097, grad_norm=33.386, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.424e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:13:59,870 (trainer:737) INFO: 21epoch:train:6701-6800batch: iter_time=1.337e-04, forward_time=0.103, loss_ctc=37.090, loss_att=37.845, acc=0.761, loss=37.619, backward_time=0.096, grad_norm=32.240, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.423e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 20:14:42,558 (trainer:737) INFO: 21epoch:train:6801-6900batch: iter_time=1.205e-04, forward_time=0.104, loss_ctc=41.458, loss_att=53.921, acc=0.729, loss=50.182, backward_time=0.097, grad_norm=40.661, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.422e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 20:15:25,232 (trainer:737) INFO: 21epoch:train:6901-7000batch: iter_time=1.215e-04, forward_time=0.104, loss_ctc=46.793, loss_att=49.541, acc=0.734, loss=48.716, backward_time=0.097, grad_norm=39.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.421e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 20:16:07,438 (trainer:737) INFO: 21epoch:train:7001-7100batch: iter_time=1.231e-04, forward_time=0.103, loss_ctc=46.301, loss_att=45.844, acc=0.725, loss=45.981, backward_time=0.096, grad_norm=39.075, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.421e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 20:16:49,720 (trainer:737) INFO: 21epoch:train:7101-7200batch: iter_time=1.316e-04, forward_time=0.104, loss_ctc=44.166, loss_att=58.450, acc=0.700, loss=54.165, backward_time=0.097, grad_norm=33.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.420e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:17:32,306 (trainer:737) INFO: 21epoch:train:7201-7300batch: iter_time=1.036e-04, forward_time=0.105, loss_ctc=48.189, loss_att=67.501, acc=0.721, loss=61.708, backward_time=0.098, grad_norm=38.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.419e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:18:15,060 (trainer:737) INFO: 21epoch:train:7301-7400batch: iter_time=1.165e-04, forward_time=0.105, loss_ctc=45.151, loss_att=53.644, acc=0.733, loss=51.096, backward_time=0.098, grad_norm=35.612, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.419e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 20:18:58,039 (trainer:737) INFO: 21epoch:train:7401-7500batch: iter_time=1.027e-04, forward_time=0.104, loss_ctc=39.587, loss_att=49.197, acc=0.719, loss=46.314, backward_time=0.097, grad_norm=34.872, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.418e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 20:19:00,329 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 20:19:20,476 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 20:19:24,145 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 20:19:24,145 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 20:19:24,148 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 20:23:58,975 (trainer:737) INFO: 21epoch:train:7501-7600batch: iter_time=2.307, forward_time=0.105, loss_ctc=45.444, loss_att=49.756, acc=0.731, loss=48.462, backward_time=0.097, grad_norm=38.911, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.417e-04, train_time=3.009 +[gpuc02:0/16] 2024-01-14 20:24:41,248 (trainer:737) INFO: 21epoch:train:7601-7700batch: iter_time=1.047e-04, forward_time=0.105, loss_ctc=45.700, loss_att=54.048, acc=0.740, loss=51.544, backward_time=0.097, grad_norm=41.475, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.416e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:25:23,689 (trainer:737) INFO: 21epoch:train:7701-7800batch: iter_time=1.219e-04, forward_time=0.106, loss_ctc=42.674, loss_att=50.527, acc=0.733, loss=48.171, backward_time=0.097, grad_norm=33.474, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.416e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:26:07,099 (trainer:737) INFO: 21epoch:train:7801-7900batch: iter_time=1.170e-04, forward_time=0.106, loss_ctc=45.346, loss_att=54.366, acc=0.755, loss=51.660, backward_time=0.098, grad_norm=35.804, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.415e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-14 20:26:49,406 (trainer:737) INFO: 21epoch:train:7901-8000batch: iter_time=1.291e-04, forward_time=0.104, loss_ctc=34.172, loss_att=39.253, acc=0.765, loss=37.729, backward_time=0.096, grad_norm=30.082, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.414e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:27:31,787 (trainer:737) INFO: 21epoch:train:8001-8100batch: iter_time=1.226e-04, forward_time=0.104, loss_ctc=37.898, loss_att=44.566, acc=0.747, loss=42.566, backward_time=0.096, grad_norm=34.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.414e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:28:15,373 (trainer:737) INFO: 21epoch:train:8101-8200batch: iter_time=1.165e-04, forward_time=0.108, loss_ctc=45.627, loss_att=52.029, acc=0.752, loss=50.109, backward_time=0.098, grad_norm=41.013, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.413e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-14 20:28:57,659 (trainer:737) INFO: 21epoch:train:8201-8300batch: iter_time=1.285e-04, forward_time=0.104, loss_ctc=44.931, loss_att=46.840, acc=0.736, loss=46.267, backward_time=0.096, grad_norm=36.919, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.412e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:29:15,315 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 20:29:40,272 (trainer:737) INFO: 21epoch:train:8301-8400batch: iter_time=1.154e-04, forward_time=0.107, loss_ctc=49.215, loss_att=56.775, acc=0.702, loss=54.507, backward_time=0.097, grad_norm=37.817, clip=100.000, loss_scale=2.748e+34, optim_step_time=0.042, optim0_lr0=4.411e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:30:22,867 (trainer:737) INFO: 21epoch:train:8401-8500batch: iter_time=1.086e-04, forward_time=0.105, loss_ctc=43.218, loss_att=60.064, acc=0.738, loss=55.010, backward_time=0.098, grad_norm=35.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.411e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:31:05,358 (trainer:737) INFO: 21epoch:train:8501-8600batch: iter_time=1.116e-04, forward_time=0.105, loss_ctc=45.206, loss_att=63.096, acc=0.720, loss=57.729, backward_time=0.097, grad_norm=36.877, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.410e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 20:31:47,850 (trainer:737) INFO: 21epoch:train:8601-8700batch: iter_time=1.147e-04, forward_time=0.105, loss_ctc=43.674, loss_att=53.815, acc=0.752, loss=50.773, backward_time=0.098, grad_norm=33.972, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.409e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 20:32:11,404 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 20:32:31,446 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 20:32:35,159 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 20:32:35,159 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 20:32:35,162 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 20:36:41,665 (trainer:737) INFO: 21epoch:train:8701-8800batch: iter_time=2.298, forward_time=0.104, loss_ctc=44.603, loss_att=49.499, acc=0.709, loss=48.030, backward_time=0.096, grad_norm=40.090, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.409e-04, train_time=2.938 +[gpuc02:0/16] 2024-01-14 20:37:24,183 (trainer:737) INFO: 21epoch:train:8801-8900batch: iter_time=1.357e-04, forward_time=0.104, loss_ctc=44.487, loss_att=46.811, acc=0.746, loss=46.113, backward_time=0.097, grad_norm=40.634, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.408e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 20:38:06,773 (trainer:737) INFO: 21epoch:train:8901-9000batch: iter_time=1.273e-04, forward_time=0.104, loss_ctc=43.030, loss_att=53.311, acc=0.715, loss=50.227, backward_time=0.097, grad_norm=37.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.407e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:38:49,557 (trainer:737) INFO: 21epoch:train:9001-9100batch: iter_time=1.353e-04, forward_time=0.104, loss_ctc=45.548, loss_att=54.159, acc=0.724, loss=51.576, backward_time=0.098, grad_norm=33.962, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.406e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 20:39:31,858 (trainer:737) INFO: 21epoch:train:9101-9200batch: iter_time=1.469e-04, forward_time=0.104, loss_ctc=40.413, loss_att=46.754, acc=0.756, loss=44.851, backward_time=0.098, grad_norm=34.381, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.406e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:40:14,057 (trainer:737) INFO: 21epoch:train:9201-9300batch: iter_time=1.442e-04, forward_time=0.103, loss_ctc=36.431, loss_att=37.502, acc=0.763, loss=37.181, backward_time=0.097, grad_norm=30.957, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.405e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 20:40:56,333 (trainer:737) INFO: 21epoch:train:9301-9400batch: iter_time=1.403e-04, forward_time=0.103, loss_ctc=41.225, loss_att=54.373, acc=0.726, loss=50.429, backward_time=0.097, grad_norm=39.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.404e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:41:38,731 (trainer:737) INFO: 21epoch:train:9401-9500batch: iter_time=1.255e-04, forward_time=0.104, loss_ctc=46.531, loss_att=49.893, acc=0.735, loss=48.884, backward_time=0.098, grad_norm=37.709, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.404e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:42:21,162 (trainer:737) INFO: 21epoch:train:9501-9600batch: iter_time=1.564e-04, forward_time=0.103, loss_ctc=46.450, loss_att=46.591, acc=0.723, loss=46.548, backward_time=0.097, grad_norm=39.238, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.403e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:43:04,064 (trainer:737) INFO: 21epoch:train:9601-9700batch: iter_time=1.254e-04, forward_time=0.103, loss_ctc=44.034, loss_att=58.625, acc=0.702, loss=54.247, backward_time=0.097, grad_norm=35.503, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.402e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 20:43:46,656 (trainer:737) INFO: 21epoch:train:9701-9800batch: iter_time=1.333e-04, forward_time=0.105, loss_ctc=48.243, loss_att=67.276, acc=0.724, loss=61.566, backward_time=0.099, grad_norm=38.819, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.401e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:44:29,098 (trainer:737) INFO: 21epoch:train:9801-9900batch: iter_time=1.245e-04, forward_time=0.104, loss_ctc=44.818, loss_att=54.189, acc=0.730, loss=51.378, backward_time=0.098, grad_norm=35.678, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.401e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 20:45:11,960 (trainer:737) INFO: 21epoch:train:9901-10000batch: iter_time=1.116e-04, forward_time=0.103, loss_ctc=38.830, loss_att=49.113, acc=0.720, loss=46.028, backward_time=0.097, grad_norm=34.628, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.400e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 20:45:14,828 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 20:45:34,625 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 20:45:38,336 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 20:45:38,336 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 20:45:38,340 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 20:50:08,693 (trainer:737) INFO: 21epoch:train:10001-10100batch: iter_time=2.382, forward_time=0.104, loss_ctc=44.806, loss_att=49.091, acc=0.734, loss=47.806, backward_time=0.097, grad_norm=38.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.399e-04, train_time=2.967 +[gpuc02:0/16] 2024-01-14 20:50:51,551 (trainer:737) INFO: 21epoch:train:10101-10200batch: iter_time=9.418e-05, forward_time=0.105, loss_ctc=46.567, loss_att=54.378, acc=0.739, loss=52.035, backward_time=0.097, grad_norm=39.890, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.399e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 20:51:34,282 (trainer:737) INFO: 21epoch:train:10201-10300batch: iter_time=9.278e-05, forward_time=0.105, loss_ctc=42.085, loss_att=48.973, acc=0.737, loss=46.907, backward_time=0.097, grad_norm=33.305, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.398e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 20:52:16,891 (trainer:737) INFO: 21epoch:train:10301-10400batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=45.182, loss_att=54.625, acc=0.755, loss=51.792, backward_time=0.098, grad_norm=37.511, clip=100.000, loss_scale=3.302e+34, optim_step_time=0.042, optim0_lr0=4.397e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:52:59,085 (trainer:737) INFO: 21epoch:train:10401-10500batch: iter_time=1.191e-04, forward_time=0.104, loss_ctc=33.540, loss_att=38.844, acc=0.768, loss=37.253, backward_time=0.097, grad_norm=28.857, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.397e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 20:53:41,396 (trainer:737) INFO: 21epoch:train:10501-10600batch: iter_time=1.049e-04, forward_time=0.104, loss_ctc=37.480, loss_att=44.403, acc=0.748, loss=42.326, backward_time=0.097, grad_norm=34.476, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.396e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:54:24,185 (trainer:737) INFO: 21epoch:train:10601-10700batch: iter_time=1.022e-04, forward_time=0.105, loss_ctc=45.265, loss_att=52.056, acc=0.751, loss=50.019, backward_time=0.098, grad_norm=41.305, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.395e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 20:55:06,476 (trainer:737) INFO: 21epoch:train:10701-10800batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=44.873, loss_att=47.072, acc=0.736, loss=46.412, backward_time=0.097, grad_norm=37.532, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.394e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 20:55:49,110 (trainer:737) INFO: 21epoch:train:10801-10900batch: iter_time=1.037e-04, forward_time=0.104, loss_ctc=49.439, loss_att=56.881, acc=0.703, loss=54.649, backward_time=0.098, grad_norm=40.407, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.394e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 20:56:32,216 (trainer:737) INFO: 21epoch:train:10901-11000batch: iter_time=1.084e-04, forward_time=0.104, loss_ctc=42.692, loss_att=59.161, acc=0.738, loss=54.220, backward_time=0.098, grad_norm=33.634, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.393e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 20:57:15,038 (trainer:737) INFO: 21epoch:train:11001-11100batch: iter_time=1.024e-04, forward_time=0.104, loss_ctc=45.129, loss_att=62.992, acc=0.721, loss=57.633, backward_time=0.097, grad_norm=36.498, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.392e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 20:57:58,028 (trainer:737) INFO: 21epoch:train:11101-11200batch: iter_time=1.072e-04, forward_time=0.105, loss_ctc=43.699, loss_att=54.226, acc=0.751, loss=51.068, backward_time=0.098, grad_norm=34.605, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.392e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 20:58:22,097 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 20:58:41,749 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 20:58:45,391 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 20:58:45,391 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 20:58:45,408 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 21:02:53,684 (trainer:737) INFO: 21epoch:train:11201-11300batch: iter_time=2.335, forward_time=0.103, loss_ctc=44.179, loss_att=48.124, acc=0.718, loss=46.941, backward_time=0.097, grad_norm=39.321, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.391e-04, train_time=2.956 +[gpuc02:0/16] 2024-01-14 21:03:36,158 (trainer:737) INFO: 21epoch:train:11301-11400batch: iter_time=1.104e-04, forward_time=0.104, loss_ctc=43.872, loss_att=44.359, acc=0.766, loss=44.213, backward_time=0.098, grad_norm=36.759, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.390e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 21:04:18,621 (trainer:737) INFO: 21epoch:train:11401-11500batch: iter_time=1.286e-04, forward_time=0.104, loss_ctc=42.700, loss_att=52.089, acc=0.727, loss=49.272, backward_time=0.098, grad_norm=36.724, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.389e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:04:42,400 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 21:05:01,177 (trainer:737) INFO: 21epoch:train:11501-11600batch: iter_time=1.237e-04, forward_time=0.106, loss_ctc=45.316, loss_att=54.335, acc=0.736, loss=51.629, backward_time=0.098, grad_norm=36.645, clip=100.000, loss_scale=3.231e+34, optim_step_time=0.041, optim0_lr0=4.389e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 21:05:44,036 (trainer:737) INFO: 21epoch:train:11601-11700batch: iter_time=1.175e-04, forward_time=0.106, loss_ctc=39.967, loss_att=47.391, acc=0.766, loss=45.164, backward_time=0.097, grad_norm=33.277, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.388e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 21:06:26,399 (trainer:737) INFO: 21epoch:train:11701-11800batch: iter_time=1.078e-04, forward_time=0.105, loss_ctc=36.434, loss_att=38.529, acc=0.765, loss=37.901, backward_time=0.097, grad_norm=32.825, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.387e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 21:07:08,828 (trainer:737) INFO: 21epoch:train:11801-11900batch: iter_time=1.025e-04, forward_time=0.106, loss_ctc=40.908, loss_att=53.975, acc=0.737, loss=50.055, backward_time=0.098, grad_norm=37.843, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.387e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:07:51,405 (trainer:737) INFO: 21epoch:train:11901-12000batch: iter_time=1.089e-04, forward_time=0.106, loss_ctc=46.226, loss_att=49.354, acc=0.744, loss=48.415, backward_time=0.098, grad_norm=36.970, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.386e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 21:08:33,708 (trainer:737) INFO: 21epoch:train:12001-12100batch: iter_time=1.065e-04, forward_time=0.106, loss_ctc=45.775, loss_att=46.223, acc=0.728, loss=46.089, backward_time=0.097, grad_norm=37.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.385e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 21:09:16,166 (trainer:737) INFO: 21epoch:train:12101-12200batch: iter_time=1.046e-04, forward_time=0.106, loss_ctc=43.654, loss_att=56.931, acc=0.723, loss=52.948, backward_time=0.098, grad_norm=33.455, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.385e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:09:58,888 (trainer:737) INFO: 21epoch:train:12201-12300batch: iter_time=9.967e-05, forward_time=0.107, loss_ctc=47.823, loss_att=67.773, acc=0.727, loss=61.788, backward_time=0.098, grad_norm=37.530, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.384e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 21:10:41,622 (trainer:737) INFO: 21epoch:train:12301-12400batch: iter_time=1.049e-04, forward_time=0.106, loss_ctc=44.780, loss_att=55.640, acc=0.740, loss=52.382, backward_time=0.097, grad_norm=34.773, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.383e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 21:11:26,059 (trainer:737) INFO: 21epoch:train:12401-12500batch: iter_time=9.424e-05, forward_time=0.113, loss_ctc=39.063, loss_att=47.698, acc=0.736, loss=45.108, backward_time=0.107, grad_norm=34.722, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.382e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-14 21:11:28,498 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 21:11:48,861 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 21:11:52,553 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 21:11:52,553 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 21:11:52,557 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 21:16:20,123 (trainer:737) INFO: 21epoch:train:12501-12600batch: iter_time=2.463, forward_time=0.106, loss_ctc=45.037, loss_att=50.079, acc=0.720, loss=48.567, backward_time=0.097, grad_norm=38.499, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.382e-04, train_time=2.940 +[gpuc02:0/16] 2024-01-14 21:17:02,273 (trainer:737) INFO: 21epoch:train:12601-12700batch: iter_time=1.764e-04, forward_time=0.104, loss_ctc=45.381, loss_att=55.151, acc=0.719, loss=52.220, backward_time=0.098, grad_norm=40.482, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.381e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 21:17:44,588 (trainer:737) INFO: 21epoch:train:12701-12800batch: iter_time=1.885e-04, forward_time=0.106, loss_ctc=41.895, loss_att=49.549, acc=0.729, loss=47.253, backward_time=0.097, grad_norm=34.197, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.380e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 21:18:27,009 (trainer:737) INFO: 21epoch:train:12801-12900batch: iter_time=1.821e-04, forward_time=0.106, loss_ctc=45.498, loss_att=52.590, acc=0.749, loss=50.463, backward_time=0.098, grad_norm=38.595, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.380e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:19:09,096 (trainer:737) INFO: 21epoch:train:12901-13000batch: iter_time=1.879e-04, forward_time=0.104, loss_ctc=34.123, loss_att=38.803, acc=0.759, loss=37.399, backward_time=0.097, grad_norm=31.984, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.379e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 21:19:51,299 (trainer:737) INFO: 21epoch:train:13001-13100batch: iter_time=1.681e-04, forward_time=0.105, loss_ctc=37.582, loss_att=43.603, acc=0.740, loss=41.797, backward_time=0.097, grad_norm=34.183, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.378e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 21:20:33,730 (trainer:737) INFO: 21epoch:train:13101-13200batch: iter_time=1.641e-04, forward_time=0.105, loss_ctc=45.425, loss_att=52.205, acc=0.743, loss=50.171, backward_time=0.098, grad_norm=42.456, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.378e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:21:15,898 (trainer:737) INFO: 21epoch:train:13201-13300batch: iter_time=1.601e-04, forward_time=0.104, loss_ctc=45.065, loss_att=47.620, acc=0.729, loss=46.854, backward_time=0.096, grad_norm=36.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.377e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 21:21:58,763 (trainer:737) INFO: 21epoch:train:13301-13400batch: iter_time=1.461e-04, forward_time=0.105, loss_ctc=49.183, loss_att=57.920, acc=0.687, loss=55.299, backward_time=0.096, grad_norm=39.660, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.376e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 21:22:41,226 (trainer:737) INFO: 21epoch:train:13401-13500batch: iter_time=1.419e-04, forward_time=0.106, loss_ctc=43.130, loss_att=59.979, acc=0.726, loss=54.924, backward_time=0.097, grad_norm=38.944, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.375e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:23:23,889 (trainer:737) INFO: 21epoch:train:13501-13600batch: iter_time=1.490e-04, forward_time=0.105, loss_ctc=45.016, loss_att=61.607, acc=0.716, loss=56.630, backward_time=0.097, grad_norm=36.921, clip=100.000, loss_scale=2.991e+34, optim_step_time=0.041, optim0_lr0=4.375e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 21:24:06,922 (trainer:737) INFO: 21epoch:train:13601-13700batch: iter_time=1.430e-04, forward_time=0.106, loss_ctc=43.660, loss_att=55.133, acc=0.746, loss=51.691, backward_time=0.097, grad_norm=35.274, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.374e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 21:24:32,341 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 21:24:51,867 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 21:24:55,461 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 21:24:55,461 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 21:24:55,464 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 21:29:01,762 (trainer:737) INFO: 21epoch:train:13701-13800batch: iter_time=2.496, forward_time=0.105, loss_ctc=43.725, loss_att=49.169, acc=0.706, loss=47.536, backward_time=0.097, grad_norm=39.316, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.373e-04, train_time=2.948 +[gpuc02:0/16] 2024-01-14 21:29:44,553 (trainer:737) INFO: 21epoch:train:13801-13900batch: iter_time=1.288e-04, forward_time=0.106, loss_ctc=43.971, loss_att=46.554, acc=0.761, loss=45.779, backward_time=0.097, grad_norm=37.706, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.373e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 21:30:26,936 (trainer:737) INFO: 21epoch:train:13901-14000batch: iter_time=1.156e-04, forward_time=0.105, loss_ctc=42.642, loss_att=52.112, acc=0.728, loss=49.271, backward_time=0.097, grad_norm=36.204, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.372e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:31:04,304 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 21:31:09,435 (trainer:737) INFO: 21epoch:train:14001-14100batch: iter_time=1.114e-04, forward_time=0.105, loss_ctc=44.995, loss_att=55.127, acc=0.732, loss=52.087, backward_time=0.098, grad_norm=36.948, clip=100.000, loss_scale=3.902e+34, optim_step_time=0.041, optim0_lr0=4.371e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 21:31:52,230 (trainer:737) INFO: 21epoch:train:14101-14200batch: iter_time=1.231e-04, forward_time=0.106, loss_ctc=39.860, loss_att=47.200, acc=0.767, loss=44.998, backward_time=0.097, grad_norm=33.248, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.371e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 21:32:34,826 (trainer:737) INFO: 21epoch:train:14201-14300batch: iter_time=1.210e-04, forward_time=0.109, loss_ctc=36.291, loss_att=38.477, acc=0.764, loss=37.821, backward_time=0.096, grad_norm=32.042, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.370e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 21:33:06,635 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 21:33:17,289 (trainer:737) INFO: 21epoch:train:14301-14400batch: iter_time=1.207e-04, forward_time=0.106, loss_ctc=41.115, loss_att=54.384, acc=0.738, loss=50.403, backward_time=0.097, grad_norm=38.167, clip=100.000, loss_scale=1.815e+34, optim_step_time=0.042, optim0_lr0=4.369e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 21:33:59,802 (trainer:737) INFO: 21epoch:train:14401-14500batch: iter_time=1.171e-04, forward_time=0.106, loss_ctc=46.695, loss_att=49.553, acc=0.748, loss=48.695, backward_time=0.097, grad_norm=37.922, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.368e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 21:34:42,085 (trainer:737) INFO: 21epoch:train:14501-14600batch: iter_time=1.187e-04, forward_time=0.105, loss_ctc=45.526, loss_att=47.143, acc=0.726, loss=46.658, backward_time=0.096, grad_norm=38.371, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.368e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 21:35:24,440 (trainer:737) INFO: 21epoch:train:14601-14700batch: iter_time=1.218e-04, forward_time=0.106, loss_ctc=43.419, loss_att=57.312, acc=0.722, loss=53.144, backward_time=0.096, grad_norm=33.471, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.367e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 21:36:07,384 (trainer:737) INFO: 21epoch:train:14701-14800batch: iter_time=1.187e-04, forward_time=0.106, loss_ctc=48.062, loss_att=67.737, acc=0.727, loss=61.834, backward_time=0.098, grad_norm=39.527, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.366e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 21:36:49,866 (trainer:737) INFO: 21epoch:train:14801-14900batch: iter_time=1.120e-04, forward_time=0.106, loss_ctc=44.743, loss_att=55.330, acc=0.742, loss=52.154, backward_time=0.097, grad_norm=35.958, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.366e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 21:37:35,811 (trainer:737) INFO: 21epoch:train:14901-15000batch: iter_time=1.055e-04, forward_time=0.108, loss_ctc=38.401, loss_att=47.211, acc=0.735, loss=44.568, backward_time=0.096, grad_norm=33.944, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.044, optim0_lr0=4.365e-04, train_time=0.459 +[gpuc02:0/16] 2024-01-14 21:57:46,643 (trainer:343) INFO: 21epoch results: [train] iter_time=0.198, forward_time=0.105, loss_ctc=43.884, loss_att=51.761, acc=0.733, loss=49.398, backward_time=0.098, grad_norm=36.936, clip=100.000, loss_scale=2.599e+34, optim_step_time=0.042, optim0_lr0=4.418e-04, train_time=0.650, time=2 hours, 42 minutes and 48.05 seconds, total_count=315000, gpu_max_cached_mem_GB=26.227, [valid] loss_ctc=56.804, cer_ctc=0.289, loss_att=55.203, acc=0.583, cer=0.378, wer=0.998, loss=55.684, time=20 minutes and 0.95 seconds, total_count=98091, gpu_max_cached_mem_GB=26.227 +[gpuc02:0/16] 2024-01-14 21:57:51,962 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-14 21:57:51,968 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/13epoch.pth, exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/16epoch.pth +[gpuc02:0/16] 2024-01-14 21:57:51,968 (trainer:272) INFO: 22/45epoch started. Estimated time to finish: 3 days, 47 minutes and 24.92 seconds +[gpuc02:0/16] 2024-01-14 21:57:51,978 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 21:58:10,800 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 21:58:14,220 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 21:58:14,220 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 21:58:14,223 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 22:02:42,138 (trainer:737) INFO: 22epoch:train:1-100batch: iter_time=2.393, forward_time=0.140, loss_ctc=52.153, loss_att=65.808, acc=0.703, loss=61.712, backward_time=0.103, grad_norm=47.682, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.043, optim0_lr0=4.364e-04, train_time=2.901 +[gpuc02:0/16] 2024-01-14 22:03:25,139 (trainer:737) INFO: 22epoch:train:101-200batch: iter_time=1.150e-04, forward_time=0.104, loss_ctc=48.274, loss_att=57.985, acc=0.695, loss=55.072, backward_time=0.098, grad_norm=43.541, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.364e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 22:04:08,198 (trainer:737) INFO: 22epoch:train:201-300batch: iter_time=1.227e-04, forward_time=0.109, loss_ctc=50.384, loss_att=48.896, acc=0.749, loss=49.342, backward_time=0.099, grad_norm=35.565, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.363e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 22:04:51,556 (trainer:737) INFO: 22epoch:train:301-400batch: iter_time=1.155e-04, forward_time=0.105, loss_ctc=48.825, loss_att=59.699, acc=0.713, loss=56.437, backward_time=0.098, grad_norm=43.142, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.362e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 22:05:35,798 (trainer:737) INFO: 22epoch:train:401-500batch: iter_time=1.232e-04, forward_time=0.108, loss_ctc=54.289, loss_att=55.185, acc=0.739, loss=54.916, backward_time=0.099, grad_norm=45.202, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.044, optim0_lr0=4.362e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-14 22:06:20,247 (trainer:737) INFO: 22epoch:train:501-600batch: iter_time=1.434e-04, forward_time=0.106, loss_ctc=48.852, loss_att=55.367, acc=0.718, loss=53.412, backward_time=0.099, grad_norm=39.740, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.361e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-14 22:07:04,481 (trainer:737) INFO: 22epoch:train:601-700batch: iter_time=1.353e-04, forward_time=0.108, loss_ctc=52.557, loss_att=49.530, acc=0.726, loss=50.438, backward_time=0.102, grad_norm=48.036, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.044, optim0_lr0=4.360e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-14 22:07:49,222 (trainer:737) INFO: 22epoch:train:701-800batch: iter_time=1.289e-04, forward_time=0.113, loss_ctc=52.957, loss_att=54.421, acc=0.735, loss=53.981, backward_time=0.107, grad_norm=43.630, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.043, optim0_lr0=4.359e-04, train_time=0.447 +[gpuc02:0/16] 2024-01-14 22:08:31,972 (trainer:737) INFO: 22epoch:train:801-900batch: iter_time=1.142e-04, forward_time=0.109, loss_ctc=48.694, loss_att=61.360, acc=0.717, loss=57.560, backward_time=0.098, grad_norm=43.338, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.359e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 22:09:17,937 (trainer:737) INFO: 22epoch:train:901-1000batch: iter_time=1.110e-04, forward_time=0.113, loss_ctc=50.807, loss_att=56.110, acc=0.705, loss=54.519, backward_time=0.104, grad_norm=41.252, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.043, optim0_lr0=4.358e-04, train_time=0.459 +[gpuc02:0/16] 2024-01-14 22:10:01,550 (trainer:737) INFO: 22epoch:train:1001-1100batch: iter_time=1.244e-04, forward_time=0.110, loss_ctc=56.162, loss_att=63.356, acc=0.718, loss=61.197, backward_time=0.099, grad_norm=45.677, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.357e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-14 22:10:46,836 (trainer:737) INFO: 22epoch:train:1101-1200batch: iter_time=1.232e-04, forward_time=0.112, loss_ctc=48.634, loss_att=55.461, acc=0.719, loss=53.413, backward_time=0.101, grad_norm=39.507, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.046, optim0_lr0=4.357e-04, train_time=0.453 +[gpuc02:0/16] 2024-01-14 22:11:37,847 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 22:11:56,806 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 22:12:00,301 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 22:12:00,301 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 22:12:00,304 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 22:19:12,690 (trainer:737) INFO: 22epoch:train:1201-1300batch: iter_time=4.577, forward_time=0.130, loss_ctc=48.065, loss_att=63.562, acc=0.708, loss=58.913, backward_time=0.106, grad_norm=42.759, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.044, optim0_lr0=4.356e-04, train_time=5.058 +[gpuc02:0/16] 2024-01-14 22:19:54,963 (trainer:737) INFO: 22epoch:train:1301-1400batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=51.531, loss_att=65.572, acc=0.676, loss=61.360, backward_time=0.097, grad_norm=44.164, clip=100.000, loss_scale=1.298e+34, optim_step_time=0.042, optim0_lr0=4.355e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 22:20:36,946 (trainer:737) INFO: 22epoch:train:1401-1500batch: iter_time=1.133e-04, forward_time=0.103, loss_ctc=39.376, loss_att=40.218, acc=0.739, loss=39.965, backward_time=0.096, grad_norm=32.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.355e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 22:21:19,436 (trainer:737) INFO: 22epoch:train:1501-1600batch: iter_time=1.184e-04, forward_time=0.105, loss_ctc=50.628, loss_att=56.615, acc=0.734, loss=54.819, backward_time=0.098, grad_norm=39.337, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.354e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:22:01,656 (trainer:737) INFO: 22epoch:train:1601-1700batch: iter_time=1.111e-04, forward_time=0.105, loss_ctc=52.385, loss_att=58.608, acc=0.716, loss=56.741, backward_time=0.097, grad_norm=39.768, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.353e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 22:22:44,172 (trainer:737) INFO: 22epoch:train:1701-1800batch: iter_time=1.261e-04, forward_time=0.105, loss_ctc=49.527, loss_att=51.383, acc=0.732, loss=50.826, backward_time=0.098, grad_norm=42.421, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.353e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:23:27,052 (trainer:737) INFO: 22epoch:train:1801-1900batch: iter_time=1.175e-04, forward_time=0.104, loss_ctc=44.723, loss_att=49.513, acc=0.713, loss=48.076, backward_time=0.097, grad_norm=40.096, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.352e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 22:24:09,253 (trainer:737) INFO: 22epoch:train:1901-2000batch: iter_time=1.203e-04, forward_time=0.104, loss_ctc=52.933, loss_att=48.434, acc=0.716, loss=49.784, backward_time=0.096, grad_norm=49.067, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.351e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 22:24:52,225 (trainer:737) INFO: 22epoch:train:2001-2100batch: iter_time=1.174e-04, forward_time=0.105, loss_ctc=57.050, loss_att=66.434, acc=0.714, loss=63.619, backward_time=0.098, grad_norm=47.261, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.351e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 22:25:34,885 (trainer:737) INFO: 22epoch:train:2101-2200batch: iter_time=1.446e-04, forward_time=0.104, loss_ctc=46.653, loss_att=59.763, acc=0.709, loss=55.830, backward_time=0.097, grad_norm=37.611, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.350e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 22:26:16,963 (trainer:737) INFO: 22epoch:train:2201-2300batch: iter_time=1.293e-04, forward_time=0.103, loss_ctc=45.673, loss_att=52.022, acc=0.713, loss=50.117, backward_time=0.096, grad_norm=39.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.349e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 22:26:59,177 (trainer:737) INFO: 22epoch:train:2301-2400batch: iter_time=1.257e-04, forward_time=0.105, loss_ctc=53.349, loss_att=61.749, acc=0.717, loss=59.229, backward_time=0.098, grad_norm=46.840, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.348e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 22:27:42,769 (trainer:737) INFO: 22epoch:train:2401-2500batch: iter_time=1.321e-04, forward_time=0.105, loss_ctc=45.658, loss_att=49.444, acc=0.714, loss=48.308, backward_time=0.097, grad_norm=39.696, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.348e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-14 22:27:47,029 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 22:28:06,958 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 22:28:10,909 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 22:28:10,910 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 22:28:10,913 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 22:33:20,333 (trainer:737) INFO: 22epoch:train:2501-2600batch: iter_time=2.591, forward_time=0.106, loss_ctc=50.708, loss_att=66.806, acc=0.702, loss=61.977, backward_time=0.098, grad_norm=41.631, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.347e-04, train_time=3.375 +[gpuc02:0/16] 2024-01-14 22:34:02,497 (trainer:737) INFO: 22epoch:train:2601-2700batch: iter_time=1.534e-04, forward_time=0.104, loss_ctc=45.698, loss_att=57.675, acc=0.703, loss=54.082, backward_time=0.097, grad_norm=40.739, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.346e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 22:34:45,679 (trainer:737) INFO: 22epoch:train:2701-2800batch: iter_time=1.387e-04, forward_time=0.106, loss_ctc=48.800, loss_att=48.235, acc=0.754, loss=48.405, backward_time=0.097, grad_norm=35.933, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.346e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-14 22:35:27,993 (trainer:737) INFO: 22epoch:train:2801-2900batch: iter_time=1.543e-04, forward_time=0.106, loss_ctc=47.366, loss_att=59.469, acc=0.717, loss=55.838, backward_time=0.097, grad_norm=40.687, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.345e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 22:36:10,398 (trainer:737) INFO: 22epoch:train:2901-3000batch: iter_time=1.555e-04, forward_time=0.105, loss_ctc=52.351, loss_att=55.629, acc=0.738, loss=54.646, backward_time=0.098, grad_norm=43.177, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.344e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:36:52,974 (trainer:737) INFO: 22epoch:train:3001-3100batch: iter_time=1.814e-04, forward_time=0.105, loss_ctc=46.558, loss_att=55.057, acc=0.719, loss=52.507, backward_time=0.097, grad_norm=38.555, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.344e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 22:37:35,476 (trainer:737) INFO: 22epoch:train:3101-3200batch: iter_time=1.611e-04, forward_time=0.104, loss_ctc=50.202, loss_att=48.925, acc=0.727, loss=49.308, backward_time=0.097, grad_norm=48.896, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.343e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:38:18,033 (trainer:737) INFO: 22epoch:train:3201-3300batch: iter_time=1.593e-04, forward_time=0.105, loss_ctc=51.334, loss_att=54.055, acc=0.737, loss=53.238, backward_time=0.097, grad_norm=40.660, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.342e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:39:00,920 (trainer:737) INFO: 22epoch:train:3301-3400batch: iter_time=1.592e-04, forward_time=0.106, loss_ctc=46.468, loss_att=60.345, acc=0.722, loss=56.182, backward_time=0.098, grad_norm=39.693, clip=100.000, loss_scale=2.596e+34, optim_step_time=0.042, optim0_lr0=4.342e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 22:39:43,429 (trainer:737) INFO: 22epoch:train:3401-3500batch: iter_time=1.463e-04, forward_time=0.105, loss_ctc=48.356, loss_att=55.133, acc=0.710, loss=53.099, backward_time=0.098, grad_norm=37.897, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.341e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:40:26,056 (trainer:737) INFO: 22epoch:train:3501-3600batch: iter_time=1.595e-04, forward_time=0.106, loss_ctc=54.848, loss_att=62.659, acc=0.721, loss=60.315, backward_time=0.098, grad_norm=43.624, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.340e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 22:40:28,983 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 22:41:08,492 (trainer:737) INFO: 22epoch:train:3601-3700batch: iter_time=1.489e-04, forward_time=0.106, loss_ctc=46.403, loss_att=53.402, acc=0.727, loss=51.303, backward_time=0.098, grad_norm=40.637, clip=100.000, loss_scale=2.203e+34, optim_step_time=0.042, optim0_lr0=4.340e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:41:35,281 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 22:41:54,534 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 22:41:58,206 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 22:41:58,206 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 22:41:58,210 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 22:46:17,986 (trainer:737) INFO: 22epoch:train:3701-3800batch: iter_time=2.580, forward_time=0.114, loss_ctc=46.769, loss_att=61.307, acc=0.715, loss=56.945, backward_time=0.098, grad_norm=38.673, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.339e-04, train_time=3.095 +[gpuc02:0/16] 2024-01-14 22:47:00,433 (trainer:737) INFO: 22epoch:train:3801-3900batch: iter_time=1.472e-04, forward_time=0.105, loss_ctc=50.892, loss_att=64.322, acc=0.681, loss=60.293, backward_time=0.097, grad_norm=42.241, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.338e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:47:42,630 (trainer:737) INFO: 22epoch:train:3901-4000batch: iter_time=1.513e-04, forward_time=0.104, loss_ctc=39.098, loss_att=40.113, acc=0.740, loss=39.808, backward_time=0.097, grad_norm=32.321, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.338e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 22:48:25,063 (trainer:737) INFO: 22epoch:train:4001-4100batch: iter_time=1.624e-04, forward_time=0.104, loss_ctc=49.922, loss_att=55.549, acc=0.737, loss=53.861, backward_time=0.098, grad_norm=38.541, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.337e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:49:08,030 (trainer:737) INFO: 22epoch:train:4101-4200batch: iter_time=1.353e-04, forward_time=0.105, loss_ctc=51.993, loss_att=58.233, acc=0.720, loss=56.361, backward_time=0.097, grad_norm=39.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.336e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 22:49:50,467 (trainer:737) INFO: 22epoch:train:4201-4300batch: iter_time=1.525e-04, forward_time=0.104, loss_ctc=48.153, loss_att=50.753, acc=0.735, loss=49.973, backward_time=0.097, grad_norm=41.191, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.336e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:50:32,934 (trainer:737) INFO: 22epoch:train:4301-4400batch: iter_time=1.433e-04, forward_time=0.104, loss_ctc=43.455, loss_att=48.538, acc=0.716, loss=47.013, backward_time=0.097, grad_norm=37.454, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.335e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:51:15,660 (trainer:737) INFO: 22epoch:train:4401-4500batch: iter_time=1.623e-04, forward_time=0.103, loss_ctc=51.496, loss_att=48.181, acc=0.718, loss=49.176, backward_time=0.096, grad_norm=48.420, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.334e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 22:51:58,055 (trainer:737) INFO: 22epoch:train:4501-4600batch: iter_time=1.689e-04, forward_time=0.104, loss_ctc=55.380, loss_att=64.732, acc=0.718, loss=61.926, backward_time=0.097, grad_norm=47.159, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.333e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 22:52:40,607 (trainer:737) INFO: 22epoch:train:4601-4700batch: iter_time=1.456e-04, forward_time=0.104, loss_ctc=45.426, loss_att=59.283, acc=0.713, loss=55.126, backward_time=0.097, grad_norm=37.810, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.333e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:53:22,757 (trainer:737) INFO: 22epoch:train:4701-4800batch: iter_time=1.533e-04, forward_time=0.104, loss_ctc=44.753, loss_att=52.444, acc=0.714, loss=50.136, backward_time=0.096, grad_norm=37.514, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.332e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 22:54:05,344 (trainer:737) INFO: 22epoch:train:4801-4900batch: iter_time=1.441e-04, forward_time=0.104, loss_ctc=52.403, loss_att=60.335, acc=0.718, loss=57.955, backward_time=0.097, grad_norm=46.040, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.331e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 22:54:47,858 (trainer:737) INFO: 22epoch:train:4901-5000batch: iter_time=1.349e-04, forward_time=0.104, loss_ctc=44.839, loss_att=49.023, acc=0.717, loss=47.768, backward_time=0.097, grad_norm=38.781, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.331e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 22:54:53,364 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 22:55:13,254 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 22:55:16,881 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 22:55:16,882 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 22:55:16,885 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 23:00:07,524 (trainer:737) INFO: 22epoch:train:5001-5100batch: iter_time=2.620, forward_time=0.114, loss_ctc=50.142, loss_att=64.878, acc=0.703, loss=60.457, backward_time=0.099, grad_norm=41.690, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.330e-04, train_time=3.196 +[gpuc02:0/16] 2024-01-14 23:00:49,638 (trainer:737) INFO: 22epoch:train:5101-5200batch: iter_time=1.885e-04, forward_time=0.104, loss_ctc=44.698, loss_att=54.909, acc=0.699, loss=51.846, backward_time=0.096, grad_norm=37.596, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.329e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 23:01:32,140 (trainer:737) INFO: 22epoch:train:5201-5300batch: iter_time=1.617e-04, forward_time=0.105, loss_ctc=48.561, loss_att=48.513, acc=0.744, loss=48.527, backward_time=0.097, grad_norm=36.601, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.329e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:02:14,739 (trainer:737) INFO: 22epoch:train:5301-5400batch: iter_time=1.499e-04, forward_time=0.105, loss_ctc=46.464, loss_att=57.506, acc=0.718, loss=54.193, backward_time=0.097, grad_norm=40.491, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.328e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 23:02:57,223 (trainer:737) INFO: 22epoch:train:5401-5500batch: iter_time=1.626e-04, forward_time=0.105, loss_ctc=51.489, loss_att=52.446, acc=0.736, loss=52.159, backward_time=0.098, grad_norm=41.790, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.327e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:03:39,566 (trainer:737) INFO: 22epoch:train:5501-5600batch: iter_time=1.636e-04, forward_time=0.105, loss_ctc=45.873, loss_att=54.832, acc=0.705, loss=52.144, backward_time=0.097, grad_norm=39.267, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.327e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:04:21,742 (trainer:737) INFO: 22epoch:train:5601-5700batch: iter_time=1.782e-04, forward_time=0.104, loss_ctc=49.433, loss_att=46.491, acc=0.725, loss=47.374, backward_time=0.097, grad_norm=44.283, clip=100.000, loss_scale=4.008e+34, optim_step_time=0.041, optim0_lr0=4.326e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:05:04,056 (trainer:737) INFO: 22epoch:train:5701-5800batch: iter_time=1.970e-04, forward_time=0.104, loss_ctc=50.660, loss_att=53.004, acc=0.734, loss=52.301, backward_time=0.097, grad_norm=41.625, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.325e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:05:47,043 (trainer:737) INFO: 22epoch:train:5801-5900batch: iter_time=1.842e-04, forward_time=0.108, loss_ctc=45.414, loss_att=60.188, acc=0.716, loss=55.756, backward_time=0.097, grad_norm=40.378, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.325e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 23:06:29,520 (trainer:737) INFO: 22epoch:train:5901-6000batch: iter_time=1.795e-04, forward_time=0.104, loss_ctc=47.860, loss_att=53.741, acc=0.708, loss=51.977, backward_time=0.097, grad_norm=39.311, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.324e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:07:11,946 (trainer:737) INFO: 22epoch:train:6001-6100batch: iter_time=1.762e-04, forward_time=0.105, loss_ctc=53.223, loss_att=61.800, acc=0.719, loss=59.227, backward_time=0.098, grad_norm=42.738, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.323e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:07:54,817 (trainer:737) INFO: 22epoch:train:6101-6200batch: iter_time=1.745e-04, forward_time=0.104, loss_ctc=45.503, loss_att=53.347, acc=0.719, loss=50.994, backward_time=0.097, grad_norm=38.526, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.323e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 23:08:22,201 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 23:08:42,014 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 23:08:45,701 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 23:08:45,701 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 23:08:45,704 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 23:13:00,695 (trainer:737) INFO: 22epoch:train:6201-6300batch: iter_time=2.628, forward_time=0.107, loss_ctc=46.532, loss_att=60.428, acc=0.705, loss=56.259, backward_time=0.098, grad_norm=40.096, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.322e-04, train_time=3.059 +[gpuc02:0/16] 2024-01-14 23:13:43,163 (trainer:737) INFO: 22epoch:train:6301-6400batch: iter_time=2.017e-04, forward_time=0.105, loss_ctc=50.187, loss_att=62.919, acc=0.684, loss=59.100, backward_time=0.097, grad_norm=41.367, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.321e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:14:25,320 (trainer:737) INFO: 22epoch:train:6401-6500batch: iter_time=1.632e-04, forward_time=0.104, loss_ctc=38.753, loss_att=39.211, acc=0.742, loss=39.074, backward_time=0.097, grad_norm=32.476, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.321e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 23:15:08,071 (trainer:737) INFO: 22epoch:train:6501-6600batch: iter_time=1.530e-04, forward_time=0.105, loss_ctc=49.714, loss_att=55.020, acc=0.738, loss=53.428, backward_time=0.098, grad_norm=39.240, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.320e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 23:15:50,559 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 23:15:50,567 (trainer:737) INFO: 22epoch:train:6601-6700batch: iter_time=1.578e-04, forward_time=0.106, loss_ctc=51.139, loss_att=56.898, acc=0.724, loss=55.170, backward_time=0.097, grad_norm=36.781, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.319e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:16:33,168 (trainer:737) INFO: 22epoch:train:6701-6800batch: iter_time=1.400e-04, forward_time=0.105, loss_ctc=47.588, loss_att=49.812, acc=0.736, loss=49.145, backward_time=0.097, grad_norm=40.084, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.319e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 23:17:15,383 (trainer:737) INFO: 22epoch:train:6801-6900batch: iter_time=1.449e-04, forward_time=0.104, loss_ctc=43.458, loss_att=48.897, acc=0.715, loss=47.265, backward_time=0.096, grad_norm=39.475, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.318e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:17:57,543 (trainer:737) INFO: 22epoch:train:6901-7000batch: iter_time=1.508e-04, forward_time=0.104, loss_ctc=50.891, loss_att=46.970, acc=0.723, loss=48.146, backward_time=0.096, grad_norm=47.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.317e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 23:18:06,422 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 23:18:40,000 (trainer:737) INFO: 22epoch:train:7001-7100batch: iter_time=1.398e-04, forward_time=0.104, loss_ctc=55.088, loss_att=64.916, acc=0.715, loss=61.967, backward_time=0.097, grad_norm=47.533, clip=100.000, loss_scale=1.248e+34, optim_step_time=0.041, optim0_lr0=4.317e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:19:22,549 (trainer:737) INFO: 22epoch:train:7101-7200batch: iter_time=1.365e-04, forward_time=0.103, loss_ctc=45.184, loss_att=59.276, acc=0.712, loss=55.048, backward_time=0.097, grad_norm=37.955, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.316e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:20:04,694 (trainer:737) INFO: 22epoch:train:7201-7300batch: iter_time=1.264e-04, forward_time=0.102, loss_ctc=43.923, loss_att=52.859, acc=0.711, loss=50.178, backward_time=0.096, grad_norm=38.361, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.315e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 23:20:47,028 (trainer:737) INFO: 22epoch:train:7301-7400batch: iter_time=1.303e-04, forward_time=0.104, loss_ctc=51.313, loss_att=60.168, acc=0.721, loss=57.511, backward_time=0.097, grad_norm=41.855, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.315e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:21:29,203 (trainer:737) INFO: 22epoch:train:7401-7500batch: iter_time=1.162e-04, forward_time=0.104, loss_ctc=44.312, loss_att=48.525, acc=0.720, loss=47.261, backward_time=0.096, grad_norm=37.178, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.314e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:21:34,646 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 23:21:54,740 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 23:21:58,415 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 23:21:58,415 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 23:21:58,419 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 23:26:37,449 (trainer:737) INFO: 22epoch:train:7501-7600batch: iter_time=2.631, forward_time=0.123, loss_ctc=49.576, loss_att=64.429, acc=0.704, loss=59.973, backward_time=0.103, grad_norm=42.244, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.313e-04, train_time=3.082 +[gpuc02:0/16] 2024-01-14 23:27:19,861 (trainer:737) INFO: 22epoch:train:7601-7700batch: iter_time=1.346e-04, forward_time=0.104, loss_ctc=44.377, loss_att=53.477, acc=0.704, loss=50.747, backward_time=0.097, grad_norm=35.336, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.313e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:28:02,299 (trainer:737) INFO: 22epoch:train:7701-7800batch: iter_time=1.335e-04, forward_time=0.105, loss_ctc=48.650, loss_att=48.393, acc=0.744, loss=48.470, backward_time=0.098, grad_norm=34.385, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.312e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:28:44,950 (trainer:737) INFO: 22epoch:train:7801-7900batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=45.958, loss_att=56.419, acc=0.721, loss=53.280, backward_time=0.098, grad_norm=38.899, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.311e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 23:29:27,699 (trainer:737) INFO: 22epoch:train:7901-8000batch: iter_time=1.391e-04, forward_time=0.106, loss_ctc=51.678, loss_att=52.013, acc=0.736, loss=51.913, backward_time=0.098, grad_norm=43.249, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.311e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 23:30:09,948 (trainer:737) INFO: 22epoch:train:8001-8100batch: iter_time=1.320e-04, forward_time=0.105, loss_ctc=44.971, loss_att=53.132, acc=0.711, loss=50.683, backward_time=0.097, grad_norm=39.392, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.310e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:30:53,046 (trainer:737) INFO: 22epoch:train:8101-8200batch: iter_time=1.390e-04, forward_time=0.104, loss_ctc=49.222, loss_att=46.472, acc=0.724, loss=47.297, backward_time=0.097, grad_norm=46.250, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.309e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 23:31:35,469 (trainer:737) INFO: 22epoch:train:8201-8300batch: iter_time=1.682e-04, forward_time=0.106, loss_ctc=50.389, loss_att=52.960, acc=0.734, loss=52.188, backward_time=0.097, grad_norm=40.802, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.309e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:32:17,966 (trainer:737) INFO: 22epoch:train:8301-8400batch: iter_time=1.703e-04, forward_time=0.106, loss_ctc=44.977, loss_att=58.905, acc=0.722, loss=54.726, backward_time=0.097, grad_norm=40.153, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.308e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:33:00,553 (trainer:737) INFO: 22epoch:train:8401-8500batch: iter_time=1.568e-04, forward_time=0.106, loss_ctc=46.770, loss_att=52.433, acc=0.714, loss=50.734, backward_time=0.096, grad_norm=37.165, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.307e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 23:33:43,038 (trainer:737) INFO: 22epoch:train:8501-8600batch: iter_time=1.524e-04, forward_time=0.107, loss_ctc=52.871, loss_att=61.294, acc=0.721, loss=58.767, backward_time=0.097, grad_norm=45.225, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.307e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:34:25,573 (trainer:737) INFO: 22epoch:train:8601-8700batch: iter_time=1.579e-04, forward_time=0.106, loss_ctc=44.758, loss_att=52.882, acc=0.720, loss=50.444, backward_time=0.097, grad_norm=38.180, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.306e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:34:51,069 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 23:35:09,927 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 23:35:13,452 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 23:35:13,452 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 23:35:13,455 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 23:39:27,206 (trainer:737) INFO: 22epoch:train:8701-8800batch: iter_time=2.554, forward_time=0.105, loss_ctc=46.236, loss_att=61.982, acc=0.710, loss=57.258, backward_time=0.098, grad_norm=39.870, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.305e-04, train_time=3.016 +[gpuc02:0/16] 2024-01-14 23:40:09,541 (trainer:737) INFO: 22epoch:train:8801-8900batch: iter_time=1.326e-04, forward_time=0.104, loss_ctc=49.620, loss_att=66.657, acc=0.684, loss=61.546, backward_time=0.098, grad_norm=42.314, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=4.305e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:40:51,682 (trainer:737) INFO: 22epoch:train:8901-9000batch: iter_time=1.261e-04, forward_time=0.103, loss_ctc=38.426, loss_att=40.199, acc=0.751, loss=39.667, backward_time=0.097, grad_norm=32.274, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=4.304e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 23:41:34,718 (trainer:737) INFO: 22epoch:train:9001-9100batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=49.311, loss_att=56.094, acc=0.743, loss=54.059, backward_time=0.099, grad_norm=36.756, clip=100.000, loss_scale=1.859e+34, optim_step_time=0.042, optim0_lr0=4.303e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 23:42:17,006 (trainer:737) INFO: 22epoch:train:9101-9200batch: iter_time=1.286e-04, forward_time=0.104, loss_ctc=51.119, loss_att=58.480, acc=0.726, loss=56.272, backward_time=0.097, grad_norm=39.291, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.303e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:42:59,277 (trainer:737) INFO: 22epoch:train:9201-9300batch: iter_time=1.446e-04, forward_time=0.104, loss_ctc=47.330, loss_att=53.034, acc=0.745, loss=51.323, backward_time=0.098, grad_norm=38.169, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.302e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:43:41,630 (trainer:737) INFO: 22epoch:train:9301-9400batch: iter_time=1.425e-04, forward_time=0.104, loss_ctc=42.750, loss_att=51.118, acc=0.718, loss=48.608, backward_time=0.097, grad_norm=37.573, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.301e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:44:24,045 (trainer:737) INFO: 22epoch:train:9401-9500batch: iter_time=1.296e-04, forward_time=0.103, loss_ctc=51.416, loss_att=47.629, acc=0.732, loss=48.765, backward_time=0.097, grad_norm=47.660, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.301e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:45:06,740 (trainer:737) INFO: 22epoch:train:9501-9600batch: iter_time=1.312e-04, forward_time=0.108, loss_ctc=53.817, loss_att=65.602, acc=0.727, loss=62.066, backward_time=0.098, grad_norm=43.260, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.300e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 23:45:49,303 (trainer:737) INFO: 22epoch:train:9601-9700batch: iter_time=1.300e-04, forward_time=0.104, loss_ctc=44.274, loss_att=58.605, acc=0.720, loss=54.306, backward_time=0.097, grad_norm=36.910, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.299e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:46:31,497 (trainer:737) INFO: 22epoch:train:9701-9800batch: iter_time=1.401e-04, forward_time=0.104, loss_ctc=44.021, loss_att=53.418, acc=0.715, loss=50.599, backward_time=0.097, grad_norm=39.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.299e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:47:13,850 (trainer:737) INFO: 22epoch:train:9801-9900batch: iter_time=1.387e-04, forward_time=0.105, loss_ctc=51.363, loss_att=61.109, acc=0.726, loss=58.185, backward_time=0.098, grad_norm=43.574, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.298e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:47:56,327 (trainer:737) INFO: 22epoch:train:9901-10000batch: iter_time=1.343e-04, forward_time=0.104, loss_ctc=43.877, loss_att=47.617, acc=0.737, loss=46.495, backward_time=0.097, grad_norm=37.119, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.297e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:48:00,719 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 23:48:20,144 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 23:48:23,856 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 23:48:23,856 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 23:48:23,860 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 23:53:06,183 (trainer:737) INFO: 22epoch:train:10001-10100batch: iter_time=2.663, forward_time=0.113, loss_ctc=49.079, loss_att=63.801, acc=0.712, loss=59.384, backward_time=0.098, grad_norm=41.332, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.297e-04, train_time=3.098 +[gpuc02:0/16] 2024-01-14 23:53:48,497 (trainer:737) INFO: 22epoch:train:10101-10200batch: iter_time=1.055e-04, forward_time=0.103, loss_ctc=43.935, loss_att=56.728, acc=0.705, loss=52.890, backward_time=0.097, grad_norm=37.306, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.296e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:54:30,905 (trainer:737) INFO: 22epoch:train:10201-10300batch: iter_time=1.104e-04, forward_time=0.104, loss_ctc=47.639, loss_att=47.669, acc=0.755, loss=47.660, backward_time=0.098, grad_norm=34.602, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.295e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:55:13,145 (trainer:737) INFO: 22epoch:train:10301-10400batch: iter_time=1.177e-04, forward_time=0.103, loss_ctc=45.661, loss_att=57.797, acc=0.722, loss=54.156, backward_time=0.097, grad_norm=38.068, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.295e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 23:55:55,554 (trainer:737) INFO: 22epoch:train:10401-10500batch: iter_time=1.167e-04, forward_time=0.104, loss_ctc=51.281, loss_att=54.086, acc=0.744, loss=53.245, backward_time=0.098, grad_norm=42.470, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=4.294e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 23:56:37,874 (trainer:737) INFO: 22epoch:train:10501-10600batch: iter_time=1.383e-04, forward_time=0.103, loss_ctc=44.816, loss_att=52.919, acc=0.725, loss=50.488, backward_time=0.097, grad_norm=37.678, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.293e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:57:20,369 (trainer:737) INFO: 22epoch:train:10601-10700batch: iter_time=1.338e-04, forward_time=0.103, loss_ctc=49.222, loss_att=47.922, acc=0.732, loss=48.312, backward_time=0.097, grad_norm=47.856, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.293e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:58:02,683 (trainer:737) INFO: 22epoch:train:10701-10800batch: iter_time=1.518e-04, forward_time=0.104, loss_ctc=50.874, loss_att=53.466, acc=0.742, loss=52.688, backward_time=0.097, grad_norm=41.335, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.292e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 23:58:45,166 (trainer:737) INFO: 22epoch:train:10801-10900batch: iter_time=1.493e-04, forward_time=0.105, loss_ctc=44.952, loss_att=59.976, acc=0.727, loss=55.469, backward_time=0.097, grad_norm=39.143, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.291e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 23:59:27,479 (trainer:737) INFO: 22epoch:train:10901-11000batch: iter_time=1.517e-04, forward_time=0.105, loss_ctc=46.717, loss_att=54.266, acc=0.714, loss=52.001, backward_time=0.096, grad_norm=38.295, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.291e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:00:10,064 (trainer:737) INFO: 22epoch:train:11001-11100batch: iter_time=1.598e-04, forward_time=0.106, loss_ctc=52.519, loss_att=61.599, acc=0.723, loss=58.875, backward_time=0.097, grad_norm=42.848, clip=100.000, loss_scale=3.718e+34, optim_step_time=0.041, optim0_lr0=4.290e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 00:00:52,661 (trainer:737) INFO: 22epoch:train:11101-11200batch: iter_time=1.529e-04, forward_time=0.105, loss_ctc=44.585, loss_att=53.372, acc=0.727, loss=50.736, backward_time=0.097, grad_norm=37.786, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.289e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 00:01:20,742 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 00:01:40,019 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 00:01:43,550 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 00:01:43,550 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 00:01:43,554 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 00:06:04,834 (trainer:737) INFO: 22epoch:train:11201-11300batch: iter_time=2.518, forward_time=0.117, loss_ctc=45.474, loss_att=61.713, acc=0.715, loss=56.842, backward_time=0.097, grad_norm=37.914, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.289e-04, train_time=3.122 +[gpuc02:0/16] 2024-01-15 00:06:47,091 (trainer:737) INFO: 22epoch:train:11301-11400batch: iter_time=1.403e-04, forward_time=0.105, loss_ctc=49.746, loss_att=64.990, acc=0.682, loss=60.417, backward_time=0.098, grad_norm=44.016, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.288e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 00:07:29,765 (trainer:737) INFO: 22epoch:train:11401-11500batch: iter_time=1.468e-04, forward_time=0.104, loss_ctc=38.437, loss_att=40.323, acc=0.740, loss=39.758, backward_time=0.097, grad_norm=32.346, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.287e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:08:12,265 (trainer:737) INFO: 22epoch:train:11501-11600batch: iter_time=1.387e-04, forward_time=0.105, loss_ctc=49.144, loss_att=55.517, acc=0.739, loss=53.605, backward_time=0.098, grad_norm=39.836, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.287e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 00:08:54,976 (trainer:737) INFO: 22epoch:train:11601-11700batch: iter_time=1.274e-04, forward_time=0.106, loss_ctc=50.950, loss_att=57.209, acc=0.724, loss=55.331, backward_time=0.098, grad_norm=38.552, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.286e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:09:37,710 (trainer:737) INFO: 22epoch:train:11701-11800batch: iter_time=1.335e-04, forward_time=0.105, loss_ctc=47.791, loss_att=50.995, acc=0.735, loss=50.034, backward_time=0.098, grad_norm=40.455, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.285e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:10:19,963 (trainer:737) INFO: 22epoch:train:11801-11900batch: iter_time=1.446e-04, forward_time=0.105, loss_ctc=43.218, loss_att=48.978, acc=0.716, loss=47.250, backward_time=0.097, grad_norm=38.223, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.285e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 00:11:02,135 (trainer:737) INFO: 22epoch:train:11901-12000batch: iter_time=1.304e-04, forward_time=0.104, loss_ctc=50.198, loss_att=47.096, acc=0.725, loss=48.027, backward_time=0.097, grad_norm=46.884, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.284e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 00:11:44,620 (trainer:737) INFO: 22epoch:train:12001-12100batch: iter_time=1.330e-04, forward_time=0.105, loss_ctc=53.845, loss_att=65.110, acc=0.716, loss=61.730, backward_time=0.098, grad_norm=47.300, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.283e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 00:12:27,304 (trainer:737) INFO: 22epoch:train:12101-12200batch: iter_time=1.316e-04, forward_time=0.105, loss_ctc=43.998, loss_att=59.188, acc=0.712, loss=54.631, backward_time=0.098, grad_norm=37.855, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.283e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:13:09,565 (trainer:737) INFO: 22epoch:train:12201-12300batch: iter_time=1.335e-04, forward_time=0.105, loss_ctc=43.343, loss_att=52.806, acc=0.712, loss=49.967, backward_time=0.097, grad_norm=36.513, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.282e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 00:13:52,373 (trainer:737) INFO: 22epoch:train:12301-12400batch: iter_time=1.527e-04, forward_time=0.105, loss_ctc=50.808, loss_att=60.714, acc=0.722, loss=57.742, backward_time=0.097, grad_norm=43.604, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.282e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 00:14:34,714 (trainer:737) INFO: 22epoch:train:12401-12500batch: iter_time=1.227e-04, forward_time=0.104, loss_ctc=43.562, loss_att=48.448, acc=0.719, loss=46.982, backward_time=0.097, grad_norm=36.842, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.281e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:14:41,233 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 00:15:00,686 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 00:15:04,225 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 00:15:04,225 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 00:15:04,228 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 00:19:40,082 (trainer:737) INFO: 22epoch:train:12501-12600batch: iter_time=2.520, forward_time=0.107, loss_ctc=48.638, loss_att=65.655, acc=0.711, loss=60.550, backward_time=0.098, grad_norm=39.563, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.280e-04, train_time=3.053 +[gpuc02:0/16] 2024-01-15 00:20:22,377 (trainer:737) INFO: 22epoch:train:12601-12700batch: iter_time=1.525e-04, forward_time=0.104, loss_ctc=43.858, loss_att=57.524, acc=0.705, loss=53.424, backward_time=0.097, grad_norm=37.615, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.280e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:21:04,916 (trainer:737) INFO: 22epoch:train:12701-12800batch: iter_time=1.642e-04, forward_time=0.105, loss_ctc=47.415, loss_att=47.453, acc=0.755, loss=47.442, backward_time=0.098, grad_norm=36.597, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.279e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 00:21:47,306 (trainer:737) INFO: 22epoch:train:12801-12900batch: iter_time=1.435e-04, forward_time=0.105, loss_ctc=45.285, loss_att=57.966, acc=0.722, loss=54.162, backward_time=0.098, grad_norm=37.735, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.278e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 00:22:30,089 (trainer:737) INFO: 22epoch:train:12901-13000batch: iter_time=1.471e-04, forward_time=0.106, loss_ctc=51.163, loss_att=54.696, acc=0.743, loss=53.636, backward_time=0.099, grad_norm=41.265, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.278e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 00:22:57,135 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 00:23:12,792 (trainer:737) INFO: 22epoch:train:13001-13100batch: iter_time=1.711e-04, forward_time=0.105, loss_ctc=45.221, loss_att=53.799, acc=0.726, loss=51.226, backward_time=0.098, grad_norm=38.651, clip=100.000, loss_scale=5.874e+34, optim_step_time=0.042, optim0_lr0=4.277e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:23:55,121 (trainer:737) INFO: 22epoch:train:13101-13200batch: iter_time=1.548e-04, forward_time=0.105, loss_ctc=48.663, loss_att=48.137, acc=0.733, loss=48.295, backward_time=0.098, grad_norm=46.354, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.276e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:23:58,474 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 00:24:37,763 (trainer:737) INFO: 22epoch:train:13201-13300batch: iter_time=1.490e-04, forward_time=0.106, loss_ctc=50.021, loss_att=52.594, acc=0.744, loss=51.822, backward_time=0.098, grad_norm=38.337, clip=100.000, loss_scale=2.224e+34, optim_step_time=0.042, optim0_lr0=4.276e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 00:25:20,189 (trainer:737) INFO: 22epoch:train:13301-13400batch: iter_time=1.508e-04, forward_time=0.107, loss_ctc=44.891, loss_att=59.608, acc=0.726, loss=55.193, backward_time=0.099, grad_norm=39.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.275e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 00:26:02,485 (trainer:737) INFO: 22epoch:train:13401-13500batch: iter_time=1.580e-04, forward_time=0.105, loss_ctc=46.345, loss_att=53.898, acc=0.716, loss=51.632, backward_time=0.097, grad_norm=38.238, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.274e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:26:45,250 (trainer:737) INFO: 22epoch:train:13501-13600batch: iter_time=1.475e-04, forward_time=0.106, loss_ctc=51.991, loss_att=62.128, acc=0.724, loss=59.087, backward_time=0.098, grad_norm=41.069, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.274e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:27:51,410 (trainer:737) INFO: 22epoch:train:13601-13700batch: iter_time=1.505e-04, forward_time=0.105, loss_ctc=44.229, loss_att=53.217, acc=0.728, loss=50.521, backward_time=0.097, grad_norm=38.060, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.273e-04, train_time=0.661 +[gpuc02:0/16] 2024-01-15 00:28:17,009 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 00:28:36,873 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 00:28:40,885 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 00:28:40,885 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 00:28:40,889 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 00:32:57,067 (trainer:737) INFO: 22epoch:train:13701-13800batch: iter_time=2.571, forward_time=0.106, loss_ctc=45.839, loss_att=59.321, acc=0.724, loss=55.277, backward_time=0.098, grad_norm=38.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.272e-04, train_time=3.056 +[gpuc02:0/16] 2024-01-15 00:33:39,694 (trainer:737) INFO: 22epoch:train:13801-13900batch: iter_time=1.630e-04, forward_time=0.105, loss_ctc=49.265, loss_att=63.374, acc=0.691, loss=59.141, backward_time=0.098, grad_norm=43.497, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.272e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 00:34:21,978 (trainer:737) INFO: 22epoch:train:13901-14000batch: iter_time=1.411e-04, forward_time=0.104, loss_ctc=37.905, loss_att=38.978, acc=0.752, loss=38.656, backward_time=0.096, grad_norm=32.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.271e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:35:04,512 (trainer:737) INFO: 22epoch:train:14001-14100batch: iter_time=1.424e-04, forward_time=0.106, loss_ctc=48.847, loss_att=55.036, acc=0.745, loss=53.180, backward_time=0.098, grad_norm=38.444, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.270e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 00:35:47,108 (trainer:737) INFO: 22epoch:train:14101-14200batch: iter_time=1.438e-04, forward_time=0.106, loss_ctc=50.922, loss_att=57.064, acc=0.729, loss=55.221, backward_time=0.099, grad_norm=38.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.270e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 00:36:29,784 (trainer:737) INFO: 22epoch:train:14201-14300batch: iter_time=1.995e-04, forward_time=0.107, loss_ctc=47.224, loss_att=51.526, acc=0.748, loss=50.236, backward_time=0.099, grad_norm=40.318, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.269e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 00:37:12,177 (trainer:737) INFO: 22epoch:train:14301-14400batch: iter_time=1.767e-04, forward_time=0.106, loss_ctc=42.336, loss_att=50.743, acc=0.720, loss=48.221, backward_time=0.098, grad_norm=38.889, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.269e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 00:37:54,463 (trainer:737) INFO: 22epoch:train:14401-14500batch: iter_time=1.568e-04, forward_time=0.105, loss_ctc=49.665, loss_att=45.903, acc=0.736, loss=47.032, backward_time=0.097, grad_norm=45.464, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.268e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:38:37,405 (trainer:737) INFO: 22epoch:train:14501-14600batch: iter_time=1.590e-04, forward_time=0.106, loss_ctc=53.456, loss_att=64.720, acc=0.729, loss=61.341, backward_time=0.099, grad_norm=44.639, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.267e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 00:39:19,912 (trainer:737) INFO: 22epoch:train:14601-14700batch: iter_time=1.597e-04, forward_time=0.106, loss_ctc=43.889, loss_att=58.427, acc=0.722, loss=54.065, backward_time=0.098, grad_norm=37.792, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.267e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 00:40:02,217 (trainer:737) INFO: 22epoch:train:14701-14800batch: iter_time=1.722e-04, forward_time=0.106, loss_ctc=43.170, loss_att=52.727, acc=0.716, loss=49.860, backward_time=0.098, grad_norm=37.168, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.266e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 00:40:44,774 (trainer:737) INFO: 22epoch:train:14801-14900batch: iter_time=1.685e-04, forward_time=0.107, loss_ctc=50.241, loss_att=60.638, acc=0.727, loss=57.519, backward_time=0.098, grad_norm=42.930, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.265e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 00:41:27,823 (trainer:737) INFO: 22epoch:train:14901-15000batch: iter_time=1.405e-04, forward_time=0.106, loss_ctc=43.821, loss_att=47.257, acc=0.738, loss=46.227, backward_time=0.097, grad_norm=36.232, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.265e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 01:01:42,888 (trainer:343) INFO: 22epoch results: [train] iter_time=0.219, forward_time=0.106, loss_ctc=48.034, loss_att=55.251, acc=0.722, loss=53.086, backward_time=0.098, grad_norm=40.411, clip=100.000, loss_scale=2.340e+34, optim_step_time=0.042, optim0_lr0=4.314e-04, train_time=0.654, time=2 hours, 43 minutes and 45.65 seconds, total_count=330000, gpu_max_cached_mem_GB=26.227, [valid] loss_ctc=52.806, cer_ctc=0.278, loss_att=52.770, acc=0.586, cer=0.368, wer=0.999, loss=52.781, time=20 minutes and 5.05 seconds, total_count=102762, gpu_max_cached_mem_GB=26.227 +[gpuc02:0/16] 2024-01-15 01:01:47,956 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-15 01:01:48,016 (trainer:272) INFO: 23/45epoch started. Estimated time to finish: 2 days, 21 hours and 56 minutes +[gpuc02:0/16] 2024-01-15 01:01:48,028 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 01:02:07,218 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 01:02:10,807 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 01:02:10,807 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 01:02:10,810 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 01:06:44,940 (trainer:737) INFO: 23epoch:train:1-100batch: iter_time=2.489, forward_time=0.118, loss_ctc=45.475, loss_att=41.432, acc=0.752, loss=42.645, backward_time=0.099, grad_norm=41.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.264e-04, train_time=2.969 +[gpuc02:0/16] 2024-01-15 01:07:27,123 (trainer:737) INFO: 23epoch:train:101-200batch: iter_time=1.334e-04, forward_time=0.105, loss_ctc=42.797, loss_att=54.636, acc=0.717, loss=51.084, backward_time=0.098, grad_norm=39.912, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.263e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 01:08:10,815 (trainer:737) INFO: 23epoch:train:201-300batch: iter_time=1.253e-04, forward_time=0.105, loss_ctc=53.222, loss_att=49.677, acc=0.742, loss=50.740, backward_time=0.098, grad_norm=49.239, clip=100.000, loss_scale=3.988e+34, optim_step_time=0.042, optim0_lr0=4.263e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-15 01:08:53,881 (trainer:737) INFO: 23epoch:train:301-400batch: iter_time=1.237e-04, forward_time=0.104, loss_ctc=41.481, loss_att=54.702, acc=0.708, loss=50.736, backward_time=0.097, grad_norm=38.723, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.262e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 01:09:37,197 (trainer:737) INFO: 23epoch:train:401-500batch: iter_time=1.337e-04, forward_time=0.106, loss_ctc=59.068, loss_att=66.544, acc=0.707, loss=64.301, backward_time=0.098, grad_norm=51.679, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.261e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 01:10:19,881 (trainer:737) INFO: 23epoch:train:501-600batch: iter_time=1.369e-04, forward_time=0.105, loss_ctc=49.372, loss_att=51.359, acc=0.746, loss=50.763, backward_time=0.098, grad_norm=40.689, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.261e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 01:11:03,975 (trainer:737) INFO: 23epoch:train:601-700batch: iter_time=1.311e-04, forward_time=0.106, loss_ctc=48.616, loss_att=58.653, acc=0.717, loss=55.642, backward_time=0.098, grad_norm=40.542, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.260e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-15 01:11:16,995 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 01:11:48,220 (trainer:737) INFO: 23epoch:train:701-800batch: iter_time=1.364e-04, forward_time=0.118, loss_ctc=47.517, loss_att=45.624, acc=0.744, loss=46.192, backward_time=0.101, grad_norm=41.449, clip=100.000, loss_scale=2.706e+34, optim_step_time=0.043, optim0_lr0=4.259e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-15 01:12:31,891 (trainer:737) INFO: 23epoch:train:801-900batch: iter_time=1.311e-04, forward_time=0.109, loss_ctc=53.062, loss_att=50.818, acc=0.732, loss=51.491, backward_time=0.101, grad_norm=47.941, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.259e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-15 01:13:14,005 (trainer:737) INFO: 23epoch:train:901-1000batch: iter_time=1.298e-04, forward_time=0.105, loss_ctc=47.322, loss_att=58.803, acc=0.735, loss=55.359, backward_time=0.098, grad_norm=40.735, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.258e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 01:13:58,312 (trainer:737) INFO: 23epoch:train:1001-1100batch: iter_time=1.442e-04, forward_time=0.108, loss_ctc=44.903, loss_att=51.700, acc=0.720, loss=49.661, backward_time=0.099, grad_norm=39.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.258e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-15 01:14:45,689 (trainer:737) INFO: 23epoch:train:1101-1200batch: iter_time=1.280e-04, forward_time=0.111, loss_ctc=58.894, loss_att=73.533, acc=0.676, loss=69.141, backward_time=0.099, grad_norm=56.578, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.257e-04, train_time=0.474 +[gpuc02:0/16] 2024-01-15 01:15:34,525 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 01:15:53,269 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 01:15:56,856 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 01:15:56,856 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 01:15:56,859 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 01:22:16,316 (trainer:737) INFO: 23epoch:train:1201-1300batch: iter_time=3.882, forward_time=0.135, loss_ctc=42.031, loss_att=39.265, acc=0.747, loss=40.095, backward_time=0.101, grad_norm=38.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.256e-04, train_time=4.506 +[gpuc02:0/16] 2024-01-15 01:22:58,490 (trainer:737) INFO: 23epoch:train:1301-1400batch: iter_time=1.448e-04, forward_time=0.104, loss_ctc=42.922, loss_att=47.155, acc=0.729, loss=45.885, backward_time=0.097, grad_norm=40.156, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.256e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 01:23:41,404 (trainer:737) INFO: 23epoch:train:1401-1500batch: iter_time=1.583e-04, forward_time=0.104, loss_ctc=50.651, loss_att=58.469, acc=0.732, loss=56.124, backward_time=0.098, grad_norm=46.095, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.255e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 01:24:23,592 (trainer:737) INFO: 23epoch:train:1501-1600batch: iter_time=1.446e-04, forward_time=0.105, loss_ctc=41.905, loss_att=49.876, acc=0.733, loss=47.484, backward_time=0.097, grad_norm=39.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.254e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 01:25:05,752 (trainer:737) INFO: 23epoch:train:1601-1700batch: iter_time=1.561e-04, forward_time=0.104, loss_ctc=44.480, loss_att=57.080, acc=0.702, loss=53.300, backward_time=0.097, grad_norm=39.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.254e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 01:25:48,682 (trainer:737) INFO: 23epoch:train:1701-1800batch: iter_time=1.598e-04, forward_time=0.106, loss_ctc=56.013, loss_att=59.637, acc=0.735, loss=58.550, backward_time=0.098, grad_norm=46.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.253e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 01:26:31,521 (trainer:737) INFO: 23epoch:train:1801-1900batch: iter_time=1.684e-04, forward_time=0.105, loss_ctc=45.857, loss_att=51.930, acc=0.738, loss=50.108, backward_time=0.099, grad_norm=36.485, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.252e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 01:27:14,055 (trainer:737) INFO: 23epoch:train:1901-2000batch: iter_time=1.887e-04, forward_time=0.104, loss_ctc=48.991, loss_att=51.747, acc=0.731, loss=50.920, backward_time=0.100, grad_norm=42.659, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.252e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 01:27:56,360 (trainer:737) INFO: 23epoch:train:2001-2100batch: iter_time=1.608e-04, forward_time=0.105, loss_ctc=51.686, loss_att=47.980, acc=0.747, loss=49.092, backward_time=0.098, grad_norm=42.370, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.251e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:28:39,153 (trainer:737) INFO: 23epoch:train:2101-2200batch: iter_time=1.710e-04, forward_time=0.105, loss_ctc=50.437, loss_att=60.158, acc=0.722, loss=57.242, backward_time=0.098, grad_norm=41.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.251e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 01:29:21,672 (trainer:737) INFO: 23epoch:train:2201-2300batch: iter_time=1.661e-04, forward_time=0.104, loss_ctc=41.709, loss_att=49.477, acc=0.742, loss=47.146, backward_time=0.097, grad_norm=34.361, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.250e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 01:30:04,134 (trainer:737) INFO: 23epoch:train:2301-2400batch: iter_time=1.680e-04, forward_time=0.105, loss_ctc=56.909, loss_att=63.741, acc=0.692, loss=61.691, backward_time=0.098, grad_norm=50.608, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.249e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 01:30:46,448 (trainer:737) INFO: 23epoch:train:2401-2500batch: iter_time=1.397e-04, forward_time=0.104, loss_ctc=42.334, loss_att=55.745, acc=0.709, loss=51.722, backward_time=0.097, grad_norm=44.046, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.249e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:30:51,807 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 01:31:11,207 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 01:31:14,845 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 01:31:14,845 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 01:31:14,848 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 01:35:48,797 (trainer:737) INFO: 23epoch:train:2501-2600batch: iter_time=2.599, forward_time=0.105, loss_ctc=43.710, loss_att=44.464, acc=0.737, loss=44.237, backward_time=0.096, grad_norm=40.052, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.248e-04, train_time=3.023 +[gpuc02:0/16] 2024-01-15 01:36:31,079 (trainer:737) INFO: 23epoch:train:2601-2700batch: iter_time=1.358e-04, forward_time=0.103, loss_ctc=41.208, loss_att=53.509, acc=0.713, loss=49.819, backward_time=0.096, grad_norm=36.651, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.247e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:37:13,737 (trainer:737) INFO: 23epoch:train:2701-2800batch: iter_time=1.402e-04, forward_time=0.104, loss_ctc=48.081, loss_att=51.718, acc=0.729, loss=50.627, backward_time=0.097, grad_norm=47.151, clip=100.000, loss_scale=3.510e+34, optim_step_time=0.041, optim0_lr0=4.247e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 01:37:55,965 (trainer:737) INFO: 23epoch:train:2801-2900batch: iter_time=1.427e-04, forward_time=0.103, loss_ctc=40.192, loss_att=53.745, acc=0.712, loss=49.679, backward_time=0.096, grad_norm=38.367, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.246e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 01:38:38,918 (trainer:737) INFO: 23epoch:train:2901-3000batch: iter_time=1.403e-04, forward_time=0.107, loss_ctc=56.577, loss_att=64.085, acc=0.703, loss=61.832, backward_time=0.097, grad_norm=51.854, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.245e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 01:39:21,509 (trainer:737) INFO: 23epoch:train:3001-3100batch: iter_time=1.129e-04, forward_time=0.106, loss_ctc=47.919, loss_att=51.985, acc=0.733, loss=50.765, backward_time=0.097, grad_norm=40.000, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.245e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 01:39:45,984 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 01:40:03,802 (trainer:737) INFO: 23epoch:train:3101-3200batch: iter_time=1.343e-04, forward_time=0.104, loss_ctc=47.483, loss_att=56.119, acc=0.715, loss=53.528, backward_time=0.097, grad_norm=39.505, clip=100.000, loss_scale=3.273e+34, optim_step_time=0.041, optim0_lr0=4.244e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:40:46,088 (trainer:737) INFO: 23epoch:train:3201-3300batch: iter_time=1.366e-04, forward_time=0.106, loss_ctc=45.674, loss_att=44.353, acc=0.747, loss=44.749, backward_time=0.097, grad_norm=40.376, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.243e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:41:29,396 (trainer:737) INFO: 23epoch:train:3301-3400batch: iter_time=1.351e-04, forward_time=0.105, loss_ctc=51.371, loss_att=48.184, acc=0.740, loss=49.140, backward_time=0.097, grad_norm=44.809, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.243e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 01:42:12,037 (trainer:737) INFO: 23epoch:train:3401-3500batch: iter_time=1.320e-04, forward_time=0.106, loss_ctc=46.661, loss_att=58.794, acc=0.731, loss=55.154, backward_time=0.097, grad_norm=39.968, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.242e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 01:42:54,393 (trainer:737) INFO: 23epoch:train:3501-3600batch: iter_time=1.335e-04, forward_time=0.105, loss_ctc=44.040, loss_att=51.668, acc=0.718, loss=49.380, backward_time=0.097, grad_norm=40.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.242e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:43:36,935 (trainer:737) INFO: 23epoch:train:3601-3700batch: iter_time=1.339e-04, forward_time=0.107, loss_ctc=57.279, loss_att=70.571, acc=0.677, loss=66.584, backward_time=0.098, grad_norm=53.245, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.241e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 01:44:03,689 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 01:44:23,124 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 01:44:26,827 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 01:44:26,827 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 01:44:26,830 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 01:48:54,323 (trainer:737) INFO: 23epoch:train:3701-3800batch: iter_time=2.583, forward_time=0.105, loss_ctc=40.497, loss_att=39.778, acc=0.746, loss=39.994, backward_time=0.096, grad_norm=37.413, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.240e-04, train_time=3.174 +[gpuc02:0/16] 2024-01-15 01:49:36,564 (trainer:737) INFO: 23epoch:train:3801-3900batch: iter_time=1.385e-04, forward_time=0.105, loss_ctc=42.749, loss_att=48.476, acc=0.728, loss=46.758, backward_time=0.096, grad_norm=39.763, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.240e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 01:50:18,887 (trainer:737) INFO: 23epoch:train:3901-4000batch: iter_time=1.346e-04, forward_time=0.105, loss_ctc=49.377, loss_att=58.497, acc=0.732, loss=55.761, backward_time=0.097, grad_norm=43.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.239e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:51:01,171 (trainer:737) INFO: 23epoch:train:4001-4100batch: iter_time=1.350e-04, forward_time=0.105, loss_ctc=41.918, loss_att=50.330, acc=0.735, loss=47.806, backward_time=0.097, grad_norm=38.824, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.238e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:51:43,603 (trainer:737) INFO: 23epoch:train:4101-4200batch: iter_time=1.423e-04, forward_time=0.105, loss_ctc=43.652, loss_att=57.067, acc=0.706, loss=53.043, backward_time=0.097, grad_norm=39.283, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.238e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 01:52:26,349 (trainer:737) INFO: 23epoch:train:4201-4300batch: iter_time=1.448e-04, forward_time=0.106, loss_ctc=56.030, loss_att=61.008, acc=0.736, loss=59.514, backward_time=0.098, grad_norm=46.605, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.237e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 01:53:08,640 (trainer:737) INFO: 23epoch:train:4301-4400batch: iter_time=1.415e-04, forward_time=0.104, loss_ctc=44.782, loss_att=51.574, acc=0.741, loss=49.537, backward_time=0.097, grad_norm=36.153, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.236e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:53:51,429 (trainer:737) INFO: 23epoch:train:4401-4500batch: iter_time=1.490e-04, forward_time=0.105, loss_ctc=48.213, loss_att=51.705, acc=0.733, loss=50.657, backward_time=0.097, grad_norm=41.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.236e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 01:54:33,764 (trainer:737) INFO: 23epoch:train:4501-4600batch: iter_time=1.484e-04, forward_time=0.105, loss_ctc=50.837, loss_att=47.213, acc=0.749, loss=48.300, backward_time=0.097, grad_norm=44.866, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.235e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 01:55:16,487 (trainer:737) INFO: 23epoch:train:4601-4700batch: iter_time=1.340e-04, forward_time=0.105, loss_ctc=49.419, loss_att=59.624, acc=0.723, loss=56.563, backward_time=0.098, grad_norm=40.674, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.235e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 01:55:59,052 (trainer:737) INFO: 23epoch:train:4701-4800batch: iter_time=1.340e-04, forward_time=0.104, loss_ctc=41.541, loss_att=49.503, acc=0.741, loss=47.114, backward_time=0.097, grad_norm=34.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.234e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 01:56:41,494 (trainer:737) INFO: 23epoch:train:4801-4900batch: iter_time=1.509e-04, forward_time=0.105, loss_ctc=55.771, loss_att=63.242, acc=0.693, loss=61.000, backward_time=0.097, grad_norm=51.520, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.233e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 01:57:24,065 (trainer:737) INFO: 23epoch:train:4901-5000batch: iter_time=1.346e-04, forward_time=0.107, loss_ctc=41.618, loss_att=55.947, acc=0.709, loss=51.648, backward_time=0.097, grad_norm=41.708, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.233e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 01:57:31,692 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 01:57:50,601 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 01:57:54,191 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 01:57:54,191 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 01:57:54,194 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 02:03:11,998 (trainer:737) INFO: 23epoch:train:5001-5100batch: iter_time=3.036, forward_time=0.114, loss_ctc=43.490, loss_att=40.986, acc=0.755, loss=41.737, backward_time=0.098, grad_norm=39.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.232e-04, train_time=3.479 +[gpuc02:0/16] 2024-01-15 02:03:54,486 (trainer:737) INFO: 23epoch:train:5101-5200batch: iter_time=1.619e-04, forward_time=0.106, loss_ctc=40.900, loss_att=54.219, acc=0.721, loss=50.223, backward_time=0.096, grad_norm=37.240, clip=100.000, loss_scale=2.949e+34, optim_step_time=0.041, optim0_lr0=4.231e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:04:36,961 (trainer:737) INFO: 23epoch:train:5201-5300batch: iter_time=1.400e-04, forward_time=0.106, loss_ctc=47.743, loss_att=49.758, acc=0.747, loss=49.154, backward_time=0.097, grad_norm=43.870, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.231e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:04:47,121 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 02:05:19,320 (trainer:737) INFO: 23epoch:train:5301-5400batch: iter_time=1.645e-04, forward_time=0.106, loss_ctc=39.605, loss_att=52.503, acc=0.718, loss=48.634, backward_time=0.096, grad_norm=35.432, clip=100.000, loss_scale=2.559e+34, optim_step_time=0.041, optim0_lr0=4.230e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 02:06:01,966 (trainer:737) INFO: 23epoch:train:5401-5500batch: iter_time=1.603e-04, forward_time=0.107, loss_ctc=54.952, loss_att=65.739, acc=0.712, loss=62.503, backward_time=0.097, grad_norm=52.086, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.230e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:06:44,810 (trainer:737) INFO: 23epoch:train:5501-5600batch: iter_time=1.477e-04, forward_time=0.107, loss_ctc=47.834, loss_att=49.798, acc=0.755, loss=49.209, backward_time=0.098, grad_norm=37.383, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.229e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 02:07:27,290 (trainer:737) INFO: 23epoch:train:5601-5700batch: iter_time=1.510e-04, forward_time=0.106, loss_ctc=47.205, loss_att=57.436, acc=0.721, loss=54.367, backward_time=0.097, grad_norm=37.964, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.228e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:08:09,545 (trainer:737) INFO: 23epoch:train:5701-5800batch: iter_time=1.412e-04, forward_time=0.106, loss_ctc=44.765, loss_att=43.768, acc=0.752, loss=44.067, backward_time=0.097, grad_norm=39.370, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.228e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 02:08:52,217 (trainer:737) INFO: 23epoch:train:5801-5900batch: iter_time=1.434e-04, forward_time=0.107, loss_ctc=50.601, loss_att=49.976, acc=0.738, loss=50.163, backward_time=0.097, grad_norm=43.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.227e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:09:34,672 (trainer:737) INFO: 23epoch:train:5901-6000batch: iter_time=1.405e-04, forward_time=0.107, loss_ctc=45.986, loss_att=58.237, acc=0.737, loss=54.562, backward_time=0.097, grad_norm=37.143, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.226e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:10:17,237 (trainer:737) INFO: 23epoch:train:6001-6100batch: iter_time=1.551e-04, forward_time=0.106, loss_ctc=43.879, loss_att=51.290, acc=0.723, loss=49.066, backward_time=0.096, grad_norm=39.334, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.226e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:10:59,898 (trainer:737) INFO: 23epoch:train:6101-6200batch: iter_time=1.496e-04, forward_time=0.107, loss_ctc=55.652, loss_att=71.615, acc=0.681, loss=66.826, backward_time=0.098, grad_norm=50.194, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.225e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:11:30,760 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 02:11:49,974 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 02:11:53,547 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 02:11:53,548 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 02:11:53,551 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 02:16:19,396 (trainer:737) INFO: 23epoch:train:6201-6300batch: iter_time=2.582, forward_time=0.105, loss_ctc=40.386, loss_att=39.800, acc=0.748, loss=39.976, backward_time=0.096, grad_norm=38.362, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.225e-04, train_time=3.195 +[gpuc02:0/16] 2024-01-15 02:17:01,681 (trainer:737) INFO: 23epoch:train:6301-6400batch: iter_time=1.641e-04, forward_time=0.105, loss_ctc=41.596, loss_att=49.775, acc=0.711, loss=47.321, backward_time=0.096, grad_norm=40.495, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.224e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 02:17:44,106 (trainer:737) INFO: 23epoch:train:6401-6500batch: iter_time=1.559e-04, forward_time=0.107, loss_ctc=48.519, loss_att=57.490, acc=0.729, loss=54.799, backward_time=0.097, grad_norm=44.652, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.223e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:18:26,584 (trainer:737) INFO: 23epoch:train:6501-6600batch: iter_time=1.753e-04, forward_time=0.106, loss_ctc=40.909, loss_att=51.118, acc=0.724, loss=48.055, backward_time=0.097, grad_norm=38.468, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.223e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:19:09,351 (trainer:737) INFO: 23epoch:train:6601-6700batch: iter_time=1.873e-04, forward_time=0.106, loss_ctc=43.016, loss_att=54.291, acc=0.708, loss=50.909, backward_time=0.097, grad_norm=39.307, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.222e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 02:19:51,884 (trainer:737) INFO: 23epoch:train:6701-6800batch: iter_time=1.760e-04, forward_time=0.107, loss_ctc=54.271, loss_att=62.180, acc=0.720, loss=59.807, backward_time=0.098, grad_norm=45.870, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.221e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:20:34,371 (trainer:737) INFO: 23epoch:train:6801-6900batch: iter_time=1.781e-04, forward_time=0.106, loss_ctc=45.091, loss_att=50.702, acc=0.732, loss=49.019, backward_time=0.097, grad_norm=34.585, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.221e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:21:17,268 (trainer:737) INFO: 23epoch:train:6901-7000batch: iter_time=1.608e-04, forward_time=0.106, loss_ctc=47.623, loss_att=51.655, acc=0.728, loss=50.446, backward_time=0.097, grad_norm=42.752, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.220e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 02:21:59,710 (trainer:737) INFO: 23epoch:train:7001-7100batch: iter_time=1.722e-04, forward_time=0.107, loss_ctc=49.417, loss_att=46.279, acc=0.753, loss=47.220, backward_time=0.098, grad_norm=42.990, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.220e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:22:42,220 (trainer:737) INFO: 23epoch:train:7101-7200batch: iter_time=1.778e-04, forward_time=0.106, loss_ctc=49.052, loss_att=57.579, acc=0.718, loss=55.021, backward_time=0.097, grad_norm=42.047, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.219e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:23:24,605 (trainer:737) INFO: 23epoch:train:7201-7300batch: iter_time=1.630e-04, forward_time=0.107, loss_ctc=40.979, loss_att=49.386, acc=0.740, loss=46.864, backward_time=0.097, grad_norm=35.999, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.218e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:24:07,048 (trainer:737) INFO: 23epoch:train:7301-7400batch: iter_time=1.752e-04, forward_time=0.106, loss_ctc=55.054, loss_att=62.372, acc=0.694, loss=60.177, backward_time=0.097, grad_norm=50.180, clip=100.000, loss_scale=3.655e+34, optim_step_time=0.042, optim0_lr0=4.218e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:24:49,626 (trainer:737) INFO: 23epoch:train:7401-7500batch: iter_time=1.469e-04, forward_time=0.106, loss_ctc=41.266, loss_att=54.809, acc=0.702, loss=50.746, backward_time=0.097, grad_norm=41.300, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.217e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:24:54,706 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 02:25:14,752 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 02:25:18,567 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 02:25:18,567 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 02:25:18,570 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 02:30:03,020 (trainer:737) INFO: 23epoch:train:7501-7600batch: iter_time=2.706, forward_time=0.106, loss_ctc=42.483, loss_att=41.036, acc=0.744, loss=41.470, backward_time=0.097, grad_norm=38.549, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.216e-04, train_time=3.134 +[gpuc02:0/16] 2024-01-15 02:30:21,592 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 02:30:45,441 (trainer:737) INFO: 23epoch:train:7601-7700batch: iter_time=1.955e-04, forward_time=0.105, loss_ctc=40.890, loss_att=52.657, acc=0.716, loss=49.127, backward_time=0.098, grad_norm=34.568, clip=100.000, loss_scale=2.979e+34, optim_step_time=0.042, optim0_lr0=4.216e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:31:27,810 (trainer:737) INFO: 23epoch:train:7701-7800batch: iter_time=1.846e-04, forward_time=0.105, loss_ctc=48.408, loss_att=53.423, acc=0.732, loss=51.919, backward_time=0.097, grad_norm=46.155, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.215e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 02:32:10,678 (trainer:737) INFO: 23epoch:train:7801-7900batch: iter_time=1.784e-04, forward_time=0.105, loss_ctc=39.318, loss_att=51.513, acc=0.721, loss=47.854, backward_time=0.097, grad_norm=37.187, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.215e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 02:32:53,084 (trainer:737) INFO: 23epoch:train:7901-8000batch: iter_time=1.790e-04, forward_time=0.105, loss_ctc=53.865, loss_att=63.589, acc=0.707, loss=60.671, backward_time=0.097, grad_norm=49.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.214e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:33:35,578 (trainer:737) INFO: 23epoch:train:8001-8100batch: iter_time=1.799e-04, forward_time=0.106, loss_ctc=47.374, loss_att=51.048, acc=0.737, loss=49.946, backward_time=0.097, grad_norm=37.224, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.213e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:34:18,029 (trainer:737) INFO: 23epoch:train:8101-8200batch: iter_time=1.641e-04, forward_time=0.105, loss_ctc=46.332, loss_att=55.842, acc=0.716, loss=52.989, backward_time=0.097, grad_norm=37.118, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.213e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:35:00,878 (trainer:737) INFO: 23epoch:train:8201-8300batch: iter_time=1.789e-04, forward_time=0.104, loss_ctc=45.182, loss_att=43.829, acc=0.751, loss=44.235, backward_time=0.097, grad_norm=39.376, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.212e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 02:35:43,578 (trainer:737) INFO: 23epoch:train:8301-8400batch: iter_time=1.291e-04, forward_time=0.106, loss_ctc=49.841, loss_att=47.200, acc=0.742, loss=47.992, backward_time=0.097, grad_norm=44.268, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.211e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 02:36:26,396 (trainer:737) INFO: 23epoch:train:8401-8500batch: iter_time=1.669e-04, forward_time=0.105, loss_ctc=45.870, loss_att=57.980, acc=0.733, loss=54.347, backward_time=0.098, grad_norm=40.814, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.211e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 02:37:08,991 (trainer:737) INFO: 23epoch:train:8501-8600batch: iter_time=1.480e-04, forward_time=0.107, loss_ctc=43.501, loss_att=51.457, acc=0.721, loss=49.070, backward_time=0.097, grad_norm=38.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.210e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:37:51,890 (trainer:737) INFO: 23epoch:train:8601-8700batch: iter_time=1.503e-04, forward_time=0.105, loss_ctc=55.344, loss_att=69.269, acc=0.679, loss=65.092, backward_time=0.098, grad_norm=51.302, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.210e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 02:38:20,401 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 02:38:39,983 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 02:38:43,557 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 02:38:43,557 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 02:38:43,560 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 02:43:02,214 (trainer:737) INFO: 23epoch:train:8701-8800batch: iter_time=2.678, forward_time=0.105, loss_ctc=39.944, loss_att=40.138, acc=0.747, loss=40.080, backward_time=0.097, grad_norm=37.590, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.209e-04, train_time=3.103 +[gpuc02:0/16] 2024-01-15 02:43:44,455 (trainer:737) INFO: 23epoch:train:8801-8900batch: iter_time=1.514e-04, forward_time=0.105, loss_ctc=41.582, loss_att=48.114, acc=0.731, loss=46.154, backward_time=0.097, grad_norm=40.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.208e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 02:44:27,163 (trainer:737) INFO: 23epoch:train:8901-9000batch: iter_time=1.575e-04, forward_time=0.106, loss_ctc=48.699, loss_att=59.192, acc=0.732, loss=56.044, backward_time=0.098, grad_norm=45.481, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.208e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 02:45:09,517 (trainer:737) INFO: 23epoch:train:9001-9100batch: iter_time=1.684e-04, forward_time=0.105, loss_ctc=40.633, loss_att=49.664, acc=0.738, loss=46.955, backward_time=0.097, grad_norm=37.827, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.207e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 02:45:51,764 (trainer:737) INFO: 23epoch:train:9101-9200batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=42.605, loss_att=57.218, acc=0.705, loss=52.834, backward_time=0.097, grad_norm=38.475, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.206e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 02:46:34,338 (trainer:737) INFO: 23epoch:train:9201-9300batch: iter_time=1.474e-04, forward_time=0.105, loss_ctc=54.429, loss_att=59.637, acc=0.740, loss=58.074, backward_time=0.097, grad_norm=48.934, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.206e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:47:16,756 (trainer:737) INFO: 23epoch:train:9301-9400batch: iter_time=1.662e-04, forward_time=0.104, loss_ctc=44.539, loss_att=51.777, acc=0.742, loss=49.606, backward_time=0.097, grad_norm=37.927, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.205e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 02:47:59,467 (trainer:737) INFO: 23epoch:train:9401-9500batch: iter_time=1.624e-04, forward_time=0.104, loss_ctc=47.554, loss_att=51.118, acc=0.735, loss=50.049, backward_time=0.097, grad_norm=38.792, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.205e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 02:48:42,182 (trainer:737) INFO: 23epoch:train:9501-9600batch: iter_time=1.582e-04, forward_time=0.104, loss_ctc=49.174, loss_att=46.863, acc=0.750, loss=47.556, backward_time=0.097, grad_norm=42.688, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.204e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 02:49:24,709 (trainer:737) INFO: 23epoch:train:9601-9700batch: iter_time=1.346e-04, forward_time=0.105, loss_ctc=48.374, loss_att=60.066, acc=0.723, loss=56.558, backward_time=0.097, grad_norm=40.604, clip=100.000, loss_scale=3.240e+34, optim_step_time=0.041, optim0_lr0=4.203e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 02:50:07,429 (trainer:737) INFO: 23epoch:train:9701-9800batch: iter_time=1.439e-04, forward_time=0.104, loss_ctc=40.714, loss_att=49.029, acc=0.745, loss=46.534, backward_time=0.097, grad_norm=33.255, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.203e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 02:50:50,072 (trainer:737) INFO: 23epoch:train:9801-9900batch: iter_time=1.650e-04, forward_time=0.105, loss_ctc=54.488, loss_att=63.417, acc=0.693, loss=60.739, backward_time=0.097, grad_norm=49.417, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.202e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:51:10,469 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 02:51:32,646 (trainer:737) INFO: 23epoch:train:9901-10000batch: iter_time=1.370e-04, forward_time=0.105, loss_ctc=40.872, loss_att=56.134, acc=0.708, loss=51.555, backward_time=0.097, grad_norm=41.597, clip=100.000, loss_scale=3.063e+34, optim_step_time=0.041, optim0_lr0=4.201e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:51:39,215 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 02:51:58,444 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 02:52:02,039 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 02:52:02,039 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 02:52:02,042 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 02:56:54,406 (trainer:737) INFO: 23epoch:train:10001-10100batch: iter_time=2.616, forward_time=0.126, loss_ctc=42.954, loss_att=42.627, acc=0.742, loss=42.725, backward_time=0.099, grad_norm=39.525, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.201e-04, train_time=3.217 +[gpuc02:0/16] 2024-01-15 02:57:36,748 (trainer:737) INFO: 23epoch:train:10101-10200batch: iter_time=1.734e-04, forward_time=0.104, loss_ctc=40.896, loss_att=53.294, acc=0.714, loss=49.575, backward_time=0.097, grad_norm=36.417, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.200e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 02:58:19,399 (trainer:737) INFO: 23epoch:train:10201-10300batch: iter_time=1.849e-04, forward_time=0.105, loss_ctc=46.724, loss_att=51.172, acc=0.734, loss=49.838, backward_time=0.098, grad_norm=48.176, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.200e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 02:59:01,731 (trainer:737) INFO: 23epoch:train:10301-10400batch: iter_time=1.856e-04, forward_time=0.104, loss_ctc=38.955, loss_att=53.320, acc=0.714, loss=49.010, backward_time=0.098, grad_norm=41.581, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.199e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 02:59:44,731 (trainer:737) INFO: 23epoch:train:10401-10500batch: iter_time=1.974e-04, forward_time=0.105, loss_ctc=54.100, loss_att=64.137, acc=0.706, loss=61.126, backward_time=0.098, grad_norm=52.307, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.198e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 03:00:27,139 (trainer:737) INFO: 23epoch:train:10501-10600batch: iter_time=1.686e-04, forward_time=0.105, loss_ctc=47.435, loss_att=51.264, acc=0.735, loss=50.115, backward_time=0.098, grad_norm=38.260, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.198e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:01:09,603 (trainer:737) INFO: 23epoch:train:10601-10700batch: iter_time=1.968e-04, forward_time=0.105, loss_ctc=46.857, loss_att=55.704, acc=0.719, loss=53.050, backward_time=0.098, grad_norm=39.749, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.197e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:01:51,980 (trainer:737) INFO: 23epoch:train:10701-10800batch: iter_time=1.893e-04, forward_time=0.105, loss_ctc=44.139, loss_att=43.611, acc=0.751, loss=43.769, backward_time=0.097, grad_norm=38.257, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.197e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:02:34,504 (trainer:737) INFO: 23epoch:train:10801-10900batch: iter_time=2.200e-04, forward_time=0.105, loss_ctc=49.997, loss_att=47.292, acc=0.744, loss=48.103, backward_time=0.098, grad_norm=45.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.196e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 03:03:17,150 (trainer:737) INFO: 23epoch:train:10901-11000batch: iter_time=2.393e-04, forward_time=0.106, loss_ctc=45.465, loss_att=58.272, acc=0.734, loss=54.430, backward_time=0.100, grad_norm=38.468, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.195e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 03:03:59,953 (trainer:737) INFO: 23epoch:train:11001-11100batch: iter_time=2.300e-04, forward_time=0.105, loss_ctc=43.488, loss_att=51.078, acc=0.721, loss=48.801, backward_time=0.099, grad_norm=40.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.195e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 03:04:42,928 (trainer:737) INFO: 23epoch:train:11101-11200batch: iter_time=2.108e-04, forward_time=0.107, loss_ctc=55.560, loss_att=69.143, acc=0.682, loss=65.068, backward_time=0.099, grad_norm=51.430, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.194e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 03:05:09,486 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 03:05:28,964 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 03:05:32,655 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 03:05:32,655 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 03:05:32,659 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 03:10:07,206 (trainer:737) INFO: 23epoch:train:11201-11300batch: iter_time=2.816, forward_time=0.106, loss_ctc=39.495, loss_att=38.690, acc=0.748, loss=38.932, backward_time=0.096, grad_norm=36.698, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.193e-04, train_time=3.243 +[gpuc02:0/16] 2024-01-15 03:10:49,428 (trainer:737) INFO: 23epoch:train:11301-11400batch: iter_time=2.234e-04, forward_time=0.104, loss_ctc=41.149, loss_att=46.106, acc=0.719, loss=44.619, backward_time=0.096, grad_norm=40.166, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.193e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 03:11:31,867 (trainer:737) INFO: 23epoch:train:11401-11500batch: iter_time=2.014e-04, forward_time=0.105, loss_ctc=47.534, loss_att=55.161, acc=0.732, loss=52.873, backward_time=0.097, grad_norm=43.438, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.192e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:12:14,183 (trainer:737) INFO: 23epoch:train:11501-11600batch: iter_time=2.079e-04, forward_time=0.105, loss_ctc=40.640, loss_att=49.463, acc=0.730, loss=46.816, backward_time=0.097, grad_norm=36.984, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.192e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 03:12:56,486 (trainer:737) INFO: 23epoch:train:11601-11700batch: iter_time=2.004e-04, forward_time=0.104, loss_ctc=42.282, loss_att=54.239, acc=0.704, loss=50.652, backward_time=0.097, grad_norm=40.439, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.191e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 03:13:38,914 (trainer:737) INFO: 23epoch:train:11701-11800batch: iter_time=1.820e-04, forward_time=0.105, loss_ctc=54.065, loss_att=59.910, acc=0.725, loss=58.157, backward_time=0.098, grad_norm=49.122, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.190e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:14:21,669 (trainer:737) INFO: 23epoch:train:11801-11900batch: iter_time=1.833e-04, forward_time=0.105, loss_ctc=44.431, loss_att=49.588, acc=0.736, loss=48.041, backward_time=0.098, grad_norm=35.281, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.190e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 03:14:50,216 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 03:15:04,544 (trainer:737) INFO: 23epoch:train:11901-12000batch: iter_time=1.855e-04, forward_time=0.104, loss_ctc=47.839, loss_att=50.996, acc=0.732, loss=50.049, backward_time=0.097, grad_norm=41.132, clip=100.000, loss_scale=2.434e+34, optim_step_time=0.041, optim0_lr0=4.189e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 03:15:46,890 (trainer:737) INFO: 23epoch:train:12001-12100batch: iter_time=1.730e-04, forward_time=0.105, loss_ctc=49.090, loss_att=46.862, acc=0.754, loss=47.530, backward_time=0.098, grad_norm=43.363, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.189e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 03:16:29,963 (trainer:737) INFO: 23epoch:train:12101-12200batch: iter_time=1.782e-04, forward_time=0.105, loss_ctc=48.944, loss_att=57.692, acc=0.719, loss=55.068, backward_time=0.098, grad_norm=43.117, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.188e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 03:17:12,471 (trainer:737) INFO: 23epoch:train:12201-12300batch: iter_time=1.954e-04, forward_time=0.104, loss_ctc=40.586, loss_att=49.018, acc=0.742, loss=46.489, backward_time=0.097, grad_norm=36.018, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.187e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 03:17:54,899 (trainer:737) INFO: 23epoch:train:12301-12400batch: iter_time=1.831e-04, forward_time=0.105, loss_ctc=54.455, loss_att=61.741, acc=0.695, loss=59.555, backward_time=0.098, grad_norm=49.211, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.187e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:18:37,408 (trainer:737) INFO: 23epoch:train:12401-12500batch: iter_time=1.698e-04, forward_time=0.104, loss_ctc=40.608, loss_att=54.212, acc=0.704, loss=50.131, backward_time=0.097, grad_norm=40.745, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.186e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 03:18:44,500 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 03:19:03,433 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 03:19:07,244 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 03:19:07,244 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 03:19:07,247 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 03:23:58,632 (trainer:737) INFO: 23epoch:train:12501-12600batch: iter_time=2.512, forward_time=0.103, loss_ctc=42.317, loss_att=42.157, acc=0.756, loss=42.205, backward_time=0.098, grad_norm=38.236, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.186e-04, train_time=3.212 +[gpuc02:0/16] 2024-01-15 03:24:40,997 (trainer:737) INFO: 23epoch:train:12601-12700batch: iter_time=1.338e-04, forward_time=0.104, loss_ctc=40.506, loss_att=56.188, acc=0.719, loss=51.484, backward_time=0.097, grad_norm=35.587, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.185e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 03:25:23,407 (trainer:737) INFO: 23epoch:train:12701-12800batch: iter_time=1.374e-04, forward_time=0.104, loss_ctc=47.372, loss_att=50.708, acc=0.746, loss=49.707, backward_time=0.098, grad_norm=44.237, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.184e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:26:05,699 (trainer:737) INFO: 23epoch:train:12801-12900batch: iter_time=1.575e-04, forward_time=0.104, loss_ctc=39.015, loss_att=52.740, acc=0.718, loss=48.622, backward_time=0.097, grad_norm=36.562, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.184e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 03:26:48,179 (trainer:737) INFO: 23epoch:train:12901-13000batch: iter_time=1.497e-04, forward_time=0.104, loss_ctc=53.116, loss_att=65.364, acc=0.716, loss=61.689, backward_time=0.097, grad_norm=48.545, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.183e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 03:27:30,621 (trainer:737) INFO: 23epoch:train:13001-13100batch: iter_time=1.379e-04, forward_time=0.104, loss_ctc=47.465, loss_att=50.976, acc=0.753, loss=49.923, backward_time=0.098, grad_norm=39.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.182e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:28:13,062 (trainer:737) INFO: 23epoch:train:13101-13200batch: iter_time=1.542e-04, forward_time=0.104, loss_ctc=46.890, loss_att=58.058, acc=0.724, loss=54.708, backward_time=0.098, grad_norm=39.385, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.182e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:28:55,319 (trainer:737) INFO: 23epoch:train:13201-13300batch: iter_time=1.571e-04, forward_time=0.103, loss_ctc=44.552, loss_att=43.862, acc=0.752, loss=44.069, backward_time=0.097, grad_norm=38.858, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.181e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 03:29:38,066 (trainer:737) INFO: 23epoch:train:13301-13400batch: iter_time=1.209e-04, forward_time=0.104, loss_ctc=49.094, loss_att=50.334, acc=0.739, loss=49.962, backward_time=0.098, grad_norm=43.035, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.181e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 03:30:22,125 (trainer:737) INFO: 23epoch:train:13401-13500batch: iter_time=1.361e-04, forward_time=0.104, loss_ctc=45.318, loss_att=58.022, acc=0.740, loss=54.211, backward_time=0.098, grad_norm=36.783, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.180e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-15 03:31:04,796 (trainer:737) INFO: 23epoch:train:13501-13600batch: iter_time=1.484e-04, forward_time=0.104, loss_ctc=42.936, loss_att=51.196, acc=0.724, loss=48.718, backward_time=0.097, grad_norm=37.899, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.179e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 03:31:47,826 (trainer:737) INFO: 23epoch:train:13601-13700batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=55.005, loss_att=71.580, acc=0.682, loss=66.608, backward_time=0.098, grad_norm=51.792, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.179e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 03:32:14,352 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 03:32:33,928 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 03:32:37,508 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 03:32:37,508 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 03:32:37,511 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 03:36:50,751 (trainer:737) INFO: 23epoch:train:13701-13800batch: iter_time=2.481, forward_time=0.102, loss_ctc=39.244, loss_att=38.806, acc=0.750, loss=38.937, backward_time=0.096, grad_norm=37.206, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.178e-04, train_time=3.029 +[gpuc02:0/16] 2024-01-15 03:37:32,784 (trainer:737) INFO: 23epoch:train:13801-13900batch: iter_time=1.008e-04, forward_time=0.103, loss_ctc=40.822, loss_att=48.283, acc=0.715, loss=46.045, backward_time=0.096, grad_norm=39.839, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.178e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 03:38:15,403 (trainer:737) INFO: 23epoch:train:13901-14000batch: iter_time=1.347e-04, forward_time=0.104, loss_ctc=48.074, loss_att=56.612, acc=0.732, loss=54.050, backward_time=0.097, grad_norm=45.827, clip=100.000, loss_scale=2.783e+34, optim_step_time=0.041, optim0_lr0=4.177e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 03:38:57,559 (trainer:737) INFO: 23epoch:train:14001-14100batch: iter_time=1.385e-04, forward_time=0.104, loss_ctc=40.599, loss_att=50.145, acc=0.729, loss=47.281, backward_time=0.097, grad_norm=37.337, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.176e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 03:39:39,810 (trainer:737) INFO: 23epoch:train:14101-14200batch: iter_time=1.551e-04, forward_time=0.104, loss_ctc=42.208, loss_att=53.854, acc=0.709, loss=50.360, backward_time=0.097, grad_norm=37.826, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.176e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 03:39:46,209 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 03:40:22,315 (trainer:737) INFO: 23epoch:train:14201-14300batch: iter_time=1.595e-04, forward_time=0.106, loss_ctc=52.777, loss_att=59.938, acc=0.723, loss=57.790, backward_time=0.098, grad_norm=48.515, clip=100.000, loss_scale=2.371e+34, optim_step_time=0.041, optim0_lr0=4.175e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 03:41:05,100 (trainer:737) INFO: 23epoch:train:14301-14400batch: iter_time=1.645e-04, forward_time=0.109, loss_ctc=44.173, loss_att=49.828, acc=0.736, loss=48.132, backward_time=0.097, grad_norm=35.570, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.175e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 03:41:47,810 (trainer:737) INFO: 23epoch:train:14401-14500batch: iter_time=1.642e-04, forward_time=0.105, loss_ctc=47.789, loss_att=51.174, acc=0.731, loss=50.158, backward_time=0.097, grad_norm=41.832, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.174e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 03:42:30,238 (trainer:737) INFO: 23epoch:train:14501-14600batch: iter_time=1.844e-04, forward_time=0.105, loss_ctc=48.781, loss_att=46.390, acc=0.754, loss=47.108, backward_time=0.097, grad_norm=42.453, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.173e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:43:12,701 (trainer:737) INFO: 23epoch:train:14601-14700batch: iter_time=1.622e-04, forward_time=0.106, loss_ctc=48.688, loss_att=57.310, acc=0.719, loss=54.724, backward_time=0.098, grad_norm=40.921, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.173e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:43:54,999 (trainer:737) INFO: 23epoch:train:14701-14800batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=40.291, loss_att=48.587, acc=0.742, loss=46.098, backward_time=0.097, grad_norm=37.152, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.172e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 03:44:37,378 (trainer:737) INFO: 23epoch:train:14801-14900batch: iter_time=1.387e-04, forward_time=0.105, loss_ctc=54.207, loss_att=61.719, acc=0.694, loss=59.466, backward_time=0.097, grad_norm=50.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.172e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 03:45:19,957 (trainer:737) INFO: 23epoch:train:14901-15000batch: iter_time=1.174e-04, forward_time=0.104, loss_ctc=40.576, loss_att=54.458, acc=0.702, loss=50.294, backward_time=0.097, grad_norm=42.035, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.171e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 04:05:28,059 (trainer:343) INFO: 23epoch results: [train] iter_time=0.220, forward_time=0.106, loss_ctc=46.570, loss_att=53.332, acc=0.727, loss=51.303, backward_time=0.097, grad_norm=41.669, clip=100.000, loss_scale=2.354e+34, optim_step_time=0.041, optim0_lr0=4.217e-04, train_time=0.654, time=2 hours, 43 minutes and 41.2 seconds, total_count=345000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=55.549, cer_ctc=0.276, loss_att=56.743, acc=0.588, cer=0.336, wer=0.998, loss=56.385, time=19 minutes and 58.63 seconds, total_count=107433, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 04:05:33,381 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-15 04:05:33,466 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/17epoch.pth, exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/18epoch.pth +[gpuc02:0/16] 2024-01-15 04:05:33,467 (trainer:272) INFO: 24/45epoch started. Estimated time to finish: 2 days, 18 hours and 59 minutes +[gpuc02:0/16] 2024-01-15 04:05:33,477 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 04:05:52,572 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 04:05:56,014 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 04:05:56,014 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 04:05:56,017 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 04:10:22,807 (trainer:737) INFO: 24epoch:train:1-100batch: iter_time=2.350, forward_time=0.104, loss_ctc=46.687, loss_att=54.969, acc=0.721, loss=52.485, backward_time=0.098, grad_norm=41.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.170e-04, train_time=2.893 +[gpuc02:0/16] 2024-01-15 04:11:04,794 (trainer:737) INFO: 24epoch:train:101-200batch: iter_time=1.349e-04, forward_time=0.104, loss_ctc=44.012, loss_att=45.740, acc=0.740, loss=45.221, backward_time=0.098, grad_norm=39.403, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.170e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 04:11:47,121 (trainer:737) INFO: 24epoch:train:201-300batch: iter_time=1.274e-04, forward_time=0.104, loss_ctc=47.360, loss_att=56.225, acc=0.717, loss=53.566, backward_time=0.098, grad_norm=43.775, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.169e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 04:12:30,421 (trainer:737) INFO: 24epoch:train:301-400batch: iter_time=1.336e-04, forward_time=0.103, loss_ctc=42.486, loss_att=51.276, acc=0.710, loss=48.639, backward_time=0.098, grad_norm=39.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.169e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 04:13:14,272 (trainer:737) INFO: 24epoch:train:401-500batch: iter_time=1.373e-04, forward_time=0.108, loss_ctc=46.461, loss_att=60.993, acc=0.716, loss=56.633, backward_time=0.099, grad_norm=41.749, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.168e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 04:13:56,402 (trainer:737) INFO: 24epoch:train:501-600batch: iter_time=1.395e-04, forward_time=0.104, loss_ctc=42.900, loss_att=48.582, acc=0.721, loss=46.877, backward_time=0.098, grad_norm=41.125, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.167e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 04:14:38,617 (trainer:737) INFO: 24epoch:train:601-700batch: iter_time=1.158e-04, forward_time=0.107, loss_ctc=42.091, loss_att=54.228, acc=0.714, loss=50.587, backward_time=0.098, grad_norm=38.868, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.167e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 04:15:21,100 (trainer:737) INFO: 24epoch:train:701-800batch: iter_time=1.416e-04, forward_time=0.105, loss_ctc=45.202, loss_att=51.215, acc=0.720, loss=49.411, backward_time=0.098, grad_norm=40.291, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.166e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 04:16:03,068 (trainer:737) INFO: 24epoch:train:801-900batch: iter_time=1.508e-04, forward_time=0.104, loss_ctc=49.433, loss_att=61.306, acc=0.691, loss=57.744, backward_time=0.097, grad_norm=44.888, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.165e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 04:16:45,348 (trainer:737) INFO: 24epoch:train:901-1000batch: iter_time=1.332e-04, forward_time=0.104, loss_ctc=54.687, loss_att=55.744, acc=0.718, loss=55.427, backward_time=0.098, grad_norm=59.529, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.165e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 04:17:27,390 (trainer:737) INFO: 24epoch:train:1001-1100batch: iter_time=1.461e-04, forward_time=0.104, loss_ctc=45.828, loss_att=56.433, acc=0.729, loss=53.251, backward_time=0.099, grad_norm=38.722, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.164e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 04:18:09,797 (trainer:737) INFO: 24epoch:train:1101-1200batch: iter_time=1.534e-04, forward_time=0.105, loss_ctc=47.891, loss_att=43.604, acc=0.754, loss=44.890, backward_time=0.099, grad_norm=42.832, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.164e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:18:38,780 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 04:18:57,435 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 04:19:00,859 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 04:19:00,859 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 04:19:00,862 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 04:23:56,188 (trainer:737) INFO: 24epoch:train:1201-1300batch: iter_time=2.697, forward_time=0.135, loss_ctc=54.309, loss_att=69.704, acc=0.691, loss=65.085, backward_time=0.106, grad_norm=45.325, clip=100.000, loss_scale=3.842e+34, optim_step_time=0.043, optim0_lr0=4.163e-04, train_time=3.464 +[gpuc02:0/16] 2024-01-15 04:24:21,316 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 04:24:38,354 (trainer:737) INFO: 24epoch:train:1301-1400batch: iter_time=1.198e-04, forward_time=0.102, loss_ctc=43.957, loss_att=46.005, acc=0.739, loss=45.391, backward_time=0.097, grad_norm=39.795, clip=100.000, loss_scale=3.315e+34, optim_step_time=0.041, optim0_lr0=4.162e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 04:25:21,075 (trainer:737) INFO: 24epoch:train:1401-1500batch: iter_time=1.211e-04, forward_time=0.104, loss_ctc=46.452, loss_att=62.345, acc=0.722, loss=57.577, backward_time=0.098, grad_norm=42.413, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.162e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 04:26:03,141 (trainer:737) INFO: 24epoch:train:1501-1600batch: iter_time=1.230e-04, forward_time=0.103, loss_ctc=41.864, loss_att=46.818, acc=0.737, loss=45.332, backward_time=0.097, grad_norm=38.432, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.161e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 04:26:45,523 (trainer:737) INFO: 24epoch:train:1601-1700batch: iter_time=1.170e-04, forward_time=0.103, loss_ctc=44.987, loss_att=59.749, acc=0.708, loss=55.321, backward_time=0.098, grad_norm=38.021, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.161e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:27:27,724 (trainer:737) INFO: 24epoch:train:1701-1800batch: iter_time=1.249e-04, forward_time=0.103, loss_ctc=42.041, loss_att=54.008, acc=0.744, loss=50.418, backward_time=0.097, grad_norm=39.272, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.160e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 04:28:10,254 (trainer:737) INFO: 24epoch:train:1801-1900batch: iter_time=1.357e-04, forward_time=0.103, loss_ctc=40.090, loss_att=40.338, acc=0.741, loss=40.264, backward_time=0.097, grad_norm=37.960, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.159e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 04:28:52,712 (trainer:737) INFO: 24epoch:train:1901-2000batch: iter_time=1.468e-04, forward_time=0.104, loss_ctc=46.132, loss_att=66.539, acc=0.697, loss=60.417, backward_time=0.099, grad_norm=41.223, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.159e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:29:34,837 (trainer:737) INFO: 24epoch:train:2001-2100batch: iter_time=1.463e-04, forward_time=0.104, loss_ctc=43.132, loss_att=53.897, acc=0.720, loss=50.668, backward_time=0.098, grad_norm=40.719, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.158e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 04:30:17,617 (trainer:737) INFO: 24epoch:train:2101-2200batch: iter_time=1.421e-04, forward_time=0.109, loss_ctc=48.145, loss_att=57.778, acc=0.717, loss=54.888, backward_time=0.098, grad_norm=41.324, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.158e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 04:31:00,038 (trainer:737) INFO: 24epoch:train:2201-2300batch: iter_time=1.425e-04, forward_time=0.106, loss_ctc=54.954, loss_att=62.028, acc=0.742, loss=59.906, backward_time=0.098, grad_norm=52.062, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.157e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:31:42,889 (trainer:737) INFO: 24epoch:train:2301-2400batch: iter_time=1.350e-04, forward_time=0.110, loss_ctc=47.433, loss_att=52.614, acc=0.753, loss=51.059, backward_time=0.098, grad_norm=38.659, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.156e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 04:32:26,306 (trainer:737) INFO: 24epoch:train:2401-2500batch: iter_time=1.179e-04, forward_time=0.104, loss_ctc=50.326, loss_att=58.803, acc=0.699, loss=56.259, backward_time=0.098, grad_norm=44.370, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.156e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 04:32:33,770 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 04:32:53,877 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 04:32:57,596 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 04:32:57,596 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 04:32:57,600 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 04:38:21,781 (trainer:737) INFO: 24epoch:train:2501-2600batch: iter_time=2.669, forward_time=0.118, loss_ctc=44.334, loss_att=54.401, acc=0.721, loss=51.381, backward_time=0.100, grad_norm=39.757, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.155e-04, train_time=3.555 +[gpuc02:0/16] 2024-01-15 04:39:04,223 (trainer:737) INFO: 24epoch:train:2601-2700batch: iter_time=1.082e-04, forward_time=0.103, loss_ctc=42.909, loss_att=45.663, acc=0.743, loss=44.837, backward_time=0.097, grad_norm=38.484, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.155e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:39:46,660 (trainer:737) INFO: 24epoch:train:2701-2800batch: iter_time=1.141e-04, forward_time=0.104, loss_ctc=46.376, loss_att=58.015, acc=0.715, loss=54.523, backward_time=0.098, grad_norm=41.454, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.154e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:40:28,942 (trainer:737) INFO: 24epoch:train:2801-2900batch: iter_time=1.144e-04, forward_time=0.103, loss_ctc=41.870, loss_att=51.045, acc=0.712, loss=48.293, backward_time=0.097, grad_norm=39.181, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.154e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 04:41:11,772 (trainer:737) INFO: 24epoch:train:2901-3000batch: iter_time=1.211e-04, forward_time=0.104, loss_ctc=44.690, loss_att=59.803, acc=0.720, loss=55.269, backward_time=0.098, grad_norm=38.534, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.153e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 04:41:54,625 (trainer:737) INFO: 24epoch:train:3001-3100batch: iter_time=1.208e-04, forward_time=0.104, loss_ctc=41.696, loss_att=47.702, acc=0.727, loss=45.900, backward_time=0.097, grad_norm=39.643, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.152e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 04:42:37,155 (trainer:737) INFO: 24epoch:train:3101-3200batch: iter_time=1.148e-04, forward_time=0.104, loss_ctc=41.661, loss_att=54.418, acc=0.713, loss=50.591, backward_time=0.097, grad_norm=39.821, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.152e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 04:43:19,647 (trainer:737) INFO: 24epoch:train:3201-3300batch: iter_time=1.177e-04, forward_time=0.104, loss_ctc=43.921, loss_att=50.438, acc=0.725, loss=48.483, backward_time=0.097, grad_norm=38.826, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.151e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 04:44:01,897 (trainer:737) INFO: 24epoch:train:3301-3400batch: iter_time=1.162e-04, forward_time=0.104, loss_ctc=47.789, loss_att=61.324, acc=0.693, loss=57.263, backward_time=0.097, grad_norm=43.125, clip=100.000, loss_scale=2.908e+34, optim_step_time=0.042, optim0_lr0=4.151e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 04:44:44,416 (trainer:737) INFO: 24epoch:train:3401-3500batch: iter_time=1.274e-04, forward_time=0.105, loss_ctc=52.232, loss_att=55.739, acc=0.721, loss=54.687, backward_time=0.097, grad_norm=52.265, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.150e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 04:45:27,222 (trainer:737) INFO: 24epoch:train:3501-3600batch: iter_time=1.114e-04, forward_time=0.105, loss_ctc=44.564, loss_att=55.809, acc=0.732, loss=52.436, backward_time=0.098, grad_norm=39.843, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.149e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 04:46:09,469 (trainer:737) INFO: 24epoch:train:3601-3700batch: iter_time=1.155e-04, forward_time=0.104, loss_ctc=46.900, loss_att=44.336, acc=0.751, loss=45.105, backward_time=0.097, grad_norm=42.301, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.149e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 04:46:33,047 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 04:46:52,803 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 04:46:56,557 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 04:46:56,558 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 04:46:56,561 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 04:52:01,705 (trainer:737) INFO: 24epoch:train:3701-3800batch: iter_time=2.384, forward_time=0.110, loss_ctc=53.144, loss_att=68.796, acc=0.693, loss=64.100, backward_time=0.099, grad_norm=46.230, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.148e-04, train_time=3.522 +[gpuc02:0/16] 2024-01-15 04:52:44,556 (trainer:737) INFO: 24epoch:train:3801-3900batch: iter_time=9.480e-05, forward_time=0.103, loss_ctc=42.590, loss_att=45.208, acc=0.742, loss=44.422, backward_time=0.097, grad_norm=39.196, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.148e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 04:53:26,997 (trainer:737) INFO: 24epoch:train:3901-4000batch: iter_time=9.848e-05, forward_time=0.104, loss_ctc=46.056, loss_att=61.030, acc=0.724, loss=56.538, backward_time=0.098, grad_norm=42.651, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.147e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:54:09,734 (trainer:737) INFO: 24epoch:train:4001-4100batch: iter_time=1.033e-04, forward_time=0.104, loss_ctc=40.911, loss_att=45.934, acc=0.740, loss=44.427, backward_time=0.097, grad_norm=37.640, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.146e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 04:54:52,716 (trainer:737) INFO: 24epoch:train:4101-4200batch: iter_time=9.996e-05, forward_time=0.104, loss_ctc=44.689, loss_att=58.589, acc=0.712, loss=54.419, backward_time=0.097, grad_norm=38.717, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.146e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 04:55:35,013 (trainer:737) INFO: 24epoch:train:4201-4300batch: iter_time=9.773e-05, forward_time=0.104, loss_ctc=41.418, loss_att=53.675, acc=0.746, loss=49.998, backward_time=0.097, grad_norm=40.428, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.145e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 04:56:17,174 (trainer:737) INFO: 24epoch:train:4301-4400batch: iter_time=1.128e-04, forward_time=0.103, loss_ctc=39.869, loss_att=40.457, acc=0.741, loss=40.280, backward_time=0.096, grad_norm=36.627, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.145e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 04:56:59,589 (trainer:737) INFO: 24epoch:train:4401-4500batch: iter_time=1.341e-04, forward_time=0.104, loss_ctc=45.274, loss_att=65.940, acc=0.698, loss=59.740, backward_time=0.098, grad_norm=41.271, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.144e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 04:57:41,837 (trainer:737) INFO: 24epoch:train:4501-4600batch: iter_time=1.397e-04, forward_time=0.103, loss_ctc=42.285, loss_att=53.611, acc=0.722, loss=50.213, backward_time=0.097, grad_norm=41.010, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.143e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 04:58:24,156 (trainer:737) INFO: 24epoch:train:4601-4700batch: iter_time=1.355e-04, forward_time=0.104, loss_ctc=47.805, loss_att=57.733, acc=0.717, loss=54.754, backward_time=0.098, grad_norm=41.340, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.143e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 04:59:07,386 (trainer:737) INFO: 24epoch:train:4701-4800batch: iter_time=1.591e-04, forward_time=0.104, loss_ctc=52.835, loss_att=56.876, acc=0.744, loss=55.663, backward_time=0.098, grad_norm=53.230, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.142e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 04:59:50,148 (trainer:737) INFO: 24epoch:train:4801-4900batch: iter_time=1.292e-04, forward_time=0.104, loss_ctc=46.541, loss_att=52.448, acc=0.754, loss=50.676, backward_time=0.098, grad_norm=40.312, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.142e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 05:00:32,485 (trainer:737) INFO: 24epoch:train:4901-5000batch: iter_time=1.272e-04, forward_time=0.104, loss_ctc=49.900, loss_att=58.208, acc=0.701, loss=55.716, backward_time=0.098, grad_norm=43.658, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.141e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 05:00:38,387 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 05:00:58,212 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 05:01:01,858 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 05:01:01,858 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 05:01:01,872 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 05:07:31,936 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 05:07:31,943 (trainer:737) INFO: 24epoch:train:5001-5100batch: iter_time=3.387, forward_time=0.105, loss_ctc=43.650, loss_att=51.303, acc=0.741, loss=49.007, backward_time=0.097, grad_norm=40.166, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.140e-04, train_time=4.194 +[gpuc02:0/16] 2024-01-15 05:08:14,117 (trainer:737) INFO: 24epoch:train:5101-5200batch: iter_time=1.013e-04, forward_time=0.103, loss_ctc=42.483, loss_att=46.066, acc=0.740, loss=44.991, backward_time=0.097, grad_norm=37.122, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.140e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 05:08:56,584 (trainer:737) INFO: 24epoch:train:5201-5300batch: iter_time=1.068e-04, forward_time=0.103, loss_ctc=45.549, loss_att=58.605, acc=0.726, loss=54.688, backward_time=0.097, grad_norm=41.073, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.139e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:09:38,906 (trainer:737) INFO: 24epoch:train:5301-5400batch: iter_time=1.153e-04, forward_time=0.104, loss_ctc=41.094, loss_att=51.668, acc=0.723, loss=48.496, backward_time=0.098, grad_norm=37.850, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.139e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 05:10:21,237 (trainer:737) INFO: 24epoch:train:5401-5500batch: iter_time=1.227e-04, forward_time=0.104, loss_ctc=43.904, loss_att=58.035, acc=0.733, loss=53.796, backward_time=0.098, grad_norm=38.298, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.138e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 05:11:03,655 (trainer:737) INFO: 24epoch:train:5501-5600batch: iter_time=1.154e-04, forward_time=0.103, loss_ctc=41.502, loss_att=47.545, acc=0.736, loss=45.732, backward_time=0.097, grad_norm=40.938, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.137e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:11:46,069 (trainer:737) INFO: 24epoch:train:5601-5700batch: iter_time=1.125e-04, forward_time=0.103, loss_ctc=41.031, loss_att=54.614, acc=0.723, loss=50.539, backward_time=0.097, grad_norm=39.585, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.137e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:12:28,671 (trainer:737) INFO: 24epoch:train:5701-5800batch: iter_time=1.004e-04, forward_time=0.106, loss_ctc=43.768, loss_att=53.605, acc=0.722, loss=50.654, backward_time=0.097, grad_norm=39.069, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.136e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:13:11,733 (trainer:737) INFO: 24epoch:train:5801-5900batch: iter_time=1.070e-04, forward_time=0.104, loss_ctc=47.205, loss_att=62.496, acc=0.702, loss=57.909, backward_time=0.097, grad_norm=44.140, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.136e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 05:13:54,538 (trainer:737) INFO: 24epoch:train:5901-6000batch: iter_time=1.052e-04, forward_time=0.103, loss_ctc=52.889, loss_att=56.644, acc=0.731, loss=55.518, backward_time=0.097, grad_norm=53.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.135e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 05:14:36,916 (trainer:737) INFO: 24epoch:train:6001-6100batch: iter_time=1.105e-04, forward_time=0.104, loss_ctc=44.624, loss_att=56.615, acc=0.739, loss=53.017, backward_time=0.098, grad_norm=38.908, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.135e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:15:19,141 (trainer:737) INFO: 24epoch:train:6101-6200batch: iter_time=1.155e-04, forward_time=0.103, loss_ctc=45.815, loss_att=44.312, acc=0.758, loss=44.763, backward_time=0.097, grad_norm=41.292, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.134e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 05:15:45,426 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 05:16:05,057 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 05:16:08,753 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 05:16:08,753 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 05:16:08,756 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 05:20:40,814 (trainer:737) INFO: 24epoch:train:6201-6300batch: iter_time=2.402, forward_time=0.104, loss_ctc=52.426, loss_att=66.205, acc=0.705, loss=62.072, backward_time=0.098, grad_norm=42.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.133e-04, train_time=3.217 +[gpuc02:0/16] 2024-01-15 05:21:23,396 (trainer:737) INFO: 24epoch:train:6301-6400batch: iter_time=1.054e-04, forward_time=0.104, loss_ctc=42.227, loss_att=43.908, acc=0.742, loss=43.404, backward_time=0.097, grad_norm=38.691, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.133e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:22:06,217 (trainer:737) INFO: 24epoch:train:6401-6500batch: iter_time=1.085e-04, forward_time=0.104, loss_ctc=45.718, loss_att=59.232, acc=0.728, loss=55.178, backward_time=0.098, grad_norm=43.349, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.132e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 05:22:48,624 (trainer:737) INFO: 24epoch:train:6501-6600batch: iter_time=1.081e-04, forward_time=0.105, loss_ctc=41.185, loss_att=45.810, acc=0.738, loss=44.422, backward_time=0.097, grad_norm=36.975, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.132e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:23:32,013 (trainer:737) INFO: 24epoch:train:6601-6700batch: iter_time=1.199e-04, forward_time=0.105, loss_ctc=43.930, loss_att=58.770, acc=0.713, loss=54.318, backward_time=0.098, grad_norm=36.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.131e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 05:24:14,416 (trainer:737) INFO: 24epoch:train:6701-6800batch: iter_time=9.807e-05, forward_time=0.104, loss_ctc=41.078, loss_att=53.456, acc=0.746, loss=49.742, backward_time=0.097, grad_norm=42.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.130e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:24:56,565 (trainer:737) INFO: 24epoch:train:6801-6900batch: iter_time=9.772e-05, forward_time=0.102, loss_ctc=39.638, loss_att=39.990, acc=0.744, loss=39.885, backward_time=0.096, grad_norm=36.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.130e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 05:25:39,137 (trainer:737) INFO: 24epoch:train:6901-7000batch: iter_time=9.951e-05, forward_time=0.103, loss_ctc=45.724, loss_att=66.710, acc=0.696, loss=60.414, backward_time=0.097, grad_norm=40.424, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.129e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:26:21,442 (trainer:737) INFO: 24epoch:train:7001-7100batch: iter_time=1.080e-04, forward_time=0.105, loss_ctc=42.050, loss_att=53.128, acc=0.720, loss=49.805, backward_time=0.097, grad_norm=40.444, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.129e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 05:27:03,859 (trainer:737) INFO: 24epoch:train:7101-7200batch: iter_time=1.152e-04, forward_time=0.106, loss_ctc=47.342, loss_att=56.269, acc=0.723, loss=53.591, backward_time=0.098, grad_norm=41.651, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.128e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:27:46,411 (trainer:737) INFO: 24epoch:train:7201-7300batch: iter_time=1.102e-04, forward_time=0.106, loss_ctc=52.648, loss_att=57.890, acc=0.744, loss=56.317, backward_time=0.098, grad_norm=51.438, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.127e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 05:28:28,980 (trainer:737) INFO: 24epoch:train:7301-7400batch: iter_time=9.899e-05, forward_time=0.105, loss_ctc=45.780, loss_att=51.520, acc=0.759, loss=49.798, backward_time=0.098, grad_norm=39.857, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.127e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 05:29:11,357 (trainer:737) INFO: 24epoch:train:7401-7500batch: iter_time=9.602e-05, forward_time=0.104, loss_ctc=49.317, loss_att=57.850, acc=0.704, loss=55.290, backward_time=0.097, grad_norm=44.219, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.126e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:29:14,387 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 05:29:34,155 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 05:29:37,785 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 05:29:37,786 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 05:29:37,789 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 05:34:29,014 (trainer:737) INFO: 24epoch:train:7501-7600batch: iter_time=2.424, forward_time=0.105, loss_ctc=43.581, loss_att=51.787, acc=0.740, loss=49.325, backward_time=0.098, grad_norm=39.716, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.126e-04, train_time=3.176 +[gpuc02:0/16] 2024-01-15 05:35:11,401 (trainer:737) INFO: 24epoch:train:7601-7700batch: iter_time=1.534e-04, forward_time=0.104, loss_ctc=42.109, loss_att=46.050, acc=0.741, loss=44.868, backward_time=0.098, grad_norm=38.141, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.125e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:35:54,176 (trainer:737) INFO: 24epoch:train:7701-7800batch: iter_time=1.401e-04, forward_time=0.105, loss_ctc=46.424, loss_att=57.394, acc=0.729, loss=54.103, backward_time=0.099, grad_norm=40.345, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.125e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 05:36:36,817 (trainer:737) INFO: 24epoch:train:7801-7900batch: iter_time=1.431e-04, forward_time=0.105, loss_ctc=41.338, loss_att=50.502, acc=0.727, loss=47.753, backward_time=0.098, grad_norm=37.791, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.124e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:37:19,353 (trainer:737) INFO: 24epoch:train:7901-8000batch: iter_time=1.413e-04, forward_time=0.106, loss_ctc=43.723, loss_att=58.047, acc=0.735, loss=53.750, backward_time=0.098, grad_norm=38.587, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.123e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 05:38:01,961 (trainer:737) INFO: 24epoch:train:8001-8100batch: iter_time=1.451e-04, forward_time=0.106, loss_ctc=41.216, loss_att=46.821, acc=0.741, loss=45.140, backward_time=0.097, grad_norm=38.886, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.123e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:38:46,491 (trainer:737) INFO: 24epoch:train:8101-8200batch: iter_time=1.429e-04, forward_time=0.120, loss_ctc=40.956, loss_att=53.358, acc=0.727, loss=49.637, backward_time=0.101, grad_norm=38.114, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.044, optim0_lr0=4.122e-04, train_time=0.445 +[gpuc02:0/16] 2024-01-15 05:39:29,480 (trainer:737) INFO: 24epoch:train:8201-8300batch: iter_time=1.499e-04, forward_time=0.105, loss_ctc=43.386, loss_att=53.051, acc=0.726, loss=50.151, backward_time=0.098, grad_norm=38.966, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.122e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 05:40:12,641 (trainer:737) INFO: 24epoch:train:8301-8400batch: iter_time=1.483e-04, forward_time=0.106, loss_ctc=47.164, loss_att=62.543, acc=0.704, loss=57.929, backward_time=0.098, grad_norm=43.686, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.121e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 05:40:55,193 (trainer:737) INFO: 24epoch:train:8401-8500batch: iter_time=1.465e-04, forward_time=0.105, loss_ctc=51.904, loss_att=55.813, acc=0.734, loss=54.640, backward_time=0.098, grad_norm=52.577, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.120e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 05:41:37,793 (trainer:737) INFO: 24epoch:train:8501-8600batch: iter_time=1.325e-04, forward_time=0.106, loss_ctc=44.145, loss_att=57.045, acc=0.739, loss=53.175, backward_time=0.098, grad_norm=40.226, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.120e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:41:56,923 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 05:42:20,184 (trainer:737) INFO: 24epoch:train:8601-8700batch: iter_time=1.398e-04, forward_time=0.105, loss_ctc=45.699, loss_att=44.217, acc=0.760, loss=44.662, backward_time=0.097, grad_norm=41.561, clip=100.000, loss_scale=3.000e+34, optim_step_time=0.042, optim0_lr0=4.119e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:42:48,449 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 05:43:07,533 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 05:43:11,058 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 05:43:11,058 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 05:43:11,061 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 05:47:52,942 (trainer:737) INFO: 24epoch:train:8701-8800batch: iter_time=2.837, forward_time=0.105, loss_ctc=52.388, loss_att=68.981, acc=0.692, loss=64.003, backward_time=0.098, grad_norm=45.059, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.119e-04, train_time=3.327 +[gpuc02:0/16] 2024-01-15 05:48:35,782 (trainer:737) INFO: 24epoch:train:8801-8900batch: iter_time=1.183e-04, forward_time=0.103, loss_ctc=41.791, loss_att=45.706, acc=0.736, loss=44.532, backward_time=0.097, grad_norm=40.935, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.118e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 05:49:18,097 (trainer:737) INFO: 24epoch:train:8901-9000batch: iter_time=1.266e-04, forward_time=0.104, loss_ctc=45.270, loss_att=58.798, acc=0.724, loss=54.740, backward_time=0.098, grad_norm=41.277, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.118e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 05:50:00,729 (trainer:737) INFO: 24epoch:train:9001-9100batch: iter_time=1.247e-04, forward_time=0.102, loss_ctc=40.433, loss_att=47.067, acc=0.724, loss=45.077, backward_time=0.097, grad_norm=38.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.117e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 05:50:43,005 (trainer:737) INFO: 24epoch:train:9101-9200batch: iter_time=1.216e-04, forward_time=0.103, loss_ctc=44.387, loss_att=59.034, acc=0.704, loss=54.640, backward_time=0.097, grad_norm=38.513, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.116e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 05:51:25,263 (trainer:737) INFO: 24epoch:train:9201-9300batch: iter_time=1.221e-04, forward_time=0.103, loss_ctc=40.561, loss_att=53.568, acc=0.737, loss=49.666, backward_time=0.098, grad_norm=39.896, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.116e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 05:52:07,389 (trainer:737) INFO: 24epoch:train:9301-9400batch: iter_time=1.256e-04, forward_time=0.102, loss_ctc=39.414, loss_att=40.690, acc=0.734, loss=40.308, backward_time=0.096, grad_norm=35.671, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.115e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 05:52:49,605 (trainer:737) INFO: 24epoch:train:9401-9500batch: iter_time=1.157e-04, forward_time=0.103, loss_ctc=45.024, loss_att=63.869, acc=0.699, loss=58.216, backward_time=0.097, grad_norm=42.702, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.115e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 05:53:32,018 (trainer:737) INFO: 24epoch:train:9501-9600batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=41.447, loss_att=53.342, acc=0.713, loss=49.773, backward_time=0.097, grad_norm=41.139, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.114e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 05:54:14,580 (trainer:737) INFO: 24epoch:train:9601-9700batch: iter_time=1.193e-04, forward_time=0.103, loss_ctc=47.371, loss_att=54.518, acc=0.708, loss=52.374, backward_time=0.097, grad_norm=42.014, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.113e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 05:54:57,283 (trainer:737) INFO: 24epoch:train:9701-9800batch: iter_time=1.170e-04, forward_time=0.103, loss_ctc=51.949, loss_att=56.712, acc=0.739, loss=55.283, backward_time=0.097, grad_norm=51.032, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.113e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 05:55:39,969 (trainer:737) INFO: 24epoch:train:9801-9900batch: iter_time=1.307e-04, forward_time=0.103, loss_ctc=45.650, loss_att=50.931, acc=0.752, loss=49.347, backward_time=0.097, grad_norm=41.582, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.112e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 05:56:22,232 (trainer:737) INFO: 24epoch:train:9901-10000batch: iter_time=1.372e-04, forward_time=0.103, loss_ctc=49.265, loss_att=58.293, acc=0.696, loss=55.584, backward_time=0.097, grad_norm=44.066, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.112e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 05:56:24,833 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 05:56:45,046 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 05:56:48,710 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 05:56:48,711 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 05:56:48,714 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 06:01:45,262 (trainer:737) INFO: 24epoch:train:10001-10100batch: iter_time=2.406, forward_time=0.118, loss_ctc=43.407, loss_att=52.219, acc=0.728, loss=49.575, backward_time=0.099, grad_norm=39.750, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.111e-04, train_time=3.230 +[gpuc02:0/16] 2024-01-15 06:02:27,397 (trainer:737) INFO: 24epoch:train:10101-10200batch: iter_time=1.046e-04, forward_time=0.103, loss_ctc=42.182, loss_att=44.727, acc=0.745, loss=43.963, backward_time=0.097, grad_norm=36.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.111e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:03:09,648 (trainer:737) INFO: 24epoch:train:10201-10300batch: iter_time=1.120e-04, forward_time=0.104, loss_ctc=45.663, loss_att=56.765, acc=0.719, loss=53.435, backward_time=0.097, grad_norm=39.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.110e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:03:51,726 (trainer:737) INFO: 24epoch:train:10301-10400batch: iter_time=1.312e-04, forward_time=0.102, loss_ctc=40.727, loss_att=49.997, acc=0.717, loss=47.216, backward_time=0.097, grad_norm=37.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.109e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:04:33,981 (trainer:737) INFO: 24epoch:train:10401-10500batch: iter_time=1.202e-04, forward_time=0.103, loss_ctc=43.351, loss_att=58.965, acc=0.724, loss=54.281, backward_time=0.098, grad_norm=39.240, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.109e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:05:16,098 (trainer:737) INFO: 24epoch:train:10501-10600batch: iter_time=1.157e-04, forward_time=0.102, loss_ctc=41.195, loss_att=46.976, acc=0.730, loss=45.242, backward_time=0.097, grad_norm=40.347, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.108e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:05:58,197 (trainer:737) INFO: 24epoch:train:10601-10700batch: iter_time=1.145e-04, forward_time=0.103, loss_ctc=40.506, loss_att=53.525, acc=0.715, loss=49.619, backward_time=0.097, grad_norm=38.286, clip=100.000, loss_scale=3.219e+34, optim_step_time=0.041, optim0_lr0=4.108e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:06:40,577 (trainer:737) INFO: 24epoch:train:10701-10800batch: iter_time=1.087e-04, forward_time=0.102, loss_ctc=43.396, loss_att=50.137, acc=0.727, loss=48.115, backward_time=0.097, grad_norm=37.766, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.107e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:07:22,711 (trainer:737) INFO: 24epoch:train:10801-10900batch: iter_time=1.159e-04, forward_time=0.103, loss_ctc=47.008, loss_att=60.425, acc=0.695, loss=56.400, backward_time=0.097, grad_norm=43.244, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.107e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:08:06,020 (trainer:737) INFO: 24epoch:train:10901-11000batch: iter_time=1.330e-04, forward_time=0.103, loss_ctc=51.515, loss_att=53.795, acc=0.724, loss=53.111, backward_time=0.097, grad_norm=53.176, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.106e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 06:08:48,836 (trainer:737) INFO: 24epoch:train:11001-11100batch: iter_time=1.313e-04, forward_time=0.104, loss_ctc=43.654, loss_att=55.394, acc=0.734, loss=51.872, backward_time=0.098, grad_norm=37.669, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.105e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 06:09:30,967 (trainer:737) INFO: 24epoch:train:11101-11200batch: iter_time=1.245e-04, forward_time=0.103, loss_ctc=45.620, loss_att=43.964, acc=0.755, loss=44.461, backward_time=0.097, grad_norm=41.803, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.105e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:09:55,205 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 06:10:15,348 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 06:10:19,044 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 06:10:19,044 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 06:10:19,048 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 06:14:56,313 (trainer:737) INFO: 24epoch:train:11201-11300batch: iter_time=2.427, forward_time=0.104, loss_ctc=52.471, loss_att=67.602, acc=0.693, loss=63.063, backward_time=0.098, grad_norm=44.813, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.104e-04, train_time=3.253 +[gpuc02:0/16] 2024-01-15 06:15:38,797 (trainer:737) INFO: 24epoch:train:11301-11400batch: iter_time=1.233e-04, forward_time=0.103, loss_ctc=41.860, loss_att=44.289, acc=0.740, loss=43.560, backward_time=0.097, grad_norm=38.748, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.104e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 06:16:20,995 (trainer:737) INFO: 24epoch:train:11401-11500batch: iter_time=1.339e-04, forward_time=0.104, loss_ctc=45.550, loss_att=55.575, acc=0.733, loss=52.567, backward_time=0.098, grad_norm=40.806, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.103e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:16:46,534 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 06:17:02,925 (trainer:737) INFO: 24epoch:train:11501-11600batch: iter_time=1.211e-04, forward_time=0.104, loss_ctc=41.249, loss_att=44.998, acc=0.728, loss=43.873, backward_time=0.097, grad_norm=37.856, clip=100.000, loss_scale=3.336e+34, optim_step_time=0.042, optim0_lr0=4.103e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 06:17:45,006 (trainer:737) INFO: 24epoch:train:11601-11700batch: iter_time=1.298e-04, forward_time=0.104, loss_ctc=43.828, loss_att=57.113, acc=0.708, loss=53.127, backward_time=0.098, grad_norm=39.592, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.102e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:18:27,141 (trainer:737) INFO: 24epoch:train:11701-11800batch: iter_time=1.400e-04, forward_time=0.104, loss_ctc=40.181, loss_att=52.972, acc=0.737, loss=49.134, backward_time=0.098, grad_norm=38.234, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.101e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:19:09,454 (trainer:737) INFO: 24epoch:train:11801-11900batch: iter_time=1.605e-04, forward_time=0.103, loss_ctc=39.013, loss_att=40.060, acc=0.736, loss=39.746, backward_time=0.097, grad_norm=35.745, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.101e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:19:52,077 (trainer:737) INFO: 24epoch:train:11901-12000batch: iter_time=1.403e-04, forward_time=0.104, loss_ctc=44.889, loss_att=62.654, acc=0.703, loss=57.324, backward_time=0.098, grad_norm=40.534, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.100e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 06:20:34,199 (trainer:737) INFO: 24epoch:train:12001-12100batch: iter_time=1.577e-04, forward_time=0.103, loss_ctc=41.762, loss_att=53.733, acc=0.712, loss=50.141, backward_time=0.096, grad_norm=40.202, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.100e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:21:16,743 (trainer:737) INFO: 24epoch:train:12101-12200batch: iter_time=1.473e-04, forward_time=0.104, loss_ctc=46.997, loss_att=52.264, acc=0.714, loss=50.684, backward_time=0.096, grad_norm=40.857, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.099e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 06:21:59,167 (trainer:737) INFO: 24epoch:train:12201-12300batch: iter_time=1.395e-04, forward_time=0.104, loss_ctc=52.394, loss_att=56.549, acc=0.740, loss=55.302, backward_time=0.097, grad_norm=51.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.099e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:22:41,520 (trainer:737) INFO: 24epoch:train:12301-12400batch: iter_time=1.215e-04, forward_time=0.104, loss_ctc=45.487, loss_att=50.292, acc=0.754, loss=48.851, backward_time=0.097, grad_norm=41.395, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.098e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:23:23,767 (trainer:737) INFO: 24epoch:train:12401-12500batch: iter_time=1.321e-04, forward_time=0.103, loss_ctc=49.038, loss_att=56.656, acc=0.704, loss=54.371, backward_time=0.097, grad_norm=43.844, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.097e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:23:30,589 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 06:23:49,762 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 06:23:53,272 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 06:23:53,272 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 06:23:53,275 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 06:28:45,405 (trainer:737) INFO: 24epoch:train:12501-12600batch: iter_time=2.453, forward_time=0.104, loss_ctc=42.975, loss_att=51.739, acc=0.729, loss=49.109, backward_time=0.098, grad_norm=38.909, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.097e-04, train_time=3.216 +[gpuc02:0/16] 2024-01-15 06:29:27,623 (trainer:737) INFO: 24epoch:train:12601-12700batch: iter_time=8.815e-05, forward_time=0.103, loss_ctc=42.300, loss_att=44.830, acc=0.747, loss=44.071, backward_time=0.097, grad_norm=38.874, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.096e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:30:10,074 (trainer:737) INFO: 24epoch:train:12701-12800batch: iter_time=1.007e-04, forward_time=0.103, loss_ctc=46.083, loss_att=55.405, acc=0.723, loss=52.608, backward_time=0.097, grad_norm=41.493, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.096e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:30:52,202 (trainer:737) INFO: 24epoch:train:12801-12900batch: iter_time=1.079e-04, forward_time=0.102, loss_ctc=40.831, loss_att=49.289, acc=0.718, loss=46.752, backward_time=0.097, grad_norm=37.890, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.095e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:31:34,513 (trainer:737) INFO: 24epoch:train:12901-13000batch: iter_time=1.134e-04, forward_time=0.103, loss_ctc=43.256, loss_att=59.225, acc=0.723, loss=54.435, backward_time=0.097, grad_norm=38.433, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.094e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:32:16,902 (trainer:737) INFO: 24epoch:train:13001-13100batch: iter_time=1.158e-04, forward_time=0.103, loss_ctc=40.685, loss_att=47.411, acc=0.728, loss=45.393, backward_time=0.097, grad_norm=39.740, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.094e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:32:59,044 (trainer:737) INFO: 24epoch:train:13101-13200batch: iter_time=1.172e-04, forward_time=0.103, loss_ctc=40.509, loss_att=53.441, acc=0.719, loss=49.561, backward_time=0.097, grad_norm=38.810, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.093e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:33:41,372 (trainer:737) INFO: 24epoch:train:13201-13300batch: iter_time=1.122e-04, forward_time=0.103, loss_ctc=43.328, loss_att=50.163, acc=0.728, loss=48.112, backward_time=0.098, grad_norm=38.002, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.093e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:34:23,724 (trainer:737) INFO: 24epoch:train:13301-13400batch: iter_time=1.090e-04, forward_time=0.103, loss_ctc=46.338, loss_att=59.851, acc=0.697, loss=55.797, backward_time=0.098, grad_norm=42.650, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.092e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:35:06,081 (trainer:737) INFO: 24epoch:train:13401-13500batch: iter_time=1.018e-04, forward_time=0.104, loss_ctc=51.755, loss_att=53.356, acc=0.726, loss=52.876, backward_time=0.098, grad_norm=49.303, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.092e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:35:48,913 (trainer:737) INFO: 24epoch:train:13501-13600batch: iter_time=1.049e-04, forward_time=0.105, loss_ctc=43.545, loss_att=55.005, acc=0.736, loss=51.567, backward_time=0.098, grad_norm=38.037, clip=100.000, loss_scale=2.887e+34, optim_step_time=0.042, optim0_lr0=4.091e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 06:36:31,918 (trainer:737) INFO: 24epoch:train:13601-13700batch: iter_time=9.965e-05, forward_time=0.103, loss_ctc=45.259, loss_att=42.712, acc=0.762, loss=43.476, backward_time=0.098, grad_norm=41.715, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.090e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 06:36:55,941 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 06:37:16,122 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 06:37:20,264 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 06:37:20,264 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 06:37:20,268 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 06:41:44,937 (trainer:737) INFO: 24epoch:train:13701-13800batch: iter_time=2.436, forward_time=0.108, loss_ctc=51.813, loss_att=67.046, acc=0.702, loss=62.476, backward_time=0.098, grad_norm=43.877, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.090e-04, train_time=3.130 +[gpuc02:0/16] 2024-01-15 06:42:27,046 (trainer:737) INFO: 24epoch:train:13801-13900batch: iter_time=1.114e-04, forward_time=0.103, loss_ctc=41.635, loss_att=45.565, acc=0.742, loss=44.386, backward_time=0.097, grad_norm=38.372, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.089e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:43:09,328 (trainer:737) INFO: 24epoch:train:13901-14000batch: iter_time=1.111e-04, forward_time=0.104, loss_ctc=44.888, loss_att=61.625, acc=0.725, loss=56.604, backward_time=0.098, grad_norm=53.718, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.089e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:43:51,408 (trainer:737) INFO: 24epoch:train:14001-14100batch: iter_time=1.151e-04, forward_time=0.103, loss_ctc=40.708, loss_att=46.391, acc=0.738, loss=44.686, backward_time=0.097, grad_norm=37.980, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.088e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:44:33,667 (trainer:737) INFO: 24epoch:train:14101-14200batch: iter_time=1.170e-04, forward_time=0.103, loss_ctc=43.757, loss_att=58.495, acc=0.715, loss=54.074, backward_time=0.097, grad_norm=40.229, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.088e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:45:16,049 (trainer:737) INFO: 24epoch:train:14201-14300batch: iter_time=1.056e-04, forward_time=0.103, loss_ctc=40.278, loss_att=54.000, acc=0.745, loss=49.884, backward_time=0.098, grad_norm=40.377, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.087e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:45:58,198 (trainer:737) INFO: 24epoch:train:14301-14400batch: iter_time=1.099e-04, forward_time=0.103, loss_ctc=38.812, loss_att=39.769, acc=0.746, loss=39.482, backward_time=0.097, grad_norm=34.890, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.087e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 06:46:40,563 (trainer:737) INFO: 24epoch:train:14401-14500batch: iter_time=1.146e-04, forward_time=0.103, loss_ctc=44.464, loss_att=66.929, acc=0.696, loss=60.190, backward_time=0.098, grad_norm=41.507, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.086e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:47:22,755 (trainer:737) INFO: 24epoch:train:14501-14600batch: iter_time=1.018e-04, forward_time=0.103, loss_ctc=41.142, loss_att=53.268, acc=0.722, loss=49.630, backward_time=0.097, grad_norm=39.013, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.085e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 06:48:05,038 (trainer:737) INFO: 24epoch:train:14601-14700batch: iter_time=1.089e-04, forward_time=0.103, loss_ctc=46.861, loss_att=56.775, acc=0.723, loss=53.801, backward_time=0.097, grad_norm=41.528, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=4.085e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 06:48:47,487 (trainer:737) INFO: 24epoch:train:14701-14800batch: iter_time=1.210e-04, forward_time=0.104, loss_ctc=51.472, loss_att=57.114, acc=0.745, loss=55.421, backward_time=0.098, grad_norm=48.625, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.084e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:49:29,955 (trainer:737) INFO: 24epoch:train:14801-14900batch: iter_time=1.189e-04, forward_time=0.105, loss_ctc=45.170, loss_att=51.993, acc=0.758, loss=49.946, backward_time=0.098, grad_norm=40.948, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.084e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 06:50:12,289 (trainer:737) INFO: 24epoch:train:14901-15000batch: iter_time=1.147e-04, forward_time=0.103, loss_ctc=48.693, loss_att=57.732, acc=0.705, loss=55.021, backward_time=0.097, grad_norm=43.049, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.083e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 07:10:10,475 (trainer:343) INFO: 24epoch results: [train] iter_time=0.206, forward_time=0.104, loss_ctc=44.999, loss_att=53.929, acc=0.726, loss=51.250, backward_time=0.098, grad_norm=41.291, clip=100.000, loss_scale=2.878e+34, optim_step_time=0.042, optim0_lr0=4.126e-04, train_time=0.658, time=2 hours, 44 minutes and 48.41 seconds, total_count=360000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=54.737, cer_ctc=0.278, loss_att=53.331, acc=0.588, cer=0.376, wer=0.998, loss=53.753, time=19 minutes and 48.42 seconds, total_count=112104, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 07:10:15,563 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-15 07:10:15,582 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/19epoch.pth +[gpuc02:0/16] 2024-01-15 07:10:15,582 (trainer:272) INFO: 25/45epoch started. Estimated time to finish: 2 days, 16 hours and 4 minutes +[gpuc02:0/16] 2024-01-15 07:10:15,591 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 07:10:35,555 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 07:10:39,388 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 07:10:39,388 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 07:10:39,391 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 07:15:25,701 (trainer:737) INFO: 25epoch:train:1-100batch: iter_time=2.516, forward_time=0.105, loss_ctc=42.483, loss_att=54.754, acc=0.718, loss=51.073, backward_time=0.099, grad_norm=41.933, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.083e-04, train_time=3.101 +[gpuc02:0/16] 2024-01-15 07:16:07,912 (trainer:737) INFO: 25epoch:train:101-200batch: iter_time=1.184e-04, forward_time=0.104, loss_ctc=44.371, loss_att=40.287, acc=0.757, loss=41.512, backward_time=0.098, grad_norm=37.793, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.082e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:16:50,209 (trainer:737) INFO: 25epoch:train:201-300batch: iter_time=1.186e-04, forward_time=0.104, loss_ctc=42.838, loss_att=47.413, acc=0.749, loss=46.041, backward_time=0.098, grad_norm=37.868, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.081e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 07:17:33,189 (trainer:737) INFO: 25epoch:train:301-400batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=58.307, loss_att=63.173, acc=0.708, loss=61.713, backward_time=0.099, grad_norm=46.127, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.081e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 07:18:16,062 (trainer:737) INFO: 25epoch:train:401-500batch: iter_time=1.259e-04, forward_time=0.104, loss_ctc=45.923, loss_att=43.515, acc=0.731, loss=44.237, backward_time=0.098, grad_norm=40.101, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.080e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 07:18:58,350 (trainer:737) INFO: 25epoch:train:501-600batch: iter_time=1.199e-04, forward_time=0.104, loss_ctc=38.310, loss_att=45.274, acc=0.734, loss=43.185, backward_time=0.098, grad_norm=37.431, clip=100.000, loss_scale=5.774e+34, optim_step_time=0.041, optim0_lr0=4.080e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 07:19:41,225 (trainer:737) INFO: 25epoch:train:601-700batch: iter_time=1.368e-04, forward_time=0.105, loss_ctc=48.543, loss_att=55.971, acc=0.718, loss=53.742, backward_time=0.100, grad_norm=40.195, clip=100.000, loss_scale=8.308e+34, optim_step_time=0.042, optim0_lr0=4.079e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 07:19:54,405 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 07:20:23,823 (trainer:737) INFO: 25epoch:train:701-800batch: iter_time=1.289e-04, forward_time=0.107, loss_ctc=53.183, loss_att=59.188, acc=0.719, loss=57.387, backward_time=0.098, grad_norm=46.104, clip=100.000, loss_scale=5.413e+34, optim_step_time=0.043, optim0_lr0=4.079e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 07:21:06,619 (trainer:737) INFO: 25epoch:train:801-900batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=52.509, loss_att=62.590, acc=0.722, loss=59.566, backward_time=0.098, grad_norm=50.883, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.078e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 07:21:51,451 (trainer:737) INFO: 25epoch:train:901-1000batch: iter_time=1.334e-04, forward_time=0.104, loss_ctc=47.945, loss_att=50.584, acc=0.733, loss=49.792, backward_time=0.098, grad_norm=45.345, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.077e-04, train_time=0.448 +[gpuc02:0/16] 2024-01-15 07:22:30,516 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 07:22:33,947 (trainer:737) INFO: 25epoch:train:1001-1100batch: iter_time=1.345e-04, forward_time=0.106, loss_ctc=49.045, loss_att=51.190, acc=0.734, loss=50.547, backward_time=0.098, grad_norm=45.314, clip=100.000, loss_scale=3.986e+34, optim_step_time=0.042, optim0_lr0=4.077e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 07:23:20,226 (trainer:737) INFO: 25epoch:train:1101-1200batch: iter_time=1.209e-04, forward_time=0.126, loss_ctc=51.172, loss_att=62.224, acc=0.727, loss=58.909, backward_time=0.103, grad_norm=43.525, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.076e-04, train_time=0.463 +[gpuc02:0/16] 2024-01-15 07:23:57,884 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 07:24:18,120 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 07:24:21,965 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 07:24:21,966 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 07:24:21,969 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 07:30:26,364 (trainer:737) INFO: 25epoch:train:1201-1300batch: iter_time=3.254, forward_time=0.125, loss_ctc=43.036, loss_att=58.292, acc=0.710, loss=53.715, backward_time=0.100, grad_norm=40.793, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=4.076e-04, train_time=4.261 +[gpuc02:0/16] 2024-01-15 07:31:08,575 (trainer:737) INFO: 25epoch:train:1301-1400batch: iter_time=1.422e-04, forward_time=0.104, loss_ctc=40.784, loss_att=40.391, acc=0.758, loss=40.509, backward_time=0.097, grad_norm=36.978, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.075e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:31:50,848 (trainer:737) INFO: 25epoch:train:1401-1500batch: iter_time=1.248e-04, forward_time=0.105, loss_ctc=44.291, loss_att=49.077, acc=0.744, loss=47.641, backward_time=0.098, grad_norm=40.495, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.075e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 07:32:33,074 (trainer:737) INFO: 25epoch:train:1501-1600batch: iter_time=1.364e-04, forward_time=0.105, loss_ctc=47.715, loss_att=48.623, acc=0.743, loss=48.350, backward_time=0.098, grad_norm=41.928, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.074e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:33:15,803 (trainer:737) INFO: 25epoch:train:1601-1700batch: iter_time=1.419e-04, forward_time=0.104, loss_ctc=46.171, loss_att=52.194, acc=0.722, loss=50.387, backward_time=0.099, grad_norm=39.182, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.074e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 07:33:58,363 (trainer:737) INFO: 25epoch:train:1701-1800batch: iter_time=1.437e-04, forward_time=0.104, loss_ctc=47.273, loss_att=51.892, acc=0.723, loss=50.506, backward_time=0.097, grad_norm=40.401, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.073e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 07:34:41,197 (trainer:737) INFO: 25epoch:train:1801-1900batch: iter_time=1.298e-04, forward_time=0.105, loss_ctc=47.368, loss_att=50.876, acc=0.727, loss=49.823, backward_time=0.098, grad_norm=39.717, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.072e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 07:35:24,195 (trainer:737) INFO: 25epoch:train:1901-2000batch: iter_time=1.407e-04, forward_time=0.107, loss_ctc=44.159, loss_att=55.977, acc=0.723, loss=52.431, backward_time=0.099, grad_norm=41.185, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.072e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 07:36:06,338 (trainer:737) INFO: 25epoch:train:2001-2100batch: iter_time=1.349e-04, forward_time=0.105, loss_ctc=55.210, loss_att=57.278, acc=0.725, loss=56.657, backward_time=0.098, grad_norm=51.238, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.071e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 07:36:49,435 (trainer:737) INFO: 25epoch:train:2101-2200batch: iter_time=1.446e-04, forward_time=0.110, loss_ctc=42.421, loss_att=55.781, acc=0.730, loss=51.773, backward_time=0.100, grad_norm=39.610, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.071e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 07:37:32,054 (trainer:737) INFO: 25epoch:train:2201-2300batch: iter_time=1.189e-04, forward_time=0.104, loss_ctc=50.501, loss_att=49.832, acc=0.730, loss=50.033, backward_time=0.097, grad_norm=48.546, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.070e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 07:38:14,793 (trainer:737) INFO: 25epoch:train:2301-2400batch: iter_time=1.150e-04, forward_time=0.105, loss_ctc=52.127, loss_att=60.879, acc=0.739, loss=58.253, backward_time=0.098, grad_norm=39.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.070e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 07:38:56,894 (trainer:737) INFO: 25epoch:train:2401-2500batch: iter_time=1.103e-04, forward_time=0.103, loss_ctc=44.182, loss_att=54.129, acc=0.728, loss=51.145, backward_time=0.097, grad_norm=38.738, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.069e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 07:39:06,910 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 07:39:26,362 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 07:39:29,991 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 07:39:29,992 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 07:39:29,995 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 07:44:54,652 (trainer:737) INFO: 25epoch:train:2501-2600batch: iter_time=3.052, forward_time=0.104, loss_ctc=41.329, loss_att=54.453, acc=0.720, loss=50.516, backward_time=0.096, grad_norm=42.209, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.068e-04, train_time=3.577 +[gpuc02:0/16] 2024-01-15 07:45:40,348 (trainer:737) INFO: 25epoch:train:2601-2700batch: iter_time=1.441e-04, forward_time=0.121, loss_ctc=43.015, loss_att=39.690, acc=0.758, loss=40.688, backward_time=0.104, grad_norm=37.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.068e-04, train_time=0.457 +[gpuc02:0/16] 2024-01-15 07:46:22,591 (trainer:737) INFO: 25epoch:train:2701-2800batch: iter_time=1.709e-04, forward_time=0.105, loss_ctc=41.396, loss_att=47.028, acc=0.748, loss=45.338, backward_time=0.097, grad_norm=37.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.067e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:47:04,960 (trainer:737) INFO: 25epoch:train:2801-2900batch: iter_time=1.596e-04, forward_time=0.104, loss_ctc=54.274, loss_att=62.684, acc=0.711, loss=60.161, backward_time=0.097, grad_norm=48.103, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.067e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 07:47:47,197 (trainer:737) INFO: 25epoch:train:2901-3000batch: iter_time=1.575e-04, forward_time=0.104, loss_ctc=42.833, loss_att=42.033, acc=0.735, loss=42.273, backward_time=0.097, grad_norm=38.807, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.066e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:48:29,372 (trainer:737) INFO: 25epoch:train:3001-3100batch: iter_time=1.791e-04, forward_time=0.104, loss_ctc=38.078, loss_att=45.675, acc=0.733, loss=43.396, backward_time=0.097, grad_norm=37.484, clip=100.000, loss_scale=2.243e+34, optim_step_time=0.041, optim0_lr0=4.066e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:49:12,077 (trainer:737) INFO: 25epoch:train:3101-3200batch: iter_time=1.590e-04, forward_time=0.108, loss_ctc=46.530, loss_att=55.309, acc=0.720, loss=52.676, backward_time=0.098, grad_norm=42.962, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.065e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 07:49:54,762 (trainer:737) INFO: 25epoch:train:3201-3300batch: iter_time=1.661e-04, forward_time=0.105, loss_ctc=50.463, loss_att=58.247, acc=0.725, loss=55.912, backward_time=0.098, grad_norm=44.955, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.065e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 07:50:37,449 (trainer:737) INFO: 25epoch:train:3301-3400batch: iter_time=1.443e-04, forward_time=0.104, loss_ctc=50.316, loss_att=62.778, acc=0.722, loss=59.040, backward_time=0.097, grad_norm=50.284, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.064e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 07:51:20,021 (trainer:737) INFO: 25epoch:train:3401-3500batch: iter_time=1.517e-04, forward_time=0.104, loss_ctc=47.079, loss_att=49.959, acc=0.736, loss=49.095, backward_time=0.097, grad_norm=44.768, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.063e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 07:52:02,577 (trainer:737) INFO: 25epoch:train:3501-3600batch: iter_time=1.344e-04, forward_time=0.104, loss_ctc=47.602, loss_att=49.628, acc=0.741, loss=49.020, backward_time=0.097, grad_norm=43.234, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.063e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 07:52:44,969 (trainer:737) INFO: 25epoch:train:3601-3700batch: iter_time=1.617e-04, forward_time=0.104, loss_ctc=49.634, loss_att=61.200, acc=0.731, loss=57.730, backward_time=0.097, grad_norm=39.447, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.062e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 07:53:03,521 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 07:53:14,150 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 07:53:33,006 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 07:53:36,589 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 07:53:36,589 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 07:53:36,592 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 07:58:08,560 (trainer:737) INFO: 25epoch:train:3701-3800batch: iter_time=2.743, forward_time=0.105, loss_ctc=42.123, loss_att=57.621, acc=0.714, loss=52.972, backward_time=0.097, grad_norm=42.527, clip=100.000, loss_scale=2.979e+34, optim_step_time=0.041, optim0_lr0=4.062e-04, train_time=3.236 +[gpuc02:0/16] 2024-01-15 07:58:50,796 (trainer:737) INFO: 25epoch:train:3801-3900batch: iter_time=1.291e-04, forward_time=0.105, loss_ctc=40.033, loss_att=40.229, acc=0.757, loss=40.170, backward_time=0.097, grad_norm=35.752, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.061e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 07:59:33,827 (trainer:737) INFO: 25epoch:train:3901-4000batch: iter_time=1.093e-04, forward_time=0.105, loss_ctc=43.179, loss_att=48.745, acc=0.746, loss=47.075, backward_time=0.097, grad_norm=41.282, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.061e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 08:00:16,246 (trainer:737) INFO: 25epoch:train:4001-4100batch: iter_time=1.245e-04, forward_time=0.105, loss_ctc=46.100, loss_att=48.650, acc=0.743, loss=47.885, backward_time=0.097, grad_norm=42.263, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.060e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:00:59,154 (trainer:737) INFO: 25epoch:train:4101-4200batch: iter_time=1.257e-04, forward_time=0.105, loss_ctc=44.634, loss_att=51.350, acc=0.727, loss=49.335, backward_time=0.098, grad_norm=38.236, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.059e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 08:01:44,298 (trainer:737) INFO: 25epoch:train:4201-4300batch: iter_time=1.478e-04, forward_time=0.105, loss_ctc=46.090, loss_att=51.482, acc=0.726, loss=49.865, backward_time=0.097, grad_norm=42.385, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.059e-04, train_time=0.451 +[gpuc02:0/16] 2024-01-15 08:02:28,563 (trainer:737) INFO: 25epoch:train:4301-4400batch: iter_time=1.424e-04, forward_time=0.112, loss_ctc=46.203, loss_att=50.222, acc=0.729, loss=49.016, backward_time=0.103, grad_norm=39.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.058e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-15 08:03:11,015 (trainer:737) INFO: 25epoch:train:4401-4500batch: iter_time=1.623e-04, forward_time=0.107, loss_ctc=43.550, loss_att=55.427, acc=0.724, loss=51.864, backward_time=0.097, grad_norm=40.031, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.058e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:03:53,404 (trainer:737) INFO: 25epoch:train:4501-4600batch: iter_time=1.664e-04, forward_time=0.106, loss_ctc=54.723, loss_att=58.499, acc=0.726, loss=57.366, backward_time=0.098, grad_norm=49.551, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.057e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:04:35,836 (trainer:737) INFO: 25epoch:train:4601-4700batch: iter_time=1.479e-04, forward_time=0.105, loss_ctc=41.480, loss_att=55.181, acc=0.732, loss=51.071, backward_time=0.097, grad_norm=40.291, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.057e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:05:18,522 (trainer:737) INFO: 25epoch:train:4701-4800batch: iter_time=3.025e-04, forward_time=0.107, loss_ctc=49.780, loss_att=49.507, acc=0.732, loss=49.589, backward_time=0.097, grad_norm=45.083, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.056e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:06:01,133 (trainer:737) INFO: 25epoch:train:4801-4900batch: iter_time=1.380e-04, forward_time=0.106, loss_ctc=51.230, loss_att=59.959, acc=0.741, loss=57.340, backward_time=0.097, grad_norm=41.484, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.056e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 08:06:43,632 (trainer:737) INFO: 25epoch:train:4901-5000batch: iter_time=1.350e-04, forward_time=0.104, loss_ctc=44.049, loss_att=53.815, acc=0.733, loss=50.885, backward_time=0.097, grad_norm=39.507, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.055e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:06:58,040 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 08:07:17,514 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 08:07:21,559 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 08:07:21,559 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 08:07:21,563 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 08:12:51,295 (trainer:737) INFO: 25epoch:train:5001-5100batch: iter_time=3.156, forward_time=0.110, loss_ctc=40.378, loss_att=57.133, acc=0.713, loss=52.106, backward_time=0.098, grad_norm=41.444, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.054e-04, train_time=3.676 +[gpuc02:0/16] 2024-01-15 08:13:33,470 (trainer:737) INFO: 25epoch:train:5101-5200batch: iter_time=1.546e-04, forward_time=0.104, loss_ctc=42.132, loss_att=41.287, acc=0.749, loss=41.541, backward_time=0.097, grad_norm=37.855, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.054e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:14:15,715 (trainer:737) INFO: 25epoch:train:5201-5300batch: iter_time=1.705e-04, forward_time=0.104, loss_ctc=41.235, loss_att=45.701, acc=0.749, loss=44.361, backward_time=0.097, grad_norm=37.226, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.053e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:14:58,010 (trainer:737) INFO: 25epoch:train:5301-5400batch: iter_time=1.509e-04, forward_time=0.105, loss_ctc=53.323, loss_att=59.800, acc=0.708, loss=57.857, backward_time=0.098, grad_norm=47.411, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.053e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:15:40,374 (trainer:737) INFO: 25epoch:train:5401-5500batch: iter_time=1.398e-04, forward_time=0.103, loss_ctc=42.170, loss_att=43.582, acc=0.722, loss=43.159, backward_time=0.096, grad_norm=39.441, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.052e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:16:22,501 (trainer:737) INFO: 25epoch:train:5501-5600batch: iter_time=1.405e-04, forward_time=0.104, loss_ctc=37.583, loss_att=46.738, acc=0.723, loss=43.992, backward_time=0.095, grad_norm=37.259, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.052e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 08:17:04,643 (trainer:737) INFO: 25epoch:train:5601-5700batch: iter_time=1.239e-04, forward_time=0.105, loss_ctc=45.678, loss_att=55.907, acc=0.715, loss=52.838, backward_time=0.097, grad_norm=40.059, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.051e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 08:17:47,219 (trainer:737) INFO: 25epoch:train:5701-5800batch: iter_time=1.298e-04, forward_time=0.106, loss_ctc=50.257, loss_att=57.861, acc=0.718, loss=55.580, backward_time=0.097, grad_norm=43.731, clip=100.000, loss_scale=3.240e+34, optim_step_time=0.041, optim0_lr0=4.051e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 08:18:29,616 (trainer:737) INFO: 25epoch:train:5801-5900batch: iter_time=1.246e-04, forward_time=0.105, loss_ctc=50.851, loss_att=61.780, acc=0.709, loss=58.501, backward_time=0.096, grad_norm=49.351, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.050e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:19:12,182 (trainer:737) INFO: 25epoch:train:5901-6000batch: iter_time=1.367e-04, forward_time=0.104, loss_ctc=46.456, loss_att=50.493, acc=0.725, loss=49.282, backward_time=0.096, grad_norm=45.647, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.049e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:19:55,418 (trainer:737) INFO: 25epoch:train:6001-6100batch: iter_time=1.280e-04, forward_time=0.104, loss_ctc=46.844, loss_att=49.906, acc=0.730, loss=48.987, backward_time=0.097, grad_norm=43.172, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.049e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 08:20:37,893 (trainer:737) INFO: 25epoch:train:6101-6200batch: iter_time=1.427e-04, forward_time=0.105, loss_ctc=49.745, loss_att=61.573, acc=0.725, loss=58.025, backward_time=0.096, grad_norm=40.286, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.048e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:21:06,754 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 08:21:26,510 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 08:21:30,127 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 08:21:30,128 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 08:21:30,131 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 08:25:51,073 (trainer:737) INFO: 25epoch:train:6201-6300batch: iter_time=2.678, forward_time=0.104, loss_ctc=41.277, loss_att=58.072, acc=0.708, loss=53.034, backward_time=0.097, grad_norm=40.390, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.048e-04, train_time=3.132 +[gpuc02:0/16] 2024-01-15 08:26:05,221 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 08:26:33,791 (trainer:737) INFO: 25epoch:train:6301-6400batch: iter_time=1.414e-04, forward_time=0.108, loss_ctc=39.904, loss_att=40.474, acc=0.753, loss=40.303, backward_time=0.097, grad_norm=36.129, clip=100.000, loss_scale=2.748e+34, optim_step_time=0.042, optim0_lr0=4.047e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:27:16,140 (trainer:737) INFO: 25epoch:train:6401-6500batch: iter_time=1.651e-04, forward_time=0.105, loss_ctc=43.176, loss_att=46.969, acc=0.742, loss=45.831, backward_time=0.097, grad_norm=39.512, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.047e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:27:58,521 (trainer:737) INFO: 25epoch:train:6501-6600batch: iter_time=1.966e-04, forward_time=0.105, loss_ctc=45.052, loss_att=49.219, acc=0.736, loss=47.969, backward_time=0.097, grad_norm=42.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.046e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:28:40,749 (trainer:737) INFO: 25epoch:train:6601-6700batch: iter_time=1.946e-04, forward_time=0.106, loss_ctc=44.306, loss_att=47.291, acc=0.724, loss=46.396, backward_time=0.097, grad_norm=38.116, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.046e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:29:22,920 (trainer:737) INFO: 25epoch:train:6701-6800batch: iter_time=1.911e-04, forward_time=0.104, loss_ctc=45.060, loss_att=52.006, acc=0.713, loss=49.922, backward_time=0.097, grad_norm=40.799, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.045e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 08:30:05,253 (trainer:737) INFO: 25epoch:train:6801-6900batch: iter_time=2.076e-04, forward_time=0.106, loss_ctc=45.931, loss_att=49.354, acc=0.734, loss=48.327, backward_time=0.098, grad_norm=39.139, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.045e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:30:47,729 (trainer:737) INFO: 25epoch:train:6901-7000batch: iter_time=2.295e-04, forward_time=0.106, loss_ctc=43.602, loss_att=55.481, acc=0.714, loss=51.917, backward_time=0.099, grad_norm=40.373, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.044e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:31:29,997 (trainer:737) INFO: 25epoch:train:7001-7100batch: iter_time=1.646e-04, forward_time=0.105, loss_ctc=53.840, loss_att=56.522, acc=0.717, loss=55.718, backward_time=0.097, grad_norm=50.243, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.043e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:32:12,249 (trainer:737) INFO: 25epoch:train:7101-7200batch: iter_time=1.539e-04, forward_time=0.105, loss_ctc=41.481, loss_att=53.827, acc=0.719, loss=50.123, backward_time=0.096, grad_norm=39.262, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.043e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:32:54,437 (trainer:737) INFO: 25epoch:train:7201-7300batch: iter_time=1.613e-04, forward_time=0.105, loss_ctc=49.040, loss_att=49.257, acc=0.723, loss=49.191, backward_time=0.096, grad_norm=45.957, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.042e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:33:36,845 (trainer:737) INFO: 25epoch:train:7301-7400batch: iter_time=1.653e-04, forward_time=0.106, loss_ctc=50.643, loss_att=59.166, acc=0.736, loss=56.609, backward_time=0.098, grad_norm=40.457, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.042e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:34:19,525 (trainer:737) INFO: 25epoch:train:7401-7500batch: iter_time=1.647e-04, forward_time=0.107, loss_ctc=43.369, loss_att=53.554, acc=0.726, loss=50.498, backward_time=0.099, grad_norm=39.893, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.041e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:34:26,138 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 08:34:45,297 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 08:34:48,978 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 08:34:48,978 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 08:34:48,982 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 08:39:37,620 (trainer:737) INFO: 25epoch:train:7501-7600batch: iter_time=2.703, forward_time=0.105, loss_ctc=40.270, loss_att=55.458, acc=0.721, loss=50.902, backward_time=0.097, grad_norm=38.393, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.041e-04, train_time=3.181 +[gpuc02:0/16] 2024-01-15 08:40:19,893 (trainer:737) INFO: 25epoch:train:7601-7700batch: iter_time=1.567e-04, forward_time=0.105, loss_ctc=42.034, loss_att=39.909, acc=0.762, loss=40.547, backward_time=0.097, grad_norm=39.258, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.040e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:41:02,214 (trainer:737) INFO: 25epoch:train:7701-7800batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=40.796, loss_att=46.875, acc=0.754, loss=45.051, backward_time=0.097, grad_norm=37.202, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.040e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:41:44,699 (trainer:737) INFO: 25epoch:train:7801-7900batch: iter_time=1.577e-04, forward_time=0.106, loss_ctc=52.164, loss_att=63.071, acc=0.710, loss=59.799, backward_time=0.098, grad_norm=46.061, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.039e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:42:26,947 (trainer:737) INFO: 25epoch:train:7901-8000batch: iter_time=1.495e-04, forward_time=0.105, loss_ctc=42.117, loss_att=43.077, acc=0.735, loss=42.789, backward_time=0.097, grad_norm=38.355, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.038e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 08:43:09,104 (trainer:737) INFO: 25epoch:train:8001-8100batch: iter_time=1.478e-04, forward_time=0.103, loss_ctc=37.489, loss_att=45.409, acc=0.736, loss=43.033, backward_time=0.096, grad_norm=36.036, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.038e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 08:43:51,839 (trainer:737) INFO: 25epoch:train:8101-8200batch: iter_time=1.525e-04, forward_time=0.106, loss_ctc=45.182, loss_att=55.112, acc=0.723, loss=52.133, backward_time=0.097, grad_norm=38.168, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.037e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:44:34,599 (trainer:737) INFO: 25epoch:train:8201-8300batch: iter_time=1.397e-04, forward_time=0.105, loss_ctc=49.484, loss_att=57.840, acc=0.726, loss=55.333, backward_time=0.098, grad_norm=42.229, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.037e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:45:17,362 (trainer:737) INFO: 25epoch:train:8301-8400batch: iter_time=1.462e-04, forward_time=0.105, loss_ctc=49.901, loss_att=63.550, acc=0.725, loss=59.455, backward_time=0.097, grad_norm=49.264, clip=100.000, loss_scale=3.468e+34, optim_step_time=0.042, optim0_lr0=4.036e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:45:44,299 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 08:45:59,964 (trainer:737) INFO: 25epoch:train:8401-8500batch: iter_time=1.529e-04, forward_time=0.105, loss_ctc=46.111, loss_att=49.601, acc=0.739, loss=48.554, backward_time=0.097, grad_norm=43.971, clip=100.000, loss_scale=3.378e+34, optim_step_time=0.042, optim0_lr0=4.036e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 08:46:42,389 (trainer:737) INFO: 25epoch:train:8501-8600batch: iter_time=1.647e-04, forward_time=0.106, loss_ctc=46.283, loss_att=49.521, acc=0.741, loss=48.550, backward_time=0.097, grad_norm=41.539, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.035e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:47:25,230 (trainer:737) INFO: 25epoch:train:8601-8700batch: iter_time=1.499e-04, forward_time=0.109, loss_ctc=49.212, loss_att=61.576, acc=0.733, loss=57.867, backward_time=0.098, grad_norm=39.448, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.035e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 08:47:53,268 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 08:48:12,607 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 08:48:16,205 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 08:48:16,205 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 08:48:16,208 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 08:52:44,472 (trainer:737) INFO: 25epoch:train:8701-8800batch: iter_time=2.745, forward_time=0.105, loss_ctc=41.373, loss_att=58.984, acc=0.707, loss=53.701, backward_time=0.097, grad_norm=41.836, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.034e-04, train_time=3.192 +[gpuc02:0/16] 2024-01-15 08:53:26,968 (trainer:737) INFO: 25epoch:train:8801-8900batch: iter_time=1.577e-04, forward_time=0.104, loss_ctc=39.477, loss_att=40.821, acc=0.755, loss=40.418, backward_time=0.097, grad_norm=36.563, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.034e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:54:09,292 (trainer:737) INFO: 25epoch:train:8901-9000batch: iter_time=1.601e-04, forward_time=0.106, loss_ctc=43.130, loss_att=47.456, acc=0.743, loss=46.158, backward_time=0.097, grad_norm=39.201, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.033e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 08:54:51,832 (trainer:737) INFO: 25epoch:train:9001-9100batch: iter_time=1.668e-04, forward_time=0.104, loss_ctc=44.912, loss_att=49.066, acc=0.737, loss=47.820, backward_time=0.097, grad_norm=40.629, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.032e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:55:34,338 (trainer:737) INFO: 25epoch:train:9101-9200batch: iter_time=1.735e-04, forward_time=0.104, loss_ctc=43.855, loss_att=48.701, acc=0.722, loss=47.248, backward_time=0.096, grad_norm=39.035, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.032e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 08:56:17,185 (trainer:737) INFO: 25epoch:train:9201-9300batch: iter_time=1.625e-04, forward_time=0.104, loss_ctc=44.487, loss_att=51.652, acc=0.715, loss=49.503, backward_time=0.096, grad_norm=40.622, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.031e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 08:56:59,838 (trainer:737) INFO: 25epoch:train:9301-9400batch: iter_time=1.602e-04, forward_time=0.106, loss_ctc=45.933, loss_att=50.026, acc=0.731, loss=48.798, backward_time=0.096, grad_norm=40.819, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.031e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 08:57:43,295 (trainer:737) INFO: 25epoch:train:9401-9500batch: iter_time=1.469e-04, forward_time=0.104, loss_ctc=43.339, loss_att=56.658, acc=0.711, loss=52.662, backward_time=0.096, grad_norm=39.631, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.030e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 08:58:26,011 (trainer:737) INFO: 25epoch:train:9501-9600batch: iter_time=1.594e-04, forward_time=0.104, loss_ctc=55.720, loss_att=57.598, acc=0.715, loss=57.035, backward_time=0.097, grad_norm=52.220, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.030e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 08:59:08,401 (trainer:737) INFO: 25epoch:train:9601-9700batch: iter_time=1.516e-04, forward_time=0.106, loss_ctc=41.250, loss_att=54.138, acc=0.720, loss=50.272, backward_time=0.097, grad_norm=37.709, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.029e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 08:59:50,709 (trainer:737) INFO: 25epoch:train:9701-9800batch: iter_time=1.644e-04, forward_time=0.105, loss_ctc=49.089, loss_att=49.127, acc=0.725, loss=49.115, backward_time=0.096, grad_norm=46.587, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.029e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:00:33,192 (trainer:737) INFO: 25epoch:train:9801-9900batch: iter_time=1.778e-04, forward_time=0.106, loss_ctc=50.537, loss_att=59.686, acc=0.735, loss=56.941, backward_time=0.097, grad_norm=41.950, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.028e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 09:01:15,535 (trainer:737) INFO: 25epoch:train:9901-10000batch: iter_time=1.409e-04, forward_time=0.105, loss_ctc=43.146, loss_att=54.006, acc=0.727, loss=50.748, backward_time=0.096, grad_norm=39.185, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.028e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:01:23,486 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 09:01:42,933 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 09:01:46,565 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 09:01:46,565 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 09:01:46,569 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 09:06:42,501 (trainer:737) INFO: 25epoch:train:10001-10100batch: iter_time=2.824, forward_time=0.108, loss_ctc=39.694, loss_att=53.887, acc=0.720, loss=49.630, backward_time=0.097, grad_norm=40.586, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.027e-04, train_time=3.269 +[gpuc02:0/16] 2024-01-15 09:07:24,532 (trainer:737) INFO: 25epoch:train:10101-10200batch: iter_time=1.637e-04, forward_time=0.105, loss_ctc=41.818, loss_att=39.705, acc=0.750, loss=40.339, backward_time=0.097, grad_norm=37.794, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.026e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 09:08:06,738 (trainer:737) INFO: 25epoch:train:10201-10300batch: iter_time=1.519e-04, forward_time=0.105, loss_ctc=40.364, loss_att=44.441, acc=0.752, loss=43.218, backward_time=0.097, grad_norm=38.551, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.026e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:08:48,947 (trainer:737) INFO: 25epoch:train:10301-10400batch: iter_time=1.576e-04, forward_time=0.105, loss_ctc=52.748, loss_att=59.836, acc=0.708, loss=57.710, backward_time=0.097, grad_norm=49.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.025e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:09:32,500 (trainer:737) INFO: 25epoch:train:10401-10500batch: iter_time=4.356e-04, forward_time=0.112, loss_ctc=41.192, loss_att=42.148, acc=0.726, loss=41.861, backward_time=0.098, grad_norm=41.612, clip=100.000, loss_scale=2.845e+34, optim_step_time=0.041, optim0_lr0=4.025e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-15 09:10:14,493 (trainer:737) INFO: 25epoch:train:10501-10600batch: iter_time=1.438e-04, forward_time=0.104, loss_ctc=37.523, loss_att=45.600, acc=0.729, loss=43.177, backward_time=0.096, grad_norm=37.968, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.024e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 09:10:56,853 (trainer:737) INFO: 25epoch:train:10601-10700batch: iter_time=1.313e-04, forward_time=0.106, loss_ctc=45.176, loss_att=54.014, acc=0.721, loss=51.363, backward_time=0.097, grad_norm=42.760, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.024e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:11:39,679 (trainer:737) INFO: 25epoch:train:10701-10800batch: iter_time=1.325e-04, forward_time=0.106, loss_ctc=49.862, loss_att=57.346, acc=0.722, loss=55.101, backward_time=0.097, grad_norm=43.754, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.023e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 09:12:22,078 (trainer:737) INFO: 25epoch:train:10801-10900batch: iter_time=1.361e-04, forward_time=0.106, loss_ctc=49.343, loss_att=61.151, acc=0.712, loss=57.609, backward_time=0.096, grad_norm=48.440, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.023e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 09:13:04,348 (trainer:737) INFO: 25epoch:train:10901-11000batch: iter_time=1.399e-04, forward_time=0.105, loss_ctc=45.568, loss_att=49.109, acc=0.730, loss=48.047, backward_time=0.096, grad_norm=43.114, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.022e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:13:46,958 (trainer:737) INFO: 25epoch:train:11001-11100batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=46.495, loss_att=49.897, acc=0.729, loss=48.877, backward_time=0.097, grad_norm=40.990, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.022e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 09:14:29,718 (trainer:737) INFO: 25epoch:train:11101-11200batch: iter_time=1.400e-04, forward_time=0.106, loss_ctc=48.734, loss_att=60.820, acc=0.728, loss=57.194, backward_time=0.097, grad_norm=39.568, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.021e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 09:14:55,838 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 09:15:15,257 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 09:15:18,887 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 09:15:18,887 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 09:15:18,891 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 09:19:52,254 (trainer:737) INFO: 25epoch:train:11201-11300batch: iter_time=2.725, forward_time=0.106, loss_ctc=40.848, loss_att=59.061, acc=0.710, loss=53.597, backward_time=0.098, grad_norm=39.844, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.020e-04, train_time=3.225 +[gpuc02:0/16] 2024-01-15 09:20:34,331 (trainer:737) INFO: 25epoch:train:11301-11400batch: iter_time=1.195e-04, forward_time=0.105, loss_ctc=39.442, loss_att=40.952, acc=0.759, loss=40.499, backward_time=0.097, grad_norm=36.383, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.020e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 09:21:16,608 (trainer:737) INFO: 25epoch:train:11401-11500batch: iter_time=1.352e-04, forward_time=0.106, loss_ctc=42.455, loss_att=50.761, acc=0.744, loss=48.269, backward_time=0.098, grad_norm=39.009, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.019e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:21:59,016 (trainer:737) INFO: 25epoch:train:11501-11600batch: iter_time=1.308e-04, forward_time=0.105, loss_ctc=44.179, loss_att=49.079, acc=0.744, loss=47.609, backward_time=0.098, grad_norm=39.314, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.019e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 09:22:41,383 (trainer:737) INFO: 25epoch:train:11601-11700batch: iter_time=1.414e-04, forward_time=0.105, loss_ctc=43.638, loss_att=51.970, acc=0.727, loss=49.470, backward_time=0.097, grad_norm=37.977, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.018e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:23:23,431 (trainer:737) INFO: 25epoch:train:11701-11800batch: iter_time=1.368e-04, forward_time=0.104, loss_ctc=44.268, loss_att=50.723, acc=0.730, loss=48.787, backward_time=0.097, grad_norm=41.016, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.018e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 09:24:05,832 (trainer:737) INFO: 25epoch:train:11801-11900batch: iter_time=1.245e-04, forward_time=0.105, loss_ctc=45.637, loss_att=50.386, acc=0.729, loss=48.961, backward_time=0.097, grad_norm=40.109, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.017e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 09:24:48,459 (trainer:737) INFO: 25epoch:train:11901-12000batch: iter_time=1.319e-04, forward_time=0.104, loss_ctc=42.606, loss_att=56.030, acc=0.724, loss=52.003, backward_time=0.098, grad_norm=39.393, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.017e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 09:25:30,837 (trainer:737) INFO: 25epoch:train:12001-12100batch: iter_time=1.311e-04, forward_time=0.104, loss_ctc=53.491, loss_att=57.170, acc=0.726, loss=56.067, backward_time=0.098, grad_norm=50.674, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.016e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 09:26:13,201 (trainer:737) INFO: 25epoch:train:12101-12200batch: iter_time=1.309e-04, forward_time=0.105, loss_ctc=41.104, loss_att=55.904, acc=0.732, loss=51.464, backward_time=0.097, grad_norm=38.212, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.016e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:26:24,990 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 09:26:55,438 (trainer:737) INFO: 25epoch:train:12201-12300batch: iter_time=1.428e-04, forward_time=0.105, loss_ctc=49.062, loss_att=49.575, acc=0.734, loss=49.421, backward_time=0.097, grad_norm=44.864, clip=100.000, loss_scale=2.643e+34, optim_step_time=0.041, optim0_lr0=4.015e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:27:38,026 (trainer:737) INFO: 25epoch:train:12301-12400batch: iter_time=1.397e-04, forward_time=0.106, loss_ctc=50.339, loss_att=60.256, acc=0.742, loss=57.281, backward_time=0.098, grad_norm=40.297, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.015e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 09:28:20,354 (trainer:737) INFO: 25epoch:train:12401-12500batch: iter_time=1.303e-04, forward_time=0.106, loss_ctc=42.851, loss_att=53.455, acc=0.734, loss=50.274, backward_time=0.097, grad_norm=38.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.014e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:28:27,453 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 09:28:47,027 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 09:28:51,002 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 09:28:51,002 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 09:28:51,005 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 09:33:38,223 (trainer:737) INFO: 25epoch:train:12501-12600batch: iter_time=2.659, forward_time=0.104, loss_ctc=39.710, loss_att=55.630, acc=0.716, loss=50.854, backward_time=0.097, grad_norm=39.842, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.013e-04, train_time=3.178 +[gpuc02:0/16] 2024-01-15 09:34:20,268 (trainer:737) INFO: 25epoch:train:12601-12700batch: iter_time=1.176e-04, forward_time=0.103, loss_ctc=41.892, loss_att=40.386, acc=0.750, loss=40.838, backward_time=0.096, grad_norm=37.213, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.013e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 09:35:02,449 (trainer:737) INFO: 25epoch:train:12701-12800batch: iter_time=1.294e-04, forward_time=0.104, loss_ctc=40.113, loss_att=44.597, acc=0.752, loss=43.252, backward_time=0.097, grad_norm=35.928, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.012e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:35:45,063 (trainer:737) INFO: 25epoch:train:12801-12900batch: iter_time=1.217e-04, forward_time=0.104, loss_ctc=52.117, loss_att=58.974, acc=0.709, loss=56.917, backward_time=0.097, grad_norm=46.314, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.012e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 09:36:27,365 (trainer:737) INFO: 25epoch:train:12901-13000batch: iter_time=1.279e-04, forward_time=0.103, loss_ctc=40.895, loss_att=42.514, acc=0.726, loss=42.029, backward_time=0.097, grad_norm=37.293, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.011e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:37:10,328 (trainer:737) INFO: 25epoch:train:13001-13100batch: iter_time=1.287e-04, forward_time=0.104, loss_ctc=37.584, loss_att=45.774, acc=0.727, loss=43.317, backward_time=0.097, grad_norm=38.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.011e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 09:37:53,236 (trainer:737) INFO: 25epoch:train:13101-13200batch: iter_time=1.393e-04, forward_time=0.104, loss_ctc=44.728, loss_att=54.363, acc=0.720, loss=51.472, backward_time=0.097, grad_norm=40.204, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.010e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 09:38:35,832 (trainer:737) INFO: 25epoch:train:13201-13300batch: iter_time=1.348e-04, forward_time=0.105, loss_ctc=48.964, loss_att=56.748, acc=0.722, loss=54.412, backward_time=0.097, grad_norm=43.279, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.010e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 09:39:18,188 (trainer:737) INFO: 25epoch:train:13301-13400batch: iter_time=1.427e-04, forward_time=0.104, loss_ctc=50.262, loss_att=61.448, acc=0.712, loss=58.092, backward_time=0.097, grad_norm=50.601, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.009e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:40:00,425 (trainer:737) INFO: 25epoch:train:13401-13500batch: iter_time=1.466e-04, forward_time=0.105, loss_ctc=45.469, loss_att=49.553, acc=0.728, loss=48.328, backward_time=0.097, grad_norm=41.450, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.009e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:40:42,662 (trainer:737) INFO: 25epoch:train:13501-13600batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=45.860, loss_att=49.237, acc=0.733, loss=48.224, backward_time=0.096, grad_norm=42.728, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.008e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:41:25,073 (trainer:737) INFO: 25epoch:train:13601-13700batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=48.794, loss_att=60.970, acc=0.729, loss=57.317, backward_time=0.096, grad_norm=39.885, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.008e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 09:41:52,334 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 09:42:12,429 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 09:42:16,160 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 09:42:16,161 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 09:42:16,164 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 09:46:48,686 (trainer:737) INFO: 25epoch:train:13701-13800batch: iter_time=2.781, forward_time=0.106, loss_ctc=40.324, loss_att=56.890, acc=0.711, loss=51.920, backward_time=0.097, grad_norm=38.967, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.007e-04, train_time=3.236 +[gpuc02:0/16] 2024-01-15 09:47:30,928 (trainer:737) INFO: 25epoch:train:13801-13900batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=39.051, loss_att=39.964, acc=0.757, loss=39.690, backward_time=0.097, grad_norm=35.304, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.006e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:48:13,192 (trainer:737) INFO: 25epoch:train:13901-14000batch: iter_time=1.645e-04, forward_time=0.104, loss_ctc=42.581, loss_att=46.424, acc=0.744, loss=45.271, backward_time=0.097, grad_norm=37.262, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.006e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:48:55,518 (trainer:737) INFO: 25epoch:train:14001-14100batch: iter_time=1.566e-04, forward_time=0.105, loss_ctc=44.584, loss_att=49.189, acc=0.738, loss=47.808, backward_time=0.097, grad_norm=39.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.005e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:49:37,746 (trainer:737) INFO: 25epoch:train:14101-14200batch: iter_time=1.497e-04, forward_time=0.104, loss_ctc=43.790, loss_att=46.402, acc=0.727, loss=45.618, backward_time=0.097, grad_norm=37.676, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.005e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:50:19,965 (trainer:737) INFO: 25epoch:train:14201-14300batch: iter_time=1.748e-04, forward_time=0.104, loss_ctc=44.330, loss_att=51.560, acc=0.716, loss=49.391, backward_time=0.097, grad_norm=41.582, clip=100.000, loss_scale=3.572e+34, optim_step_time=0.042, optim0_lr0=4.004e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:51:02,183 (trainer:737) INFO: 25epoch:train:14301-14400batch: iter_time=1.367e-04, forward_time=0.105, loss_ctc=45.688, loss_att=49.121, acc=0.735, loss=48.091, backward_time=0.097, grad_norm=40.254, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.004e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:51:44,899 (trainer:737) INFO: 25epoch:train:14401-14500batch: iter_time=1.444e-04, forward_time=0.109, loss_ctc=42.843, loss_att=55.813, acc=0.716, loss=51.922, backward_time=0.097, grad_norm=41.441, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.003e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 09:52:27,219 (trainer:737) INFO: 25epoch:train:14501-14600batch: iter_time=1.298e-04, forward_time=0.105, loss_ctc=54.174, loss_att=56.753, acc=0.720, loss=55.979, backward_time=0.098, grad_norm=53.075, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.003e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 09:53:09,683 (trainer:737) INFO: 25epoch:train:14601-14700batch: iter_time=1.505e-04, forward_time=0.105, loss_ctc=40.758, loss_att=53.934, acc=0.720, loss=49.981, backward_time=0.098, grad_norm=38.457, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.002e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 09:53:51,954 (trainer:737) INFO: 25epoch:train:14701-14800batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=48.250, loss_att=48.486, acc=0.726, loss=48.415, backward_time=0.098, grad_norm=46.128, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.002e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 09:54:34,766 (trainer:737) INFO: 25epoch:train:14801-14900batch: iter_time=1.453e-04, forward_time=0.106, loss_ctc=50.313, loss_att=59.105, acc=0.737, loss=56.467, backward_time=0.098, grad_norm=40.981, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.001e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 09:55:17,370 (trainer:737) INFO: 25epoch:train:14901-15000batch: iter_time=1.255e-04, forward_time=0.106, loss_ctc=42.738, loss_att=53.427, acc=0.728, loss=50.220, backward_time=0.098, grad_norm=40.369, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.001e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 10:15:29,310 (trainer:343) INFO: 25epoch results: [train] iter_time=0.226, forward_time=0.106, loss_ctc=45.470, loss_att=52.221, acc=0.729, loss=50.196, backward_time=0.097, grad_norm=41.415, clip=100.000, loss_scale=2.815e+34, optim_step_time=0.041, optim0_lr0=4.041e-04, train_time=0.660, time=2 hours, 45 minutes and 11.97 seconds, total_count=375000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=52.681, cer_ctc=0.265, loss_att=52.625, acc=0.596, cer=0.350, wer=0.998, loss=52.642, time=20 minutes and 1.43 seconds, total_count=116775, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 10:15:34,455 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-15 10:15:34,477 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/20epoch.pth +[gpuc02:0/16] 2024-01-15 10:15:34,477 (trainer:272) INFO: 26/45epoch started. Estimated time to finish: 2 days, 13 hours and 7 minutes +[gpuc02:0/16] 2024-01-15 10:15:34,486 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 10:15:54,593 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 10:15:58,219 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 10:15:58,219 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 10:15:58,222 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 10:20:49,214 (trainer:737) INFO: 26epoch:train:1-100batch: iter_time=2.472, forward_time=0.152, loss_ctc=39.854, loss_att=42.975, acc=0.737, loss=42.038, backward_time=0.107, grad_norm=37.847, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.045, optim0_lr0=4.000e-04, train_time=3.147 +[gpuc02:0/16] 2024-01-15 10:21:31,897 (trainer:737) INFO: 26epoch:train:101-200batch: iter_time=1.486e-04, forward_time=0.104, loss_ctc=45.292, loss_att=48.228, acc=0.711, loss=47.347, backward_time=0.097, grad_norm=42.478, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.000e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 10:22:14,614 (trainer:737) INFO: 26epoch:train:201-300batch: iter_time=1.506e-04, forward_time=0.103, loss_ctc=42.294, loss_att=44.300, acc=0.736, loss=43.698, backward_time=0.097, grad_norm=41.124, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.999e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 10:22:56,916 (trainer:737) INFO: 26epoch:train:301-400batch: iter_time=1.653e-04, forward_time=0.104, loss_ctc=45.745, loss_att=60.978, acc=0.719, loss=56.408, backward_time=0.098, grad_norm=44.264, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.998e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 10:23:41,659 (trainer:737) INFO: 26epoch:train:401-500batch: iter_time=1.608e-04, forward_time=0.103, loss_ctc=45.172, loss_att=47.089, acc=0.734, loss=46.514, backward_time=0.098, grad_norm=41.110, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.998e-04, train_time=0.447 +[gpuc02:0/16] 2024-01-15 10:24:24,848 (trainer:737) INFO: 26epoch:train:501-600batch: iter_time=1.534e-04, forward_time=0.104, loss_ctc=49.995, loss_att=47.436, acc=0.744, loss=48.204, backward_time=0.098, grad_norm=43.779, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.997e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 10:25:08,660 (trainer:737) INFO: 26epoch:train:601-700batch: iter_time=1.643e-04, forward_time=0.105, loss_ctc=47.521, loss_att=60.071, acc=0.705, loss=56.306, backward_time=0.098, grad_norm=42.355, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.997e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 10:25:50,792 (trainer:737) INFO: 26epoch:train:701-800batch: iter_time=1.458e-04, forward_time=0.106, loss_ctc=42.163, loss_att=50.265, acc=0.710, loss=47.834, backward_time=0.097, grad_norm=41.757, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.996e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 10:26:32,650 (trainer:737) INFO: 26epoch:train:801-900batch: iter_time=1.287e-04, forward_time=0.104, loss_ctc=47.068, loss_att=44.770, acc=0.730, loss=45.459, backward_time=0.097, grad_norm=47.222, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.996e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-15 10:26:35,150 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 10:27:14,559 (trainer:737) INFO: 26epoch:train:901-1000batch: iter_time=9.916e-05, forward_time=0.104, loss_ctc=56.679, loss_att=65.686, acc=0.702, loss=62.984, backward_time=0.097, grad_norm=53.075, clip=100.000, loss_scale=2.182e+34, optim_step_time=0.041, optim0_lr0=3.995e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 10:28:03,430 (trainer:737) INFO: 26epoch:train:1001-1100batch: iter_time=1.120e-04, forward_time=0.144, loss_ctc=50.174, loss_att=57.666, acc=0.700, loss=55.418, backward_time=0.102, grad_norm=51.748, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=3.995e-04, train_time=0.488 +[gpuc02:0/16] 2024-01-15 10:28:48,969 (trainer:737) INFO: 26epoch:train:1101-1200batch: iter_time=1.097e-04, forward_time=0.107, loss_ctc=58.956, loss_att=70.754, acc=0.688, loss=67.214, backward_time=0.099, grad_norm=45.052, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.994e-04, train_time=0.455 +[gpuc02:0/16] 2024-01-15 10:29:33,828 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 10:29:53,143 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 10:29:56,733 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 10:29:56,733 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 10:29:56,736 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 10:36:14,699 (trainer:737) INFO: 26epoch:train:1201-1300batch: iter_time=3.715, forward_time=0.103, loss_ctc=37.801, loss_att=47.984, acc=0.727, loss=44.929, backward_time=0.097, grad_norm=35.928, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.994e-04, train_time=4.457 +[gpuc02:0/16] 2024-01-15 10:36:56,942 (trainer:737) INFO: 26epoch:train:1301-1400batch: iter_time=1.376e-04, forward_time=0.104, loss_ctc=43.930, loss_att=46.508, acc=0.732, loss=45.735, backward_time=0.097, grad_norm=41.699, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.993e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 10:37:39,340 (trainer:737) INFO: 26epoch:train:1401-1500batch: iter_time=1.479e-04, forward_time=0.103, loss_ctc=41.517, loss_att=45.372, acc=0.725, loss=44.215, backward_time=0.097, grad_norm=36.796, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.993e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 10:38:21,832 (trainer:737) INFO: 26epoch:train:1501-1600batch: iter_time=1.294e-04, forward_time=0.105, loss_ctc=43.508, loss_att=47.490, acc=0.742, loss=46.296, backward_time=0.097, grad_norm=41.365, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.992e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 10:39:04,084 (trainer:737) INFO: 26epoch:train:1601-1700batch: iter_time=1.547e-04, forward_time=0.105, loss_ctc=43.227, loss_att=57.469, acc=0.719, loss=53.197, backward_time=0.097, grad_norm=39.692, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.992e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 10:39:46,340 (trainer:737) INFO: 26epoch:train:1701-1800batch: iter_time=1.510e-04, forward_time=0.104, loss_ctc=50.762, loss_att=48.519, acc=0.734, loss=49.192, backward_time=0.097, grad_norm=42.735, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.991e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 10:40:28,659 (trainer:737) INFO: 26epoch:train:1801-1900batch: iter_time=1.321e-04, forward_time=0.104, loss_ctc=46.930, loss_att=50.002, acc=0.738, loss=49.081, backward_time=0.098, grad_norm=41.065, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.991e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 10:41:10,836 (trainer:737) INFO: 26epoch:train:1901-2000batch: iter_time=1.467e-04, forward_time=0.104, loss_ctc=41.666, loss_att=54.169, acc=0.719, loss=50.418, backward_time=0.097, grad_norm=42.017, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.990e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 10:41:53,224 (trainer:737) INFO: 26epoch:train:2001-2100batch: iter_time=1.349e-04, forward_time=0.104, loss_ctc=42.771, loss_att=47.459, acc=0.717, loss=46.053, backward_time=0.097, grad_norm=43.740, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.989e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 10:42:35,765 (trainer:737) INFO: 26epoch:train:2101-2200batch: iter_time=1.372e-04, forward_time=0.104, loss_ctc=50.706, loss_att=53.921, acc=0.718, loss=52.956, backward_time=0.098, grad_norm=48.302, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.989e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 10:43:18,048 (trainer:737) INFO: 26epoch:train:2201-2300batch: iter_time=1.302e-04, forward_time=0.103, loss_ctc=46.655, loss_att=52.500, acc=0.709, loss=50.747, backward_time=0.097, grad_norm=45.694, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.988e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 10:44:00,485 (trainer:737) INFO: 26epoch:train:2301-2400batch: iter_time=1.169e-04, forward_time=0.105, loss_ctc=54.423, loss_att=71.857, acc=0.687, loss=66.627, backward_time=0.098, grad_norm=49.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.988e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 10:44:42,786 (trainer:737) INFO: 26epoch:train:2401-2500batch: iter_time=1.112e-04, forward_time=0.104, loss_ctc=50.355, loss_att=61.319, acc=0.710, loss=58.030, backward_time=0.097, grad_norm=39.938, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.987e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 10:44:47,322 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 10:45:06,614 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 10:45:10,453 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 10:45:10,453 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 10:45:10,456 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 10:50:24,625 (trainer:737) INFO: 26epoch:train:2501-2600batch: iter_time=2.644, forward_time=0.107, loss_ctc=38.484, loss_att=41.361, acc=0.746, loss=40.498, backward_time=0.098, grad_norm=35.020, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.987e-04, train_time=3.418 +[gpuc02:0/16] 2024-01-15 10:51:07,339 (trainer:737) INFO: 26epoch:train:2601-2700batch: iter_time=1.327e-04, forward_time=0.104, loss_ctc=43.471, loss_att=47.069, acc=0.714, loss=45.990, backward_time=0.097, grad_norm=39.211, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.986e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 10:51:49,556 (trainer:737) INFO: 26epoch:train:2701-2800batch: iter_time=1.214e-04, forward_time=0.104, loss_ctc=40.953, loss_att=43.654, acc=0.742, loss=42.844, backward_time=0.097, grad_norm=40.362, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.986e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 10:52:32,552 (trainer:737) INFO: 26epoch:train:2801-2900batch: iter_time=1.317e-04, forward_time=0.104, loss_ctc=44.503, loss_att=60.607, acc=0.723, loss=55.776, backward_time=0.097, grad_norm=40.324, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.985e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 10:53:15,087 (trainer:737) INFO: 26epoch:train:2901-3000batch: iter_time=1.243e-04, forward_time=0.104, loss_ctc=44.180, loss_att=45.664, acc=0.738, loss=45.219, backward_time=0.096, grad_norm=39.555, clip=100.000, loss_scale=4.029e+34, optim_step_time=0.041, optim0_lr0=3.985e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 10:53:57,233 (trainer:737) INFO: 26epoch:train:3001-3100batch: iter_time=1.187e-04, forward_time=0.103, loss_ctc=48.479, loss_att=45.995, acc=0.748, loss=46.740, backward_time=0.096, grad_norm=42.332, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=3.984e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 10:54:39,740 (trainer:737) INFO: 26epoch:train:3101-3200batch: iter_time=1.272e-04, forward_time=0.104, loss_ctc=45.970, loss_att=59.210, acc=0.709, loss=55.238, backward_time=0.097, grad_norm=42.200, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.984e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 10:55:21,866 (trainer:737) INFO: 26epoch:train:3201-3300batch: iter_time=1.476e-04, forward_time=0.103, loss_ctc=41.929, loss_att=50.015, acc=0.712, loss=47.589, backward_time=0.097, grad_norm=45.253, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.983e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 10:56:04,096 (trainer:737) INFO: 26epoch:train:3301-3400batch: iter_time=1.422e-04, forward_time=0.103, loss_ctc=44.170, loss_att=43.285, acc=0.737, loss=43.550, backward_time=0.097, grad_norm=43.321, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.983e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 10:56:46,577 (trainer:737) INFO: 26epoch:train:3401-3500batch: iter_time=1.267e-04, forward_time=0.104, loss_ctc=54.821, loss_att=64.776, acc=0.704, loss=61.790, backward_time=0.098, grad_norm=51.349, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.982e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 10:57:28,909 (trainer:737) INFO: 26epoch:train:3501-3600batch: iter_time=1.440e-04, forward_time=0.104, loss_ctc=47.715, loss_att=56.875, acc=0.703, loss=54.127, backward_time=0.097, grad_norm=51.154, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.982e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 10:58:12,021 (trainer:737) INFO: 26epoch:train:3601-3700batch: iter_time=1.481e-04, forward_time=0.107, loss_ctc=57.450, loss_att=69.513, acc=0.692, loss=65.894, backward_time=0.098, grad_norm=45.381, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.981e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 10:58:38,210 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 10:58:57,325 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 10:59:00,845 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 10:59:00,846 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 10:59:00,849 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 11:03:50,502 (trainer:737) INFO: 26epoch:train:3701-3800batch: iter_time=2.498, forward_time=0.106, loss_ctc=36.858, loss_att=49.395, acc=0.732, loss=45.634, backward_time=0.097, grad_norm=35.337, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.980e-04, train_time=3.385 +[gpuc02:0/16] 2024-01-15 11:04:32,235 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 11:04:32,654 (trainer:737) INFO: 26epoch:train:3801-3900batch: iter_time=1.165e-04, forward_time=0.103, loss_ctc=43.001, loss_att=48.421, acc=0.732, loss=46.795, backward_time=0.097, grad_norm=40.369, clip=100.000, loss_scale=4.133e+34, optim_step_time=0.041, optim0_lr0=3.980e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 11:05:14,745 (trainer:737) INFO: 26epoch:train:3901-4000batch: iter_time=1.154e-04, forward_time=0.103, loss_ctc=40.325, loss_att=45.992, acc=0.732, loss=44.292, backward_time=0.096, grad_norm=38.218, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.979e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 11:05:57,086 (trainer:737) INFO: 26epoch:train:4001-4100batch: iter_time=1.185e-04, forward_time=0.103, loss_ctc=42.304, loss_att=48.361, acc=0.748, loss=46.544, backward_time=0.097, grad_norm=38.583, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.979e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:06:39,612 (trainer:737) INFO: 26epoch:train:4101-4200batch: iter_time=1.086e-04, forward_time=0.103, loss_ctc=42.658, loss_att=58.015, acc=0.727, loss=53.408, backward_time=0.097, grad_norm=41.793, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.978e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:07:22,685 (trainer:737) INFO: 26epoch:train:4201-4300batch: iter_time=1.207e-04, forward_time=0.103, loss_ctc=49.689, loss_att=51.074, acc=0.735, loss=50.658, backward_time=0.097, grad_norm=42.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.978e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 11:08:05,037 (trainer:737) INFO: 26epoch:train:4301-4400batch: iter_time=1.164e-04, forward_time=0.104, loss_ctc=45.425, loss_att=50.802, acc=0.741, loss=49.189, backward_time=0.097, grad_norm=40.961, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.977e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:08:47,576 (trainer:737) INFO: 26epoch:train:4401-4500batch: iter_time=1.050e-04, forward_time=0.103, loss_ctc=41.154, loss_att=54.467, acc=0.733, loss=50.473, backward_time=0.097, grad_norm=38.005, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.977e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:09:30,308 (trainer:737) INFO: 26epoch:train:4501-4600batch: iter_time=1.387e-04, forward_time=0.103, loss_ctc=42.367, loss_att=50.818, acc=0.725, loss=48.283, backward_time=0.097, grad_norm=44.046, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.976e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 11:10:12,793 (trainer:737) INFO: 26epoch:train:4601-4700batch: iter_time=1.178e-04, forward_time=0.104, loss_ctc=49.323, loss_att=54.051, acc=0.724, loss=52.633, backward_time=0.097, grad_norm=47.022, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.976e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:10:55,007 (trainer:737) INFO: 26epoch:train:4701-4800batch: iter_time=1.139e-04, forward_time=0.103, loss_ctc=45.970, loss_att=54.852, acc=0.723, loss=52.187, backward_time=0.097, grad_norm=44.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.975e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 11:11:37,801 (trainer:737) INFO: 26epoch:train:4801-4900batch: iter_time=1.060e-04, forward_time=0.105, loss_ctc=53.215, loss_att=75.705, acc=0.683, loss=68.958, backward_time=0.098, grad_norm=49.592, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.975e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 11:12:20,168 (trainer:737) INFO: 26epoch:train:4901-5000batch: iter_time=9.972e-05, forward_time=0.104, loss_ctc=50.624, loss_att=60.727, acc=0.722, loss=57.696, backward_time=0.098, grad_norm=41.393, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.974e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:12:27,095 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 11:12:46,150 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 11:12:49,667 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 11:12:49,667 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 11:12:49,671 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 11:17:47,687 (trainer:737) INFO: 26epoch:train:5001-5100batch: iter_time=2.495, forward_time=0.124, loss_ctc=38.385, loss_att=42.402, acc=0.745, loss=41.197, backward_time=0.102, grad_norm=35.137, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.974e-04, train_time=3.275 +[gpuc02:0/16] 2024-01-15 11:18:29,844 (trainer:737) INFO: 26epoch:train:5101-5200batch: iter_time=1.027e-04, forward_time=0.103, loss_ctc=43.296, loss_att=48.901, acc=0.711, loss=47.220, backward_time=0.096, grad_norm=43.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.973e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 11:19:12,213 (trainer:737) INFO: 26epoch:train:5201-5300batch: iter_time=9.765e-05, forward_time=0.103, loss_ctc=40.222, loss_att=43.748, acc=0.742, loss=42.690, backward_time=0.096, grad_norm=36.324, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.973e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:19:54,522 (trainer:737) INFO: 26epoch:train:5301-5400batch: iter_time=1.053e-04, forward_time=0.104, loss_ctc=43.571, loss_att=61.360, acc=0.719, loss=56.023, backward_time=0.097, grad_norm=40.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.972e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:20:36,692 (trainer:737) INFO: 26epoch:train:5401-5500batch: iter_time=1.142e-04, forward_time=0.104, loss_ctc=43.995, loss_att=46.481, acc=0.739, loss=45.735, backward_time=0.096, grad_norm=38.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.972e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 11:21:19,567 (trainer:737) INFO: 26epoch:train:5501-5600batch: iter_time=1.169e-04, forward_time=0.103, loss_ctc=47.253, loss_att=45.985, acc=0.751, loss=46.366, backward_time=0.097, grad_norm=40.269, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.971e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 11:22:02,024 (trainer:737) INFO: 26epoch:train:5601-5700batch: iter_time=1.125e-04, forward_time=0.104, loss_ctc=44.777, loss_att=59.109, acc=0.710, loss=54.809, backward_time=0.097, grad_norm=40.158, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.971e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 11:22:44,264 (trainer:737) INFO: 26epoch:train:5701-5800batch: iter_time=9.848e-05, forward_time=0.103, loss_ctc=41.052, loss_att=50.566, acc=0.712, loss=47.712, backward_time=0.097, grad_norm=41.476, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.970e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 11:23:26,861 (trainer:737) INFO: 26epoch:train:5801-5900batch: iter_time=1.034e-04, forward_time=0.107, loss_ctc=43.336, loss_att=43.637, acc=0.735, loss=43.546, backward_time=0.097, grad_norm=42.952, clip=100.000, loss_scale=2.098e+34, optim_step_time=0.041, optim0_lr0=3.970e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 11:24:09,716 (trainer:737) INFO: 26epoch:train:5901-6000batch: iter_time=9.190e-05, forward_time=0.105, loss_ctc=53.442, loss_att=64.495, acc=0.706, loss=61.179, backward_time=0.098, grad_norm=47.828, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.969e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 11:24:52,896 (trainer:737) INFO: 26epoch:train:6001-6100batch: iter_time=9.741e-05, forward_time=0.105, loss_ctc=46.825, loss_att=56.828, acc=0.705, loss=53.828, backward_time=0.097, grad_norm=50.001, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.968e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 11:25:35,468 (trainer:737) INFO: 26epoch:train:6101-6200batch: iter_time=1.173e-04, forward_time=0.106, loss_ctc=57.764, loss_att=69.602, acc=0.691, loss=66.050, backward_time=0.097, grad_norm=45.962, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.968e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:25:59,391 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 11:26:19,082 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 11:26:22,752 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 11:26:22,752 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 11:26:22,775 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 11:30:54,087 (trainer:737) INFO: 26epoch:train:6201-6300batch: iter_time=2.429, forward_time=0.103, loss_ctc=36.715, loss_att=48.458, acc=0.733, loss=44.935, backward_time=0.097, grad_norm=34.648, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.967e-04, train_time=3.186 +[gpuc02:0/16] 2024-01-15 11:31:36,449 (trainer:737) INFO: 26epoch:train:6301-6400batch: iter_time=1.096e-04, forward_time=0.103, loss_ctc=42.723, loss_att=48.316, acc=0.733, loss=46.638, backward_time=0.097, grad_norm=41.612, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.967e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:32:18,714 (trainer:737) INFO: 26epoch:train:6401-6500batch: iter_time=1.194e-04, forward_time=0.103, loss_ctc=39.790, loss_att=45.623, acc=0.731, loss=43.873, backward_time=0.096, grad_norm=35.979, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.966e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 11:33:01,273 (trainer:737) INFO: 26epoch:train:6501-6600batch: iter_time=1.187e-04, forward_time=0.104, loss_ctc=42.038, loss_att=47.856, acc=0.750, loss=46.111, backward_time=0.097, grad_norm=38.935, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.966e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:33:43,750 (trainer:737) INFO: 26epoch:train:6601-6700batch: iter_time=1.292e-04, forward_time=0.103, loss_ctc=42.352, loss_att=57.259, acc=0.729, loss=52.787, backward_time=0.097, grad_norm=39.744, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.965e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:34:26,031 (trainer:737) INFO: 26epoch:train:6701-6800batch: iter_time=1.361e-04, forward_time=0.103, loss_ctc=49.506, loss_att=50.503, acc=0.737, loss=50.203, backward_time=0.096, grad_norm=43.260, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.965e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:35:08,515 (trainer:737) INFO: 26epoch:train:6801-6900batch: iter_time=1.349e-04, forward_time=0.104, loss_ctc=44.878, loss_att=51.174, acc=0.739, loss=49.285, backward_time=0.097, grad_norm=40.754, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.964e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:35:50,803 (trainer:737) INFO: 26epoch:train:6901-7000batch: iter_time=1.425e-04, forward_time=0.104, loss_ctc=40.799, loss_att=54.347, acc=0.735, loss=50.282, backward_time=0.097, grad_norm=38.660, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.964e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:36:33,067 (trainer:737) INFO: 26epoch:train:7001-7100batch: iter_time=1.344e-04, forward_time=0.104, loss_ctc=41.262, loss_att=49.999, acc=0.727, loss=47.378, backward_time=0.097, grad_norm=43.336, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.963e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 11:37:16,079 (trainer:737) INFO: 26epoch:train:7101-7200batch: iter_time=1.236e-04, forward_time=0.103, loss_ctc=48.751, loss_att=53.323, acc=0.727, loss=51.951, backward_time=0.097, grad_norm=47.565, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.963e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 11:37:58,444 (trainer:737) INFO: 26epoch:train:7201-7300batch: iter_time=1.157e-04, forward_time=0.103, loss_ctc=45.553, loss_att=54.450, acc=0.722, loss=51.781, backward_time=0.097, grad_norm=43.372, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.962e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:38:41,340 (trainer:737) INFO: 26epoch:train:7301-7400batch: iter_time=1.265e-04, forward_time=0.104, loss_ctc=52.760, loss_att=75.592, acc=0.685, loss=68.742, backward_time=0.098, grad_norm=48.324, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.962e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 11:39:24,188 (trainer:737) INFO: 26epoch:train:7401-7500batch: iter_time=1.199e-04, forward_time=0.103, loss_ctc=50.415, loss_att=60.462, acc=0.723, loss=57.448, backward_time=0.097, grad_norm=40.325, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.961e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 11:39:28,996 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 11:39:47,939 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 11:39:51,577 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 11:39:51,577 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 11:39:51,580 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 11:44:45,726 (trainer:737) INFO: 26epoch:train:7501-7600batch: iter_time=2.452, forward_time=0.103, loss_ctc=38.195, loss_att=41.520, acc=0.749, loss=40.523, backward_time=0.096, grad_norm=33.133, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.961e-04, train_time=3.215 +[gpuc02:0/16] 2024-01-15 11:45:28,266 (trainer:737) INFO: 26epoch:train:7601-7700batch: iter_time=9.819e-05, forward_time=0.104, loss_ctc=42.928, loss_att=47.328, acc=0.723, loss=46.008, backward_time=0.096, grad_norm=42.455, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.960e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 11:46:10,574 (trainer:737) INFO: 26epoch:train:7701-7800batch: iter_time=1.036e-04, forward_time=0.103, loss_ctc=39.982, loss_att=43.085, acc=0.752, loss=42.154, backward_time=0.096, grad_norm=37.103, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.960e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:46:53,531 (trainer:737) INFO: 26epoch:train:7801-7900batch: iter_time=1.043e-04, forward_time=0.104, loss_ctc=43.070, loss_att=60.026, acc=0.726, loss=54.939, backward_time=0.097, grad_norm=39.119, clip=100.000, loss_scale=4.195e+34, optim_step_time=0.042, optim0_lr0=3.959e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 11:47:35,805 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 11:47:36,235 (trainer:737) INFO: 26epoch:train:7901-8000batch: iter_time=1.071e-04, forward_time=0.103, loss_ctc=43.837, loss_att=46.094, acc=0.753, loss=45.417, backward_time=0.096, grad_norm=38.733, clip=100.000, loss_scale=8.266e+34, optim_step_time=0.042, optim0_lr0=3.959e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 11:47:39,151 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 11:48:18,575 (trainer:737) INFO: 26epoch:train:8001-8100batch: iter_time=1.019e-04, forward_time=0.103, loss_ctc=47.144, loss_att=48.244, acc=0.749, loss=47.914, backward_time=0.097, grad_norm=42.341, clip=100.000, loss_scale=2.203e+34, optim_step_time=0.042, optim0_lr0=3.958e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 11:49:00,961 (trainer:737) INFO: 26epoch:train:8101-8200batch: iter_time=1.002e-04, forward_time=0.104, loss_ctc=44.853, loss_att=59.294, acc=0.715, loss=54.962, backward_time=0.097, grad_norm=41.928, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.958e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 11:49:43,217 (trainer:737) INFO: 26epoch:train:8201-8300batch: iter_time=1.051e-04, forward_time=0.103, loss_ctc=42.044, loss_att=53.058, acc=0.720, loss=49.754, backward_time=0.096, grad_norm=42.247, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.957e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 11:50:26,603 (trainer:737) INFO: 26epoch:train:8301-8400batch: iter_time=1.052e-04, forward_time=0.104, loss_ctc=43.492, loss_att=43.937, acc=0.744, loss=43.803, backward_time=0.097, grad_norm=42.270, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.957e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 11:51:09,377 (trainer:737) INFO: 26epoch:train:8401-8500batch: iter_time=9.858e-05, forward_time=0.105, loss_ctc=52.720, loss_att=64.506, acc=0.722, loss=60.970, backward_time=0.097, grad_norm=47.420, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.956e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 11:51:52,142 (trainer:737) INFO: 26epoch:train:8501-8600batch: iter_time=1.010e-04, forward_time=0.105, loss_ctc=46.238, loss_att=58.707, acc=0.714, loss=54.967, backward_time=0.097, grad_norm=48.065, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.956e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 11:52:36,167 (trainer:737) INFO: 26epoch:train:8601-8700batch: iter_time=1.024e-04, forward_time=0.105, loss_ctc=57.968, loss_att=71.149, acc=0.695, loss=67.195, backward_time=0.098, grad_norm=47.707, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.955e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-15 11:52:59,774 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 11:53:20,215 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 11:53:23,921 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 11:53:23,921 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 11:53:23,925 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 11:58:37,212 (trainer:737) INFO: 26epoch:train:8701-8800batch: iter_time=2.474, forward_time=0.103, loss_ctc=36.468, loss_att=47.575, acc=0.739, loss=44.243, backward_time=0.096, grad_norm=35.790, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.954e-04, train_time=3.610 +[gpuc02:0/16] 2024-01-15 11:59:19,417 (trainer:737) INFO: 26epoch:train:8801-8900batch: iter_time=1.166e-04, forward_time=0.103, loss_ctc=41.953, loss_att=46.973, acc=0.734, loss=45.467, backward_time=0.096, grad_norm=39.278, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.954e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 12:00:01,503 (trainer:737) INFO: 26epoch:train:8901-9000batch: iter_time=1.205e-04, forward_time=0.102, loss_ctc=39.728, loss_att=45.477, acc=0.727, loss=43.752, backward_time=0.096, grad_norm=36.531, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.953e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 12:00:43,999 (trainer:737) INFO: 26epoch:train:9001-9100batch: iter_time=1.331e-04, forward_time=0.103, loss_ctc=41.876, loss_att=47.786, acc=0.745, loss=46.013, backward_time=0.097, grad_norm=40.237, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.953e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:01:26,097 (trainer:737) INFO: 26epoch:train:9101-9200batch: iter_time=1.277e-04, forward_time=0.102, loss_ctc=41.693, loss_att=57.352, acc=0.722, loss=52.654, backward_time=0.096, grad_norm=37.902, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.952e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 12:02:08,512 (trainer:737) INFO: 26epoch:train:9201-9300batch: iter_time=1.208e-04, forward_time=0.102, loss_ctc=49.149, loss_att=48.413, acc=0.737, loss=48.634, backward_time=0.097, grad_norm=42.091, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.952e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:02:51,001 (trainer:737) INFO: 26epoch:train:9301-9400batch: iter_time=1.238e-04, forward_time=0.103, loss_ctc=44.492, loss_att=50.249, acc=0.740, loss=48.522, backward_time=0.097, grad_norm=40.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.951e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:03:33,684 (trainer:737) INFO: 26epoch:train:9401-9500batch: iter_time=1.283e-04, forward_time=0.105, loss_ctc=40.135, loss_att=53.927, acc=0.722, loss=49.789, backward_time=0.096, grad_norm=39.796, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.951e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 12:04:15,813 (trainer:737) INFO: 26epoch:train:9501-9600batch: iter_time=1.215e-04, forward_time=0.102, loss_ctc=41.491, loss_att=48.338, acc=0.717, loss=46.284, backward_time=0.096, grad_norm=43.098, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.950e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 12:04:59,194 (trainer:737) INFO: 26epoch:train:9601-9700batch: iter_time=1.292e-04, forward_time=0.103, loss_ctc=47.986, loss_att=53.267, acc=0.722, loss=51.683, backward_time=0.097, grad_norm=46.571, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.950e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 12:05:41,786 (trainer:737) INFO: 26epoch:train:9701-9800batch: iter_time=1.396e-04, forward_time=0.103, loss_ctc=45.049, loss_att=52.606, acc=0.711, loss=50.339, backward_time=0.096, grad_norm=42.640, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.949e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 12:06:24,283 (trainer:737) INFO: 26epoch:train:9801-9900batch: iter_time=1.742e-04, forward_time=0.105, loss_ctc=52.361, loss_att=71.713, acc=0.689, loss=65.907, backward_time=0.098, grad_norm=46.096, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.949e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:07:06,696 (trainer:737) INFO: 26epoch:train:9901-10000batch: iter_time=1.736e-04, forward_time=0.105, loss_ctc=49.698, loss_att=60.927, acc=0.712, loss=57.558, backward_time=0.098, grad_norm=42.553, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.948e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:07:13,226 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 12:07:32,416 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 12:07:36,022 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 12:07:36,022 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 12:07:36,026 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 12:12:30,708 (trainer:737) INFO: 26epoch:train:10001-10100batch: iter_time=2.496, forward_time=0.104, loss_ctc=37.652, loss_att=42.390, acc=0.748, loss=40.969, backward_time=0.097, grad_norm=34.604, clip=100.000, loss_scale=4.008e+34, optim_step_time=0.042, optim0_lr0=3.948e-04, train_time=3.240 +[gpuc02:0/16] 2024-01-15 12:13:12,884 (trainer:737) INFO: 26epoch:train:10101-10200batch: iter_time=1.544e-04, forward_time=0.104, loss_ctc=42.630, loss_att=48.870, acc=0.720, loss=46.998, backward_time=0.097, grad_norm=39.490, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.947e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 12:13:55,051 (trainer:737) INFO: 26epoch:train:10201-10300batch: iter_time=1.499e-04, forward_time=0.104, loss_ctc=39.753, loss_att=43.251, acc=0.752, loss=42.202, backward_time=0.097, grad_norm=35.993, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.947e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 12:14:37,486 (trainer:737) INFO: 26epoch:train:10301-10400batch: iter_time=1.746e-04, forward_time=0.105, loss_ctc=43.165, loss_att=61.167, acc=0.724, loss=55.766, backward_time=0.098, grad_norm=40.148, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.946e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:15:20,006 (trainer:737) INFO: 26epoch:train:10401-10500batch: iter_time=1.646e-04, forward_time=0.104, loss_ctc=43.565, loss_att=46.086, acc=0.754, loss=45.330, backward_time=0.097, grad_norm=39.582, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.946e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:16:02,355 (trainer:737) INFO: 26epoch:train:10501-10600batch: iter_time=1.612e-04, forward_time=0.105, loss_ctc=48.306, loss_att=48.466, acc=0.750, loss=48.418, backward_time=0.098, grad_norm=44.033, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.945e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:16:44,851 (trainer:737) INFO: 26epoch:train:10601-10700batch: iter_time=1.367e-04, forward_time=0.105, loss_ctc=44.506, loss_att=60.034, acc=0.717, loss=55.376, backward_time=0.098, grad_norm=41.768, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.945e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:17:27,153 (trainer:737) INFO: 26epoch:train:10701-10800batch: iter_time=1.792e-04, forward_time=0.104, loss_ctc=41.009, loss_att=53.275, acc=0.720, loss=49.595, backward_time=0.097, grad_norm=43.247, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=3.944e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:17:32,601 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 12:18:09,405 (trainer:737) INFO: 26epoch:train:10801-10900batch: iter_time=1.644e-04, forward_time=0.103, loss_ctc=43.185, loss_att=43.551, acc=0.745, loss=43.441, backward_time=0.098, grad_norm=43.734, clip=100.000, loss_scale=2.329e+34, optim_step_time=0.042, optim0_lr0=3.944e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 12:18:52,284 (trainer:737) INFO: 26epoch:train:10901-11000batch: iter_time=1.590e-04, forward_time=0.105, loss_ctc=51.945, loss_att=65.068, acc=0.721, loss=61.131, backward_time=0.099, grad_norm=46.318, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.943e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 12:19:35,005 (trainer:737) INFO: 26epoch:train:11001-11100batch: iter_time=1.694e-04, forward_time=0.105, loss_ctc=45.851, loss_att=58.023, acc=0.714, loss=54.371, backward_time=0.098, grad_norm=46.558, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.943e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 12:20:17,556 (trainer:737) INFO: 26epoch:train:11101-11200batch: iter_time=1.623e-04, forward_time=0.105, loss_ctc=57.468, loss_att=71.098, acc=0.694, loss=67.009, backward_time=0.098, grad_norm=46.180, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.942e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:20:44,784 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 12:21:04,768 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 12:21:08,409 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 12:21:08,409 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 12:21:08,412 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 12:25:35,856 (trainer:737) INFO: 26epoch:train:11201-11300batch: iter_time=2.486, forward_time=0.104, loss_ctc=35.851, loss_att=45.979, acc=0.746, loss=42.940, backward_time=0.097, grad_norm=33.552, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.942e-04, train_time=3.183 +[gpuc02:0/16] 2024-01-15 12:26:18,190 (trainer:737) INFO: 26epoch:train:11301-11400batch: iter_time=1.413e-04, forward_time=0.105, loss_ctc=42.626, loss_att=47.004, acc=0.736, loss=45.691, backward_time=0.097, grad_norm=38.173, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.941e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:27:00,768 (trainer:737) INFO: 26epoch:train:11401-11500batch: iter_time=1.438e-04, forward_time=0.105, loss_ctc=39.273, loss_att=43.650, acc=0.741, loss=42.337, backward_time=0.097, grad_norm=34.181, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.941e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 12:27:43,142 (trainer:737) INFO: 26epoch:train:11501-11600batch: iter_time=1.604e-04, forward_time=0.105, loss_ctc=41.651, loss_att=46.879, acc=0.752, loss=45.311, backward_time=0.098, grad_norm=36.121, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.940e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:28:25,500 (trainer:737) INFO: 26epoch:train:11601-11700batch: iter_time=1.687e-04, forward_time=0.105, loss_ctc=41.788, loss_att=56.113, acc=0.734, loss=51.816, backward_time=0.097, grad_norm=38.777, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.940e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:29:07,807 (trainer:737) INFO: 26epoch:train:11701-11800batch: iter_time=1.692e-04, forward_time=0.106, loss_ctc=48.442, loss_att=50.436, acc=0.739, loss=49.838, backward_time=0.097, grad_norm=43.602, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.939e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:29:50,151 (trainer:737) INFO: 26epoch:train:11801-11900batch: iter_time=1.732e-04, forward_time=0.106, loss_ctc=44.025, loss_att=50.543, acc=0.741, loss=48.588, backward_time=0.098, grad_norm=40.776, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.939e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:30:32,528 (trainer:737) INFO: 26epoch:train:11901-12000batch: iter_time=1.779e-04, forward_time=0.105, loss_ctc=40.326, loss_att=53.796, acc=0.734, loss=49.755, backward_time=0.097, grad_norm=38.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.938e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:31:14,768 (trainer:737) INFO: 26epoch:train:12001-12100batch: iter_time=1.577e-04, forward_time=0.105, loss_ctc=41.071, loss_att=48.832, acc=0.732, loss=46.504, backward_time=0.097, grad_norm=43.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.938e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 12:31:57,570 (trainer:737) INFO: 26epoch:train:12101-12200batch: iter_time=1.713e-04, forward_time=0.105, loss_ctc=47.952, loss_att=51.884, acc=0.732, loss=50.704, backward_time=0.097, grad_norm=45.456, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.937e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 12:32:40,028 (trainer:737) INFO: 26epoch:train:12201-12300batch: iter_time=1.593e-04, forward_time=0.105, loss_ctc=45.351, loss_att=52.950, acc=0.730, loss=50.670, backward_time=0.097, grad_norm=42.616, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.937e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:33:23,014 (trainer:737) INFO: 26epoch:train:12301-12400batch: iter_time=1.568e-04, forward_time=0.107, loss_ctc=51.868, loss_att=73.788, acc=0.689, loss=67.212, backward_time=0.098, grad_norm=49.575, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.936e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 12:34:05,592 (trainer:737) INFO: 26epoch:train:12401-12500batch: iter_time=1.319e-04, forward_time=0.105, loss_ctc=49.789, loss_att=59.737, acc=0.727, loss=56.753, backward_time=0.098, grad_norm=42.104, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.936e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 12:34:12,197 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 12:34:31,483 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 12:34:35,024 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 12:34:35,024 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 12:34:35,027 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 12:39:27,489 (trainer:737) INFO: 26epoch:train:12501-12600batch: iter_time=2.476, forward_time=0.102, loss_ctc=37.856, loss_att=43.376, acc=0.745, loss=41.720, backward_time=0.096, grad_norm=34.188, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.935e-04, train_time=3.219 +[gpuc02:0/16] 2024-01-15 12:40:09,650 (trainer:737) INFO: 26epoch:train:12601-12700batch: iter_time=9.403e-05, forward_time=0.103, loss_ctc=42.640, loss_att=48.953, acc=0.711, loss=47.059, backward_time=0.096, grad_norm=43.720, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.935e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 12:40:52,217 (trainer:737) INFO: 26epoch:train:12701-12800batch: iter_time=1.056e-04, forward_time=0.103, loss_ctc=40.168, loss_att=44.157, acc=0.743, loss=42.961, backward_time=0.097, grad_norm=35.793, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.934e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 12:41:34,554 (trainer:737) INFO: 26epoch:train:12801-12900batch: iter_time=1.037e-04, forward_time=0.104, loss_ctc=42.845, loss_att=60.202, acc=0.725, loss=54.995, backward_time=0.098, grad_norm=40.750, clip=100.000, loss_scale=3.884e+34, optim_step_time=0.042, optim0_lr0=3.934e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:42:16,793 (trainer:737) INFO: 26epoch:train:12901-13000batch: iter_time=1.082e-04, forward_time=0.103, loss_ctc=43.009, loss_att=45.943, acc=0.741, loss=45.063, backward_time=0.097, grad_norm=37.880, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.933e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 12:42:59,392 (trainer:737) INFO: 26epoch:train:13001-13100batch: iter_time=1.316e-04, forward_time=0.104, loss_ctc=46.471, loss_att=45.942, acc=0.749, loss=46.101, backward_time=0.097, grad_norm=41.037, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.933e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 12:43:42,301 (trainer:737) INFO: 26epoch:train:13101-13200batch: iter_time=1.405e-04, forward_time=0.104, loss_ctc=43.704, loss_att=59.956, acc=0.708, loss=55.081, backward_time=0.097, grad_norm=41.906, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.932e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 12:44:24,449 (trainer:737) INFO: 26epoch:train:13201-13300batch: iter_time=1.531e-04, forward_time=0.102, loss_ctc=41.078, loss_att=50.791, acc=0.713, loss=47.877, backward_time=0.096, grad_norm=41.186, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.932e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 12:45:07,327 (trainer:737) INFO: 26epoch:train:13301-13400batch: iter_time=1.381e-04, forward_time=0.103, loss_ctc=42.830, loss_att=43.014, acc=0.739, loss=42.959, backward_time=0.097, grad_norm=42.802, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.931e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 12:45:49,901 (trainer:737) INFO: 26epoch:train:13401-13500batch: iter_time=1.367e-04, forward_time=0.104, loss_ctc=51.924, loss_att=63.807, acc=0.706, loss=60.242, backward_time=0.097, grad_norm=47.941, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.930e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 12:46:32,586 (trainer:737) INFO: 26epoch:train:13501-13600batch: iter_time=1.117e-04, forward_time=0.104, loss_ctc=45.212, loss_att=56.238, acc=0.706, loss=52.930, backward_time=0.097, grad_norm=47.053, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.930e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 12:47:15,932 (trainer:737) INFO: 26epoch:train:13601-13700batch: iter_time=1.056e-04, forward_time=0.104, loss_ctc=56.893, loss_att=69.537, acc=0.693, loss=65.744, backward_time=0.098, grad_norm=45.800, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.929e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 12:47:39,486 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 12:47:59,900 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 12:48:03,982 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 12:48:03,982 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 12:48:03,985 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 12:52:34,920 (trainer:737) INFO: 26epoch:train:13701-13800batch: iter_time=2.480, forward_time=0.103, loss_ctc=36.049, loss_att=47.760, acc=0.736, loss=44.247, backward_time=0.097, grad_norm=35.320, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.929e-04, train_time=3.190 +[gpuc02:0/16] 2024-01-15 12:53:17,658 (trainer:737) INFO: 26epoch:train:13801-13900batch: iter_time=1.264e-04, forward_time=0.105, loss_ctc=41.496, loss_att=47.565, acc=0.735, loss=45.745, backward_time=0.097, grad_norm=37.176, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.928e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 12:53:43,031 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 12:53:59,980 (trainer:737) INFO: 26epoch:train:13901-14000batch: iter_time=1.498e-04, forward_time=0.105, loss_ctc=39.338, loss_att=44.208, acc=0.737, loss=42.747, backward_time=0.097, grad_norm=36.191, clip=100.000, loss_scale=3.315e+34, optim_step_time=0.042, optim0_lr0=3.928e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 12:54:42,439 (trainer:737) INFO: 26epoch:train:14001-14100batch: iter_time=1.188e-04, forward_time=0.104, loss_ctc=41.989, loss_att=47.470, acc=0.751, loss=45.825, backward_time=0.097, grad_norm=39.696, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.927e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:55:25,113 (trainer:737) INFO: 26epoch:train:14101-14200batch: iter_time=1.481e-04, forward_time=0.104, loss_ctc=42.469, loss_att=57.552, acc=0.731, loss=53.027, backward_time=0.098, grad_norm=39.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.927e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 12:56:07,553 (trainer:737) INFO: 26epoch:train:14201-14300batch: iter_time=1.487e-04, forward_time=0.104, loss_ctc=49.103, loss_att=49.879, acc=0.739, loss=49.646, backward_time=0.097, grad_norm=44.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.926e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:56:50,020 (trainer:737) INFO: 26epoch:train:14301-14400batch: iter_time=1.439e-04, forward_time=0.105, loss_ctc=44.049, loss_att=50.449, acc=0.742, loss=48.529, backward_time=0.098, grad_norm=41.234, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.926e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:57:32,463 (trainer:737) INFO: 26epoch:train:14401-14500batch: iter_time=1.449e-04, forward_time=0.105, loss_ctc=40.405, loss_att=53.417, acc=0.737, loss=49.513, backward_time=0.098, grad_norm=38.647, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.925e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 12:58:15,861 (trainer:737) INFO: 26epoch:train:14501-14600batch: iter_time=1.265e-04, forward_time=0.106, loss_ctc=41.088, loss_att=49.478, acc=0.730, loss=46.961, backward_time=0.098, grad_norm=43.152, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.925e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 12:59:00,152 (trainer:737) INFO: 26epoch:train:14601-14700batch: iter_time=1.258e-04, forward_time=0.104, loss_ctc=47.892, loss_att=53.386, acc=0.727, loss=51.738, backward_time=0.098, grad_norm=43.667, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.924e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-15 12:59:42,599 (trainer:737) INFO: 26epoch:train:14701-14800batch: iter_time=1.339e-04, forward_time=0.104, loss_ctc=45.003, loss_att=53.819, acc=0.726, loss=51.174, backward_time=0.098, grad_norm=42.775, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.924e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 13:00:25,349 (trainer:737) INFO: 26epoch:train:14801-14900batch: iter_time=1.369e-04, forward_time=0.106, loss_ctc=51.964, loss_att=74.820, acc=0.686, loss=67.963, backward_time=0.099, grad_norm=47.073, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.923e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 13:01:07,876 (trainer:737) INFO: 26epoch:train:14901-15000batch: iter_time=1.181e-04, forward_time=0.104, loss_ctc=49.217, loss_att=59.713, acc=0.726, loss=56.564, backward_time=0.098, grad_norm=40.246, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.923e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 13:21:27,547 (trainer:343) INFO: 26epoch results: [train] iter_time=0.208, forward_time=0.105, loss_ctc=45.000, loss_att=53.012, acc=0.726, loss=50.608, backward_time=0.097, grad_norm=41.811, clip=100.000, loss_scale=2.929e+34, optim_step_time=0.042, optim0_lr0=3.961e-04, train_time=0.662, time=2 hours, 45 minutes and 49.08 seconds, total_count=390000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=51.615, cer_ctc=0.267, loss_att=50.866, acc=0.605, cer=0.341, wer=0.998, loss=51.091, time=20 minutes and 3.78 seconds, total_count=121446, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 13:21:32,551 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-15 13:21:32,581 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/21epoch.pth +[gpuc02:0/16] 2024-01-15 13:21:32,581 (trainer:272) INFO: 27/45epoch started. Estimated time to finish: 2 days, 10 hours and 10 minutes +[gpuc02:0/16] 2024-01-15 13:21:32,591 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 13:21:51,963 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 13:21:55,732 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 13:21:55,732 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 13:21:55,736 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 13:26:34,800 (trainer:737) INFO: 27epoch:train:1-100batch: iter_time=2.360, forward_time=0.104, loss_ctc=52.190, loss_att=65.152, acc=0.683, loss=61.263, backward_time=0.097, grad_norm=46.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.922e-04, train_time=3.022 +[gpuc02:0/16] 2024-01-15 13:27:17,380 (trainer:737) INFO: 27epoch:train:101-200batch: iter_time=1.074e-04, forward_time=0.105, loss_ctc=47.671, loss_att=67.700, acc=0.705, loss=61.691, backward_time=0.098, grad_norm=45.390, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.922e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 13:27:59,301 (trainer:737) INFO: 27epoch:train:201-300batch: iter_time=1.078e-04, forward_time=0.103, loss_ctc=45.946, loss_att=47.617, acc=0.750, loss=47.116, backward_time=0.097, grad_norm=44.532, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.921e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 13:28:43,155 (trainer:737) INFO: 27epoch:train:301-400batch: iter_time=1.139e-04, forward_time=0.117, loss_ctc=42.686, loss_att=45.080, acc=0.769, loss=44.362, backward_time=0.098, grad_norm=38.912, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.921e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 13:29:25,766 (trainer:737) INFO: 27epoch:train:401-500batch: iter_time=1.163e-04, forward_time=0.103, loss_ctc=41.863, loss_att=45.814, acc=0.751, loss=44.629, backward_time=0.097, grad_norm=37.160, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.920e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 13:30:09,958 (trainer:737) INFO: 27epoch:train:501-600batch: iter_time=1.193e-04, forward_time=0.120, loss_ctc=39.365, loss_att=38.861, acc=0.746, loss=39.012, backward_time=0.099, grad_norm=35.218, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.920e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-15 13:30:54,150 (trainer:737) INFO: 27epoch:train:601-700batch: iter_time=1.162e-04, forward_time=0.103, loss_ctc=45.871, loss_att=43.193, acc=0.736, loss=43.996, backward_time=0.101, grad_norm=42.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.919e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-15 13:31:39,133 (trainer:737) INFO: 27epoch:train:701-800batch: iter_time=1.182e-04, forward_time=0.103, loss_ctc=46.754, loss_att=54.034, acc=0.728, loss=51.850, backward_time=0.099, grad_norm=44.546, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.919e-04, train_time=0.450 +[gpuc02:0/16] 2024-01-15 13:32:21,270 (trainer:737) INFO: 27epoch:train:801-900batch: iter_time=1.151e-04, forward_time=0.103, loss_ctc=37.092, loss_att=47.397, acc=0.732, loss=44.306, backward_time=0.096, grad_norm=39.461, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.918e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 13:33:05,119 (trainer:737) INFO: 27epoch:train:901-1000batch: iter_time=1.195e-04, forward_time=0.103, loss_ctc=49.423, loss_att=56.095, acc=0.698, loss=54.093, backward_time=0.097, grad_norm=45.287, clip=100.000, loss_scale=2.908e+34, optim_step_time=0.041, optim0_lr0=3.918e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 13:33:46,985 (trainer:737) INFO: 27epoch:train:1001-1100batch: iter_time=1.101e-04, forward_time=0.103, loss_ctc=48.818, loss_att=46.374, acc=0.742, loss=47.107, backward_time=0.097, grad_norm=47.768, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.917e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-15 13:33:49,021 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 13:34:29,873 (trainer:737) INFO: 27epoch:train:1101-1200batch: iter_time=1.169e-04, forward_time=0.104, loss_ctc=45.880, loss_att=54.169, acc=0.726, loss=51.683, backward_time=0.098, grad_norm=37.958, clip=100.000, loss_scale=2.161e+34, optim_step_time=0.041, optim0_lr0=3.917e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 13:35:03,684 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 13:35:23,025 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 13:35:26,679 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 13:35:26,679 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 13:35:26,682 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 13:40:43,731 (trainer:737) INFO: 27epoch:train:1201-1300batch: iter_time=3.008, forward_time=0.124, loss_ctc=48.530, loss_att=57.077, acc=0.699, loss=54.513, backward_time=0.100, grad_norm=48.431, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.916e-04, train_time=3.738 +[gpuc02:0/16] 2024-01-15 13:41:26,013 (trainer:737) INFO: 27epoch:train:1301-1400batch: iter_time=1.151e-04, forward_time=0.105, loss_ctc=53.392, loss_att=70.470, acc=0.684, loss=65.346, backward_time=0.097, grad_norm=48.792, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.916e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 13:42:09,106 (trainer:737) INFO: 27epoch:train:1401-1500batch: iter_time=1.193e-04, forward_time=0.105, loss_ctc=45.338, loss_att=56.750, acc=0.750, loss=53.327, backward_time=0.098, grad_norm=40.665, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.915e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 13:42:51,397 (trainer:737) INFO: 27epoch:train:1501-1600batch: iter_time=1.155e-04, forward_time=0.103, loss_ctc=40.651, loss_att=45.260, acc=0.752, loss=43.877, backward_time=0.097, grad_norm=40.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.915e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 13:43:33,798 (trainer:737) INFO: 27epoch:train:1601-1700batch: iter_time=1.168e-04, forward_time=0.104, loss_ctc=43.633, loss_att=45.250, acc=0.757, loss=44.765, backward_time=0.097, grad_norm=39.926, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.914e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 13:44:15,779 (trainer:737) INFO: 27epoch:train:1701-1800batch: iter_time=1.229e-04, forward_time=0.103, loss_ctc=38.574, loss_att=41.046, acc=0.757, loss=40.304, backward_time=0.097, grad_norm=35.698, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.914e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 13:44:57,805 (trainer:737) INFO: 27epoch:train:1801-1900batch: iter_time=1.060e-04, forward_time=0.103, loss_ctc=41.270, loss_att=38.127, acc=0.765, loss=39.070, backward_time=0.097, grad_norm=35.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.913e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 13:45:40,135 (trainer:737) INFO: 27epoch:train:1901-2000batch: iter_time=1.187e-04, forward_time=0.104, loss_ctc=47.197, loss_att=53.853, acc=0.720, loss=51.856, backward_time=0.098, grad_norm=43.074, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.913e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 13:46:22,586 (trainer:737) INFO: 27epoch:train:2001-2100batch: iter_time=1.157e-04, forward_time=0.103, loss_ctc=43.865, loss_att=52.140, acc=0.737, loss=49.658, backward_time=0.098, grad_norm=43.707, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.912e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 13:47:04,672 (trainer:737) INFO: 27epoch:train:2101-2200batch: iter_time=9.826e-05, forward_time=0.104, loss_ctc=41.685, loss_att=54.594, acc=0.730, loss=50.722, backward_time=0.098, grad_norm=40.022, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.912e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 13:47:46,659 (trainer:737) INFO: 27epoch:train:2201-2300batch: iter_time=1.039e-04, forward_time=0.103, loss_ctc=47.028, loss_att=48.280, acc=0.721, loss=47.905, backward_time=0.097, grad_norm=43.469, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.911e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 13:48:29,065 (trainer:737) INFO: 27epoch:train:2301-2400batch: iter_time=1.043e-04, forward_time=0.104, loss_ctc=46.228, loss_att=48.231, acc=0.736, loss=47.630, backward_time=0.098, grad_norm=40.907, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.911e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 13:49:13,228 (trainer:737) INFO: 27epoch:train:2401-2500batch: iter_time=9.642e-05, forward_time=0.104, loss_ctc=49.198, loss_att=57.581, acc=0.713, loss=55.066, backward_time=0.098, grad_norm=44.683, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.910e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-15 13:49:15,922 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 13:49:35,134 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 13:49:38,623 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 13:49:38,623 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 13:49:38,626 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 13:56:48,017 (trainer:737) INFO: 27epoch:train:2501-2600batch: iter_time=2.576, forward_time=0.114, loss_ctc=50.530, loss_att=62.714, acc=0.695, loss=59.059, backward_time=0.099, grad_norm=44.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.910e-04, train_time=4.548 +[gpuc02:0/16] 2024-01-15 13:57:30,690 (trainer:737) INFO: 27epoch:train:2601-2700batch: iter_time=1.644e-04, forward_time=0.106, loss_ctc=46.895, loss_att=66.121, acc=0.715, loss=60.353, backward_time=0.098, grad_norm=47.227, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.909e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 13:58:12,791 (trainer:737) INFO: 27epoch:train:2701-2800batch: iter_time=1.713e-04, forward_time=0.105, loss_ctc=44.875, loss_att=46.709, acc=0.757, loss=46.159, backward_time=0.097, grad_norm=42.952, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.909e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 13:58:55,417 (trainer:737) INFO: 27epoch:train:2801-2900batch: iter_time=1.620e-04, forward_time=0.104, loss_ctc=41.984, loss_att=44.624, acc=0.775, loss=43.832, backward_time=0.097, grad_norm=38.211, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.908e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 13:59:38,561 (trainer:737) INFO: 27epoch:train:2901-3000batch: iter_time=1.764e-04, forward_time=0.104, loss_ctc=40.604, loss_att=45.527, acc=0.756, loss=44.050, backward_time=0.097, grad_norm=37.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.908e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 14:00:20,979 (trainer:737) INFO: 27epoch:train:3001-3100batch: iter_time=1.978e-04, forward_time=0.103, loss_ctc=39.006, loss_att=39.193, acc=0.747, loss=39.137, backward_time=0.096, grad_norm=36.994, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.907e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:01:04,117 (trainer:737) INFO: 27epoch:train:3101-3200batch: iter_time=1.655e-04, forward_time=0.107, loss_ctc=44.620, loss_att=42.173, acc=0.749, loss=42.907, backward_time=0.097, grad_norm=40.247, clip=100.000, loss_scale=4.050e+34, optim_step_time=0.042, optim0_lr0=3.907e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 14:01:46,606 (trainer:737) INFO: 27epoch:train:3201-3300batch: iter_time=1.387e-04, forward_time=0.104, loss_ctc=45.888, loss_att=52.624, acc=0.739, loss=50.603, backward_time=0.097, grad_norm=44.578, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.906e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:02:28,902 (trainer:737) INFO: 27epoch:train:3301-3400batch: iter_time=1.463e-04, forward_time=0.103, loss_ctc=36.088, loss_att=47.153, acc=0.742, loss=43.834, backward_time=0.097, grad_norm=38.560, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.906e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:03:11,383 (trainer:737) INFO: 27epoch:train:3401-3500batch: iter_time=1.324e-04, forward_time=0.104, loss_ctc=48.047, loss_att=56.357, acc=0.703, loss=53.864, backward_time=0.098, grad_norm=45.216, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.905e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:03:54,098 (trainer:737) INFO: 27epoch:train:3501-3600batch: iter_time=1.262e-04, forward_time=0.104, loss_ctc=47.602, loss_att=47.511, acc=0.748, loss=47.539, backward_time=0.098, grad_norm=44.960, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.905e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 14:04:36,968 (trainer:737) INFO: 27epoch:train:3601-3700batch: iter_time=1.438e-04, forward_time=0.104, loss_ctc=44.662, loss_att=53.946, acc=0.731, loss=51.160, backward_time=0.098, grad_norm=38.415, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.904e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 14:05:06,264 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 14:05:25,321 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 14:05:28,795 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 14:05:28,795 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 14:05:28,799 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 14:09:53,349 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 14:10:06,631 (trainer:737) INFO: 27epoch:train:3701-3800batch: iter_time=2.527, forward_time=0.104, loss_ctc=46.795, loss_att=56.408, acc=0.698, loss=53.524, backward_time=0.097, grad_norm=46.660, clip=100.000, loss_scale=3.503e+34, optim_step_time=0.042, optim0_lr0=3.904e-04, train_time=3.296 +[gpuc02:0/16] 2024-01-15 14:10:49,147 (trainer:737) INFO: 27epoch:train:3801-3900batch: iter_time=1.072e-04, forward_time=0.104, loss_ctc=53.294, loss_att=70.599, acc=0.679, loss=65.407, backward_time=0.098, grad_norm=50.577, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.903e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:11:31,682 (trainer:737) INFO: 27epoch:train:3901-4000batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=44.808, loss_att=57.431, acc=0.744, loss=53.644, backward_time=0.098, grad_norm=41.186, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.903e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:12:13,905 (trainer:737) INFO: 27epoch:train:4001-4100batch: iter_time=1.320e-04, forward_time=0.104, loss_ctc=40.494, loss_att=44.664, acc=0.753, loss=43.413, backward_time=0.096, grad_norm=41.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.902e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 14:12:57,406 (trainer:737) INFO: 27epoch:train:4101-4200batch: iter_time=1.112e-04, forward_time=0.105, loss_ctc=44.196, loss_att=45.076, acc=0.751, loss=44.812, backward_time=0.097, grad_norm=39.959, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.902e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-15 14:13:39,936 (trainer:737) INFO: 27epoch:train:4201-4300batch: iter_time=1.085e-04, forward_time=0.104, loss_ctc=37.736, loss_att=39.836, acc=0.764, loss=39.206, backward_time=0.096, grad_norm=33.421, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.901e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:14:22,365 (trainer:737) INFO: 27epoch:train:4301-4400batch: iter_time=1.064e-04, forward_time=0.104, loss_ctc=40.966, loss_att=38.133, acc=0.762, loss=38.983, backward_time=0.096, grad_norm=36.866, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.901e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:15:04,937 (trainer:737) INFO: 27epoch:train:4401-4500batch: iter_time=1.194e-04, forward_time=0.103, loss_ctc=46.971, loss_att=52.253, acc=0.716, loss=50.668, backward_time=0.097, grad_norm=45.042, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.900e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:15:47,186 (trainer:737) INFO: 27epoch:train:4501-4600batch: iter_time=1.101e-04, forward_time=0.104, loss_ctc=42.962, loss_att=51.338, acc=0.729, loss=48.825, backward_time=0.097, grad_norm=41.552, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.900e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 14:16:30,252 (trainer:737) INFO: 27epoch:train:4601-4700batch: iter_time=1.107e-04, forward_time=0.104, loss_ctc=41.171, loss_att=55.470, acc=0.715, loss=51.181, backward_time=0.097, grad_norm=39.446, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.900e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 14:17:12,887 (trainer:737) INFO: 27epoch:train:4701-4800batch: iter_time=1.090e-04, forward_time=0.103, loss_ctc=46.141, loss_att=44.940, acc=0.726, loss=45.300, backward_time=0.097, grad_norm=44.873, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.899e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 14:17:57,716 (trainer:737) INFO: 27epoch:train:4801-4900batch: iter_time=1.130e-04, forward_time=0.104, loss_ctc=45.370, loss_att=47.581, acc=0.731, loss=46.918, backward_time=0.097, grad_norm=41.096, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.899e-04, train_time=0.448 +[gpuc02:0/16] 2024-01-15 14:18:46,133 (trainer:737) INFO: 27epoch:train:4901-5000batch: iter_time=9.311e-05, forward_time=0.104, loss_ctc=48.558, loss_att=58.022, acc=0.704, loss=55.183, backward_time=0.098, grad_norm=48.103, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.898e-04, train_time=0.484 +[gpuc02:0/16] 2024-01-15 14:18:54,789 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 14:19:14,775 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 14:19:18,788 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 14:19:18,788 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 14:19:18,792 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 14:26:07,694 (trainer:737) INFO: 27epoch:train:5001-5100batch: iter_time=3.532, forward_time=0.107, loss_ctc=50.288, loss_att=64.257, acc=0.694, loss=60.066, backward_time=0.098, grad_norm=48.199, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.898e-04, train_time=4.414 +[gpuc02:0/16] 2024-01-15 14:26:51,344 (trainer:737) INFO: 27epoch:train:5101-5200batch: iter_time=1.038e-04, forward_time=0.105, loss_ctc=46.195, loss_att=66.059, acc=0.720, loss=60.100, backward_time=0.099, grad_norm=45.718, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.897e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 14:27:33,837 (trainer:737) INFO: 27epoch:train:5201-5300batch: iter_time=1.034e-04, forward_time=0.104, loss_ctc=44.787, loss_att=47.273, acc=0.756, loss=46.527, backward_time=0.098, grad_norm=42.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.897e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:28:16,285 (trainer:737) INFO: 27epoch:train:5301-5400batch: iter_time=1.063e-04, forward_time=0.104, loss_ctc=41.598, loss_att=44.548, acc=0.777, loss=43.663, backward_time=0.098, grad_norm=35.584, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.896e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:28:58,677 (trainer:737) INFO: 27epoch:train:5401-5500batch: iter_time=1.391e-04, forward_time=0.103, loss_ctc=40.652, loss_att=46.220, acc=0.754, loss=44.550, backward_time=0.098, grad_norm=37.217, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.896e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:29:40,845 (trainer:737) INFO: 27epoch:train:5501-5600batch: iter_time=1.046e-04, forward_time=0.103, loss_ctc=38.979, loss_att=39.066, acc=0.749, loss=39.040, backward_time=0.097, grad_norm=35.387, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.895e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 14:30:23,142 (trainer:737) INFO: 27epoch:train:5601-5700batch: iter_time=1.109e-04, forward_time=0.104, loss_ctc=44.407, loss_att=42.341, acc=0.749, loss=42.961, backward_time=0.097, grad_norm=39.504, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.895e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:31:07,366 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 14:31:07,809 (trainer:737) INFO: 27epoch:train:5701-5800batch: iter_time=0.011, forward_time=0.104, loss_ctc=45.720, loss_att=53.514, acc=0.737, loss=51.176, backward_time=0.097, grad_norm=44.414, clip=100.000, loss_scale=2.685e+34, optim_step_time=0.042, optim0_lr0=3.894e-04, train_time=0.446 +[gpuc02:0/16] 2024-01-15 14:31:50,560 (trainer:737) INFO: 27epoch:train:5801-5900batch: iter_time=1.061e-04, forward_time=0.103, loss_ctc=36.116, loss_att=46.826, acc=0.744, loss=43.613, backward_time=0.097, grad_norm=37.711, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.894e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 14:32:33,651 (trainer:737) INFO: 27epoch:train:5901-6000batch: iter_time=1.104e-04, forward_time=0.104, loss_ctc=48.072, loss_att=55.372, acc=0.707, loss=53.182, backward_time=0.097, grad_norm=44.988, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.893e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 14:33:15,994 (trainer:737) INFO: 27epoch:train:6001-6100batch: iter_time=1.161e-04, forward_time=0.104, loss_ctc=46.567, loss_att=47.276, acc=0.748, loss=47.063, backward_time=0.098, grad_norm=42.069, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.893e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:33:58,667 (trainer:737) INFO: 27epoch:train:6101-6200batch: iter_time=1.058e-04, forward_time=0.105, loss_ctc=44.669, loss_att=53.834, acc=0.736, loss=51.084, backward_time=0.098, grad_norm=37.852, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.892e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 14:34:24,425 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 14:34:44,239 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 14:34:47,920 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 14:34:47,921 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 14:34:47,924 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 14:39:25,033 (trainer:737) INFO: 27epoch:train:6201-6300batch: iter_time=2.542, forward_time=0.105, loss_ctc=46.711, loss_att=54.333, acc=0.708, loss=52.046, backward_time=0.098, grad_norm=46.691, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.892e-04, train_time=3.263 +[gpuc02:0/16] 2024-01-15 14:40:07,523 (trainer:737) INFO: 27epoch:train:6301-6400batch: iter_time=1.224e-04, forward_time=0.105, loss_ctc=52.671, loss_att=68.861, acc=0.688, loss=64.004, backward_time=0.098, grad_norm=49.129, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.891e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 14:40:50,765 (trainer:737) INFO: 27epoch:train:6401-6500batch: iter_time=1.374e-04, forward_time=0.108, loss_ctc=44.304, loss_att=55.758, acc=0.752, loss=52.322, backward_time=0.098, grad_norm=40.047, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.891e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 14:41:33,021 (trainer:737) INFO: 27epoch:train:6501-6600batch: iter_time=1.327e-04, forward_time=0.103, loss_ctc=40.266, loss_att=44.347, acc=0.759, loss=43.123, backward_time=0.096, grad_norm=43.293, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.890e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 14:42:15,454 (trainer:737) INFO: 27epoch:train:6601-6700batch: iter_time=1.256e-04, forward_time=0.105, loss_ctc=43.352, loss_att=44.158, acc=0.761, loss=43.917, backward_time=0.097, grad_norm=39.521, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.890e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:42:57,749 (trainer:737) INFO: 27epoch:train:6701-6800batch: iter_time=1.449e-04, forward_time=0.104, loss_ctc=37.770, loss_att=40.836, acc=0.760, loss=39.916, backward_time=0.096, grad_norm=33.555, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.889e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:43:40,121 (trainer:737) INFO: 27epoch:train:6801-6900batch: iter_time=1.472e-04, forward_time=0.103, loss_ctc=40.757, loss_att=37.707, acc=0.769, loss=38.622, backward_time=0.097, grad_norm=35.245, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.889e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:44:22,563 (trainer:737) INFO: 27epoch:train:6901-7000batch: iter_time=1.305e-04, forward_time=0.105, loss_ctc=46.491, loss_att=52.092, acc=0.727, loss=50.411, backward_time=0.097, grad_norm=42.482, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.888e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:45:04,971 (trainer:737) INFO: 27epoch:train:7001-7100batch: iter_time=1.454e-04, forward_time=0.105, loss_ctc=42.738, loss_att=51.002, acc=0.741, loss=48.523, backward_time=0.097, grad_norm=42.566, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.888e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:45:47,422 (trainer:737) INFO: 27epoch:train:7101-7200batch: iter_time=1.513e-04, forward_time=0.105, loss_ctc=41.250, loss_att=55.644, acc=0.725, loss=51.326, backward_time=0.097, grad_norm=39.383, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.887e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 14:46:29,658 (trainer:737) INFO: 27epoch:train:7201-7300batch: iter_time=1.525e-04, forward_time=0.104, loss_ctc=45.674, loss_att=47.409, acc=0.724, loss=46.888, backward_time=0.097, grad_norm=45.325, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.887e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 14:47:11,971 (trainer:737) INFO: 27epoch:train:7301-7400batch: iter_time=1.376e-04, forward_time=0.105, loss_ctc=44.800, loss_att=47.170, acc=0.739, loss=46.459, backward_time=0.097, grad_norm=39.341, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.886e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:47:54,245 (trainer:737) INFO: 27epoch:train:7401-7500batch: iter_time=1.224e-04, forward_time=0.104, loss_ctc=48.608, loss_att=57.776, acc=0.712, loss=55.025, backward_time=0.097, grad_norm=42.671, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.886e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:48:00,032 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 14:48:20,186 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 14:48:23,859 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 14:48:23,859 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 14:48:23,862 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 14:53:15,456 (trainer:737) INFO: 27epoch:train:7501-7600batch: iter_time=2.472, forward_time=0.104, loss_ctc=50.052, loss_att=64.589, acc=0.688, loss=60.228, backward_time=0.097, grad_norm=46.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.885e-04, train_time=3.212 +[gpuc02:0/16] 2024-01-15 14:53:58,248 (trainer:737) INFO: 27epoch:train:7601-7700batch: iter_time=1.044e-04, forward_time=0.105, loss_ctc=45.968, loss_att=66.837, acc=0.708, loss=60.576, backward_time=0.097, grad_norm=45.619, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.885e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 14:54:41,150 (trainer:737) INFO: 27epoch:train:7701-7800batch: iter_time=1.138e-04, forward_time=0.106, loss_ctc=44.201, loss_att=46.752, acc=0.755, loss=45.987, backward_time=0.097, grad_norm=40.528, clip=100.000, loss_scale=2.098e+34, optim_step_time=0.042, optim0_lr0=3.884e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 14:55:24,627 (trainer:737) INFO: 27epoch:train:7801-7900batch: iter_time=1.220e-04, forward_time=0.105, loss_ctc=41.654, loss_att=45.064, acc=0.771, loss=44.041, backward_time=0.097, grad_norm=37.664, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.884e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-15 14:56:06,967 (trainer:737) INFO: 27epoch:train:7901-8000batch: iter_time=1.173e-04, forward_time=0.104, loss_ctc=39.941, loss_att=45.358, acc=0.755, loss=43.733, backward_time=0.097, grad_norm=37.174, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.883e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:56:49,060 (trainer:737) INFO: 27epoch:train:8001-8100batch: iter_time=1.183e-04, forward_time=0.102, loss_ctc=38.473, loss_att=38.226, acc=0.750, loss=38.300, backward_time=0.097, grad_norm=35.890, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.883e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 14:57:31,327 (trainer:737) INFO: 27epoch:train:8101-8200batch: iter_time=1.334e-04, forward_time=0.103, loss_ctc=43.843, loss_att=42.342, acc=0.741, loss=42.792, backward_time=0.097, grad_norm=38.630, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.882e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 14:58:13,673 (trainer:737) INFO: 27epoch:train:8201-8300batch: iter_time=1.372e-04, forward_time=0.104, loss_ctc=45.180, loss_att=52.691, acc=0.733, loss=50.438, backward_time=0.097, grad_norm=45.022, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.882e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:58:56,030 (trainer:737) INFO: 27epoch:train:8301-8400batch: iter_time=1.267e-04, forward_time=0.103, loss_ctc=35.634, loss_att=46.855, acc=0.735, loss=43.488, backward_time=0.097, grad_norm=39.132, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.881e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 14:59:38,510 (trainer:737) INFO: 27epoch:train:8401-8500batch: iter_time=1.217e-04, forward_time=0.104, loss_ctc=47.171, loss_att=54.998, acc=0.703, loss=52.650, backward_time=0.097, grad_norm=44.657, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.881e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:00:20,764 (trainer:737) INFO: 27epoch:train:8501-8600batch: iter_time=1.193e-04, forward_time=0.103, loss_ctc=46.008, loss_att=45.374, acc=0.745, loss=45.564, backward_time=0.096, grad_norm=42.272, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.880e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 15:01:03,195 (trainer:737) INFO: 27epoch:train:8601-8700batch: iter_time=1.198e-04, forward_time=0.104, loss_ctc=44.401, loss_att=53.730, acc=0.729, loss=50.931, backward_time=0.097, grad_norm=39.024, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.880e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:01:31,408 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 15:01:50,744 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 15:01:54,615 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 15:01:54,615 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 15:01:54,618 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 15:06:34,488 (trainer:737) INFO: 27epoch:train:8701-8800batch: iter_time=2.547, forward_time=0.121, loss_ctc=46.586, loss_att=53.942, acc=0.701, loss=51.735, backward_time=0.100, grad_norm=47.557, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=3.879e-04, train_time=3.313 +[gpuc02:0/16] 2024-01-15 15:07:17,115 (trainer:737) INFO: 27epoch:train:8801-8900batch: iter_time=1.230e-04, forward_time=0.105, loss_ctc=52.338, loss_att=67.974, acc=0.686, loss=63.283, backward_time=0.098, grad_norm=49.235, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.879e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 15:07:59,750 (trainer:737) INFO: 27epoch:train:8901-9000batch: iter_time=1.464e-04, forward_time=0.107, loss_ctc=44.427, loss_att=56.240, acc=0.746, loss=52.696, backward_time=0.098, grad_norm=40.902, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.878e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 15:08:42,598 (trainer:737) INFO: 27epoch:train:9001-9100batch: iter_time=1.559e-04, forward_time=0.105, loss_ctc=40.337, loss_att=44.071, acc=0.757, loss=42.951, backward_time=0.097, grad_norm=38.487, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.878e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 15:08:50,443 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 15:09:25,461 (trainer:737) INFO: 27epoch:train:9101-9200batch: iter_time=1.531e-04, forward_time=0.106, loss_ctc=42.370, loss_att=43.760, acc=0.755, loss=43.343, backward_time=0.097, grad_norm=38.945, clip=100.000, loss_scale=2.434e+34, optim_step_time=0.042, optim0_lr0=3.877e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 15:10:07,737 (trainer:737) INFO: 27epoch:train:9201-9300batch: iter_time=1.395e-04, forward_time=0.103, loss_ctc=37.172, loss_att=39.598, acc=0.766, loss=38.870, backward_time=0.096, grad_norm=34.934, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.877e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 15:10:50,371 (trainer:737) INFO: 27epoch:train:9301-9400batch: iter_time=1.409e-04, forward_time=0.103, loss_ctc=40.605, loss_att=37.605, acc=0.763, loss=38.505, backward_time=0.096, grad_norm=36.498, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.876e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 15:11:32,765 (trainer:737) INFO: 27epoch:train:9401-9500batch: iter_time=1.267e-04, forward_time=0.104, loss_ctc=45.908, loss_att=51.175, acc=0.719, loss=49.595, backward_time=0.096, grad_norm=44.662, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.876e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:12:15,317 (trainer:737) INFO: 27epoch:train:9501-9600batch: iter_time=1.178e-04, forward_time=0.103, loss_ctc=42.598, loss_att=50.482, acc=0.732, loss=48.117, backward_time=0.096, grad_norm=43.194, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.876e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:12:57,877 (trainer:737) INFO: 27epoch:train:9601-9700batch: iter_time=1.208e-04, forward_time=0.103, loss_ctc=40.432, loss_att=54.896, acc=0.716, loss=50.556, backward_time=0.096, grad_norm=39.507, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.875e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:13:40,327 (trainer:737) INFO: 27epoch:train:9701-9800batch: iter_time=1.131e-04, forward_time=0.103, loss_ctc=45.277, loss_att=44.693, acc=0.727, loss=44.868, backward_time=0.096, grad_norm=42.312, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.875e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:14:23,762 (trainer:737) INFO: 27epoch:train:9801-9900batch: iter_time=1.182e-04, forward_time=0.103, loss_ctc=44.241, loss_att=46.839, acc=0.734, loss=46.059, backward_time=0.097, grad_norm=39.297, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.874e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 15:15:06,152 (trainer:737) INFO: 27epoch:train:9901-10000batch: iter_time=1.128e-04, forward_time=0.105, loss_ctc=47.855, loss_att=57.610, acc=0.706, loss=54.683, backward_time=0.098, grad_norm=44.265, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.874e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:15:08,894 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 15:15:28,937 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 15:15:32,636 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 15:15:32,636 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 15:15:32,639 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 15:20:26,244 (trainer:737) INFO: 27epoch:train:10001-10100batch: iter_time=2.453, forward_time=0.119, loss_ctc=49.369, loss_att=64.504, acc=0.696, loss=59.963, backward_time=0.098, grad_norm=45.617, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.873e-04, train_time=3.201 +[gpuc02:0/16] 2024-01-15 15:21:09,010 (trainer:737) INFO: 27epoch:train:10101-10200batch: iter_time=9.314e-05, forward_time=0.105, loss_ctc=46.113, loss_att=66.783, acc=0.718, loss=60.582, backward_time=0.099, grad_norm=44.675, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.873e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 15:21:51,761 (trainer:737) INFO: 27epoch:train:10201-10300batch: iter_time=1.050e-04, forward_time=0.104, loss_ctc=44.015, loss_att=47.079, acc=0.758, loss=46.160, backward_time=0.097, grad_norm=42.001, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.872e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 15:22:34,241 (trainer:737) INFO: 27epoch:train:10301-10400batch: iter_time=1.048e-04, forward_time=0.105, loss_ctc=41.282, loss_att=44.064, acc=0.777, loss=43.229, backward_time=0.098, grad_norm=36.604, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.872e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:23:17,014 (trainer:737) INFO: 27epoch:train:10401-10500batch: iter_time=1.062e-04, forward_time=0.108, loss_ctc=40.143, loss_att=46.085, acc=0.755, loss=44.302, backward_time=0.098, grad_norm=36.063, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.871e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 15:23:59,331 (trainer:737) INFO: 27epoch:train:10501-10600batch: iter_time=1.073e-04, forward_time=0.104, loss_ctc=38.574, loss_att=39.129, acc=0.750, loss=38.963, backward_time=0.097, grad_norm=35.791, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.871e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 15:24:41,669 (trainer:737) INFO: 27epoch:train:10601-10700batch: iter_time=1.047e-04, forward_time=0.105, loss_ctc=44.120, loss_att=42.819, acc=0.748, loss=43.209, backward_time=0.097, grad_norm=39.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.870e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 15:25:24,190 (trainer:737) INFO: 27epoch:train:10701-10800batch: iter_time=1.026e-04, forward_time=0.105, loss_ctc=45.373, loss_att=53.584, acc=0.738, loss=51.121, backward_time=0.098, grad_norm=44.916, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.870e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:26:06,613 (trainer:737) INFO: 27epoch:train:10801-10900batch: iter_time=1.047e-04, forward_time=0.104, loss_ctc=35.519, loss_att=46.767, acc=0.746, loss=43.393, backward_time=0.098, grad_norm=37.173, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.869e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:26:49,067 (trainer:737) INFO: 27epoch:train:10901-11000batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=47.040, loss_att=55.461, acc=0.710, loss=52.935, backward_time=0.098, grad_norm=45.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.869e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:27:31,453 (trainer:737) INFO: 27epoch:train:11001-11100batch: iter_time=1.068e-04, forward_time=0.105, loss_ctc=46.081, loss_att=47.364, acc=0.748, loss=46.979, backward_time=0.097, grad_norm=42.991, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.868e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 15:28:14,017 (trainer:737) INFO: 27epoch:train:11101-11200batch: iter_time=1.120e-04, forward_time=0.105, loss_ctc=43.947, loss_att=53.106, acc=0.735, loss=50.358, backward_time=0.098, grad_norm=38.694, clip=100.000, loss_scale=3.780e+34, optim_step_time=0.042, optim0_lr0=3.868e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:28:37,887 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 15:28:57,910 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 15:29:01,812 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 15:29:01,812 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 15:29:01,833 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 15:33:33,776 (trainer:737) INFO: 27epoch:train:11201-11300batch: iter_time=2.450, forward_time=0.105, loss_ctc=46.450, loss_att=55.472, acc=0.704, loss=52.765, backward_time=0.097, grad_norm=46.579, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.867e-04, train_time=3.197 +[gpuc02:0/16] 2024-01-15 15:34:16,771 (trainer:737) INFO: 27epoch:train:11301-11400batch: iter_time=1.167e-04, forward_time=0.104, loss_ctc=52.388, loss_att=69.439, acc=0.682, loss=64.324, backward_time=0.098, grad_norm=48.299, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.867e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 15:34:59,273 (trainer:737) INFO: 27epoch:train:11401-11500batch: iter_time=1.247e-04, forward_time=0.105, loss_ctc=44.028, loss_att=56.098, acc=0.749, loss=52.477, backward_time=0.098, grad_norm=36.948, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.866e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:35:41,500 (trainer:737) INFO: 27epoch:train:11501-11600batch: iter_time=1.309e-04, forward_time=0.103, loss_ctc=39.699, loss_att=44.077, acc=0.758, loss=42.763, backward_time=0.096, grad_norm=39.198, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.866e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 15:36:23,789 (trainer:737) INFO: 27epoch:train:11601-11700batch: iter_time=1.356e-04, forward_time=0.104, loss_ctc=43.019, loss_att=44.101, acc=0.756, loss=43.776, backward_time=0.096, grad_norm=38.754, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.865e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 15:37:05,954 (trainer:737) INFO: 27epoch:train:11701-11800batch: iter_time=1.400e-04, forward_time=0.104, loss_ctc=37.071, loss_att=40.096, acc=0.763, loss=39.189, backward_time=0.096, grad_norm=34.111, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.865e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 15:37:48,106 (trainer:737) INFO: 27epoch:train:11801-11900batch: iter_time=1.118e-04, forward_time=0.103, loss_ctc=40.312, loss_att=37.382, acc=0.764, loss=38.261, backward_time=0.096, grad_norm=34.178, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.864e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 15:38:30,378 (trainer:737) INFO: 27epoch:train:11901-12000batch: iter_time=1.332e-04, forward_time=0.104, loss_ctc=45.964, loss_att=52.399, acc=0.716, loss=50.469, backward_time=0.096, grad_norm=48.859, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.864e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 15:39:13,221 (trainer:737) INFO: 27epoch:train:12001-12100batch: iter_time=1.305e-04, forward_time=0.104, loss_ctc=42.412, loss_att=49.645, acc=0.736, loss=47.475, backward_time=0.097, grad_norm=42.699, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.863e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 15:39:55,520 (trainer:737) INFO: 27epoch:train:12101-12200batch: iter_time=1.225e-04, forward_time=0.104, loss_ctc=40.631, loss_att=54.191, acc=0.720, loss=50.123, backward_time=0.097, grad_norm=39.348, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.863e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 15:40:14,318 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 15:40:37,709 (trainer:737) INFO: 27epoch:train:12201-12300batch: iter_time=1.307e-04, forward_time=0.104, loss_ctc=44.592, loss_att=44.558, acc=0.729, loss=44.569, backward_time=0.096, grad_norm=40.697, clip=100.000, loss_scale=3.000e+34, optim_step_time=0.042, optim0_lr0=3.862e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 15:41:19,953 (trainer:737) INFO: 27epoch:train:12301-12400batch: iter_time=1.100e-04, forward_time=0.104, loss_ctc=44.755, loss_att=47.348, acc=0.732, loss=46.570, backward_time=0.096, grad_norm=40.798, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.862e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 15:42:02,229 (trainer:737) INFO: 27epoch:train:12401-12500batch: iter_time=1.035e-04, forward_time=0.104, loss_ctc=47.627, loss_att=57.127, acc=0.708, loss=54.277, backward_time=0.097, grad_norm=42.897, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.862e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 15:42:04,840 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 15:42:25,146 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 15:42:28,832 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 15:42:28,832 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 15:42:28,836 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 15:47:22,906 (trainer:737) INFO: 27epoch:train:12501-12600batch: iter_time=2.507, forward_time=0.105, loss_ctc=49.577, loss_att=60.801, acc=0.697, loss=57.433, backward_time=0.097, grad_norm=47.418, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.861e-04, train_time=3.207 +[gpuc02:0/16] 2024-01-15 15:48:05,433 (trainer:737) INFO: 27epoch:train:12601-12700batch: iter_time=9.752e-05, forward_time=0.106, loss_ctc=45.771, loss_att=65.853, acc=0.710, loss=59.829, backward_time=0.098, grad_norm=46.792, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.861e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:48:48,395 (trainer:737) INFO: 27epoch:train:12701-12800batch: iter_time=1.067e-04, forward_time=0.104, loss_ctc=43.823, loss_att=46.167, acc=0.756, loss=45.464, backward_time=0.097, grad_norm=40.240, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.860e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 15:49:31,445 (trainer:737) INFO: 27epoch:train:12801-12900batch: iter_time=1.197e-04, forward_time=0.105, loss_ctc=41.387, loss_att=44.508, acc=0.772, loss=43.571, backward_time=0.097, grad_norm=38.104, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.860e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 15:50:14,296 (trainer:737) INFO: 27epoch:train:12901-13000batch: iter_time=1.127e-04, forward_time=0.104, loss_ctc=39.989, loss_att=44.785, acc=0.755, loss=43.346, backward_time=0.097, grad_norm=38.069, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.859e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 15:50:56,344 (trainer:737) INFO: 27epoch:train:13001-13100batch: iter_time=1.027e-04, forward_time=0.103, loss_ctc=38.603, loss_att=37.677, acc=0.754, loss=37.955, backward_time=0.096, grad_norm=36.354, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.859e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 15:51:38,461 (trainer:737) INFO: 27epoch:train:13101-13200batch: iter_time=1.036e-04, forward_time=0.103, loss_ctc=43.637, loss_att=41.426, acc=0.745, loss=42.089, backward_time=0.096, grad_norm=40.258, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.858e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 15:52:20,703 (trainer:737) INFO: 27epoch:train:13201-13300batch: iter_time=1.038e-04, forward_time=0.103, loss_ctc=44.968, loss_att=51.946, acc=0.736, loss=49.853, backward_time=0.096, grad_norm=43.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.858e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 15:53:02,849 (trainer:737) INFO: 27epoch:train:13301-13400batch: iter_time=1.086e-04, forward_time=0.103, loss_ctc=35.502, loss_att=46.629, acc=0.733, loss=43.291, backward_time=0.096, grad_norm=38.218, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.857e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 15:53:46,794 (trainer:737) INFO: 27epoch:train:13401-13500batch: iter_time=9.671e-05, forward_time=0.115, loss_ctc=46.539, loss_att=54.840, acc=0.704, loss=52.350, backward_time=0.098, grad_norm=44.879, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.857e-04, train_time=0.439 +[gpuc02:0/16] 2024-01-15 15:54:29,327 (trainer:737) INFO: 27epoch:train:13501-13600batch: iter_time=1.014e-04, forward_time=0.103, loss_ctc=45.432, loss_att=45.086, acc=0.745, loss=45.190, backward_time=0.096, grad_norm=41.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.856e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 15:55:12,358 (trainer:737) INFO: 27epoch:train:13601-13700batch: iter_time=1.039e-04, forward_time=0.104, loss_ctc=44.278, loss_att=53.896, acc=0.730, loss=51.011, backward_time=0.097, grad_norm=39.106, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.856e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 15:55:35,957 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 15:55:56,243 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 15:55:59,945 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 15:55:59,945 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 15:55:59,948 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 16:00:37,797 (trainer:737) INFO: 27epoch:train:13701-13800batch: iter_time=2.458, forward_time=0.146, loss_ctc=46.419, loss_att=56.831, acc=0.700, loss=53.708, backward_time=0.102, grad_norm=45.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.855e-04, train_time=3.254 +[gpuc02:0/16] 2024-01-15 16:01:20,251 (trainer:737) INFO: 27epoch:train:13801-13900batch: iter_time=1.209e-04, forward_time=0.105, loss_ctc=52.388, loss_att=71.477, acc=0.685, loss=65.750, backward_time=0.098, grad_norm=49.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.855e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 16:02:02,522 (trainer:737) INFO: 27epoch:train:13901-14000batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=43.776, loss_att=56.221, acc=0.752, loss=52.488, backward_time=0.098, grad_norm=38.224, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.854e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 16:02:44,535 (trainer:737) INFO: 27epoch:train:14001-14100batch: iter_time=1.231e-04, forward_time=0.104, loss_ctc=39.733, loss_att=44.859, acc=0.757, loss=43.321, backward_time=0.097, grad_norm=38.691, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.854e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 16:03:26,596 (trainer:737) INFO: 27epoch:train:14101-14200batch: iter_time=1.250e-04, forward_time=0.104, loss_ctc=42.872, loss_att=44.345, acc=0.762, loss=43.903, backward_time=0.098, grad_norm=40.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.853e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 16:04:08,637 (trainer:737) INFO: 27epoch:train:14201-14300batch: iter_time=1.256e-04, forward_time=0.104, loss_ctc=36.874, loss_att=40.407, acc=0.761, loss=39.347, backward_time=0.097, grad_norm=34.165, clip=100.000, loss_scale=3.219e+34, optim_step_time=0.042, optim0_lr0=3.853e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 16:04:50,668 (trainer:737) INFO: 27epoch:train:14301-14400batch: iter_time=1.221e-04, forward_time=0.104, loss_ctc=40.486, loss_att=37.800, acc=0.770, loss=38.606, backward_time=0.097, grad_norm=36.145, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.852e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 16:05:32,883 (trainer:737) INFO: 27epoch:train:14401-14500batch: iter_time=1.151e-04, forward_time=0.104, loss_ctc=45.685, loss_att=52.567, acc=0.727, loss=50.502, backward_time=0.097, grad_norm=44.386, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.852e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 16:06:15,040 (trainer:737) INFO: 27epoch:train:14501-14600batch: iter_time=1.158e-04, forward_time=0.105, loss_ctc=42.098, loss_att=50.805, acc=0.742, loss=48.193, backward_time=0.098, grad_norm=42.528, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.852e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 16:06:57,229 (trainer:737) INFO: 27epoch:train:14601-14700batch: iter_time=1.168e-04, forward_time=0.105, loss_ctc=40.362, loss_att=55.437, acc=0.727, loss=50.915, backward_time=0.097, grad_norm=39.860, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.851e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 16:07:39,480 (trainer:737) INFO: 27epoch:train:14701-14800batch: iter_time=1.172e-04, forward_time=0.104, loss_ctc=45.103, loss_att=48.088, acc=0.725, loss=47.193, backward_time=0.096, grad_norm=44.792, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.851e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 16:07:56,764 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 16:08:21,765 (trainer:737) INFO: 27epoch:train:14801-14900batch: iter_time=1.223e-04, forward_time=0.105, loss_ctc=44.252, loss_att=47.264, acc=0.742, loss=46.360, backward_time=0.097, grad_norm=41.404, clip=100.000, loss_scale=2.916e+34, optim_step_time=0.042, optim0_lr0=3.850e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 16:09:04,147 (trainer:737) INFO: 27epoch:train:14901-15000batch: iter_time=1.149e-04, forward_time=0.105, loss_ctc=47.887, loss_att=58.028, acc=0.713, loss=54.986, backward_time=0.097, grad_norm=45.265, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.850e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 16:29:12,228 (trainer:343) INFO: 27epoch results: [train] iter_time=0.210, forward_time=0.105, loss_ctc=44.097, loss_att=50.522, acc=0.734, loss=48.595, backward_time=0.097, grad_norm=41.471, clip=100.000, loss_scale=2.614e+34, optim_step_time=0.042, optim0_lr0=3.886e-04, train_time=0.670, time=2 hours, 47 minutes and 42.05 seconds, total_count=405000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=54.108, cer_ctc=0.273, loss_att=54.143, acc=0.590, cer=0.342, wer=0.998, loss=54.133, time=19 minutes and 57.3 seconds, total_count=126117, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 16:29:17,748 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-15 16:29:17,796 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/22epoch.pth +[gpuc02:0/16] 2024-01-15 16:29:17,796 (trainer:272) INFO: 28/45epoch started. Estimated time to finish: 2 days, 7 hours and 14 minutes +[gpuc02:0/16] 2024-01-15 16:29:17,806 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 16:29:36,588 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 16:29:39,992 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 16:29:39,992 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 16:29:39,995 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 16:34:21,904 (trainer:737) INFO: 28epoch:train:1-100batch: iter_time=2.419, forward_time=0.110, loss_ctc=44.170, loss_att=61.330, acc=0.708, loss=56.182, backward_time=0.100, grad_norm=47.093, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.849e-04, train_time=3.041 +[gpuc02:0/16] 2024-01-15 16:35:04,425 (trainer:737) INFO: 28epoch:train:101-200batch: iter_time=1.093e-04, forward_time=0.104, loss_ctc=48.869, loss_att=58.935, acc=0.709, loss=55.915, backward_time=0.099, grad_norm=48.832, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.849e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 16:35:46,868 (trainer:737) INFO: 28epoch:train:201-300batch: iter_time=1.124e-04, forward_time=0.105, loss_ctc=55.805, loss_att=67.227, acc=0.717, loss=63.800, backward_time=0.099, grad_norm=57.323, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.848e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 16:36:29,127 (trainer:737) INFO: 28epoch:train:301-400batch: iter_time=1.228e-04, forward_time=0.104, loss_ctc=54.754, loss_att=56.373, acc=0.717, loss=55.887, backward_time=0.098, grad_norm=54.775, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.848e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 16:37:11,618 (trainer:737) INFO: 28epoch:train:401-500batch: iter_time=1.080e-04, forward_time=0.105, loss_ctc=49.469, loss_att=55.642, acc=0.716, loss=53.790, backward_time=0.098, grad_norm=44.045, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.847e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 16:37:53,923 (trainer:737) INFO: 28epoch:train:501-600batch: iter_time=1.095e-04, forward_time=0.103, loss_ctc=38.033, loss_att=43.537, acc=0.736, loss=41.886, backward_time=0.097, grad_norm=38.494, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.847e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 16:38:35,823 (trainer:737) INFO: 28epoch:train:601-700batch: iter_time=1.070e-04, forward_time=0.104, loss_ctc=45.643, loss_att=51.647, acc=0.701, loss=49.845, backward_time=0.097, grad_norm=47.739, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.846e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 16:39:17,750 (trainer:737) INFO: 28epoch:train:701-800batch: iter_time=1.005e-04, forward_time=0.104, loss_ctc=46.078, loss_att=45.396, acc=0.739, loss=45.601, backward_time=0.097, grad_norm=40.702, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.846e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 16:39:59,659 (trainer:737) INFO: 28epoch:train:801-900batch: iter_time=1.182e-04, forward_time=0.104, loss_ctc=53.465, loss_att=47.301, acc=0.729, loss=49.151, backward_time=0.097, grad_norm=49.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.845e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 16:40:43,233 (trainer:737) INFO: 28epoch:train:901-1000batch: iter_time=1.118e-04, forward_time=0.105, loss_ctc=45.324, loss_att=56.132, acc=0.702, loss=52.889, backward_time=0.102, grad_norm=43.841, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.845e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-15 16:41:25,819 (trainer:737) INFO: 28epoch:train:1001-1100batch: iter_time=1.015e-04, forward_time=0.104, loss_ctc=44.450, loss_att=56.101, acc=0.704, loss=52.605, backward_time=0.098, grad_norm=41.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.844e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 16:42:11,651 (trainer:737) INFO: 28epoch:train:1101-1200batch: iter_time=1.134e-04, forward_time=0.104, loss_ctc=51.817, loss_att=55.347, acc=0.713, loss=54.288, backward_time=0.098, grad_norm=43.538, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.844e-04, train_time=0.458 +[gpuc02:0/16] 2024-01-15 16:42:40,019 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 16:42:59,663 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 16:43:03,308 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 16:43:03,308 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 16:43:03,311 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 16:48:56,704 (trainer:737) INFO: 28epoch:train:1201-1300batch: iter_time=2.906, forward_time=0.110, loss_ctc=43.118, loss_att=55.393, acc=0.724, loss=51.710, backward_time=0.098, grad_norm=38.991, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.843e-04, train_time=4.050 +[gpuc02:0/16] 2024-01-15 16:49:39,239 (trainer:737) INFO: 28epoch:train:1301-1400batch: iter_time=1.037e-04, forward_time=0.106, loss_ctc=45.373, loss_att=62.270, acc=0.714, loss=57.201, backward_time=0.098, grad_norm=46.264, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.843e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 16:50:21,657 (trainer:737) INFO: 28epoch:train:1401-1500batch: iter_time=1.247e-04, forward_time=0.105, loss_ctc=58.154, loss_att=66.645, acc=0.721, loss=64.098, backward_time=0.098, grad_norm=64.025, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.842e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 16:51:04,021 (trainer:737) INFO: 28epoch:train:1501-1600batch: iter_time=1.316e-04, forward_time=0.105, loss_ctc=47.900, loss_att=53.294, acc=0.739, loss=51.676, backward_time=0.098, grad_norm=48.988, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.842e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 16:51:47,381 (trainer:737) INFO: 28epoch:train:1601-1700batch: iter_time=1.268e-04, forward_time=0.104, loss_ctc=48.821, loss_att=55.609, acc=0.736, loss=53.573, backward_time=0.097, grad_norm=43.595, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.842e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 16:52:30,038 (trainer:737) INFO: 28epoch:train:1701-1800batch: iter_time=1.349e-04, forward_time=0.107, loss_ctc=45.319, loss_att=58.554, acc=0.714, loss=54.584, backward_time=0.097, grad_norm=41.287, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.841e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 16:53:12,339 (trainer:737) INFO: 28epoch:train:1801-1900batch: iter_time=1.180e-04, forward_time=0.104, loss_ctc=43.346, loss_att=47.250, acc=0.738, loss=46.079, backward_time=0.097, grad_norm=45.538, clip=100.000, loss_scale=3.302e+34, optim_step_time=0.041, optim0_lr0=3.841e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 16:53:54,949 (trainer:737) INFO: 28epoch:train:1901-2000batch: iter_time=1.432e-04, forward_time=0.103, loss_ctc=40.178, loss_att=39.563, acc=0.742, loss=39.747, backward_time=0.096, grad_norm=39.260, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.840e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 16:54:22,738 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 16:54:37,537 (trainer:737) INFO: 28epoch:train:2001-2100batch: iter_time=1.369e-04, forward_time=0.104, loss_ctc=43.096, loss_att=44.565, acc=0.740, loss=44.125, backward_time=0.097, grad_norm=39.170, clip=100.000, loss_scale=3.441e+34, optim_step_time=0.042, optim0_lr0=3.840e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 16:55:19,666 (trainer:737) INFO: 28epoch:train:2101-2200batch: iter_time=1.402e-04, forward_time=0.104, loss_ctc=50.602, loss_att=51.044, acc=0.724, loss=50.911, backward_time=0.097, grad_norm=52.054, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.839e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 16:56:01,946 (trainer:737) INFO: 28epoch:train:2201-2300batch: iter_time=1.300e-04, forward_time=0.104, loss_ctc=45.196, loss_att=57.309, acc=0.725, loss=53.675, backward_time=0.098, grad_norm=41.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.839e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 16:56:51,143 (trainer:737) INFO: 28epoch:train:2301-2400batch: iter_time=1.530e-04, forward_time=0.140, loss_ctc=49.657, loss_att=59.833, acc=0.700, loss=56.780, backward_time=0.110, grad_norm=44.661, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.052, optim0_lr0=3.838e-04, train_time=0.492 +[gpuc02:0/16] 2024-01-15 16:57:34,131 (trainer:737) INFO: 28epoch:train:2401-2500batch: iter_time=1.103e-04, forward_time=0.109, loss_ctc=47.018, loss_att=55.379, acc=0.737, loss=52.871, backward_time=0.100, grad_norm=42.091, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.838e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 16:58:04,688 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 16:58:25,006 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 16:58:28,782 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 16:58:28,782 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 16:58:28,785 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 17:06:18,738 (trainer:737) INFO: 28epoch:train:2501-2600batch: iter_time=4.384, forward_time=0.126, loss_ctc=42.889, loss_att=59.757, acc=0.715, loss=54.697, backward_time=0.099, grad_norm=44.280, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.837e-04, train_time=5.246 +[gpuc02:0/16] 2024-01-15 17:07:01,162 (trainer:737) INFO: 28epoch:train:2601-2700batch: iter_time=1.292e-04, forward_time=0.106, loss_ctc=46.969, loss_att=56.605, acc=0.713, loss=53.714, backward_time=0.098, grad_norm=49.079, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.837e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 17:07:43,731 (trainer:737) INFO: 28epoch:train:2701-2800batch: iter_time=1.270e-04, forward_time=0.106, loss_ctc=51.652, loss_att=64.655, acc=0.719, loss=60.754, backward_time=0.098, grad_norm=56.136, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.836e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:08:26,528 (trainer:737) INFO: 28epoch:train:2801-2900batch: iter_time=1.254e-04, forward_time=0.104, loss_ctc=51.599, loss_att=54.359, acc=0.722, loss=53.531, backward_time=0.098, grad_norm=52.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.836e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 17:09:09,052 (trainer:737) INFO: 28epoch:train:2901-3000batch: iter_time=1.353e-04, forward_time=0.104, loss_ctc=48.787, loss_att=53.870, acc=0.721, loss=52.345, backward_time=0.097, grad_norm=43.576, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.835e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:09:51,398 (trainer:737) INFO: 28epoch:train:3001-3100batch: iter_time=1.189e-04, forward_time=0.103, loss_ctc=37.196, loss_att=42.710, acc=0.739, loss=41.056, backward_time=0.096, grad_norm=40.607, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.835e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:10:33,536 (trainer:737) INFO: 28epoch:train:3101-3200batch: iter_time=1.233e-04, forward_time=0.103, loss_ctc=44.335, loss_att=51.113, acc=0.705, loss=49.080, backward_time=0.096, grad_norm=45.137, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.834e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 17:11:15,863 (trainer:737) INFO: 28epoch:train:3201-3300batch: iter_time=1.317e-04, forward_time=0.103, loss_ctc=44.796, loss_att=44.783, acc=0.739, loss=44.787, backward_time=0.097, grad_norm=41.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.834e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:11:58,233 (trainer:737) INFO: 28epoch:train:3301-3400batch: iter_time=1.390e-04, forward_time=0.104, loss_ctc=51.119, loss_att=46.336, acc=0.731, loss=47.771, backward_time=0.097, grad_norm=48.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.834e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:12:40,632 (trainer:737) INFO: 28epoch:train:3401-3500batch: iter_time=1.154e-04, forward_time=0.104, loss_ctc=43.965, loss_att=56.015, acc=0.705, loss=52.400, backward_time=0.096, grad_norm=43.520, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.833e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 17:13:23,695 (trainer:737) INFO: 28epoch:train:3501-3600batch: iter_time=1.009e-04, forward_time=0.107, loss_ctc=43.162, loss_att=54.726, acc=0.710, loss=51.257, backward_time=0.097, grad_norm=40.000, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.833e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 17:14:06,297 (trainer:737) INFO: 28epoch:train:3601-3700batch: iter_time=1.129e-04, forward_time=0.104, loss_ctc=51.740, loss_att=55.165, acc=0.715, loss=54.137, backward_time=0.097, grad_norm=44.411, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.832e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 17:14:33,895 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 17:14:53,522 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 17:14:57,029 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 17:14:57,029 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 17:14:57,033 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 17:21:13,320 (trainer:737) INFO: 28epoch:train:3701-3800batch: iter_time=2.537, forward_time=0.106, loss_ctc=42.155, loss_att=54.392, acc=0.721, loss=50.721, backward_time=0.097, grad_norm=39.815, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.832e-04, train_time=4.270 +[gpuc02:0/16] 2024-01-15 17:21:55,683 (trainer:737) INFO: 28epoch:train:3801-3900batch: iter_time=1.072e-04, forward_time=0.106, loss_ctc=44.769, loss_att=59.694, acc=0.705, loss=55.217, backward_time=0.098, grad_norm=47.437, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.831e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:22:38,001 (trainer:737) INFO: 28epoch:train:3901-4000batch: iter_time=1.309e-04, forward_time=0.106, loss_ctc=56.760, loss_att=64.913, acc=0.719, loss=62.467, backward_time=0.097, grad_norm=59.596, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.831e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:23:20,283 (trainer:737) INFO: 28epoch:train:4001-4100batch: iter_time=1.363e-04, forward_time=0.106, loss_ctc=47.231, loss_att=51.389, acc=0.734, loss=50.142, backward_time=0.096, grad_norm=46.720, clip=100.000, loss_scale=2.783e+34, optim_step_time=0.041, optim0_lr0=3.830e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:24:03,172 (trainer:737) INFO: 28epoch:train:4101-4200batch: iter_time=1.423e-04, forward_time=0.106, loss_ctc=48.540, loss_att=55.114, acc=0.726, loss=53.142, backward_time=0.097, grad_norm=45.992, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.830e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 17:24:45,373 (trainer:737) INFO: 28epoch:train:4201-4300batch: iter_time=1.430e-04, forward_time=0.105, loss_ctc=45.166, loss_att=56.101, acc=0.707, loss=52.820, backward_time=0.096, grad_norm=42.706, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.829e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 17:25:27,857 (trainer:737) INFO: 28epoch:train:4301-4400batch: iter_time=1.624e-04, forward_time=0.104, loss_ctc=43.093, loss_att=47.324, acc=0.724, loss=46.054, backward_time=0.096, grad_norm=44.671, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.829e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:25:37,921 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 17:26:10,142 (trainer:737) INFO: 28epoch:train:4401-4500batch: iter_time=1.348e-04, forward_time=0.104, loss_ctc=39.256, loss_att=38.610, acc=0.744, loss=38.804, backward_time=0.096, grad_norm=36.696, clip=100.000, loss_scale=2.559e+34, optim_step_time=0.041, optim0_lr0=3.828e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:26:52,889 (trainer:737) INFO: 28epoch:train:4501-4600batch: iter_time=1.455e-04, forward_time=0.105, loss_ctc=42.683, loss_att=44.006, acc=0.734, loss=43.609, backward_time=0.096, grad_norm=39.790, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.828e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 17:27:35,419 (trainer:737) INFO: 28epoch:train:4601-4700batch: iter_time=1.289e-04, forward_time=0.105, loss_ctc=49.354, loss_att=49.669, acc=0.720, loss=49.574, backward_time=0.096, grad_norm=49.820, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.827e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:28:17,782 (trainer:737) INFO: 28epoch:train:4701-4800batch: iter_time=1.344e-04, forward_time=0.106, loss_ctc=44.569, loss_att=55.167, acc=0.723, loss=51.987, backward_time=0.097, grad_norm=38.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.827e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:29:01,569 (trainer:737) INFO: 28epoch:train:4801-4900batch: iter_time=1.478e-04, forward_time=0.113, loss_ctc=49.252, loss_att=57.940, acc=0.693, loss=55.334, backward_time=0.103, grad_norm=43.970, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.827e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 17:29:44,327 (trainer:737) INFO: 28epoch:train:4901-5000batch: iter_time=1.264e-04, forward_time=0.104, loss_ctc=46.663, loss_att=55.021, acc=0.733, loss=52.514, backward_time=0.098, grad_norm=40.392, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.826e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 17:29:50,508 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 17:30:09,588 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 17:30:13,046 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 17:30:13,046 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 17:30:13,049 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 17:35:05,958 (trainer:737) INFO: 28epoch:train:5001-5100batch: iter_time=2.650, forward_time=0.162, loss_ctc=42.324, loss_att=58.031, acc=0.719, loss=53.319, backward_time=0.103, grad_norm=41.988, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.826e-04, train_time=3.216 +[gpuc02:0/16] 2024-01-15 17:35:48,362 (trainer:737) INFO: 28epoch:train:5101-5200batch: iter_time=1.455e-04, forward_time=0.105, loss_ctc=46.415, loss_att=56.581, acc=0.714, loss=53.531, backward_time=0.098, grad_norm=49.078, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.825e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 17:36:30,848 (trainer:737) INFO: 28epoch:train:5201-5300batch: iter_time=1.415e-04, forward_time=0.106, loss_ctc=49.915, loss_att=63.148, acc=0.724, loss=59.178, backward_time=0.098, grad_norm=50.685, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.825e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:37:13,128 (trainer:737) INFO: 28epoch:train:5301-5400batch: iter_time=1.520e-04, forward_time=0.104, loss_ctc=51.197, loss_att=54.100, acc=0.724, loss=53.229, backward_time=0.097, grad_norm=54.154, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.824e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:37:55,466 (trainer:737) INFO: 28epoch:train:5401-5500batch: iter_time=1.583e-04, forward_time=0.105, loss_ctc=47.546, loss_att=53.580, acc=0.723, loss=51.770, backward_time=0.097, grad_norm=41.297, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.824e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:38:37,616 (trainer:737) INFO: 28epoch:train:5501-5600batch: iter_time=1.657e-04, forward_time=0.103, loss_ctc=37.117, loss_att=41.760, acc=0.740, loss=40.367, backward_time=0.097, grad_norm=39.916, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.823e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 17:39:19,798 (trainer:737) INFO: 28epoch:train:5601-5700batch: iter_time=1.377e-04, forward_time=0.103, loss_ctc=43.337, loss_att=49.899, acc=0.707, loss=47.930, backward_time=0.096, grad_norm=43.927, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.823e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 17:40:02,007 (trainer:737) INFO: 28epoch:train:5701-5800batch: iter_time=1.469e-04, forward_time=0.104, loss_ctc=44.277, loss_att=43.622, acc=0.742, loss=43.818, backward_time=0.097, grad_norm=37.982, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.822e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 17:40:44,204 (trainer:737) INFO: 28epoch:train:5801-5900batch: iter_time=1.364e-04, forward_time=0.104, loss_ctc=50.072, loss_att=45.590, acc=0.736, loss=46.934, backward_time=0.097, grad_norm=44.463, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.822e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 17:41:26,881 (trainer:737) INFO: 28epoch:train:5901-6000batch: iter_time=1.561e-04, forward_time=0.104, loss_ctc=43.663, loss_att=54.685, acc=0.707, loss=51.379, backward_time=0.097, grad_norm=42.416, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.821e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 17:42:09,218 (trainer:737) INFO: 28epoch:train:6001-6100batch: iter_time=1.412e-04, forward_time=0.105, loss_ctc=43.068, loss_att=54.729, acc=0.710, loss=51.231, backward_time=0.098, grad_norm=40.767, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.821e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 17:42:51,801 (trainer:737) INFO: 28epoch:train:6101-6200batch: iter_time=1.666e-04, forward_time=0.104, loss_ctc=50.905, loss_att=54.777, acc=0.716, loss=53.615, backward_time=0.098, grad_norm=42.477, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.820e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 17:43:18,440 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 17:43:38,700 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 17:43:42,454 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 17:43:42,454 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 17:43:42,457 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 17:48:16,771 (trainer:737) INFO: 28epoch:train:6201-6300batch: iter_time=2.614, forward_time=0.103, loss_ctc=41.566, loss_att=53.627, acc=0.725, loss=50.009, backward_time=0.101, grad_norm=40.705, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.820e-04, train_time=3.249 +[gpuc02:0/16] 2024-01-15 17:48:59,283 (trainer:737) INFO: 28epoch:train:6301-6400batch: iter_time=1.034e-04, forward_time=0.103, loss_ctc=44.640, loss_att=59.346, acc=0.707, loss=54.934, backward_time=0.097, grad_norm=46.377, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.820e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:49:41,832 (trainer:737) INFO: 28epoch:train:6401-6500batch: iter_time=1.154e-04, forward_time=0.104, loss_ctc=53.759, loss_att=64.445, acc=0.721, loss=61.240, backward_time=0.098, grad_norm=60.707, clip=100.000, loss_scale=3.655e+34, optim_step_time=0.042, optim0_lr0=3.819e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:50:24,325 (trainer:737) INFO: 28epoch:train:6501-6600batch: iter_time=1.109e-04, forward_time=0.104, loss_ctc=46.365, loss_att=50.196, acc=0.736, loss=49.047, backward_time=0.098, grad_norm=47.578, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.819e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:51:06,766 (trainer:737) INFO: 28epoch:train:6601-6700batch: iter_time=1.163e-04, forward_time=0.104, loss_ctc=47.602, loss_att=54.577, acc=0.730, loss=52.484, backward_time=0.098, grad_norm=42.626, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.818e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 17:51:48,788 (trainer:737) INFO: 28epoch:train:6701-6800batch: iter_time=1.227e-04, forward_time=0.104, loss_ctc=44.072, loss_att=55.547, acc=0.710, loss=52.105, backward_time=0.098, grad_norm=41.088, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.818e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 17:52:30,735 (trainer:737) INFO: 28epoch:train:6801-6900batch: iter_time=1.190e-04, forward_time=0.103, loss_ctc=42.065, loss_att=47.162, acc=0.725, loss=45.633, backward_time=0.097, grad_norm=44.713, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.817e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 17:53:12,714 (trainer:737) INFO: 28epoch:train:6901-7000batch: iter_time=1.747e-04, forward_time=0.103, loss_ctc=39.559, loss_att=38.817, acc=0.742, loss=39.040, backward_time=0.097, grad_norm=37.460, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.817e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 17:53:54,931 (trainer:737) INFO: 28epoch:train:7001-7100batch: iter_time=1.977e-04, forward_time=0.104, loss_ctc=42.376, loss_att=43.584, acc=0.735, loss=43.222, backward_time=0.097, grad_norm=39.881, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.816e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 17:54:37,429 (trainer:737) INFO: 28epoch:train:7101-7200batch: iter_time=1.782e-04, forward_time=0.107, loss_ctc=48.338, loss_att=49.106, acc=0.721, loss=48.875, backward_time=0.097, grad_norm=48.532, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.816e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:55:19,929 (trainer:737) INFO: 28epoch:train:7201-7300batch: iter_time=2.180e-04, forward_time=0.106, loss_ctc=44.398, loss_att=55.129, acc=0.724, loss=51.909, backward_time=0.099, grad_norm=39.281, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=3.815e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:56:02,452 (trainer:737) INFO: 28epoch:train:7301-7400batch: iter_time=2.615e-04, forward_time=0.106, loss_ctc=48.764, loss_att=57.055, acc=0.695, loss=54.568, backward_time=0.099, grad_norm=46.336, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=3.815e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 17:56:44,898 (trainer:737) INFO: 28epoch:train:7401-7500batch: iter_time=1.946e-04, forward_time=0.106, loss_ctc=46.327, loss_att=54.583, acc=0.734, loss=52.107, backward_time=0.099, grad_norm=39.622, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=3.814e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 17:56:49,699 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 17:57:09,765 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 17:57:13,551 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 17:57:13,551 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 17:57:13,554 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 18:02:11,610 (trainer:737) INFO: 28epoch:train:7501-7600batch: iter_time=2.607, forward_time=0.104, loss_ctc=41.748, loss_att=56.985, acc=0.721, loss=52.414, backward_time=0.097, grad_norm=42.890, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.814e-04, train_time=3.267 +[gpuc02:0/16] 2024-01-15 18:02:53,971 (trainer:737) INFO: 28epoch:train:7601-7700batch: iter_time=1.253e-04, forward_time=0.104, loss_ctc=45.579, loss_att=55.468, acc=0.717, loss=52.501, backward_time=0.097, grad_norm=46.050, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.814e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:03:34,510 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 18:03:36,237 (trainer:737) INFO: 28epoch:train:7701-7800batch: iter_time=1.275e-04, forward_time=0.105, loss_ctc=50.065, loss_att=63.537, acc=0.726, loss=59.496, backward_time=0.098, grad_norm=53.050, clip=100.000, loss_scale=4.070e+34, optim_step_time=0.042, optim0_lr0=3.813e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 18:04:18,567 (trainer:737) INFO: 28epoch:train:7801-7900batch: iter_time=1.377e-04, forward_time=0.104, loss_ctc=50.566, loss_att=53.660, acc=0.725, loss=52.732, backward_time=0.097, grad_norm=51.256, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.813e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:05:00,688 (trainer:737) INFO: 28epoch:train:7901-8000batch: iter_time=1.309e-04, forward_time=0.105, loss_ctc=47.238, loss_att=53.044, acc=0.725, loss=51.303, backward_time=0.097, grad_norm=40.141, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.812e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 18:05:42,794 (trainer:737) INFO: 28epoch:train:8001-8100batch: iter_time=1.383e-04, forward_time=0.103, loss_ctc=36.464, loss_att=42.078, acc=0.741, loss=40.394, backward_time=0.097, grad_norm=38.438, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.812e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 18:06:24,754 (trainer:737) INFO: 28epoch:train:8101-8200batch: iter_time=1.591e-04, forward_time=0.104, loss_ctc=43.355, loss_att=49.658, acc=0.707, loss=47.767, backward_time=0.097, grad_norm=44.697, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.811e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 18:07:06,982 (trainer:737) INFO: 28epoch:train:8201-8300batch: iter_time=1.427e-04, forward_time=0.105, loss_ctc=44.112, loss_att=43.907, acc=0.742, loss=43.969, backward_time=0.098, grad_norm=39.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.811e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 18:07:49,179 (trainer:737) INFO: 28epoch:train:8301-8400batch: iter_time=1.539e-04, forward_time=0.104, loss_ctc=49.045, loss_att=45.558, acc=0.736, loss=46.604, backward_time=0.098, grad_norm=42.775, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.810e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 18:08:31,753 (trainer:737) INFO: 28epoch:train:8401-8500batch: iter_time=1.421e-04, forward_time=0.104, loss_ctc=43.713, loss_att=55.083, acc=0.709, loss=51.672, backward_time=0.097, grad_norm=41.042, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.810e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 18:09:13,929 (trainer:737) INFO: 28epoch:train:8501-8600batch: iter_time=1.362e-04, forward_time=0.105, loss_ctc=42.882, loss_att=54.522, acc=0.713, loss=51.030, backward_time=0.098, grad_norm=40.446, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.809e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 18:09:56,481 (trainer:737) INFO: 28epoch:train:8601-8700batch: iter_time=1.428e-04, forward_time=0.105, loss_ctc=50.573, loss_att=54.344, acc=0.717, loss=53.213, backward_time=0.098, grad_norm=42.502, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.809e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:10:24,086 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 18:10:43,284 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 18:10:46,907 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 18:10:46,907 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 18:10:46,910 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 18:15:21,359 (trainer:737) INFO: 28epoch:train:8701-8800batch: iter_time=2.825, forward_time=0.105, loss_ctc=41.501, loss_att=54.746, acc=0.727, loss=50.773, backward_time=0.097, grad_norm=38.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.808e-04, train_time=3.249 +[gpuc02:0/16] 2024-01-15 18:16:03,959 (trainer:737) INFO: 28epoch:train:8801-8900batch: iter_time=1.603e-04, forward_time=0.105, loss_ctc=44.211, loss_att=62.613, acc=0.715, loss=57.092, backward_time=0.098, grad_norm=45.355, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.808e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 18:16:46,363 (trainer:737) INFO: 28epoch:train:8901-9000batch: iter_time=1.735e-04, forward_time=0.106, loss_ctc=53.596, loss_att=65.229, acc=0.727, loss=61.739, backward_time=0.098, grad_norm=57.477, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.808e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:17:28,917 (trainer:737) INFO: 28epoch:train:9001-9100batch: iter_time=1.687e-04, forward_time=0.106, loss_ctc=46.041, loss_att=52.621, acc=0.742, loss=50.647, backward_time=0.098, grad_norm=43.780, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.807e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:18:11,306 (trainer:737) INFO: 28epoch:train:9101-9200batch: iter_time=1.599e-04, forward_time=0.105, loss_ctc=47.378, loss_att=55.691, acc=0.737, loss=53.197, backward_time=0.098, grad_norm=42.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.807e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:18:53,947 (trainer:737) INFO: 28epoch:train:9201-9300batch: iter_time=1.818e-04, forward_time=0.105, loss_ctc=44.316, loss_att=57.859, acc=0.720, loss=53.796, backward_time=0.098, grad_norm=42.363, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.806e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 18:19:36,212 (trainer:737) INFO: 28epoch:train:9301-9400batch: iter_time=1.737e-04, forward_time=0.105, loss_ctc=42.341, loss_att=47.633, acc=0.737, loss=46.046, backward_time=0.098, grad_norm=43.971, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.806e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 18:20:18,597 (trainer:737) INFO: 28epoch:train:9401-9500batch: iter_time=1.885e-04, forward_time=0.105, loss_ctc=39.118, loss_att=39.197, acc=0.745, loss=39.173, backward_time=0.097, grad_norm=37.046, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.805e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:21:01,346 (trainer:737) INFO: 28epoch:train:9501-9600batch: iter_time=1.717e-04, forward_time=0.105, loss_ctc=41.974, loss_att=44.318, acc=0.740, loss=43.615, backward_time=0.098, grad_norm=38.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.805e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:21:44,165 (trainer:737) INFO: 28epoch:train:9601-9700batch: iter_time=1.588e-04, forward_time=0.105, loss_ctc=48.359, loss_att=51.496, acc=0.726, loss=50.555, backward_time=0.097, grad_norm=50.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.804e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 18:22:26,443 (trainer:737) INFO: 28epoch:train:9701-9800batch: iter_time=1.459e-04, forward_time=0.105, loss_ctc=43.759, loss_att=57.279, acc=0.727, loss=53.223, backward_time=0.098, grad_norm=38.477, clip=100.000, loss_scale=2.160e+34, optim_step_time=0.041, optim0_lr0=3.804e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:23:09,140 (trainer:737) INFO: 28epoch:train:9801-9900batch: iter_time=1.517e-04, forward_time=0.104, loss_ctc=48.866, loss_att=60.447, acc=0.698, loss=56.973, backward_time=0.098, grad_norm=45.645, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.803e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:23:51,513 (trainer:737) INFO: 28epoch:train:9901-10000batch: iter_time=1.412e-04, forward_time=0.105, loss_ctc=46.356, loss_att=54.363, acc=0.742, loss=51.961, backward_time=0.097, grad_norm=40.078, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.803e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:23:57,997 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 18:24:17,271 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 18:24:20,914 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 18:24:20,914 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 18:24:20,917 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 18:29:08,885 (trainer:737) INFO: 28epoch:train:10001-10100batch: iter_time=2.745, forward_time=0.105, loss_ctc=41.694, loss_att=57.010, acc=0.730, loss=52.415, backward_time=0.098, grad_norm=40.682, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.802e-04, train_time=3.173 +[gpuc02:0/16] 2024-01-15 18:29:28,410 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 18:29:51,403 (trainer:737) INFO: 28epoch:train:10101-10200batch: iter_time=1.558e-04, forward_time=0.104, loss_ctc=45.500, loss_att=57.084, acc=0.722, loss=53.609, backward_time=0.098, grad_norm=47.053, clip=100.000, loss_scale=3.021e+34, optim_step_time=0.041, optim0_lr0=3.802e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:30:34,136 (trainer:737) INFO: 28epoch:train:10201-10300batch: iter_time=1.505e-04, forward_time=0.105, loss_ctc=49.053, loss_att=63.275, acc=0.738, loss=59.009, backward_time=0.098, grad_norm=55.259, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.802e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:31:16,614 (trainer:737) INFO: 28epoch:train:10301-10400batch: iter_time=1.742e-04, forward_time=0.105, loss_ctc=50.169, loss_att=53.638, acc=0.737, loss=52.598, backward_time=0.098, grad_norm=51.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.801e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:31:59,085 (trainer:737) INFO: 28epoch:train:10401-10500batch: iter_time=1.752e-04, forward_time=0.104, loss_ctc=47.579, loss_att=55.676, acc=0.730, loss=53.247, backward_time=0.098, grad_norm=41.500, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.801e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:32:41,311 (trainer:737) INFO: 28epoch:train:10501-10600batch: iter_time=1.646e-04, forward_time=0.103, loss_ctc=36.481, loss_att=40.982, acc=0.756, loss=39.632, backward_time=0.096, grad_norm=36.679, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.800e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 18:33:23,613 (trainer:737) INFO: 28epoch:train:10601-10700batch: iter_time=1.441e-04, forward_time=0.104, loss_ctc=43.008, loss_att=50.056, acc=0.720, loss=47.942, backward_time=0.097, grad_norm=45.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.800e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:34:05,945 (trainer:737) INFO: 28epoch:train:10701-10800batch: iter_time=1.597e-04, forward_time=0.104, loss_ctc=43.676, loss_att=44.108, acc=0.748, loss=43.978, backward_time=0.097, grad_norm=38.412, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.799e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:34:48,265 (trainer:737) INFO: 28epoch:train:10801-10900batch: iter_time=1.705e-04, forward_time=0.104, loss_ctc=48.943, loss_att=46.223, acc=0.739, loss=47.039, backward_time=0.097, grad_norm=42.163, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.799e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:35:30,605 (trainer:737) INFO: 28epoch:train:10901-11000batch: iter_time=1.704e-04, forward_time=0.104, loss_ctc=43.673, loss_att=56.405, acc=0.716, loss=52.586, backward_time=0.097, grad_norm=42.531, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.798e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:36:13,381 (trainer:737) INFO: 28epoch:train:11001-11100batch: iter_time=1.918e-04, forward_time=0.107, loss_ctc=42.183, loss_att=55.904, acc=0.717, loss=51.788, backward_time=0.098, grad_norm=40.726, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.798e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 18:36:55,887 (trainer:737) INFO: 28epoch:train:11101-11200batch: iter_time=1.839e-04, forward_time=0.105, loss_ctc=50.197, loss_att=56.912, acc=0.721, loss=54.897, backward_time=0.097, grad_norm=42.046, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.797e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:37:24,566 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 18:37:43,572 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 18:37:47,107 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 18:37:47,107 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 18:37:47,110 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 18:42:16,481 (trainer:737) INFO: 28epoch:train:11201-11300batch: iter_time=2.743, forward_time=0.106, loss_ctc=41.621, loss_att=52.181, acc=0.738, loss=49.013, backward_time=0.098, grad_norm=37.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.797e-04, train_time=3.206 +[gpuc02:0/16] 2024-01-15 18:42:59,063 (trainer:737) INFO: 28epoch:train:11301-11400batch: iter_time=1.482e-04, forward_time=0.106, loss_ctc=44.080, loss_att=59.653, acc=0.721, loss=54.981, backward_time=0.098, grad_norm=43.593, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.797e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 18:43:41,613 (trainer:737) INFO: 28epoch:train:11401-11500batch: iter_time=1.717e-04, forward_time=0.105, loss_ctc=53.588, loss_att=64.350, acc=0.729, loss=61.121, backward_time=0.097, grad_norm=57.928, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.796e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:44:24,104 (trainer:737) INFO: 28epoch:train:11501-11600batch: iter_time=1.669e-04, forward_time=0.105, loss_ctc=46.446, loss_att=52.322, acc=0.744, loss=50.559, backward_time=0.097, grad_norm=44.972, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.796e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:45:06,943 (trainer:737) INFO: 28epoch:train:11601-11700batch: iter_time=2.021e-04, forward_time=0.106, loss_ctc=47.602, loss_att=54.127, acc=0.741, loss=52.170, backward_time=0.098, grad_norm=45.103, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.795e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 18:45:49,264 (trainer:737) INFO: 28epoch:train:11701-11800batch: iter_time=1.708e-04, forward_time=0.105, loss_ctc=44.230, loss_att=56.535, acc=0.723, loss=52.844, backward_time=0.097, grad_norm=39.342, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.795e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:46:31,864 (trainer:737) INFO: 28epoch:train:11801-11900batch: iter_time=2.006e-04, forward_time=0.104, loss_ctc=42.011, loss_att=46.183, acc=0.740, loss=44.932, backward_time=0.097, grad_norm=42.613, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.794e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 18:47:14,600 (trainer:737) INFO: 28epoch:train:11901-12000batch: iter_time=2.224e-04, forward_time=0.105, loss_ctc=39.196, loss_att=39.166, acc=0.744, loss=39.175, backward_time=0.097, grad_norm=36.344, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.794e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:47:57,233 (trainer:737) INFO: 28epoch:train:12001-12100batch: iter_time=1.920e-04, forward_time=0.105, loss_ctc=41.590, loss_att=43.628, acc=0.744, loss=43.017, backward_time=0.097, grad_norm=37.060, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.793e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 18:48:39,566 (trainer:737) INFO: 28epoch:train:12101-12200batch: iter_time=1.958e-04, forward_time=0.105, loss_ctc=47.348, loss_att=50.107, acc=0.728, loss=49.279, backward_time=0.097, grad_norm=47.552, clip=100.000, loss_scale=3.198e+34, optim_step_time=0.041, optim0_lr0=3.793e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 18:49:21,988 (trainer:737) INFO: 28epoch:train:12201-12300batch: iter_time=1.773e-04, forward_time=0.105, loss_ctc=43.553, loss_att=56.229, acc=0.728, loss=52.426, backward_time=0.097, grad_norm=39.110, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.792e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:50:04,471 (trainer:737) INFO: 28epoch:train:12301-12400batch: iter_time=1.940e-04, forward_time=0.106, loss_ctc=48.593, loss_att=59.771, acc=0.700, loss=56.417, backward_time=0.097, grad_norm=44.041, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.792e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 18:50:47,173 (trainer:737) INFO: 28epoch:train:12401-12500batch: iter_time=1.600e-04, forward_time=0.106, loss_ctc=46.063, loss_att=53.977, acc=0.742, loss=51.603, backward_time=0.097, grad_norm=39.717, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.792e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:50:53,645 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 18:51:12,903 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 18:51:16,605 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 18:51:16,605 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 18:51:16,609 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 18:56:09,299 (trainer:737) INFO: 28epoch:train:12501-12600batch: iter_time=2.793, forward_time=0.106, loss_ctc=41.821, loss_att=56.511, acc=0.735, loss=52.104, backward_time=0.097, grad_norm=41.137, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.791e-04, train_time=3.221 +[gpuc02:0/16] 2024-01-15 18:56:52,036 (trainer:737) INFO: 28epoch:train:12601-12700batch: iter_time=1.719e-04, forward_time=0.108, loss_ctc=44.911, loss_att=56.518, acc=0.723, loss=53.036, backward_time=0.097, grad_norm=46.899, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.791e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:57:34,900 (trainer:737) INFO: 28epoch:train:12701-12800batch: iter_time=1.913e-04, forward_time=0.107, loss_ctc=49.083, loss_att=63.093, acc=0.738, loss=58.890, backward_time=0.099, grad_norm=51.334, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.790e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 18:58:17,300 (trainer:737) INFO: 28epoch:train:12801-12900batch: iter_time=1.932e-04, forward_time=0.106, loss_ctc=50.264, loss_att=53.747, acc=0.737, loss=52.702, backward_time=0.097, grad_norm=50.827, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.790e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 18:59:00,005 (trainer:737) INFO: 28epoch:train:12901-13000batch: iter_time=1.859e-04, forward_time=0.106, loss_ctc=46.883, loss_att=54.726, acc=0.733, loss=52.373, backward_time=0.098, grad_norm=40.474, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.789e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 18:59:42,329 (trainer:737) INFO: 28epoch:train:13001-13100batch: iter_time=2.017e-04, forward_time=0.105, loss_ctc=36.403, loss_att=41.037, acc=0.752, loss=39.647, backward_time=0.097, grad_norm=39.140, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.789e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 19:00:24,658 (trainer:737) INFO: 28epoch:train:13101-13200batch: iter_time=2.173e-04, forward_time=0.106, loss_ctc=42.822, loss_att=49.048, acc=0.723, loss=47.180, backward_time=0.097, grad_norm=42.529, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.788e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 19:01:07,627 (trainer:737) INFO: 28epoch:train:13201-13300batch: iter_time=2.110e-04, forward_time=0.105, loss_ctc=43.881, loss_att=43.843, acc=0.749, loss=43.854, backward_time=0.098, grad_norm=36.857, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.788e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 19:01:50,328 (trainer:737) INFO: 28epoch:train:13301-13400batch: iter_time=2.091e-04, forward_time=0.105, loss_ctc=48.572, loss_att=45.616, acc=0.741, loss=46.502, backward_time=0.097, grad_norm=43.341, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.787e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 19:02:33,078 (trainer:737) INFO: 28epoch:train:13401-13500batch: iter_time=2.044e-04, forward_time=0.105, loss_ctc=43.374, loss_att=56.103, acc=0.718, loss=52.285, backward_time=0.098, grad_norm=42.371, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.787e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 19:03:16,622 (trainer:737) INFO: 28epoch:train:13501-13600batch: iter_time=1.914e-04, forward_time=0.106, loss_ctc=42.009, loss_att=55.210, acc=0.722, loss=51.250, backward_time=0.098, grad_norm=39.573, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.787e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-15 19:03:59,696 (trainer:737) INFO: 28epoch:train:13601-13700batch: iter_time=1.732e-04, forward_time=0.105, loss_ctc=49.559, loss_att=56.572, acc=0.722, loss=54.468, backward_time=0.097, grad_norm=41.199, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.786e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 19:04:27,102 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 19:04:47,038 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 19:04:50,698 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 19:04:50,699 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 19:04:50,702 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 19:09:54,136 (trainer:737) INFO: 28epoch:train:13701-13800batch: iter_time=2.965, forward_time=0.105, loss_ctc=40.975, loss_att=52.402, acc=0.739, loss=48.974, backward_time=0.097, grad_norm=37.999, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.786e-04, train_time=3.544 +[gpuc02:0/16] 2024-01-15 19:10:36,644 (trainer:737) INFO: 28epoch:train:13801-13900batch: iter_time=1.175e-04, forward_time=0.104, loss_ctc=43.893, loss_att=58.916, acc=0.723, loss=54.409, backward_time=0.098, grad_norm=44.787, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.785e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 19:11:19,576 (trainer:737) INFO: 28epoch:train:13901-14000batch: iter_time=1.205e-04, forward_time=0.104, loss_ctc=52.694, loss_att=64.211, acc=0.729, loss=60.756, backward_time=0.098, grad_norm=56.588, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.785e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 19:12:02,014 (trainer:737) INFO: 28epoch:train:14001-14100batch: iter_time=1.348e-04, forward_time=0.105, loss_ctc=45.352, loss_att=50.574, acc=0.747, loss=49.007, backward_time=0.099, grad_norm=47.082, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.784e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 19:12:23,257 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 19:12:44,603 (trainer:737) INFO: 28epoch:train:14101-14200batch: iter_time=1.436e-04, forward_time=0.105, loss_ctc=46.778, loss_att=53.708, acc=0.744, loss=51.629, backward_time=0.099, grad_norm=43.119, clip=100.000, loss_scale=4.280e+34, optim_step_time=0.042, optim0_lr0=3.784e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 19:13:26,969 (trainer:737) INFO: 28epoch:train:14201-14300batch: iter_time=1.395e-04, forward_time=0.105, loss_ctc=43.986, loss_att=56.943, acc=0.719, loss=53.056, backward_time=0.098, grad_norm=40.590, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.783e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 19:14:09,233 (trainer:737) INFO: 28epoch:train:14301-14400batch: iter_time=1.393e-04, forward_time=0.104, loss_ctc=42.167, loss_att=45.643, acc=0.742, loss=44.600, backward_time=0.098, grad_norm=43.676, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.783e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 19:14:51,216 (trainer:737) INFO: 28epoch:train:14401-14500batch: iter_time=1.399e-04, forward_time=0.104, loss_ctc=38.726, loss_att=38.420, acc=0.747, loss=38.512, backward_time=0.097, grad_norm=36.321, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.782e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 19:15:33,377 (trainer:737) INFO: 28epoch:train:14501-14600batch: iter_time=1.354e-04, forward_time=0.104, loss_ctc=41.497, loss_att=43.500, acc=0.745, loss=42.899, backward_time=0.098, grad_norm=37.397, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.782e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 19:16:15,564 (trainer:737) INFO: 28epoch:train:14601-14700batch: iter_time=1.087e-04, forward_time=0.104, loss_ctc=48.049, loss_att=49.650, acc=0.730, loss=49.170, backward_time=0.097, grad_norm=47.734, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.782e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 19:16:57,857 (trainer:737) INFO: 28epoch:train:14701-14800batch: iter_time=1.188e-04, forward_time=0.105, loss_ctc=43.754, loss_att=55.695, acc=0.730, loss=52.113, backward_time=0.097, grad_norm=38.856, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.781e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 19:17:40,234 (trainer:737) INFO: 28epoch:train:14801-14900batch: iter_time=1.242e-04, forward_time=0.105, loss_ctc=47.891, loss_att=58.469, acc=0.706, loss=55.296, backward_time=0.098, grad_norm=42.226, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.781e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 19:18:22,476 (trainer:737) INFO: 28epoch:train:14901-15000batch: iter_time=1.220e-04, forward_time=0.104, loss_ctc=45.818, loss_att=53.831, acc=0.742, loss=51.427, backward_time=0.097, grad_norm=41.368, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.780e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 19:38:35,909 (trainer:343) INFO: 28epoch results: [train] iter_time=0.228, forward_time=0.106, loss_ctc=45.769, loss_att=53.171, acc=0.726, loss=50.950, backward_time=0.098, grad_norm=44.090, clip=100.000, loss_scale=2.792e+34, optim_step_time=0.042, optim0_lr0=3.814e-04, train_time=0.676, time=2 hours, 49 minutes and 17.03 seconds, total_count=420000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=54.180, cer_ctc=0.272, loss_att=52.266, acc=0.596, cer=0.381, wer=0.998, loss=52.840, time=20 minutes and 0.81 seconds, total_count=130788, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 19:38:41,828 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-15 19:38:41,848 (trainer:272) INFO: 29/45epoch started. Estimated time to finish: 2 days, 4 hours and 19 minutes +[gpuc02:0/16] 2024-01-15 19:38:41,857 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 19:39:00,841 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 19:39:04,273 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 19:39:04,273 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-15 19:39:04,276 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 19:43:45,403 (trainer:737) INFO: 29epoch:train:1-100batch: iter_time=2.483, forward_time=0.106, loss_ctc=42.373, loss_att=38.067, acc=0.775, loss=39.359, backward_time=0.098, grad_norm=41.020, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.780e-04, train_time=3.035 +[gpuc02:0/16] 2024-01-15 19:44:31,576 (trainer:737) INFO: 29epoch:train:101-200batch: iter_time=1.301e-04, forward_time=0.104, loss_ctc=49.722, loss_att=56.746, acc=0.720, loss=54.639, backward_time=0.098, grad_norm=50.115, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.779e-04, train_time=0.462 +[gpuc02:0/16] 2024-01-15 19:45:18,342 (trainer:737) INFO: 29epoch:train:201-300batch: iter_time=1.242e-04, forward_time=0.107, loss_ctc=48.799, loss_att=53.732, acc=0.735, loss=52.252, backward_time=0.098, grad_norm=44.185, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.779e-04, train_time=0.467 +[gpuc02:0/16] 2024-01-15 19:46:00,684 (trainer:737) INFO: 29epoch:train:301-400batch: iter_time=1.293e-04, forward_time=0.105, loss_ctc=59.670, loss_att=57.657, acc=0.714, loss=58.261, backward_time=0.098, grad_norm=56.693, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.778e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 19:46:46,493 (trainer:737) INFO: 29epoch:train:401-500batch: iter_time=1.347e-04, forward_time=0.113, loss_ctc=41.858, loss_att=52.848, acc=0.711, loss=49.551, backward_time=0.098, grad_norm=43.769, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.778e-04, train_time=0.458 +[gpuc02:0/16] 2024-01-15 19:46:57,405 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 19:47:35,864 (trainer:737) INFO: 29epoch:train:501-600batch: iter_time=1.430e-04, forward_time=0.134, loss_ctc=46.485, loss_att=48.573, acc=0.724, loss=47.946, backward_time=0.112, grad_norm=50.341, clip=100.000, loss_scale=2.601e+34, optim_step_time=0.048, optim0_lr0=3.778e-04, train_time=0.493 +[gpuc02:0/16] 2024-01-15 19:48:22,576 (trainer:737) INFO: 29epoch:train:601-700batch: iter_time=1.255e-04, forward_time=0.122, loss_ctc=50.538, loss_att=52.621, acc=0.734, loss=51.996, backward_time=0.108, grad_norm=44.455, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.046, optim0_lr0=3.777e-04, train_time=0.467 +[gpuc02:0/16] 2024-01-15 19:49:08,778 (trainer:737) INFO: 29epoch:train:701-800batch: iter_time=1.387e-04, forward_time=0.130, loss_ctc=51.424, loss_att=57.775, acc=0.708, loss=55.870, backward_time=0.104, grad_norm=48.466, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.045, optim0_lr0=3.777e-04, train_time=0.462 +[gpuc02:0/16] 2024-01-15 19:50:02,411 (trainer:737) INFO: 29epoch:train:801-900batch: iter_time=1.184e-04, forward_time=0.122, loss_ctc=59.682, loss_att=57.403, acc=0.732, loss=58.086, backward_time=0.115, grad_norm=59.119, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.776e-04, train_time=0.536 +[gpuc02:0/16] 2024-01-15 19:50:46,498 (trainer:737) INFO: 29epoch:train:901-1000batch: iter_time=1.090e-04, forward_time=0.121, loss_ctc=43.843, loss_att=45.772, acc=0.732, loss=45.193, backward_time=0.100, grad_norm=40.661, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.776e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-15 19:51:33,753 (trainer:737) INFO: 29epoch:train:1001-1100batch: iter_time=1.132e-04, forward_time=0.104, loss_ctc=43.951, loss_att=50.000, acc=0.741, loss=48.185, backward_time=0.097, grad_norm=39.912, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.775e-04, train_time=0.472 +[gpuc02:0/16] 2024-01-15 19:52:18,336 (trainer:737) INFO: 29epoch:train:1101-1200batch: iter_time=1.127e-04, forward_time=0.103, loss_ctc=48.893, loss_att=55.535, acc=0.722, loss=53.542, backward_time=0.097, grad_norm=53.430, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.775e-04, train_time=0.446 +[gpuc02:0/16] 2024-01-15 19:53:12,668 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 19:53:31,409 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 19:53:34,896 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 19:53:34,896 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-15 19:53:34,899 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 20:01:22,973 (trainer:737) INFO: 29epoch:train:1201-1300batch: iter_time=4.721, forward_time=0.103, loss_ctc=38.990, loss_att=48.295, acc=0.738, loss=45.504, backward_time=0.097, grad_norm=38.062, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.774e-04, train_time=5.446 +[gpuc02:0/16] 2024-01-15 20:02:05,502 (trainer:737) INFO: 29epoch:train:1301-1400batch: iter_time=1.069e-04, forward_time=0.104, loss_ctc=43.818, loss_att=47.009, acc=0.739, loss=46.051, backward_time=0.096, grad_norm=44.449, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.774e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:02:48,323 (trainer:737) INFO: 29epoch:train:1401-1500batch: iter_time=1.225e-04, forward_time=0.103, loss_ctc=54.850, loss_att=57.620, acc=0.729, loss=56.789, backward_time=0.097, grad_norm=49.799, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.774e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 20:03:30,909 (trainer:737) INFO: 29epoch:train:1501-1600batch: iter_time=1.297e-04, forward_time=0.104, loss_ctc=44.462, loss_att=47.614, acc=0.737, loss=46.669, backward_time=0.097, grad_norm=43.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.773e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 20:04:13,448 (trainer:737) INFO: 29epoch:train:1601-1700batch: iter_time=1.292e-04, forward_time=0.103, loss_ctc=54.241, loss_att=60.551, acc=0.701, loss=58.658, backward_time=0.097, grad_norm=52.449, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.773e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:04:55,755 (trainer:737) INFO: 29epoch:train:1701-1800batch: iter_time=1.314e-04, forward_time=0.103, loss_ctc=37.289, loss_att=36.687, acc=0.750, loss=36.868, backward_time=0.097, grad_norm=44.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.772e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:05:38,453 (trainer:737) INFO: 29epoch:train:1801-1900batch: iter_time=1.327e-04, forward_time=0.104, loss_ctc=51.504, loss_att=53.565, acc=0.734, loss=52.946, backward_time=0.098, grad_norm=44.164, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.772e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 20:06:20,831 (trainer:737) INFO: 29epoch:train:1901-2000batch: iter_time=1.426e-04, forward_time=0.104, loss_ctc=44.957, loss_att=53.937, acc=0.704, loss=51.243, backward_time=0.097, grad_norm=43.534, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.771e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 20:07:03,418 (trainer:737) INFO: 29epoch:train:2001-2100batch: iter_time=1.079e-04, forward_time=0.106, loss_ctc=54.969, loss_att=51.612, acc=0.737, loss=52.619, backward_time=0.097, grad_norm=47.592, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.771e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 20:07:45,783 (trainer:737) INFO: 29epoch:train:2101-2200batch: iter_time=1.235e-04, forward_time=0.104, loss_ctc=53.166, loss_att=59.083, acc=0.716, loss=57.308, backward_time=0.097, grad_norm=45.659, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.770e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:08:28,026 (trainer:737) INFO: 29epoch:train:2201-2300batch: iter_time=1.119e-04, forward_time=0.103, loss_ctc=41.362, loss_att=47.560, acc=0.738, loss=45.701, backward_time=0.096, grad_norm=40.023, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.770e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 20:09:10,365 (trainer:737) INFO: 29epoch:train:2301-2400batch: iter_time=1.178e-04, forward_time=0.104, loss_ctc=50.051, loss_att=55.292, acc=0.732, loss=53.720, backward_time=0.097, grad_norm=48.705, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.769e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:09:52,573 (trainer:737) INFO: 29epoch:train:2401-2500batch: iter_time=1.179e-04, forward_time=0.103, loss_ctc=38.923, loss_att=50.948, acc=0.707, loss=47.340, backward_time=0.097, grad_norm=39.484, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.769e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 20:09:57,811 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 20:10:17,467 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 20:10:21,072 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 20:10:21,072 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 20:10:21,075 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 20:15:19,817 (trainer:737) INFO: 29epoch:train:2501-2600batch: iter_time=2.552, forward_time=0.104, loss_ctc=41.024, loss_att=38.863, acc=0.778, loss=39.511, backward_time=0.098, grad_norm=39.953, clip=100.000, loss_scale=3.614e+34, optim_step_time=0.042, optim0_lr0=3.769e-04, train_time=3.272 +[gpuc02:0/16] 2024-01-15 20:16:02,852 (trainer:737) INFO: 29epoch:train:2601-2700batch: iter_time=1.342e-04, forward_time=0.106, loss_ctc=47.892, loss_att=59.926, acc=0.719, loss=56.316, backward_time=0.098, grad_norm=49.368, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.768e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 20:16:45,688 (trainer:737) INFO: 29epoch:train:2701-2800batch: iter_time=1.257e-04, forward_time=0.105, loss_ctc=47.236, loss_att=51.823, acc=0.748, loss=50.447, backward_time=0.098, grad_norm=43.134, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.768e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 20:17:28,017 (trainer:737) INFO: 29epoch:train:2801-2900batch: iter_time=1.214e-04, forward_time=0.106, loss_ctc=54.796, loss_att=56.895, acc=0.722, loss=56.265, backward_time=0.098, grad_norm=53.844, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.767e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:18:11,231 (trainer:737) INFO: 29epoch:train:2901-3000batch: iter_time=1.233e-04, forward_time=0.105, loss_ctc=40.675, loss_att=51.593, acc=0.730, loss=48.317, backward_time=0.098, grad_norm=40.496, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.767e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 20:18:53,798 (trainer:737) INFO: 29epoch:train:3001-3100batch: iter_time=1.205e-04, forward_time=0.106, loss_ctc=43.766, loss_att=46.875, acc=0.742, loss=45.942, backward_time=0.098, grad_norm=44.155, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.766e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:19:36,489 (trainer:737) INFO: 29epoch:train:3101-3200batch: iter_time=1.176e-04, forward_time=0.106, loss_ctc=48.628, loss_att=52.649, acc=0.740, loss=51.443, backward_time=0.099, grad_norm=42.938, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.766e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 20:20:18,692 (trainer:737) INFO: 29epoch:train:3201-3300batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=50.695, loss_att=59.914, acc=0.711, loss=57.148, backward_time=0.098, grad_norm=42.169, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.765e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 20:21:01,233 (trainer:737) INFO: 29epoch:train:3301-3400batch: iter_time=1.310e-04, forward_time=0.104, loss_ctc=55.946, loss_att=55.933, acc=0.744, loss=55.937, backward_time=0.098, grad_norm=52.516, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.765e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:21:28,420 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 20:21:43,552 (trainer:737) INFO: 29epoch:train:3401-3500batch: iter_time=1.351e-04, forward_time=0.105, loss_ctc=42.819, loss_att=44.854, acc=0.741, loss=44.243, backward_time=0.098, grad_norm=38.455, clip=100.000, loss_scale=3.399e+34, optim_step_time=0.042, optim0_lr0=3.765e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:22:25,775 (trainer:737) INFO: 29epoch:train:3501-3600batch: iter_time=1.368e-04, forward_time=0.104, loss_ctc=43.271, loss_att=48.799, acc=0.753, loss=47.141, backward_time=0.098, grad_norm=37.708, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.764e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 20:23:08,100 (trainer:737) INFO: 29epoch:train:3601-3700batch: iter_time=1.224e-04, forward_time=0.105, loss_ctc=46.601, loss_att=56.294, acc=0.727, loss=53.386, backward_time=0.099, grad_norm=48.724, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.764e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:23:34,860 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 20:23:53,784 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 20:23:57,535 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 20:23:57,535 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 20:23:57,538 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 20:28:25,918 (trainer:737) INFO: 29epoch:train:3701-3800batch: iter_time=2.602, forward_time=0.104, loss_ctc=38.168, loss_att=47.486, acc=0.749, loss=44.691, backward_time=0.098, grad_norm=36.653, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.763e-04, train_time=3.178 +[gpuc02:0/16] 2024-01-15 20:29:08,261 (trainer:737) INFO: 29epoch:train:3801-3900batch: iter_time=1.203e-04, forward_time=0.104, loss_ctc=42.478, loss_att=50.111, acc=0.736, loss=47.821, backward_time=0.097, grad_norm=44.024, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.763e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:29:50,635 (trainer:737) INFO: 29epoch:train:3901-4000batch: iter_time=1.247e-04, forward_time=0.104, loss_ctc=52.904, loss_att=57.122, acc=0.742, loss=55.857, backward_time=0.097, grad_norm=47.571, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.762e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 20:30:33,032 (trainer:737) INFO: 29epoch:train:4001-4100batch: iter_time=1.228e-04, forward_time=0.104, loss_ctc=43.256, loss_att=46.828, acc=0.745, loss=45.757, backward_time=0.097, grad_norm=41.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.762e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 20:31:15,570 (trainer:737) INFO: 29epoch:train:4101-4200batch: iter_time=1.483e-04, forward_time=0.105, loss_ctc=53.688, loss_att=60.676, acc=0.712, loss=58.579, backward_time=0.098, grad_norm=50.128, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.761e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:31:58,636 (trainer:737) INFO: 29epoch:train:4201-4300batch: iter_time=1.548e-04, forward_time=0.104, loss_ctc=36.020, loss_att=37.348, acc=0.756, loss=36.950, backward_time=0.097, grad_norm=42.495, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.761e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 20:32:41,384 (trainer:737) INFO: 29epoch:train:4301-4400batch: iter_time=1.369e-04, forward_time=0.106, loss_ctc=50.704, loss_att=53.177, acc=0.746, loss=52.435, backward_time=0.099, grad_norm=44.279, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.761e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 20:33:24,012 (trainer:737) INFO: 29epoch:train:4401-4500batch: iter_time=1.383e-04, forward_time=0.104, loss_ctc=44.065, loss_att=56.590, acc=0.708, loss=52.832, backward_time=0.097, grad_norm=42.322, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.760e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 20:34:06,847 (trainer:737) INFO: 29epoch:train:4501-4600batch: iter_time=1.253e-04, forward_time=0.104, loss_ctc=54.163, loss_att=51.392, acc=0.745, loss=52.223, backward_time=0.097, grad_norm=47.479, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.760e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 20:34:49,537 (trainer:737) INFO: 29epoch:train:4601-4700batch: iter_time=1.252e-04, forward_time=0.105, loss_ctc=52.001, loss_att=58.478, acc=0.729, loss=56.535, backward_time=0.097, grad_norm=44.652, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.759e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 20:35:32,078 (trainer:737) INFO: 29epoch:train:4701-4800batch: iter_time=1.176e-04, forward_time=0.103, loss_ctc=40.533, loss_att=48.101, acc=0.741, loss=45.830, backward_time=0.096, grad_norm=38.858, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.759e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:36:14,710 (trainer:737) INFO: 29epoch:train:4801-4900batch: iter_time=1.062e-04, forward_time=0.105, loss_ctc=48.626, loss_att=54.404, acc=0.747, loss=52.671, backward_time=0.097, grad_norm=46.129, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.758e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 20:36:56,935 (trainer:737) INFO: 29epoch:train:4901-5000batch: iter_time=1.029e-04, forward_time=0.104, loss_ctc=38.152, loss_att=50.392, acc=0.724, loss=46.720, backward_time=0.097, grad_norm=37.946, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.758e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 20:37:00,909 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 20:37:20,960 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 20:37:24,974 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 20:37:24,974 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 20:37:24,977 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 20:42:10,613 (trainer:737) INFO: 29epoch:train:5001-5100batch: iter_time=2.552, forward_time=0.104, loss_ctc=40.097, loss_att=37.828, acc=0.782, loss=38.509, backward_time=0.098, grad_norm=40.435, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.757e-04, train_time=3.137 +[gpuc02:0/16] 2024-01-15 20:42:53,436 (trainer:737) INFO: 29epoch:train:5101-5200batch: iter_time=1.350e-04, forward_time=0.108, loss_ctc=47.500, loss_att=56.736, acc=0.725, loss=53.965, backward_time=0.098, grad_norm=44.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.757e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 20:43:35,813 (trainer:737) INFO: 29epoch:train:5201-5300batch: iter_time=1.314e-04, forward_time=0.106, loss_ctc=45.895, loss_att=50.653, acc=0.750, loss=49.226, backward_time=0.098, grad_norm=42.175, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.757e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 20:44:18,582 (trainer:737) INFO: 29epoch:train:5301-5400batch: iter_time=1.474e-04, forward_time=0.106, loss_ctc=53.493, loss_att=56.270, acc=0.724, loss=55.437, backward_time=0.098, grad_norm=52.918, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.756e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 20:44:46,581 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 20:45:01,078 (trainer:737) INFO: 29epoch:train:5401-5500batch: iter_time=1.382e-04, forward_time=0.105, loss_ctc=40.560, loss_att=50.666, acc=0.733, loss=47.634, backward_time=0.098, grad_norm=40.239, clip=100.000, loss_scale=2.098e+34, optim_step_time=0.042, optim0_lr0=3.756e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:45:43,599 (trainer:737) INFO: 29epoch:train:5501-5600batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=43.297, loss_att=46.380, acc=0.743, loss=45.455, backward_time=0.098, grad_norm=43.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.755e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:46:26,105 (trainer:737) INFO: 29epoch:train:5601-5700batch: iter_time=1.405e-04, forward_time=0.106, loss_ctc=47.991, loss_att=51.922, acc=0.741, loss=50.743, backward_time=0.099, grad_norm=41.004, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.755e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:47:08,423 (trainer:737) INFO: 29epoch:train:5701-5800batch: iter_time=1.659e-04, forward_time=0.105, loss_ctc=50.058, loss_att=59.605, acc=0.712, loss=56.741, backward_time=0.098, grad_norm=42.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.754e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:47:50,841 (trainer:737) INFO: 29epoch:train:5801-5900batch: iter_time=1.605e-04, forward_time=0.105, loss_ctc=53.771, loss_att=55.254, acc=0.746, loss=54.809, backward_time=0.098, grad_norm=48.559, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.754e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 20:48:33,093 (trainer:737) INFO: 29epoch:train:5901-6000batch: iter_time=1.340e-04, forward_time=0.105, loss_ctc=42.603, loss_att=44.319, acc=0.742, loss=43.804, backward_time=0.098, grad_norm=38.538, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.754e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 20:49:16,248 (trainer:737) INFO: 29epoch:train:6001-6100batch: iter_time=1.417e-04, forward_time=0.105, loss_ctc=42.697, loss_att=48.206, acc=0.756, loss=46.553, backward_time=0.098, grad_norm=39.458, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.753e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-15 20:49:59,620 (trainer:737) INFO: 29epoch:train:6101-6200batch: iter_time=1.580e-04, forward_time=0.104, loss_ctc=46.094, loss_att=55.906, acc=0.728, loss=52.963, backward_time=0.097, grad_norm=49.182, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.753e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 20:50:26,866 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 20:50:46,028 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 20:50:49,621 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 20:50:49,621 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 20:50:49,625 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 20:55:04,485 (trainer:737) INFO: 29epoch:train:6201-6300batch: iter_time=2.558, forward_time=0.105, loss_ctc=38.083, loss_att=46.984, acc=0.750, loss=44.314, backward_time=0.097, grad_norm=35.332, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.752e-04, train_time=3.048 +[gpuc02:0/16] 2024-01-15 20:55:46,822 (trainer:737) INFO: 29epoch:train:6301-6400batch: iter_time=1.125e-04, forward_time=0.104, loss_ctc=42.335, loss_att=49.676, acc=0.739, loss=47.474, backward_time=0.097, grad_norm=43.415, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.752e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 20:56:29,307 (trainer:737) INFO: 29epoch:train:6401-6500batch: iter_time=1.187e-04, forward_time=0.104, loss_ctc=51.847, loss_att=56.354, acc=0.744, loss=55.002, backward_time=0.097, grad_norm=48.384, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.751e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:57:11,729 (trainer:737) INFO: 29epoch:train:6501-6600batch: iter_time=1.194e-04, forward_time=0.104, loss_ctc=43.211, loss_att=46.922, acc=0.746, loss=45.808, backward_time=0.097, grad_norm=41.910, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.751e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 20:57:54,227 (trainer:737) INFO: 29epoch:train:6601-6700batch: iter_time=1.257e-04, forward_time=0.104, loss_ctc=52.541, loss_att=59.649, acc=0.715, loss=57.517, backward_time=0.098, grad_norm=48.137, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.750e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 20:58:36,221 (trainer:737) INFO: 29epoch:train:6701-6800batch: iter_time=1.082e-04, forward_time=0.103, loss_ctc=35.276, loss_att=36.903, acc=0.758, loss=36.415, backward_time=0.096, grad_norm=42.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.750e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-15 20:59:18,709 (trainer:737) INFO: 29epoch:train:6801-6900batch: iter_time=1.214e-04, forward_time=0.104, loss_ctc=50.703, loss_att=52.529, acc=0.746, loss=51.982, backward_time=0.098, grad_norm=45.391, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.750e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:00:01,018 (trainer:737) INFO: 29epoch:train:6901-7000batch: iter_time=1.306e-04, forward_time=0.103, loss_ctc=44.231, loss_att=56.720, acc=0.709, loss=52.973, backward_time=0.097, grad_norm=41.309, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.749e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:00:43,376 (trainer:737) INFO: 29epoch:train:7001-7100batch: iter_time=1.340e-04, forward_time=0.104, loss_ctc=52.830, loss_att=50.952, acc=0.747, loss=51.515, backward_time=0.097, grad_norm=46.201, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.749e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:01:26,048 (trainer:737) INFO: 29epoch:train:7101-7200batch: iter_time=1.289e-04, forward_time=0.107, loss_ctc=51.614, loss_att=57.783, acc=0.730, loss=55.933, backward_time=0.098, grad_norm=46.171, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.748e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 21:02:08,552 (trainer:737) INFO: 29epoch:train:7201-7300batch: iter_time=9.903e-05, forward_time=0.104, loss_ctc=40.865, loss_att=48.181, acc=0.741, loss=45.986, backward_time=0.097, grad_norm=39.643, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.748e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:02:51,417 (trainer:737) INFO: 29epoch:train:7301-7400batch: iter_time=9.676e-05, forward_time=0.104, loss_ctc=49.016, loss_att=54.995, acc=0.747, loss=53.201, backward_time=0.097, grad_norm=48.759, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.747e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 21:03:33,637 (trainer:737) INFO: 29epoch:train:7401-7500batch: iter_time=1.033e-04, forward_time=0.104, loss_ctc=37.956, loss_att=50.224, acc=0.725, loss=46.543, backward_time=0.097, grad_norm=39.238, clip=100.000, loss_scale=2.783e+34, optim_step_time=0.041, optim0_lr0=3.747e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:03:38,992 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-15 21:03:58,494 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 21:04:02,094 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 21:04:02,094 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 21:04:02,098 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 21:08:54,411 (trainer:737) INFO: 29epoch:train:7501-7600batch: iter_time=2.557, forward_time=0.105, loss_ctc=40.566, loss_att=39.673, acc=0.775, loss=39.941, backward_time=0.097, grad_norm=41.454, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.746e-04, train_time=3.208 +[gpuc02:0/16] 2024-01-15 21:09:36,952 (trainer:737) INFO: 29epoch:train:7601-7700batch: iter_time=1.241e-04, forward_time=0.104, loss_ctc=46.888, loss_att=57.643, acc=0.718, loss=54.417, backward_time=0.098, grad_norm=46.544, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.746e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:10:19,565 (trainer:737) INFO: 29epoch:train:7701-7800batch: iter_time=1.268e-04, forward_time=0.105, loss_ctc=45.093, loss_att=52.732, acc=0.737, loss=50.440, backward_time=0.098, grad_norm=43.481, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.746e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 21:11:02,035 (trainer:737) INFO: 29epoch:train:7801-7900batch: iter_time=1.438e-04, forward_time=0.105, loss_ctc=53.616, loss_att=56.218, acc=0.722, loss=55.438, backward_time=0.098, grad_norm=51.802, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.745e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:11:44,264 (trainer:737) INFO: 29epoch:train:7901-8000batch: iter_time=1.379e-04, forward_time=0.104, loss_ctc=40.050, loss_att=52.087, acc=0.716, loss=48.476, backward_time=0.098, grad_norm=40.264, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.745e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:12:26,555 (trainer:737) INFO: 29epoch:train:8001-8100batch: iter_time=1.343e-04, forward_time=0.104, loss_ctc=42.854, loss_att=47.378, acc=0.730, loss=46.021, backward_time=0.098, grad_norm=47.256, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.744e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:13:09,312 (trainer:737) INFO: 29epoch:train:8101-8200batch: iter_time=1.291e-04, forward_time=0.106, loss_ctc=47.908, loss_att=52.038, acc=0.734, loss=50.799, backward_time=0.098, grad_norm=43.402, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.744e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 21:13:51,965 (trainer:737) INFO: 29epoch:train:8201-8300batch: iter_time=1.264e-04, forward_time=0.105, loss_ctc=49.734, loss_att=57.164, acc=0.714, loss=54.935, backward_time=0.098, grad_norm=43.378, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.743e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 21:14:34,425 (trainer:737) INFO: 29epoch:train:8301-8400batch: iter_time=1.557e-04, forward_time=0.105, loss_ctc=54.010, loss_att=56.431, acc=0.735, loss=55.705, backward_time=0.098, grad_norm=51.488, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.743e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:15:16,669 (trainer:737) INFO: 29epoch:train:8401-8500batch: iter_time=1.597e-04, forward_time=0.105, loss_ctc=42.395, loss_att=45.108, acc=0.736, loss=44.294, backward_time=0.097, grad_norm=40.037, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.743e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:15:59,016 (trainer:737) INFO: 29epoch:train:8501-8600batch: iter_time=1.591e-04, forward_time=0.105, loss_ctc=41.933, loss_att=49.166, acc=0.744, loss=46.996, backward_time=0.098, grad_norm=36.533, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.742e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:16:41,380 (trainer:737) INFO: 29epoch:train:8601-8700batch: iter_time=1.620e-04, forward_time=0.105, loss_ctc=45.146, loss_att=55.281, acc=0.720, loss=52.241, backward_time=0.098, grad_norm=49.313, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.742e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:17:02,022 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 21:17:06,599 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-15 21:17:26,125 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 21:17:29,698 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 21:17:29,698 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-15 21:17:29,701 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 21:21:53,540 (trainer:737) INFO: 29epoch:train:8701-8800batch: iter_time=2.546, forward_time=0.105, loss_ctc=37.355, loss_att=47.609, acc=0.744, loss=44.533, backward_time=0.097, grad_norm=34.955, clip=100.000, loss_scale=3.084e+34, optim_step_time=0.042, optim0_lr0=3.741e-04, train_time=3.121 +[gpuc02:0/16] 2024-01-15 21:22:35,968 (trainer:737) INFO: 29epoch:train:8801-8900batch: iter_time=9.792e-05, forward_time=0.104, loss_ctc=41.968, loss_att=51.592, acc=0.736, loss=48.705, backward_time=0.097, grad_norm=44.422, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.741e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:23:18,731 (trainer:737) INFO: 29epoch:train:8901-9000batch: iter_time=1.024e-04, forward_time=0.105, loss_ctc=51.910, loss_att=57.812, acc=0.744, loss=56.041, backward_time=0.098, grad_norm=47.734, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.740e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 21:24:01,220 (trainer:737) INFO: 29epoch:train:9001-9100batch: iter_time=1.021e-04, forward_time=0.105, loss_ctc=42.360, loss_att=46.379, acc=0.746, loss=45.173, backward_time=0.097, grad_norm=41.886, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.740e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:24:44,107 (trainer:737) INFO: 29epoch:train:9101-9200batch: iter_time=1.041e-04, forward_time=0.105, loss_ctc=52.249, loss_att=59.541, acc=0.717, loss=57.353, backward_time=0.098, grad_norm=48.331, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.740e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 21:25:26,586 (trainer:737) INFO: 29epoch:train:9201-9300batch: iter_time=1.126e-04, forward_time=0.103, loss_ctc=35.238, loss_att=37.408, acc=0.757, loss=36.757, backward_time=0.096, grad_norm=40.794, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.739e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:26:10,246 (trainer:737) INFO: 29epoch:train:9301-9400batch: iter_time=1.019e-04, forward_time=0.105, loss_ctc=49.945, loss_att=51.936, acc=0.749, loss=51.339, backward_time=0.097, grad_norm=45.313, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.739e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-15 21:26:52,646 (trainer:737) INFO: 29epoch:train:9401-9500batch: iter_time=1.106e-04, forward_time=0.105, loss_ctc=43.443, loss_att=56.443, acc=0.708, loss=52.543, backward_time=0.097, grad_norm=40.166, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.738e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:27:35,547 (trainer:737) INFO: 29epoch:train:9501-9600batch: iter_time=9.943e-05, forward_time=0.105, loss_ctc=53.069, loss_att=51.082, acc=0.746, loss=51.678, backward_time=0.097, grad_norm=47.669, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.738e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 21:28:18,813 (trainer:737) INFO: 29epoch:train:9601-9700batch: iter_time=1.169e-04, forward_time=0.106, loss_ctc=51.285, loss_att=56.777, acc=0.734, loss=55.129, backward_time=0.098, grad_norm=47.748, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.737e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-15 21:29:02,621 (trainer:737) INFO: 29epoch:train:9701-9800batch: iter_time=1.246e-04, forward_time=0.105, loss_ctc=40.322, loss_att=47.955, acc=0.744, loss=45.665, backward_time=0.097, grad_norm=38.960, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.737e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 21:29:45,318 (trainer:737) INFO: 29epoch:train:9801-9900batch: iter_time=1.157e-04, forward_time=0.105, loss_ctc=48.522, loss_att=54.816, acc=0.746, loss=52.928, backward_time=0.097, grad_norm=48.235, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.736e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 21:30:27,582 (trainer:737) INFO: 29epoch:train:9901-10000batch: iter_time=1.007e-04, forward_time=0.105, loss_ctc=37.788, loss_att=51.465, acc=0.721, loss=47.362, backward_time=0.097, grad_norm=38.953, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.736e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:30:30,033 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-15 21:30:50,156 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 21:30:53,837 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 21:30:53,838 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-15 21:30:53,841 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 21:35:50,113 (trainer:737) INFO: 29epoch:train:10001-10100batch: iter_time=2.499, forward_time=0.103, loss_ctc=39.631, loss_att=38.771, acc=0.778, loss=39.029, backward_time=0.096, grad_norm=39.711, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.736e-04, train_time=3.225 +[gpuc02:0/16] 2024-01-15 21:36:32,338 (trainer:737) INFO: 29epoch:train:10101-10200batch: iter_time=1.053e-04, forward_time=0.104, loss_ctc=46.578, loss_att=56.271, acc=0.723, loss=53.363, backward_time=0.097, grad_norm=47.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.735e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:37:14,517 (trainer:737) INFO: 29epoch:train:10201-10300batch: iter_time=1.229e-04, forward_time=0.104, loss_ctc=44.397, loss_att=52.304, acc=0.738, loss=49.932, backward_time=0.097, grad_norm=40.986, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.735e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:37:56,733 (trainer:737) INFO: 29epoch:train:10301-10400batch: iter_time=1.423e-04, forward_time=0.105, loss_ctc=52.465, loss_att=55.184, acc=0.723, loss=54.368, backward_time=0.097, grad_norm=54.524, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.734e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:38:38,825 (trainer:737) INFO: 29epoch:train:10401-10500batch: iter_time=1.523e-04, forward_time=0.103, loss_ctc=39.597, loss_att=51.077, acc=0.718, loss=47.633, backward_time=0.096, grad_norm=40.765, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.734e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-15 21:39:21,165 (trainer:737) INFO: 29epoch:train:10501-10600batch: iter_time=1.289e-04, forward_time=0.104, loss_ctc=42.635, loss_att=47.012, acc=0.732, loss=45.699, backward_time=0.096, grad_norm=45.490, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.733e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:40:03,737 (trainer:737) INFO: 29epoch:train:10601-10700batch: iter_time=1.318e-04, forward_time=0.105, loss_ctc=47.507, loss_att=51.490, acc=0.735, loss=50.295, backward_time=0.097, grad_norm=42.694, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.733e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:40:46,402 (trainer:737) INFO: 29epoch:train:10701-10800batch: iter_time=1.064e-04, forward_time=0.104, loss_ctc=49.673, loss_att=56.681, acc=0.716, loss=54.578, backward_time=0.096, grad_norm=43.049, clip=100.000, loss_scale=3.136e+34, optim_step_time=0.041, optim0_lr0=3.733e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 21:41:29,314 (trainer:737) INFO: 29epoch:train:10801-10900batch: iter_time=1.065e-04, forward_time=0.104, loss_ctc=53.308, loss_att=55.748, acc=0.737, loss=55.016, backward_time=0.097, grad_norm=49.993, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.732e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 21:41:50,908 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 21:42:11,580 (trainer:737) INFO: 29epoch:train:10901-11000batch: iter_time=1.012e-04, forward_time=0.105, loss_ctc=42.948, loss_att=45.320, acc=0.735, loss=44.608, backward_time=0.097, grad_norm=39.352, clip=100.000, loss_scale=3.126e+34, optim_step_time=0.042, optim0_lr0=3.732e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:42:53,989 (trainer:737) INFO: 29epoch:train:11001-11100batch: iter_time=1.080e-04, forward_time=0.104, loss_ctc=42.519, loss_att=48.831, acc=0.745, loss=46.937, backward_time=0.098, grad_norm=39.229, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.731e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:43:36,279 (trainer:737) INFO: 29epoch:train:11101-11200batch: iter_time=1.080e-04, forward_time=0.104, loss_ctc=46.028, loss_att=55.300, acc=0.721, loss=52.518, backward_time=0.097, grad_norm=49.883, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.731e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:43:59,920 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-15 21:44:20,839 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 21:44:25,020 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 21:44:25,020 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-15 21:44:25,024 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 21:48:43,689 (trainer:737) INFO: 29epoch:train:11201-11300batch: iter_time=2.573, forward_time=0.104, loss_ctc=37.420, loss_att=47.609, acc=0.743, loss=44.552, backward_time=0.097, grad_norm=35.965, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.730e-04, train_time=3.074 +[gpuc02:0/16] 2024-01-15 21:49:26,026 (trainer:737) INFO: 29epoch:train:11301-11400batch: iter_time=1.323e-04, forward_time=0.105, loss_ctc=41.374, loss_att=50.794, acc=0.739, loss=47.968, backward_time=0.098, grad_norm=44.130, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.730e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:50:08,526 (trainer:737) INFO: 29epoch:train:11401-11500batch: iter_time=1.398e-04, forward_time=0.105, loss_ctc=50.828, loss_att=57.407, acc=0.744, loss=55.433, backward_time=0.098, grad_norm=47.049, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.730e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:50:51,301 (trainer:737) INFO: 29epoch:train:11501-11600batch: iter_time=1.561e-04, forward_time=0.105, loss_ctc=42.461, loss_att=46.846, acc=0.746, loss=45.531, backward_time=0.098, grad_norm=41.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.729e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 21:51:34,044 (trainer:737) INFO: 29epoch:train:11601-11700batch: iter_time=1.188e-04, forward_time=0.105, loss_ctc=51.440, loss_att=60.339, acc=0.715, loss=57.669, backward_time=0.098, grad_norm=48.723, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.729e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 21:52:16,235 (trainer:737) INFO: 29epoch:train:11701-11800batch: iter_time=1.351e-04, forward_time=0.104, loss_ctc=34.438, loss_att=37.035, acc=0.758, loss=36.256, backward_time=0.096, grad_norm=38.764, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.728e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 21:52:58,782 (trainer:737) INFO: 29epoch:train:11801-11900batch: iter_time=1.041e-04, forward_time=0.106, loss_ctc=50.282, loss_att=52.882, acc=0.746, loss=52.102, backward_time=0.098, grad_norm=43.964, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.728e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 21:53:41,187 (trainer:737) INFO: 29epoch:train:11901-12000batch: iter_time=1.047e-04, forward_time=0.104, loss_ctc=43.248, loss_att=56.343, acc=0.710, loss=52.415, backward_time=0.097, grad_norm=41.697, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.727e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:54:23,653 (trainer:737) INFO: 29epoch:train:12001-12100batch: iter_time=1.113e-04, forward_time=0.104, loss_ctc=52.267, loss_att=51.173, acc=0.747, loss=51.501, backward_time=0.098, grad_norm=45.154, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.727e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:55:06,092 (trainer:737) INFO: 29epoch:train:12101-12200batch: iter_time=1.036e-04, forward_time=0.105, loss_ctc=51.337, loss_att=58.362, acc=0.730, loss=56.255, backward_time=0.097, grad_norm=45.271, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.727e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:55:49,827 (trainer:737) INFO: 29epoch:train:12201-12300batch: iter_time=1.011e-04, forward_time=0.113, loss_ctc=40.211, loss_att=48.092, acc=0.742, loss=45.728, backward_time=0.100, grad_norm=37.083, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.726e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-15 21:56:32,291 (trainer:737) INFO: 29epoch:train:12301-12400batch: iter_time=1.048e-04, forward_time=0.104, loss_ctc=46.844, loss_att=53.371, acc=0.749, loss=51.413, backward_time=0.097, grad_norm=44.634, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.726e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 21:57:14,589 (trainer:737) INFO: 29epoch:train:12401-12500batch: iter_time=1.028e-04, forward_time=0.104, loss_ctc=37.784, loss_att=50.780, acc=0.725, loss=46.881, backward_time=0.097, grad_norm=38.858, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.725e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 21:57:17,114 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-15 21:57:37,375 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 21:57:41,085 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 21:57:41,085 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-15 21:57:41,088 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 22:02:26,281 (trainer:737) INFO: 29epoch:train:12501-12600batch: iter_time=2.524, forward_time=0.103, loss_ctc=39.627, loss_att=38.215, acc=0.780, loss=38.639, backward_time=0.097, grad_norm=40.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.725e-04, train_time=3.117 +[gpuc02:0/16] 2024-01-15 22:03:08,616 (trainer:737) INFO: 29epoch:train:12601-12700batch: iter_time=1.382e-04, forward_time=0.104, loss_ctc=46.397, loss_att=55.425, acc=0.724, loss=52.717, backward_time=0.097, grad_norm=46.476, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.724e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 22:03:51,264 (trainer:737) INFO: 29epoch:train:12701-12800batch: iter_time=1.165e-04, forward_time=0.104, loss_ctc=44.953, loss_att=51.993, acc=0.741, loss=49.881, backward_time=0.097, grad_norm=42.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.724e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 22:04:33,786 (trainer:737) INFO: 29epoch:train:12801-12900batch: iter_time=1.217e-04, forward_time=0.104, loss_ctc=52.467, loss_att=56.198, acc=0.719, loss=55.079, backward_time=0.097, grad_norm=53.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.723e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 22:05:16,448 (trainer:737) INFO: 29epoch:train:12901-13000batch: iter_time=1.192e-04, forward_time=0.103, loss_ctc=39.930, loss_att=51.407, acc=0.716, loss=47.964, backward_time=0.097, grad_norm=40.002, clip=100.000, loss_scale=3.095e+34, optim_step_time=0.041, optim0_lr0=3.723e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 22:05:46,436 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 22:05:59,495 (trainer:737) INFO: 29epoch:train:13001-13100batch: iter_time=1.344e-04, forward_time=0.107, loss_ctc=41.980, loss_att=46.551, acc=0.732, loss=45.180, backward_time=0.097, grad_norm=43.320, clip=100.000, loss_scale=3.524e+34, optim_step_time=0.041, optim0_lr0=3.723e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 22:06:42,030 (trainer:737) INFO: 29epoch:train:13101-13200batch: iter_time=1.326e-04, forward_time=0.105, loss_ctc=47.378, loss_att=50.520, acc=0.740, loss=49.578, backward_time=0.098, grad_norm=41.651, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.722e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 22:07:24,702 (trainer:737) INFO: 29epoch:train:13201-13300batch: iter_time=1.864e-04, forward_time=0.105, loss_ctc=49.066, loss_att=56.457, acc=0.715, loss=54.240, backward_time=0.098, grad_norm=43.813, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.722e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 22:08:07,719 (trainer:737) INFO: 29epoch:train:13301-13400batch: iter_time=1.602e-04, forward_time=0.105, loss_ctc=52.717, loss_att=55.521, acc=0.737, loss=54.680, backward_time=0.098, grad_norm=51.822, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.721e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 22:08:50,418 (trainer:737) INFO: 29epoch:train:13401-13500batch: iter_time=1.649e-04, forward_time=0.105, loss_ctc=42.180, loss_att=44.666, acc=0.737, loss=43.920, backward_time=0.097, grad_norm=37.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.721e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 22:09:33,204 (trainer:737) INFO: 29epoch:train:13501-13600batch: iter_time=1.561e-04, forward_time=0.105, loss_ctc=42.757, loss_att=48.509, acc=0.746, loss=46.783, backward_time=0.097, grad_norm=39.599, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.720e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 22:10:15,968 (trainer:737) INFO: 29epoch:train:13601-13700batch: iter_time=1.799e-04, forward_time=0.105, loss_ctc=45.463, loss_att=54.315, acc=0.728, loss=51.659, backward_time=0.098, grad_norm=48.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.720e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 22:10:41,446 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-15 22:11:01,220 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 22:11:04,817 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 22:11:04,817 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 22:11:04,820 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 22:15:24,256 (trainer:737) INFO: 29epoch:train:13701-13800batch: iter_time=2.535, forward_time=0.104, loss_ctc=37.129, loss_att=46.647, acc=0.743, loss=43.792, backward_time=0.097, grad_norm=35.384, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.720e-04, train_time=3.083 +[gpuc02:0/16] 2024-01-15 22:16:06,470 (trainer:737) INFO: 29epoch:train:13801-13900batch: iter_time=1.170e-04, forward_time=0.104, loss_ctc=41.341, loss_att=46.076, acc=0.745, loss=44.656, backward_time=0.097, grad_norm=43.052, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.719e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 22:16:48,850 (trainer:737) INFO: 29epoch:train:13901-14000batch: iter_time=1.117e-04, forward_time=0.104, loss_ctc=50.663, loss_att=56.491, acc=0.736, loss=54.742, backward_time=0.098, grad_norm=46.829, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.719e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 22:17:31,182 (trainer:737) INFO: 29epoch:train:14001-14100batch: iter_time=1.185e-04, forward_time=0.105, loss_ctc=42.029, loss_att=45.822, acc=0.746, loss=44.684, backward_time=0.097, grad_norm=41.186, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.718e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 22:18:13,533 (trainer:737) INFO: 29epoch:train:14101-14200batch: iter_time=1.214e-04, forward_time=0.104, loss_ctc=51.916, loss_att=60.368, acc=0.701, loss=57.832, backward_time=0.097, grad_norm=51.511, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.718e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 22:18:55,744 (trainer:737) INFO: 29epoch:train:14201-14300batch: iter_time=1.454e-04, forward_time=0.104, loss_ctc=34.799, loss_att=35.896, acc=0.753, loss=35.567, backward_time=0.097, grad_norm=39.176, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.717e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 22:19:38,376 (trainer:737) INFO: 29epoch:train:14301-14400batch: iter_time=1.341e-04, forward_time=0.106, loss_ctc=49.986, loss_att=52.038, acc=0.739, loss=51.422, backward_time=0.098, grad_norm=43.235, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.717e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 22:20:20,752 (trainer:737) INFO: 29epoch:train:14401-14500batch: iter_time=1.153e-04, forward_time=0.104, loss_ctc=43.078, loss_att=53.070, acc=0.710, loss=50.072, backward_time=0.097, grad_norm=39.001, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.717e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 22:21:03,177 (trainer:737) INFO: 29epoch:train:14501-14600batch: iter_time=1.296e-04, forward_time=0.105, loss_ctc=52.003, loss_att=50.675, acc=0.741, loss=51.073, backward_time=0.098, grad_norm=46.290, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.716e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 22:21:45,908 (trainer:737) INFO: 29epoch:train:14601-14700batch: iter_time=1.042e-04, forward_time=0.105, loss_ctc=50.525, loss_att=58.208, acc=0.720, loss=55.903, backward_time=0.098, grad_norm=45.514, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.716e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 22:22:28,273 (trainer:737) INFO: 29epoch:train:14701-14800batch: iter_time=1.028e-04, forward_time=0.105, loss_ctc=40.404, loss_att=47.002, acc=0.743, loss=45.023, backward_time=0.097, grad_norm=37.656, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.715e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 22:23:10,726 (trainer:737) INFO: 29epoch:train:14801-14900batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=46.946, loss_att=53.861, acc=0.741, loss=51.787, backward_time=0.098, grad_norm=47.994, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.715e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 22:23:53,580 (trainer:737) INFO: 29epoch:train:14901-15000batch: iter_time=9.721e-05, forward_time=0.104, loss_ctc=37.837, loss_att=50.549, acc=0.711, loss=46.735, backward_time=0.097, grad_norm=37.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.714e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 22:44:04,519 (trainer:343) INFO: 29epoch results: [train] iter_time=0.218, forward_time=0.105, loss_ctc=45.900, loss_att=51.453, acc=0.735, loss=49.787, backward_time=0.098, grad_norm=44.077, clip=100.000, loss_scale=2.501e+34, optim_step_time=0.042, optim0_lr0=3.747e-04, train_time=0.661, time=2 hours, 45 minutes and 24.93 seconds, total_count=435000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=51.657, cer_ctc=0.265, loss_att=52.854, acc=0.597, cer=0.350, wer=0.998, loss=52.495, time=19 minutes and 57.54 seconds, total_count=135459, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-15 22:44:09,588 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-15 22:44:09,596 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/23epoch.pth, exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/24epoch.pth +[gpuc02:0/16] 2024-01-15 22:44:09,596 (trainer:272) INFO: 30/45epoch started. Estimated time to finish: 2 days, 1 hour and 15 minutes +[gpuc02:0/16] 2024-01-15 22:44:09,605 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-15 22:44:30,148 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 22:44:33,681 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 22:44:33,682 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-15 22:44:33,685 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 22:49:09,537 (trainer:737) INFO: 30epoch:train:1-100batch: iter_time=2.412, forward_time=0.143, loss_ctc=43.943, loss_att=48.617, acc=0.748, loss=47.214, backward_time=0.103, grad_norm=39.053, clip=100.000, loss_scale=2.700e+34, optim_step_time=0.041, optim0_lr0=3.714e-04, train_time=2.999 +[gpuc02:0/16] 2024-01-15 22:49:55,458 (trainer:737) INFO: 30epoch:train:101-200batch: iter_time=1.099e-04, forward_time=0.104, loss_ctc=45.684, loss_att=54.408, acc=0.748, loss=51.791, backward_time=0.098, grad_norm=46.572, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.714e-04, train_time=0.459 +[gpuc02:0/16] 2024-01-15 22:50:23,126 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 22:50:42,799 (trainer:737) INFO: 30epoch:train:201-300batch: iter_time=1.034e-04, forward_time=0.109, loss_ctc=45.824, loss_att=46.207, acc=0.725, loss=46.092, backward_time=0.128, grad_norm=42.925, clip=100.000, loss_scale=3.210e+34, optim_step_time=0.042, optim0_lr0=3.713e-04, train_time=0.473 +[gpuc02:0/16] 2024-01-15 22:51:27,863 (trainer:737) INFO: 30epoch:train:301-400batch: iter_time=1.113e-04, forward_time=0.104, loss_ctc=40.564, loss_att=45.528, acc=0.738, loss=44.039, backward_time=0.097, grad_norm=41.216, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.713e-04, train_time=0.450 +[gpuc02:0/16] 2024-01-15 22:52:11,670 (trainer:737) INFO: 30epoch:train:401-500batch: iter_time=1.143e-04, forward_time=0.118, loss_ctc=42.267, loss_att=50.535, acc=0.744, loss=48.055, backward_time=0.101, grad_norm=38.564, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.712e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 22:53:00,966 (trainer:737) INFO: 30epoch:train:501-600batch: iter_time=1.188e-04, forward_time=0.104, loss_ctc=48.915, loss_att=46.568, acc=0.745, loss=47.272, backward_time=0.098, grad_norm=45.105, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.712e-04, train_time=0.493 +[gpuc02:0/16] 2024-01-15 22:53:47,266 (trainer:737) INFO: 30epoch:train:601-700batch: iter_time=1.095e-04, forward_time=0.113, loss_ctc=51.459, loss_att=49.163, acc=0.724, loss=49.852, backward_time=0.122, grad_norm=45.348, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.712e-04, train_time=0.463 +[gpuc02:0/16] 2024-01-15 22:54:31,075 (trainer:737) INFO: 30epoch:train:701-800batch: iter_time=1.075e-04, forward_time=0.119, loss_ctc=47.305, loss_att=52.288, acc=0.729, loss=50.793, backward_time=0.102, grad_norm=47.184, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.711e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-15 22:55:17,936 (trainer:737) INFO: 30epoch:train:801-900batch: iter_time=9.400e-05, forward_time=0.117, loss_ctc=41.292, loss_att=46.695, acc=0.757, loss=45.074, backward_time=0.104, grad_norm=39.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.046, optim0_lr0=3.711e-04, train_time=0.468 +[gpuc02:0/16] 2024-01-15 22:56:00,836 (trainer:737) INFO: 30epoch:train:901-1000batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=53.510, loss_att=59.513, acc=0.719, loss=57.712, backward_time=0.098, grad_norm=50.075, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.710e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 22:56:49,503 (trainer:737) INFO: 30epoch:train:1001-1100batch: iter_time=1.192e-04, forward_time=0.104, loss_ctc=45.529, loss_att=50.717, acc=0.711, loss=49.161, backward_time=0.097, grad_norm=41.823, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.710e-04, train_time=0.486 +[gpuc02:0/16] 2024-01-15 22:57:31,474 (trainer:737) INFO: 30epoch:train:1101-1200batch: iter_time=1.149e-04, forward_time=0.104, loss_ctc=44.553, loss_att=44.602, acc=0.745, loss=44.587, backward_time=0.098, grad_norm=42.395, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.709e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-15 22:58:23,813 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-15 22:58:43,452 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 22:58:47,109 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 22:58:47,109 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-15 22:58:47,134 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 23:05:53,398 (trainer:737) INFO: 30epoch:train:1201-1300batch: iter_time=4.284, forward_time=0.105, loss_ctc=45.565, loss_att=49.496, acc=0.760, loss=48.316, backward_time=0.098, grad_norm=40.108, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.709e-04, train_time=5.019 +[gpuc02:0/16] 2024-01-15 23:06:37,605 (trainer:737) INFO: 30epoch:train:1301-1400batch: iter_time=1.244e-04, forward_time=0.104, loss_ctc=42.644, loss_att=54.666, acc=0.749, loss=51.059, backward_time=0.098, grad_norm=43.357, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.709e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-15 23:07:20,531 (trainer:737) INFO: 30epoch:train:1401-1500batch: iter_time=1.252e-04, forward_time=0.106, loss_ctc=46.269, loss_att=52.463, acc=0.737, loss=50.605, backward_time=0.099, grad_norm=40.040, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.708e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-15 23:08:03,829 (trainer:737) INFO: 30epoch:train:1501-1600batch: iter_time=1.300e-04, forward_time=0.104, loss_ctc=40.726, loss_att=43.018, acc=0.752, loss=42.330, backward_time=0.098, grad_norm=39.988, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.708e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-15 23:08:46,435 (trainer:737) INFO: 30epoch:train:1601-1700batch: iter_time=1.451e-04, forward_time=0.105, loss_ctc=41.629, loss_att=50.404, acc=0.727, loss=47.771, backward_time=0.098, grad_norm=41.473, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.707e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 23:09:29,103 (trainer:737) INFO: 30epoch:train:1701-1800batch: iter_time=1.276e-04, forward_time=0.105, loss_ctc=44.330, loss_att=49.798, acc=0.760, loss=48.157, backward_time=0.098, grad_norm=38.682, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.707e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 23:10:11,468 (trainer:737) INFO: 30epoch:train:1801-1900batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=47.759, loss_att=46.452, acc=0.742, loss=46.844, backward_time=0.098, grad_norm=43.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.706e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:10:53,919 (trainer:737) INFO: 30epoch:train:1901-2000batch: iter_time=1.168e-04, forward_time=0.106, loss_ctc=46.856, loss_att=52.075, acc=0.728, loss=50.509, backward_time=0.098, grad_norm=43.342, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.706e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:11:36,225 (trainer:737) INFO: 30epoch:train:2001-2100batch: iter_time=1.057e-04, forward_time=0.105, loss_ctc=42.679, loss_att=48.488, acc=0.754, loss=46.745, backward_time=0.098, grad_norm=41.534, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.706e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:12:19,006 (trainer:737) INFO: 30epoch:train:2101-2200batch: iter_time=1.085e-04, forward_time=0.106, loss_ctc=51.550, loss_att=59.967, acc=0.729, loss=57.442, backward_time=0.099, grad_norm=47.865, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.705e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 23:13:01,184 (trainer:737) INFO: 30epoch:train:2201-2300batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=47.266, loss_att=48.328, acc=0.735, loss=48.009, backward_time=0.097, grad_norm=40.580, clip=100.000, loss_scale=3.012e+34, optim_step_time=0.041, optim0_lr0=3.705e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-15 23:13:43,726 (trainer:737) INFO: 30epoch:train:2301-2400batch: iter_time=1.288e-04, forward_time=0.105, loss_ctc=44.398, loss_att=49.615, acc=0.754, loss=48.050, backward_time=0.097, grad_norm=41.656, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.704e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:14:26,309 (trainer:737) INFO: 30epoch:train:2401-2500batch: iter_time=1.102e-04, forward_time=0.107, loss_ctc=45.520, loss_att=45.115, acc=0.756, loss=45.237, backward_time=0.097, grad_norm=42.853, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.704e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 23:14:31,384 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-15 23:14:50,252 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 23:14:53,821 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 23:14:53,822 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-15 23:14:53,825 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 23:19:40,882 (trainer:737) INFO: 30epoch:train:2501-2600batch: iter_time=2.463, forward_time=0.106, loss_ctc=43.251, loss_att=47.416, acc=0.755, loss=46.166, backward_time=0.098, grad_norm=38.366, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.703e-04, train_time=3.145 +[gpuc02:0/16] 2024-01-15 23:20:23,671 (trainer:737) INFO: 30epoch:train:2601-2700batch: iter_time=1.104e-04, forward_time=0.106, loss_ctc=45.556, loss_att=57.095, acc=0.753, loss=53.634, backward_time=0.098, grad_norm=44.946, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.703e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 23:21:05,998 (trainer:737) INFO: 30epoch:train:2701-2800batch: iter_time=1.272e-04, forward_time=0.105, loss_ctc=44.554, loss_att=45.108, acc=0.740, loss=44.942, backward_time=0.098, grad_norm=40.519, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.703e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:21:48,501 (trainer:737) INFO: 30epoch:train:2801-2900batch: iter_time=1.330e-04, forward_time=0.105, loss_ctc=39.463, loss_att=45.238, acc=0.743, loss=43.506, backward_time=0.097, grad_norm=40.132, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.702e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:22:31,371 (trainer:737) INFO: 30epoch:train:2901-3000batch: iter_time=1.469e-04, forward_time=0.106, loss_ctc=41.326, loss_att=50.999, acc=0.748, loss=48.097, backward_time=0.098, grad_norm=38.209, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.702e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 23:23:14,786 (trainer:737) INFO: 30epoch:train:3001-3100batch: iter_time=1.357e-04, forward_time=0.107, loss_ctc=47.310, loss_att=47.425, acc=0.751, loss=47.390, backward_time=0.098, grad_norm=43.427, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.701e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-15 23:23:57,181 (trainer:737) INFO: 30epoch:train:3101-3200batch: iter_time=1.308e-04, forward_time=0.105, loss_ctc=48.957, loss_att=48.128, acc=0.730, loss=48.376, backward_time=0.098, grad_norm=43.636, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.701e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:24:39,609 (trainer:737) INFO: 30epoch:train:3201-3300batch: iter_time=1.391e-04, forward_time=0.106, loss_ctc=45.942, loss_att=52.152, acc=0.742, loss=50.289, backward_time=0.099, grad_norm=44.547, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.700e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:25:09,512 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 23:25:22,340 (trainer:737) INFO: 30epoch:train:3301-3400batch: iter_time=1.312e-04, forward_time=0.106, loss_ctc=40.678, loss_att=46.444, acc=0.765, loss=44.714, backward_time=0.099, grad_norm=37.769, clip=100.000, loss_scale=3.524e+34, optim_step_time=0.042, optim0_lr0=3.700e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 23:26:04,841 (trainer:737) INFO: 30epoch:train:3401-3500batch: iter_time=1.278e-04, forward_time=0.107, loss_ctc=52.175, loss_att=59.562, acc=0.723, loss=57.346, backward_time=0.098, grad_norm=48.118, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.700e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:26:47,219 (trainer:737) INFO: 30epoch:train:3501-3600batch: iter_time=1.366e-04, forward_time=0.106, loss_ctc=44.524, loss_att=49.322, acc=0.730, loss=47.883, backward_time=0.098, grad_norm=41.881, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.699e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:27:29,717 (trainer:737) INFO: 30epoch:train:3601-3700batch: iter_time=1.357e-04, forward_time=0.105, loss_ctc=43.484, loss_att=44.874, acc=0.755, loss=44.457, backward_time=0.098, grad_norm=40.931, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.699e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:27:53,831 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-15 23:28:13,880 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 23:28:17,624 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 23:28:17,624 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-15 23:28:17,628 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 23:32:43,415 (trainer:737) INFO: 30epoch:train:3701-3800batch: iter_time=2.529, forward_time=0.129, loss_ctc=44.703, loss_att=47.288, acc=0.766, loss=46.512, backward_time=0.103, grad_norm=39.510, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.698e-04, train_time=3.137 +[gpuc02:0/16] 2024-01-15 23:33:26,053 (trainer:737) INFO: 30epoch:train:3801-3900batch: iter_time=1.173e-04, forward_time=0.106, loss_ctc=42.205, loss_att=53.657, acc=0.751, loss=50.221, backward_time=0.099, grad_norm=43.518, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.698e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 23:34:08,525 (trainer:737) INFO: 30epoch:train:3901-4000batch: iter_time=1.363e-04, forward_time=0.106, loss_ctc=45.459, loss_att=50.248, acc=0.743, loss=48.812, backward_time=0.098, grad_norm=40.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.698e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:34:51,062 (trainer:737) INFO: 30epoch:train:4001-4100batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=40.377, loss_att=41.866, acc=0.755, loss=41.420, backward_time=0.097, grad_norm=40.033, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.697e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:35:33,803 (trainer:737) INFO: 30epoch:train:4101-4200batch: iter_time=1.148e-04, forward_time=0.106, loss_ctc=40.788, loss_att=48.776, acc=0.732, loss=46.380, backward_time=0.098, grad_norm=38.347, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.697e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 23:36:16,472 (trainer:737) INFO: 30epoch:train:4201-4300batch: iter_time=1.223e-04, forward_time=0.106, loss_ctc=43.294, loss_att=48.682, acc=0.763, loss=47.066, backward_time=0.098, grad_norm=39.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.696e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 23:36:58,826 (trainer:737) INFO: 30epoch:train:4301-4400batch: iter_time=1.142e-04, forward_time=0.106, loss_ctc=46.839, loss_att=45.767, acc=0.745, loss=46.089, backward_time=0.098, grad_norm=43.090, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.696e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:37:41,308 (trainer:737) INFO: 30epoch:train:4401-4500batch: iter_time=1.359e-04, forward_time=0.106, loss_ctc=46.193, loss_att=51.164, acc=0.731, loss=49.673, backward_time=0.098, grad_norm=44.975, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.695e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:38:24,117 (trainer:737) INFO: 30epoch:train:4501-4600batch: iter_time=1.162e-04, forward_time=0.105, loss_ctc=41.695, loss_att=47.454, acc=0.755, loss=45.726, backward_time=0.098, grad_norm=39.156, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.695e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 23:39:07,180 (trainer:737) INFO: 30epoch:train:4601-4700batch: iter_time=1.153e-04, forward_time=0.107, loss_ctc=50.472, loss_att=58.499, acc=0.734, loss=56.091, backward_time=0.099, grad_norm=46.389, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.695e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 23:39:50,187 (trainer:737) INFO: 30epoch:train:4701-4800batch: iter_time=1.129e-04, forward_time=0.104, loss_ctc=45.628, loss_att=47.565, acc=0.739, loss=46.984, backward_time=0.097, grad_norm=40.688, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.694e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-15 23:40:32,952 (trainer:737) INFO: 30epoch:train:4801-4900batch: iter_time=1.080e-04, forward_time=0.105, loss_ctc=44.021, loss_att=49.374, acc=0.755, loss=47.768, backward_time=0.098, grad_norm=41.829, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.694e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 23:41:15,368 (trainer:737) INFO: 30epoch:train:4901-5000batch: iter_time=1.061e-04, forward_time=0.106, loss_ctc=43.982, loss_att=44.440, acc=0.756, loss=44.303, backward_time=0.098, grad_norm=42.353, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.693e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:41:27,174 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-15 23:41:46,489 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 23:41:50,125 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 23:41:50,125 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-15 23:41:50,128 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 23:46:51,430 (trainer:737) INFO: 30epoch:train:5001-5100batch: iter_time=2.777, forward_time=0.125, loss_ctc=42.979, loss_att=48.125, acc=0.753, loss=46.581, backward_time=0.102, grad_norm=37.856, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.693e-04, train_time=3.360 +[gpuc02:0/16] 2024-01-15 23:47:33,917 (trainer:737) INFO: 30epoch:train:5101-5200batch: iter_time=9.159e-05, forward_time=0.106, loss_ctc=45.621, loss_att=55.902, acc=0.758, loss=52.818, backward_time=0.099, grad_norm=45.519, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.692e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-15 23:48:16,217 (trainer:737) INFO: 30epoch:train:5201-5300batch: iter_time=9.704e-05, forward_time=0.105, loss_ctc=43.532, loss_att=44.561, acc=0.744, loss=44.252, backward_time=0.098, grad_norm=41.007, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.692e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:48:58,525 (trainer:737) INFO: 30epoch:train:5301-5400batch: iter_time=1.071e-04, forward_time=0.105, loss_ctc=39.106, loss_att=44.948, acc=0.743, loss=43.195, backward_time=0.098, grad_norm=39.470, clip=100.000, loss_scale=2.700e+34, optim_step_time=0.042, optim0_lr0=3.692e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:49:30,680 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-15 23:49:40,897 (trainer:737) INFO: 30epoch:train:5401-5500batch: iter_time=9.988e-05, forward_time=0.105, loss_ctc=41.091, loss_att=50.108, acc=0.750, loss=47.403, backward_time=0.097, grad_norm=39.103, clip=100.000, loss_scale=3.650e+34, optim_step_time=0.042, optim0_lr0=3.691e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:50:23,732 (trainer:737) INFO: 30epoch:train:5501-5600batch: iter_time=1.099e-04, forward_time=0.108, loss_ctc=46.978, loss_att=46.960, acc=0.752, loss=46.965, backward_time=0.098, grad_norm=41.186, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.691e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 23:51:06,087 (trainer:737) INFO: 30epoch:train:5601-5700batch: iter_time=8.847e-05, forward_time=0.105, loss_ctc=48.052, loss_att=47.657, acc=0.732, loss=47.776, backward_time=0.098, grad_norm=43.311, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.690e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:51:48,514 (trainer:737) INFO: 30epoch:train:5701-5800batch: iter_time=1.088e-04, forward_time=0.106, loss_ctc=45.015, loss_att=51.726, acc=0.743, loss=49.713, backward_time=0.098, grad_norm=44.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.690e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-15 23:52:31,220 (trainer:737) INFO: 30epoch:train:5801-5900batch: iter_time=1.040e-04, forward_time=0.105, loss_ctc=40.678, loss_att=45.988, acc=0.768, loss=44.395, backward_time=0.098, grad_norm=37.191, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.690e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-15 23:53:14,000 (trainer:737) INFO: 30epoch:train:5901-6000batch: iter_time=1.012e-04, forward_time=0.106, loss_ctc=50.785, loss_att=58.593, acc=0.726, loss=56.250, backward_time=0.098, grad_norm=47.441, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.689e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-15 23:53:56,599 (trainer:737) INFO: 30epoch:train:6001-6100batch: iter_time=1.067e-04, forward_time=0.104, loss_ctc=43.592, loss_att=50.036, acc=0.729, loss=48.103, backward_time=0.098, grad_norm=41.034, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.689e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-15 23:54:38,967 (trainer:737) INFO: 30epoch:train:6101-6200batch: iter_time=1.039e-04, forward_time=0.105, loss_ctc=43.387, loss_att=45.076, acc=0.754, loss=44.569, backward_time=0.098, grad_norm=42.310, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.688e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-15 23:55:02,878 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-15 23:55:23,494 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-15 23:55:27,223 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-15 23:55:27,223 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-15 23:55:27,226 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-15 23:59:56,373 (trainer:737) INFO: 30epoch:train:6201-6300batch: iter_time=2.546, forward_time=0.154, loss_ctc=44.865, loss_att=49.342, acc=0.759, loss=47.999, backward_time=0.105, grad_norm=39.512, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.688e-04, train_time=3.174 +[gpuc02:0/16] 2024-01-16 00:00:38,483 (trainer:737) INFO: 30epoch:train:6301-6400batch: iter_time=1.148e-04, forward_time=0.103, loss_ctc=41.185, loss_att=54.205, acc=0.751, loss=50.299, backward_time=0.097, grad_norm=43.395, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.687e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 00:01:20,651 (trainer:737) INFO: 30epoch:train:6401-6500batch: iter_time=1.149e-04, forward_time=0.104, loss_ctc=45.555, loss_att=50.384, acc=0.728, loss=48.935, backward_time=0.097, grad_norm=40.738, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.687e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 00:02:02,784 (trainer:737) INFO: 30epoch:train:6501-6600batch: iter_time=1.157e-04, forward_time=0.104, loss_ctc=39.889, loss_att=42.567, acc=0.752, loss=41.764, backward_time=0.097, grad_norm=38.233, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.687e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 00:02:44,760 (trainer:737) INFO: 30epoch:train:6601-6700batch: iter_time=1.075e-04, forward_time=0.103, loss_ctc=39.976, loss_att=49.145, acc=0.728, loss=46.394, backward_time=0.097, grad_norm=38.719, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.686e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 00:03:26,865 (trainer:737) INFO: 30epoch:train:6701-6800batch: iter_time=1.147e-04, forward_time=0.105, loss_ctc=42.862, loss_att=48.866, acc=0.760, loss=47.064, backward_time=0.098, grad_norm=39.442, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.686e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 00:04:08,929 (trainer:737) INFO: 30epoch:train:6801-6900batch: iter_time=1.174e-04, forward_time=0.105, loss_ctc=46.184, loss_att=44.896, acc=0.744, loss=45.282, backward_time=0.097, grad_norm=43.871, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.685e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 00:04:51,423 (trainer:737) INFO: 30epoch:train:6901-7000batch: iter_time=1.072e-04, forward_time=0.104, loss_ctc=45.720, loss_att=50.897, acc=0.729, loss=49.344, backward_time=0.097, grad_norm=44.955, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.685e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:05:33,730 (trainer:737) INFO: 30epoch:train:7001-7100batch: iter_time=1.216e-04, forward_time=0.104, loss_ctc=41.609, loss_att=48.314, acc=0.746, loss=46.302, backward_time=0.097, grad_norm=41.682, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.685e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:06:16,247 (trainer:737) INFO: 30epoch:train:7101-7200batch: iter_time=1.336e-04, forward_time=0.105, loss_ctc=49.985, loss_att=58.998, acc=0.728, loss=56.294, backward_time=0.097, grad_norm=47.174, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.684e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:06:58,521 (trainer:737) INFO: 30epoch:train:7201-7300batch: iter_time=1.190e-04, forward_time=0.104, loss_ctc=45.124, loss_att=47.232, acc=0.735, loss=46.600, backward_time=0.096, grad_norm=39.612, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.684e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:07:40,843 (trainer:737) INFO: 30epoch:train:7301-7400batch: iter_time=1.189e-04, forward_time=0.105, loss_ctc=43.392, loss_att=48.134, acc=0.751, loss=46.711, backward_time=0.097, grad_norm=42.262, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.683e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:08:23,157 (trainer:737) INFO: 30epoch:train:7401-7500batch: iter_time=9.967e-05, forward_time=0.104, loss_ctc=43.856, loss_att=44.228, acc=0.754, loss=44.116, backward_time=0.097, grad_norm=43.152, clip=100.000, loss_scale=2.575e+34, optim_step_time=0.041, optim0_lr0=3.683e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:08:27,442 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-16 00:08:46,387 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 00:08:50,253 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 00:08:50,253 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-16 00:08:50,256 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 00:13:24,649 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 00:13:32,691 (trainer:737) INFO: 30epoch:train:7501-7600batch: iter_time=2.477, forward_time=0.104, loss_ctc=42.694, loss_att=49.057, acc=0.756, loss=47.148, backward_time=0.098, grad_norm=35.959, clip=100.000, loss_scale=3.755e+34, optim_step_time=0.042, optim0_lr0=3.682e-04, train_time=3.095 +[gpuc02:0/16] 2024-01-16 00:14:16,510 (trainer:737) INFO: 30epoch:train:7601-7700batch: iter_time=1.096e-04, forward_time=0.105, loss_ctc=44.975, loss_att=57.171, acc=0.755, loss=53.512, backward_time=0.099, grad_norm=44.746, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.682e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-16 00:14:59,409 (trainer:737) INFO: 30epoch:train:7701-7800batch: iter_time=1.119e-04, forward_time=0.104, loss_ctc=43.205, loss_att=44.686, acc=0.744, loss=44.241, backward_time=0.098, grad_norm=39.189, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.682e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 00:15:41,713 (trainer:737) INFO: 30epoch:train:7801-7900batch: iter_time=1.106e-04, forward_time=0.103, loss_ctc=38.616, loss_att=44.950, acc=0.746, loss=43.050, backward_time=0.098, grad_norm=38.101, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.681e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:16:24,036 (trainer:737) INFO: 30epoch:train:7901-8000batch: iter_time=1.017e-04, forward_time=0.104, loss_ctc=40.633, loss_att=50.693, acc=0.749, loss=47.675, backward_time=0.098, grad_norm=38.943, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.681e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:17:06,451 (trainer:737) INFO: 30epoch:train:8001-8100batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=46.588, loss_att=47.401, acc=0.752, loss=47.157, backward_time=0.098, grad_norm=42.751, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.680e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 00:17:49,200 (trainer:737) INFO: 30epoch:train:8101-8200batch: iter_time=1.074e-04, forward_time=0.104, loss_ctc=47.378, loss_att=47.065, acc=0.734, loss=47.159, backward_time=0.098, grad_norm=42.666, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.680e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 00:18:33,550 (trainer:737) INFO: 30epoch:train:8201-8300batch: iter_time=1.178e-04, forward_time=0.104, loss_ctc=44.746, loss_att=52.150, acc=0.743, loss=49.929, backward_time=0.098, grad_norm=44.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.680e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-16 00:19:16,711 (trainer:737) INFO: 30epoch:train:8301-8400batch: iter_time=1.251e-04, forward_time=0.105, loss_ctc=39.977, loss_att=46.047, acc=0.766, loss=44.226, backward_time=0.098, grad_norm=37.746, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.679e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-16 00:19:59,192 (trainer:737) INFO: 30epoch:train:8401-8500batch: iter_time=1.255e-04, forward_time=0.105, loss_ctc=50.434, loss_att=58.459, acc=0.726, loss=56.052, backward_time=0.098, grad_norm=46.840, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.679e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:20:41,578 (trainer:737) INFO: 30epoch:train:8501-8600batch: iter_time=1.353e-04, forward_time=0.104, loss_ctc=43.751, loss_att=49.277, acc=0.732, loss=47.619, backward_time=0.098, grad_norm=41.383, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.678e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 00:21:24,249 (trainer:737) INFO: 30epoch:train:8601-8700batch: iter_time=1.372e-04, forward_time=0.105, loss_ctc=43.476, loss_att=44.728, acc=0.756, loss=44.352, backward_time=0.098, grad_norm=40.895, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.678e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 00:21:49,074 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-16 00:22:08,202 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 00:22:11,724 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 00:22:11,725 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-16 00:22:11,728 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 00:26:36,913 (trainer:737) INFO: 30epoch:train:8701-8800batch: iter_time=2.473, forward_time=0.105, loss_ctc=44.412, loss_att=48.567, acc=0.761, loss=47.320, backward_time=0.098, grad_norm=41.183, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.677e-04, train_time=3.126 +[gpuc02:0/16] 2024-01-16 00:27:19,452 (trainer:737) INFO: 30epoch:train:8801-8900batch: iter_time=9.674e-05, forward_time=0.105, loss_ctc=41.477, loss_att=52.993, acc=0.751, loss=49.538, backward_time=0.098, grad_norm=42.476, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.677e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:28:02,196 (trainer:737) INFO: 30epoch:train:8901-9000batch: iter_time=1.015e-04, forward_time=0.105, loss_ctc=45.193, loss_att=49.679, acc=0.731, loss=48.334, backward_time=0.098, grad_norm=39.422, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.677e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 00:28:44,371 (trainer:737) INFO: 30epoch:train:9001-9100batch: iter_time=1.080e-04, forward_time=0.104, loss_ctc=39.415, loss_att=42.129, acc=0.753, loss=41.315, backward_time=0.097, grad_norm=39.366, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.676e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:29:26,846 (trainer:737) INFO: 30epoch:train:9101-9200batch: iter_time=1.132e-04, forward_time=0.105, loss_ctc=39.703, loss_att=48.458, acc=0.728, loss=45.831, backward_time=0.098, grad_norm=37.823, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.676e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:30:09,835 (trainer:737) INFO: 30epoch:train:9201-9300batch: iter_time=9.276e-05, forward_time=0.109, loss_ctc=43.306, loss_att=48.804, acc=0.760, loss=47.155, backward_time=0.098, grad_norm=39.227, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.675e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 00:30:52,087 (trainer:737) INFO: 30epoch:train:9301-9400batch: iter_time=1.024e-04, forward_time=0.105, loss_ctc=46.100, loss_att=44.778, acc=0.744, loss=45.174, backward_time=0.098, grad_norm=41.900, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.675e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:31:34,686 (trainer:737) INFO: 30epoch:train:9401-9500batch: iter_time=1.093e-04, forward_time=0.105, loss_ctc=45.553, loss_att=50.657, acc=0.729, loss=49.126, backward_time=0.098, grad_norm=44.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.675e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 00:32:17,322 (trainer:737) INFO: 30epoch:train:9501-9600batch: iter_time=1.022e-04, forward_time=0.105, loss_ctc=41.570, loss_att=47.949, acc=0.747, loss=46.035, backward_time=0.098, grad_norm=40.179, clip=100.000, loss_scale=2.472e+34, optim_step_time=0.042, optim0_lr0=3.674e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 00:33:01,210 (trainer:737) INFO: 30epoch:train:9601-9700batch: iter_time=9.917e-05, forward_time=0.106, loss_ctc=49.977, loss_att=58.710, acc=0.729, loss=56.090, backward_time=0.098, grad_norm=50.855, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.674e-04, train_time=0.439 +[gpuc02:0/16] 2024-01-16 00:33:43,511 (trainer:737) INFO: 30epoch:train:9701-9800batch: iter_time=9.928e-05, forward_time=0.105, loss_ctc=45.295, loss_att=47.557, acc=0.735, loss=46.878, backward_time=0.097, grad_norm=39.342, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.673e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:34:10,305 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 00:34:26,435 (trainer:737) INFO: 30epoch:train:9801-9900batch: iter_time=1.008e-04, forward_time=0.105, loss_ctc=43.231, loss_att=47.862, acc=0.752, loss=46.473, backward_time=0.097, grad_norm=41.112, clip=100.000, loss_scale=3.357e+34, optim_step_time=0.042, optim0_lr0=3.673e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 00:35:08,857 (trainer:737) INFO: 30epoch:train:9901-10000batch: iter_time=1.006e-04, forward_time=0.104, loss_ctc=43.693, loss_att=44.040, acc=0.755, loss=43.936, backward_time=0.097, grad_norm=42.382, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.673e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 00:35:11,433 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-16 00:35:31,461 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 00:35:35,175 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 00:35:35,176 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-16 00:35:35,179 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 00:40:18,875 (trainer:737) INFO: 30epoch:train:10001-10100batch: iter_time=2.505, forward_time=0.105, loss_ctc=42.615, loss_att=47.032, acc=0.754, loss=45.707, backward_time=0.097, grad_norm=38.076, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.672e-04, train_time=3.100 +[gpuc02:0/16] 2024-01-16 00:41:01,675 (trainer:737) INFO: 30epoch:train:10101-10200batch: iter_time=1.106e-04, forward_time=0.105, loss_ctc=44.446, loss_att=54.034, acc=0.754, loss=51.157, backward_time=0.098, grad_norm=43.864, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.672e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 00:41:44,010 (trainer:737) INFO: 30epoch:train:10201-10300batch: iter_time=1.082e-04, forward_time=0.105, loss_ctc=42.307, loss_att=44.129, acc=0.734, loss=43.582, backward_time=0.097, grad_norm=40.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.671e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:42:26,205 (trainer:737) INFO: 30epoch:train:10301-10400batch: iter_time=1.179e-04, forward_time=0.105, loss_ctc=38.648, loss_att=44.051, acc=0.744, loss=42.430, backward_time=0.097, grad_norm=39.629, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.671e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:43:08,540 (trainer:737) INFO: 30epoch:train:10401-10500batch: iter_time=1.039e-04, forward_time=0.105, loss_ctc=40.486, loss_att=49.697, acc=0.749, loss=46.934, backward_time=0.097, grad_norm=37.074, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.670e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:43:51,054 (trainer:737) INFO: 30epoch:train:10501-10600batch: iter_time=1.225e-04, forward_time=0.106, loss_ctc=46.717, loss_att=46.010, acc=0.750, loss=46.222, backward_time=0.097, grad_norm=40.617, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.670e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:44:33,389 (trainer:737) INFO: 30epoch:train:10601-10700batch: iter_time=1.161e-04, forward_time=0.106, loss_ctc=46.779, loss_att=46.690, acc=0.732, loss=46.717, backward_time=0.097, grad_norm=42.542, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.670e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:45:15,786 (trainer:737) INFO: 30epoch:train:10701-10800batch: iter_time=1.025e-04, forward_time=0.105, loss_ctc=44.710, loss_att=51.607, acc=0.733, loss=49.538, backward_time=0.097, grad_norm=45.110, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.669e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 00:45:58,310 (trainer:737) INFO: 30epoch:train:10801-10900batch: iter_time=1.269e-04, forward_time=0.106, loss_ctc=39.887, loss_att=46.068, acc=0.760, loss=44.214, backward_time=0.097, grad_norm=38.015, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.669e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:46:41,372 (trainer:737) INFO: 30epoch:train:10901-11000batch: iter_time=1.259e-04, forward_time=0.106, loss_ctc=49.668, loss_att=57.878, acc=0.726, loss=55.415, backward_time=0.097, grad_norm=46.948, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.668e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 00:47:23,945 (trainer:737) INFO: 30epoch:train:11001-11100batch: iter_time=1.150e-04, forward_time=0.105, loss_ctc=43.589, loss_att=49.979, acc=0.718, loss=48.062, backward_time=0.097, grad_norm=40.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.668e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 00:48:06,345 (trainer:737) INFO: 30epoch:train:11101-11200batch: iter_time=1.073e-04, forward_time=0.106, loss_ctc=42.600, loss_att=44.094, acc=0.750, loss=43.646, backward_time=0.097, grad_norm=41.882, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.668e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 00:48:31,936 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-16 00:48:51,532 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 00:48:55,132 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 00:48:55,132 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-16 00:48:55,135 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 00:53:17,631 (trainer:737) INFO: 30epoch:train:11201-11300batch: iter_time=2.497, forward_time=0.105, loss_ctc=44.165, loss_att=47.371, acc=0.762, loss=46.409, backward_time=0.097, grad_norm=39.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.667e-04, train_time=3.113 +[gpuc02:0/16] 2024-01-16 00:53:59,871 (trainer:737) INFO: 30epoch:train:11301-11400batch: iter_time=9.966e-05, forward_time=0.105, loss_ctc=41.319, loss_att=51.491, acc=0.754, loss=48.439, backward_time=0.097, grad_norm=42.828, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.667e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:54:42,195 (trainer:737) INFO: 30epoch:train:11401-11500batch: iter_time=1.099e-04, forward_time=0.105, loss_ctc=45.303, loss_att=48.958, acc=0.731, loss=47.861, backward_time=0.098, grad_norm=41.003, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.666e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 00:55:24,273 (trainer:737) INFO: 30epoch:train:11501-11600batch: iter_time=1.322e-04, forward_time=0.104, loss_ctc=39.195, loss_att=41.685, acc=0.755, loss=40.938, backward_time=0.097, grad_norm=36.931, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.666e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 00:56:06,705 (trainer:737) INFO: 30epoch:train:11601-11700batch: iter_time=1.043e-04, forward_time=0.104, loss_ctc=39.765, loss_att=47.329, acc=0.734, loss=45.060, backward_time=0.097, grad_norm=37.755, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.666e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 00:56:48,963 (trainer:737) INFO: 30epoch:train:11701-11800batch: iter_time=1.004e-04, forward_time=0.105, loss_ctc=42.783, loss_att=47.935, acc=0.761, loss=46.390, backward_time=0.097, grad_norm=39.175, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.665e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:57:31,099 (trainer:737) INFO: 30epoch:train:11801-11900batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=45.953, loss_att=44.185, acc=0.744, loss=44.715, backward_time=0.097, grad_norm=41.225, clip=100.000, loss_scale=2.866e+34, optim_step_time=0.041, optim0_lr0=3.665e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 00:58:13,346 (trainer:737) INFO: 30epoch:train:11901-12000batch: iter_time=1.132e-04, forward_time=0.105, loss_ctc=45.557, loss_att=50.204, acc=0.730, loss=48.810, backward_time=0.097, grad_norm=44.032, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.664e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:58:55,544 (trainer:737) INFO: 30epoch:train:12001-12100batch: iter_time=1.195e-04, forward_time=0.105, loss_ctc=40.836, loss_att=47.481, acc=0.746, loss=45.488, backward_time=0.098, grad_norm=41.106, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.664e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 00:59:38,219 (trainer:737) INFO: 30epoch:train:12101-12200batch: iter_time=1.006e-04, forward_time=0.106, loss_ctc=49.070, loss_att=57.909, acc=0.729, loss=55.257, backward_time=0.098, grad_norm=47.594, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.663e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 01:00:20,325 (trainer:737) INFO: 30epoch:train:12201-12300batch: iter_time=1.044e-04, forward_time=0.105, loss_ctc=44.709, loss_att=47.397, acc=0.735, loss=46.590, backward_time=0.096, grad_norm=38.653, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.663e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 01:01:02,686 (trainer:737) INFO: 30epoch:train:12301-12400batch: iter_time=9.691e-05, forward_time=0.105, loss_ctc=43.189, loss_att=48.337, acc=0.749, loss=46.792, backward_time=0.097, grad_norm=41.844, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.663e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 01:01:45,199 (trainer:737) INFO: 30epoch:train:12401-12500batch: iter_time=8.949e-05, forward_time=0.104, loss_ctc=43.580, loss_att=44.243, acc=0.752, loss=44.044, backward_time=0.097, grad_norm=43.598, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.662e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 01:01:51,142 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-16 01:02:10,360 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 01:02:13,870 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 01:02:13,870 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-16 01:02:13,874 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 01:06:56,567 (trainer:737) INFO: 30epoch:train:12501-12600batch: iter_time=2.618, forward_time=0.106, loss_ctc=42.514, loss_att=46.889, acc=0.756, loss=45.576, backward_time=0.097, grad_norm=37.565, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.662e-04, train_time=3.113 +[gpuc02:0/16] 2024-01-16 01:07:39,091 (trainer:737) INFO: 30epoch:train:12601-12700batch: iter_time=1.192e-04, forward_time=0.106, loss_ctc=44.053, loss_att=52.622, acc=0.760, loss=50.051, backward_time=0.098, grad_norm=42.707, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.661e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 01:07:53,418 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 01:08:21,731 (trainer:737) INFO: 30epoch:train:12701-12800batch: iter_time=1.186e-04, forward_time=0.104, loss_ctc=42.352, loss_att=44.144, acc=0.737, loss=43.607, backward_time=0.098, grad_norm=38.616, clip=100.000, loss_scale=2.769e+34, optim_step_time=0.041, optim0_lr0=3.661e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 01:09:04,638 (trainer:737) INFO: 30epoch:train:12801-12900batch: iter_time=1.077e-04, forward_time=0.104, loss_ctc=38.460, loss_att=44.905, acc=0.742, loss=42.972, backward_time=0.098, grad_norm=39.618, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.661e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 01:09:47,102 (trainer:737) INFO: 30epoch:train:12901-13000batch: iter_time=1.236e-04, forward_time=0.104, loss_ctc=40.013, loss_att=49.711, acc=0.749, loss=46.802, backward_time=0.098, grad_norm=38.289, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.660e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 01:10:29,506 (trainer:737) INFO: 30epoch:train:13001-13100batch: iter_time=1.245e-04, forward_time=0.104, loss_ctc=46.193, loss_att=45.366, acc=0.751, loss=45.614, backward_time=0.098, grad_norm=41.481, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.660e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 01:11:12,688 (trainer:737) INFO: 30epoch:train:13101-13200batch: iter_time=1.275e-04, forward_time=0.104, loss_ctc=47.322, loss_att=46.645, acc=0.735, loss=46.848, backward_time=0.098, grad_norm=42.223, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.659e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-16 01:11:55,476 (trainer:737) INFO: 30epoch:train:13201-13300batch: iter_time=1.363e-04, forward_time=0.105, loss_ctc=44.635, loss_att=50.875, acc=0.735, loss=49.003, backward_time=0.098, grad_norm=44.962, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.659e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 01:12:38,757 (trainer:737) INFO: 30epoch:train:13301-13400batch: iter_time=1.276e-04, forward_time=0.105, loss_ctc=39.632, loss_att=45.586, acc=0.763, loss=43.800, backward_time=0.098, grad_norm=39.014, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.659e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 01:13:21,269 (trainer:737) INFO: 30epoch:train:13401-13500batch: iter_time=1.159e-04, forward_time=0.105, loss_ctc=50.062, loss_att=57.697, acc=0.727, loss=55.406, backward_time=0.097, grad_norm=48.633, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.658e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 01:14:04,256 (trainer:737) INFO: 30epoch:train:13501-13600batch: iter_time=1.028e-04, forward_time=0.107, loss_ctc=42.898, loss_att=48.618, acc=0.722, loss=46.902, backward_time=0.097, grad_norm=40.549, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.658e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 01:14:46,958 (trainer:737) INFO: 30epoch:train:13601-13700batch: iter_time=1.129e-04, forward_time=0.105, loss_ctc=42.437, loss_att=43.669, acc=0.752, loss=43.299, backward_time=0.097, grad_norm=38.858, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.657e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 01:15:14,384 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-16 01:15:33,411 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 01:15:36,983 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 01:15:36,983 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-16 01:15:36,986 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 01:20:14,066 (trainer:737) INFO: 30epoch:train:13701-13800batch: iter_time=2.545, forward_time=0.105, loss_ctc=44.014, loss_att=49.069, acc=0.763, loss=47.553, backward_time=0.098, grad_norm=39.595, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.657e-04, train_time=3.271 +[gpuc02:0/16] 2024-01-16 01:20:56,831 (trainer:737) INFO: 30epoch:train:13801-13900batch: iter_time=1.306e-04, forward_time=0.105, loss_ctc=41.030, loss_att=54.107, acc=0.751, loss=50.184, backward_time=0.098, grad_norm=46.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.657e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 01:21:39,521 (trainer:737) INFO: 30epoch:train:13901-14000batch: iter_time=1.358e-04, forward_time=0.106, loss_ctc=44.915, loss_att=51.826, acc=0.742, loss=49.753, backward_time=0.098, grad_norm=40.707, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.656e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 01:22:21,798 (trainer:737) INFO: 30epoch:train:14001-14100batch: iter_time=1.474e-04, forward_time=0.105, loss_ctc=39.469, loss_att=41.715, acc=0.757, loss=41.041, backward_time=0.098, grad_norm=38.433, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.656e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 01:23:04,114 (trainer:737) INFO: 30epoch:train:14101-14200batch: iter_time=1.341e-04, forward_time=0.106, loss_ctc=39.369, loss_att=48.761, acc=0.734, loss=45.944, backward_time=0.098, grad_norm=38.649, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.655e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 01:23:46,621 (trainer:737) INFO: 30epoch:train:14201-14300batch: iter_time=1.204e-04, forward_time=0.106, loss_ctc=42.671, loss_att=49.315, acc=0.764, loss=47.322, backward_time=0.098, grad_norm=38.348, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.655e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 01:24:29,037 (trainer:737) INFO: 30epoch:train:14301-14400batch: iter_time=1.269e-04, forward_time=0.105, loss_ctc=45.151, loss_att=45.074, acc=0.749, loss=45.097, backward_time=0.098, grad_norm=40.361, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.655e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 01:25:11,489 (trainer:737) INFO: 30epoch:train:14401-14500batch: iter_time=1.211e-04, forward_time=0.105, loss_ctc=45.571, loss_att=51.237, acc=0.734, loss=49.537, backward_time=0.098, grad_norm=46.906, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.654e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 01:25:53,691 (trainer:737) INFO: 30epoch:train:14501-14600batch: iter_time=1.244e-04, forward_time=0.105, loss_ctc=41.093, loss_att=47.970, acc=0.755, loss=45.907, backward_time=0.098, grad_norm=42.176, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.654e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 01:26:36,354 (trainer:737) INFO: 30epoch:train:14601-14700batch: iter_time=1.183e-04, forward_time=0.106, loss_ctc=48.998, loss_att=58.876, acc=0.735, loss=55.913, backward_time=0.099, grad_norm=46.213, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.653e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 01:27:18,605 (trainer:737) INFO: 30epoch:train:14701-14800batch: iter_time=1.171e-04, forward_time=0.105, loss_ctc=44.505, loss_att=46.607, acc=0.743, loss=45.977, backward_time=0.097, grad_norm=38.056, clip=100.000, loss_scale=3.448e+34, optim_step_time=0.042, optim0_lr0=3.653e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 01:27:39,293 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 01:28:00,922 (trainer:737) INFO: 30epoch:train:14801-14900batch: iter_time=1.496e-04, forward_time=0.105, loss_ctc=43.048, loss_att=49.260, acc=0.758, loss=47.396, backward_time=0.098, grad_norm=39.912, clip=100.000, loss_scale=3.084e+34, optim_step_time=0.042, optim0_lr0=3.652e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 01:28:43,616 (trainer:737) INFO: 30epoch:train:14901-15000batch: iter_time=1.073e-04, forward_time=0.105, loss_ctc=43.503, loss_att=45.084, acc=0.757, loss=44.610, backward_time=0.098, grad_norm=43.672, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.652e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 01:48:54,937 (trainer:343) INFO: 30epoch results: [train] iter_time=0.214, forward_time=0.106, loss_ctc=44.127, loss_att=48.970, acc=0.745, loss=47.517, backward_time=0.098, grad_norm=41.646, clip=100.000, loss_scale=2.461e+34, optim_step_time=0.042, optim0_lr0=3.683e-04, train_time=0.658, time=2 hours, 44 minutes and 45.95 seconds, total_count=450000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=49.820, cer_ctc=0.265, loss_att=51.214, acc=0.592, cer=0.376, wer=0.999, loss=50.796, time=19 minutes and 59.22 seconds, total_count=140130, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-16 01:48:59,987 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-16 01:49:00,021 (trainer:272) INFO: 31/45epoch started. Estimated time to finish: 1 day, 22 hours and 11 minutes +[gpuc02:0/16] 2024-01-16 01:49:00,031 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-16 01:49:19,275 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 01:49:22,722 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 01:49:22,722 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-16 01:49:22,725 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 01:54:10,199 (trainer:737) INFO: 31epoch:train:1-100batch: iter_time=2.415, forward_time=0.104, loss_ctc=36.160, loss_att=41.235, acc=0.718, loss=39.712, backward_time=0.097, grad_norm=39.923, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.652e-04, train_time=3.101 +[gpuc02:0/16] 2024-01-16 01:54:52,578 (trainer:737) INFO: 31epoch:train:101-200batch: iter_time=1.057e-04, forward_time=0.104, loss_ctc=49.965, loss_att=48.512, acc=0.731, loss=48.948, backward_time=0.098, grad_norm=43.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.651e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 01:55:36,356 (trainer:737) INFO: 31epoch:train:201-300batch: iter_time=9.932e-05, forward_time=0.112, loss_ctc=45.743, loss_att=55.753, acc=0.717, loss=52.750, backward_time=0.099, grad_norm=43.282, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.651e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-16 01:56:20,029 (trainer:737) INFO: 31epoch:train:301-400batch: iter_time=1.150e-04, forward_time=0.110, loss_ctc=50.433, loss_att=53.357, acc=0.723, loss=52.480, backward_time=0.103, grad_norm=47.265, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.650e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-16 01:57:02,571 (trainer:737) INFO: 31epoch:train:401-500batch: iter_time=1.334e-04, forward_time=0.106, loss_ctc=47.181, loss_att=58.988, acc=0.726, loss=55.446, backward_time=0.098, grad_norm=46.093, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.650e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 01:57:50,456 (trainer:737) INFO: 31epoch:train:501-600batch: iter_time=3.389e-04, forward_time=0.115, loss_ctc=43.838, loss_att=47.672, acc=0.743, loss=46.522, backward_time=0.104, grad_norm=44.752, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.650e-04, train_time=0.479 +[gpuc02:0/16] 2024-01-16 01:58:19,478 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 01:58:33,315 (trainer:737) INFO: 31epoch:train:601-700batch: iter_time=1.168e-04, forward_time=0.110, loss_ctc=53.443, loss_att=49.156, acc=0.737, loss=50.442, backward_time=0.099, grad_norm=57.776, clip=100.000, loss_scale=1.752e+34, optim_step_time=0.042, optim0_lr0=3.649e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 01:59:16,717 (trainer:737) INFO: 31epoch:train:701-800batch: iter_time=1.093e-04, forward_time=0.104, loss_ctc=41.746, loss_att=39.089, acc=0.743, loss=39.886, backward_time=0.097, grad_norm=39.272, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.649e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-16 02:00:02,452 (trainer:737) INFO: 31epoch:train:801-900batch: iter_time=1.070e-04, forward_time=0.104, loss_ctc=42.749, loss_att=38.918, acc=0.762, loss=40.067, backward_time=0.097, grad_norm=41.121, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.648e-04, train_time=0.457 +[gpuc02:0/16] 2024-01-16 02:00:44,595 (trainer:737) INFO: 31epoch:train:901-1000batch: iter_time=1.075e-04, forward_time=0.103, loss_ctc=40.626, loss_att=44.226, acc=0.727, loss=43.146, backward_time=0.097, grad_norm=40.488, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.648e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 02:01:28,638 (trainer:737) INFO: 31epoch:train:1001-1100batch: iter_time=1.171e-04, forward_time=0.112, loss_ctc=49.565, loss_att=65.675, acc=0.714, loss=60.842, backward_time=0.103, grad_norm=44.040, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.648e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-16 02:02:12,725 (trainer:737) INFO: 31epoch:train:1101-1200batch: iter_time=1.095e-04, forward_time=0.105, loss_ctc=56.384, loss_att=61.519, acc=0.706, loss=59.978, backward_time=0.100, grad_norm=55.616, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.647e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-16 02:03:01,232 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-16 02:03:20,428 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 02:03:24,380 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 02:03:24,380 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-16 02:03:24,383 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 02:09:38,765 (trainer:737) INFO: 31epoch:train:1201-1300batch: iter_time=3.910, forward_time=0.108, loss_ctc=39.182, loss_att=42.694, acc=0.728, loss=41.640, backward_time=0.101, grad_norm=37.975, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.647e-04, train_time=4.460 +[gpuc02:0/16] 2024-01-16 02:10:21,207 (trainer:737) INFO: 31epoch:train:1301-1400batch: iter_time=9.231e-05, forward_time=0.104, loss_ctc=48.459, loss_att=49.790, acc=0.719, loss=49.391, backward_time=0.098, grad_norm=47.669, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.646e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 02:11:03,690 (trainer:737) INFO: 31epoch:train:1401-1500batch: iter_time=1.038e-04, forward_time=0.105, loss_ctc=44.611, loss_att=48.787, acc=0.726, loss=47.534, backward_time=0.098, grad_norm=41.400, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.646e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 02:11:46,403 (trainer:737) INFO: 31epoch:train:1501-1600batch: iter_time=1.023e-04, forward_time=0.104, loss_ctc=37.411, loss_att=42.151, acc=0.739, loss=40.729, backward_time=0.097, grad_norm=36.392, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.646e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 02:12:28,693 (trainer:737) INFO: 31epoch:train:1601-1700batch: iter_time=1.122e-04, forward_time=0.105, loss_ctc=53.001, loss_att=58.302, acc=0.736, loss=56.712, backward_time=0.098, grad_norm=49.290, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.645e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:13:11,786 (trainer:737) INFO: 31epoch:train:1701-1800batch: iter_time=1.034e-04, forward_time=0.105, loss_ctc=49.259, loss_att=55.465, acc=0.729, loss=53.604, backward_time=0.098, grad_norm=48.595, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.645e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-16 02:13:54,187 (trainer:737) INFO: 31epoch:train:1801-1900batch: iter_time=1.045e-04, forward_time=0.104, loss_ctc=46.781, loss_att=52.798, acc=0.728, loss=50.993, backward_time=0.098, grad_norm=47.371, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.644e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 02:14:36,387 (trainer:737) INFO: 31epoch:train:1901-2000batch: iter_time=1.079e-04, forward_time=0.105, loss_ctc=47.593, loss_att=42.894, acc=0.746, loss=44.304, backward_time=0.097, grad_norm=42.295, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.644e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:15:18,612 (trainer:737) INFO: 31epoch:train:2001-2100batch: iter_time=1.213e-04, forward_time=0.104, loss_ctc=41.779, loss_att=36.240, acc=0.765, loss=37.902, backward_time=0.097, grad_norm=40.304, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.644e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:16:00,724 (trainer:737) INFO: 31epoch:train:2101-2200batch: iter_time=1.196e-04, forward_time=0.104, loss_ctc=39.752, loss_att=44.301, acc=0.732, loss=42.936, backward_time=0.096, grad_norm=38.742, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.643e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 02:16:42,907 (trainer:737) INFO: 31epoch:train:2201-2300batch: iter_time=1.145e-04, forward_time=0.104, loss_ctc=40.605, loss_att=49.575, acc=0.740, loss=46.884, backward_time=0.097, grad_norm=38.300, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.643e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:17:25,119 (trainer:737) INFO: 31epoch:train:2301-2400batch: iter_time=1.137e-04, forward_time=0.105, loss_ctc=46.987, loss_att=61.259, acc=0.710, loss=56.978, backward_time=0.097, grad_norm=45.619, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.642e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:18:07,553 (trainer:737) INFO: 31epoch:train:2401-2500batch: iter_time=1.038e-04, forward_time=0.105, loss_ctc=57.542, loss_att=59.194, acc=0.711, loss=58.698, backward_time=0.097, grad_norm=52.805, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.642e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 02:18:09,975 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-16 02:18:29,959 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 02:18:33,648 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 02:18:33,648 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-16 02:18:33,651 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 02:23:18,484 (trainer:737) INFO: 31epoch:train:2501-2600batch: iter_time=2.491, forward_time=0.105, loss_ctc=34.412, loss_att=39.609, acc=0.738, loss=38.050, backward_time=0.096, grad_norm=36.926, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.642e-04, train_time=3.109 +[gpuc02:0/16] 2024-01-16 02:24:00,840 (trainer:737) INFO: 31epoch:train:2601-2700batch: iter_time=1.211e-04, forward_time=0.105, loss_ctc=47.897, loss_att=48.313, acc=0.747, loss=48.189, backward_time=0.097, grad_norm=43.537, clip=100.000, loss_scale=1.360e+34, optim_step_time=0.042, optim0_lr0=3.641e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:24:43,202 (trainer:737) INFO: 31epoch:train:2701-2800batch: iter_time=1.045e-04, forward_time=0.105, loss_ctc=44.545, loss_att=56.297, acc=0.724, loss=52.771, backward_time=0.098, grad_norm=45.822, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.641e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:25:25,961 (trainer:737) INFO: 31epoch:train:2801-2900batch: iter_time=1.119e-04, forward_time=0.105, loss_ctc=48.080, loss_att=53.590, acc=0.731, loss=51.937, backward_time=0.098, grad_norm=44.773, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.640e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 02:26:08,759 (trainer:737) INFO: 31epoch:train:2901-3000batch: iter_time=1.130e-04, forward_time=0.105, loss_ctc=46.017, loss_att=62.431, acc=0.730, loss=57.507, backward_time=0.099, grad_norm=44.496, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.640e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 02:26:51,332 (trainer:737) INFO: 31epoch:train:3001-3100batch: iter_time=1.189e-04, forward_time=0.105, loss_ctc=43.994, loss_att=48.404, acc=0.753, loss=47.081, backward_time=0.098, grad_norm=45.114, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.640e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 02:27:34,526 (trainer:737) INFO: 31epoch:train:3101-3200batch: iter_time=1.225e-04, forward_time=0.105, loss_ctc=51.649, loss_att=51.230, acc=0.740, loss=51.355, backward_time=0.098, grad_norm=57.281, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.639e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-16 02:28:16,729 (trainer:737) INFO: 31epoch:train:3201-3300batch: iter_time=1.433e-04, forward_time=0.105, loss_ctc=40.565, loss_att=37.974, acc=0.755, loss=38.751, backward_time=0.097, grad_norm=39.820, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.639e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:28:59,474 (trainer:737) INFO: 31epoch:train:3301-3400batch: iter_time=1.259e-04, forward_time=0.105, loss_ctc=41.090, loss_att=38.360, acc=0.769, loss=39.179, backward_time=0.097, grad_norm=39.246, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.638e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 02:29:41,825 (trainer:737) INFO: 31epoch:train:3401-3500batch: iter_time=1.359e-04, forward_time=0.104, loss_ctc=39.655, loss_att=42.831, acc=0.739, loss=41.878, backward_time=0.097, grad_norm=38.937, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.638e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:30:24,780 (trainer:737) INFO: 31epoch:train:3501-3600batch: iter_time=1.200e-04, forward_time=0.106, loss_ctc=47.840, loss_att=70.118, acc=0.716, loss=63.435, backward_time=0.098, grad_norm=46.096, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.638e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 02:31:07,134 (trainer:737) INFO: 31epoch:train:3601-3700batch: iter_time=1.412e-04, forward_time=0.105, loss_ctc=52.590, loss_att=60.290, acc=0.717, loss=57.980, backward_time=0.098, grad_norm=52.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.637e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:31:31,957 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-16 02:31:51,253 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 02:31:54,885 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 02:31:54,885 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-16 02:31:54,888 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 02:36:23,450 (trainer:737) INFO: 31epoch:train:3701-3800batch: iter_time=2.494, forward_time=0.105, loss_ctc=38.207, loss_att=42.924, acc=0.731, loss=41.509, backward_time=0.096, grad_norm=37.538, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.637e-04, train_time=3.163 +[gpuc02:0/16] 2024-01-16 02:37:05,718 (trainer:737) INFO: 31epoch:train:3801-3900batch: iter_time=1.046e-04, forward_time=0.105, loss_ctc=47.422, loss_att=51.173, acc=0.716, loss=50.048, backward_time=0.097, grad_norm=47.043, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.636e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:37:47,932 (trainer:737) INFO: 31epoch:train:3901-4000batch: iter_time=1.051e-04, forward_time=0.104, loss_ctc=44.078, loss_att=49.421, acc=0.728, loss=47.818, backward_time=0.097, grad_norm=43.690, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.636e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:38:30,045 (trainer:737) INFO: 31epoch:train:4001-4100batch: iter_time=1.053e-04, forward_time=0.104, loss_ctc=37.260, loss_att=41.902, acc=0.740, loss=40.509, backward_time=0.096, grad_norm=38.074, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.636e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 02:39:12,423 (trainer:737) INFO: 31epoch:train:4101-4200batch: iter_time=1.056e-04, forward_time=0.105, loss_ctc=52.412, loss_att=58.796, acc=0.737, loss=56.881, backward_time=0.097, grad_norm=50.931, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.635e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 02:39:55,464 (trainer:737) INFO: 31epoch:train:4201-4300batch: iter_time=9.898e-05, forward_time=0.105, loss_ctc=48.564, loss_att=55.213, acc=0.733, loss=53.218, backward_time=0.097, grad_norm=46.251, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.635e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 02:40:37,685 (trainer:737) INFO: 31epoch:train:4301-4400batch: iter_time=1.007e-04, forward_time=0.104, loss_ctc=46.182, loss_att=53.231, acc=0.727, loss=51.117, backward_time=0.096, grad_norm=49.010, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.634e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:41:19,936 (trainer:737) INFO: 31epoch:train:4401-4500batch: iter_time=1.090e-04, forward_time=0.104, loss_ctc=47.335, loss_att=42.752, acc=0.747, loss=44.127, backward_time=0.096, grad_norm=42.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.634e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:42:02,869 (trainer:737) INFO: 31epoch:train:4501-4600batch: iter_time=9.441e-05, forward_time=0.108, loss_ctc=41.386, loss_att=36.267, acc=0.766, loss=37.803, backward_time=0.097, grad_norm=40.147, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.634e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 02:42:45,348 (trainer:737) INFO: 31epoch:train:4601-4700batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=39.727, loss_att=44.670, acc=0.732, loss=43.187, backward_time=0.097, grad_norm=38.192, clip=100.000, loss_scale=2.721e+34, optim_step_time=0.042, optim0_lr0=3.633e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 02:43:27,549 (trainer:737) INFO: 31epoch:train:4701-4800batch: iter_time=1.017e-04, forward_time=0.104, loss_ctc=40.223, loss_att=49.766, acc=0.742, loss=46.903, backward_time=0.097, grad_norm=37.066, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.633e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:44:10,556 (trainer:737) INFO: 31epoch:train:4801-4900batch: iter_time=1.034e-04, forward_time=0.105, loss_ctc=47.188, loss_att=61.205, acc=0.709, loss=57.000, backward_time=0.097, grad_norm=46.460, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.632e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 02:44:27,701 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 02:44:53,039 (trainer:737) INFO: 31epoch:train:4901-5000batch: iter_time=9.859e-05, forward_time=0.105, loss_ctc=55.954, loss_att=60.208, acc=0.712, loss=58.932, backward_time=0.097, grad_norm=52.860, clip=100.000, loss_scale=2.895e+34, optim_step_time=0.041, optim0_lr0=3.632e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 02:44:55,825 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-16 02:45:15,730 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 02:45:19,459 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 02:45:19,460 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-16 02:45:19,493 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 02:50:08,463 (trainer:737) INFO: 31epoch:train:5001-5100batch: iter_time=2.622, forward_time=0.127, loss_ctc=34.393, loss_att=38.689, acc=0.729, loss=37.400, backward_time=0.101, grad_norm=36.434, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.632e-04, train_time=3.154 +[gpuc02:0/16] 2024-01-16 02:50:50,846 (trainer:737) INFO: 31epoch:train:5101-5200batch: iter_time=1.319e-04, forward_time=0.105, loss_ctc=47.652, loss_att=46.826, acc=0.739, loss=47.074, backward_time=0.098, grad_norm=43.654, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.631e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 02:51:33,159 (trainer:737) INFO: 31epoch:train:5201-5300batch: iter_time=1.212e-04, forward_time=0.104, loss_ctc=44.270, loss_att=54.038, acc=0.721, loss=51.108, backward_time=0.097, grad_norm=43.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.631e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:52:15,426 (trainer:737) INFO: 31epoch:train:5301-5400batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=47.586, loss_att=51.991, acc=0.729, loss=50.669, backward_time=0.097, grad_norm=44.406, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.630e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:52:57,950 (trainer:737) INFO: 31epoch:train:5401-5500batch: iter_time=1.172e-04, forward_time=0.106, loss_ctc=45.506, loss_att=58.021, acc=0.730, loss=54.266, backward_time=0.098, grad_norm=45.270, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.630e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 02:53:40,229 (trainer:737) INFO: 31epoch:train:5501-5600batch: iter_time=1.138e-04, forward_time=0.106, loss_ctc=42.903, loss_att=46.526, acc=0.750, loss=45.439, backward_time=0.097, grad_norm=43.947, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.630e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:54:22,518 (trainer:737) INFO: 31epoch:train:5601-5700batch: iter_time=1.250e-04, forward_time=0.105, loss_ctc=51.753, loss_att=48.165, acc=0.741, loss=49.241, backward_time=0.096, grad_norm=51.294, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.629e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:55:04,714 (trainer:737) INFO: 31epoch:train:5701-5800batch: iter_time=1.306e-04, forward_time=0.105, loss_ctc=40.515, loss_att=38.050, acc=0.750, loss=38.790, backward_time=0.096, grad_norm=38.750, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.629e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 02:55:47,119 (trainer:737) INFO: 31epoch:train:5801-5900batch: iter_time=1.385e-04, forward_time=0.105, loss_ctc=40.481, loss_att=37.194, acc=0.768, loss=38.180, backward_time=0.097, grad_norm=40.504, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.628e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 02:56:29,483 (trainer:737) INFO: 31epoch:train:5901-6000batch: iter_time=1.247e-04, forward_time=0.105, loss_ctc=39.681, loss_att=42.946, acc=0.735, loss=41.966, backward_time=0.096, grad_norm=38.516, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.628e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 02:57:12,232 (trainer:737) INFO: 31epoch:train:6001-6100batch: iter_time=1.289e-04, forward_time=0.106, loss_ctc=47.982, loss_att=64.487, acc=0.721, loss=59.536, backward_time=0.097, grad_norm=46.527, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.628e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 02:57:54,757 (trainer:737) INFO: 31epoch:train:6101-6200batch: iter_time=1.240e-04, forward_time=0.106, loss_ctc=52.190, loss_att=59.517, acc=0.714, loss=57.319, backward_time=0.097, grad_norm=51.527, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.627e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 02:58:20,534 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-16 02:58:39,321 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 02:58:42,835 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 02:58:42,836 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-16 02:58:42,839 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 03:03:11,150 (trainer:737) INFO: 31epoch:train:6201-6300batch: iter_time=2.588, forward_time=0.105, loss_ctc=37.934, loss_att=42.535, acc=0.737, loss=41.155, backward_time=0.096, grad_norm=37.974, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.627e-04, train_time=3.164 +[gpuc02:0/16] 2024-01-16 03:03:53,542 (trainer:737) INFO: 31epoch:train:6301-6400batch: iter_time=1.286e-04, forward_time=0.105, loss_ctc=46.260, loss_att=50.115, acc=0.733, loss=48.958, backward_time=0.097, grad_norm=45.437, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.626e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:04:36,251 (trainer:737) INFO: 31epoch:train:6401-6500batch: iter_time=1.310e-04, forward_time=0.106, loss_ctc=43.514, loss_att=51.438, acc=0.734, loss=49.061, backward_time=0.097, grad_norm=43.141, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.626e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 03:05:18,498 (trainer:737) INFO: 31epoch:train:6501-6600batch: iter_time=1.342e-04, forward_time=0.104, loss_ctc=36.906, loss_att=43.663, acc=0.740, loss=41.636, backward_time=0.097, grad_norm=36.099, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.626e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 03:06:01,032 (trainer:737) INFO: 31epoch:train:6601-6700batch: iter_time=1.330e-04, forward_time=0.106, loss_ctc=52.687, loss_att=58.912, acc=0.745, loss=57.045, backward_time=0.098, grad_norm=49.896, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.625e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:06:43,598 (trainer:737) INFO: 31epoch:train:6701-6800batch: iter_time=1.335e-04, forward_time=0.107, loss_ctc=48.350, loss_att=59.267, acc=0.731, loss=55.992, backward_time=0.098, grad_norm=47.210, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.625e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:07:25,950 (trainer:737) INFO: 31epoch:train:6801-6900batch: iter_time=1.474e-04, forward_time=0.105, loss_ctc=45.415, loss_att=55.082, acc=0.737, loss=52.182, backward_time=0.097, grad_norm=48.813, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.624e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:08:08,472 (trainer:737) INFO: 31epoch:train:6901-7000batch: iter_time=1.479e-04, forward_time=0.105, loss_ctc=46.617, loss_att=42.947, acc=0.751, loss=44.048, backward_time=0.097, grad_norm=40.896, clip=100.000, loss_scale=3.323e+34, optim_step_time=0.042, optim0_lr0=3.624e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:08:50,732 (trainer:737) INFO: 31epoch:train:7001-7100batch: iter_time=1.444e-04, forward_time=0.105, loss_ctc=40.646, loss_att=36.136, acc=0.774, loss=37.489, backward_time=0.097, grad_norm=38.856, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.624e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 03:09:32,931 (trainer:737) INFO: 31epoch:train:7101-7200batch: iter_time=1.539e-04, forward_time=0.105, loss_ctc=38.564, loss_att=43.799, acc=0.742, loss=42.229, backward_time=0.096, grad_norm=38.293, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.623e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 03:10:15,374 (trainer:737) INFO: 31epoch:train:7201-7300batch: iter_time=1.277e-04, forward_time=0.106, loss_ctc=39.972, loss_att=52.428, acc=0.745, loss=48.691, backward_time=0.098, grad_norm=38.112, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.623e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:10:57,850 (trainer:737) INFO: 31epoch:train:7301-7400batch: iter_time=1.284e-04, forward_time=0.106, loss_ctc=46.239, loss_att=63.599, acc=0.715, loss=58.391, backward_time=0.098, grad_norm=44.449, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.622e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:11:16,953 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 03:11:40,248 (trainer:737) INFO: 31epoch:train:7401-7500batch: iter_time=1.168e-04, forward_time=0.106, loss_ctc=55.895, loss_att=61.768, acc=0.713, loss=60.006, backward_time=0.097, grad_norm=52.585, clip=100.000, loss_scale=3.000e+34, optim_step_time=0.041, optim0_lr0=3.622e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:11:44,936 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-16 03:12:04,270 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 03:12:07,760 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 03:12:07,761 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-16 03:12:07,764 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 03:16:56,083 (trainer:737) INFO: 31epoch:train:7501-7600batch: iter_time=2.534, forward_time=0.104, loss_ctc=34.363, loss_att=39.852, acc=0.728, loss=38.206, backward_time=0.097, grad_norm=37.425, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.622e-04, train_time=3.158 +[gpuc02:0/16] 2024-01-16 03:17:38,810 (trainer:737) INFO: 31epoch:train:7601-7700batch: iter_time=1.374e-04, forward_time=0.104, loss_ctc=46.743, loss_att=47.456, acc=0.737, loss=47.242, backward_time=0.098, grad_norm=42.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.621e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 03:18:21,616 (trainer:737) INFO: 31epoch:train:7701-7800batch: iter_time=1.323e-04, forward_time=0.104, loss_ctc=44.279, loss_att=54.839, acc=0.722, loss=51.671, backward_time=0.097, grad_norm=43.832, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.621e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 03:19:03,888 (trainer:737) INFO: 31epoch:train:7801-7900batch: iter_time=1.210e-04, forward_time=0.104, loss_ctc=47.136, loss_att=51.800, acc=0.729, loss=50.401, backward_time=0.096, grad_norm=43.688, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.620e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:19:46,557 (trainer:737) INFO: 31epoch:train:7901-8000batch: iter_time=1.132e-04, forward_time=0.106, loss_ctc=45.551, loss_att=58.186, acc=0.732, loss=54.395, backward_time=0.097, grad_norm=43.945, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.620e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 03:20:29,086 (trainer:737) INFO: 31epoch:train:8001-8100batch: iter_time=1.119e-04, forward_time=0.104, loss_ctc=42.100, loss_att=46.839, acc=0.748, loss=45.417, backward_time=0.096, grad_norm=41.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.620e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:21:11,943 (trainer:737) INFO: 31epoch:train:8101-8200batch: iter_time=1.075e-04, forward_time=0.108, loss_ctc=50.848, loss_att=48.519, acc=0.741, loss=49.218, backward_time=0.097, grad_norm=55.810, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.619e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 03:21:54,386 (trainer:737) INFO: 31epoch:train:8201-8300batch: iter_time=1.066e-04, forward_time=0.104, loss_ctc=40.411, loss_att=38.336, acc=0.748, loss=38.958, backward_time=0.096, grad_norm=47.310, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.619e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:22:35,788 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 03:22:36,649 (trainer:737) INFO: 31epoch:train:8301-8400batch: iter_time=1.010e-04, forward_time=0.104, loss_ctc=40.694, loss_att=37.706, acc=0.767, loss=38.603, backward_time=0.097, grad_norm=38.599, clip=100.000, loss_scale=2.056e+34, optim_step_time=0.042, optim0_lr0=3.618e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 03:23:19,165 (trainer:737) INFO: 31epoch:train:8401-8500batch: iter_time=1.100e-04, forward_time=0.103, loss_ctc=39.234, loss_att=43.391, acc=0.732, loss=42.144, backward_time=0.097, grad_norm=36.879, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.618e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:24:01,723 (trainer:737) INFO: 31epoch:train:8501-8600batch: iter_time=1.117e-04, forward_time=0.105, loss_ctc=47.314, loss_att=65.093, acc=0.718, loss=59.759, backward_time=0.098, grad_norm=45.204, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.618e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:24:44,205 (trainer:737) INFO: 31epoch:train:8601-8700batch: iter_time=1.107e-04, forward_time=0.105, loss_ctc=52.018, loss_att=60.471, acc=0.710, loss=57.935, backward_time=0.098, grad_norm=52.305, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.617e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:25:08,600 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-16 03:25:28,099 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 03:25:31,940 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 03:25:31,940 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-16 03:25:31,943 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 03:29:57,661 (trainer:737) INFO: 31epoch:train:8701-8800batch: iter_time=2.547, forward_time=0.115, loss_ctc=38.045, loss_att=41.447, acc=0.733, loss=40.427, backward_time=0.099, grad_norm=36.789, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.617e-04, train_time=3.134 +[gpuc02:0/16] 2024-01-16 03:30:40,090 (trainer:737) INFO: 31epoch:train:8801-8900batch: iter_time=1.005e-04, forward_time=0.105, loss_ctc=46.105, loss_att=48.826, acc=0.723, loss=48.010, backward_time=0.097, grad_norm=44.845, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.616e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:31:22,393 (trainer:737) INFO: 31epoch:train:8901-9000batch: iter_time=1.157e-04, forward_time=0.105, loss_ctc=42.911, loss_att=48.346, acc=0.730, loss=46.716, backward_time=0.097, grad_norm=43.071, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.616e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:32:04,639 (trainer:737) INFO: 31epoch:train:9001-9100batch: iter_time=1.185e-04, forward_time=0.105, loss_ctc=37.263, loss_att=42.259, acc=0.741, loss=40.760, backward_time=0.097, grad_norm=36.262, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.616e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 03:32:47,432 (trainer:737) INFO: 31epoch:train:9101-9200batch: iter_time=1.118e-04, forward_time=0.106, loss_ctc=51.920, loss_att=57.927, acc=0.738, loss=56.125, backward_time=0.098, grad_norm=51.760, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.615e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 03:33:29,953 (trainer:737) INFO: 31epoch:train:9201-9300batch: iter_time=1.078e-04, forward_time=0.106, loss_ctc=47.464, loss_att=55.077, acc=0.732, loss=52.793, backward_time=0.098, grad_norm=47.257, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.615e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:34:12,837 (trainer:737) INFO: 31epoch:train:9301-9400batch: iter_time=1.029e-04, forward_time=0.105, loss_ctc=45.801, loss_att=52.634, acc=0.731, loss=50.584, backward_time=0.097, grad_norm=47.792, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.615e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 03:34:55,765 (trainer:737) INFO: 31epoch:train:9401-9500batch: iter_time=1.065e-04, forward_time=0.106, loss_ctc=46.548, loss_att=42.472, acc=0.747, loss=43.695, backward_time=0.101, grad_norm=43.505, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.614e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 03:35:38,222 (trainer:737) INFO: 31epoch:train:9501-9600batch: iter_time=1.049e-04, forward_time=0.105, loss_ctc=40.407, loss_att=35.365, acc=0.769, loss=36.878, backward_time=0.097, grad_norm=39.578, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.614e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:36:22,113 (trainer:737) INFO: 31epoch:train:9601-9700batch: iter_time=1.107e-04, forward_time=0.106, loss_ctc=38.920, loss_att=43.695, acc=0.736, loss=42.263, backward_time=0.099, grad_norm=37.919, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.613e-04, train_time=0.439 +[gpuc02:0/16] 2024-01-16 03:37:04,888 (trainer:737) INFO: 31epoch:train:9701-9800batch: iter_time=1.069e-04, forward_time=0.105, loss_ctc=40.035, loss_att=49.258, acc=0.744, loss=46.491, backward_time=0.097, grad_norm=38.313, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.613e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 03:37:48,042 (trainer:737) INFO: 31epoch:train:9801-9900batch: iter_time=1.084e-04, forward_time=0.105, loss_ctc=45.776, loss_att=59.637, acc=0.714, loss=55.479, backward_time=0.098, grad_norm=43.310, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.613e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-16 03:38:30,482 (trainer:737) INFO: 31epoch:train:9901-10000batch: iter_time=9.707e-05, forward_time=0.105, loss_ctc=54.159, loss_att=59.070, acc=0.714, loss=57.596, backward_time=0.098, grad_norm=51.305, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.612e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:38:33,130 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-16 03:38:53,016 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 03:38:56,761 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 03:38:56,761 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-16 03:38:56,764 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 03:43:40,722 (trainer:737) INFO: 31epoch:train:10001-10100batch: iter_time=2.553, forward_time=0.104, loss_ctc=33.781, loss_att=39.438, acc=0.740, loss=37.741, backward_time=0.096, grad_norm=37.414, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.612e-04, train_time=3.102 +[gpuc02:0/16] 2024-01-16 03:44:22,994 (trainer:737) INFO: 31epoch:train:10101-10200batch: iter_time=1.174e-04, forward_time=0.105, loss_ctc=46.191, loss_att=48.157, acc=0.747, loss=47.567, backward_time=0.097, grad_norm=42.180, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.611e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:45:05,360 (trainer:737) INFO: 31epoch:train:10201-10300batch: iter_time=1.073e-04, forward_time=0.104, loss_ctc=43.980, loss_att=56.352, acc=0.725, loss=52.640, backward_time=0.097, grad_norm=44.002, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.611e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:45:47,555 (trainer:737) INFO: 31epoch:train:10301-10400batch: iter_time=1.188e-04, forward_time=0.105, loss_ctc=46.491, loss_att=52.664, acc=0.733, loss=50.812, backward_time=0.097, grad_norm=43.315, clip=100.000, loss_scale=1.059e+34, optim_step_time=0.041, optim0_lr0=3.611e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 03:46:30,344 (trainer:737) INFO: 31epoch:train:10401-10500batch: iter_time=1.130e-04, forward_time=0.106, loss_ctc=45.039, loss_att=61.308, acc=0.732, loss=56.427, backward_time=0.098, grad_norm=43.243, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.610e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 03:47:12,670 (trainer:737) INFO: 31epoch:train:10501-10600batch: iter_time=1.209e-04, forward_time=0.105, loss_ctc=43.055, loss_att=47.629, acc=0.756, loss=46.257, backward_time=0.097, grad_norm=43.159, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.610e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:47:55,025 (trainer:737) INFO: 31epoch:train:10601-10700batch: iter_time=1.102e-04, forward_time=0.105, loss_ctc=50.746, loss_att=50.941, acc=0.745, loss=50.883, backward_time=0.097, grad_norm=51.871, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.609e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:48:37,124 (trainer:737) INFO: 31epoch:train:10701-10800batch: iter_time=1.236e-04, forward_time=0.104, loss_ctc=40.269, loss_att=38.100, acc=0.755, loss=38.751, backward_time=0.096, grad_norm=38.369, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.609e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 03:49:19,429 (trainer:737) INFO: 31epoch:train:10801-10900batch: iter_time=1.149e-04, forward_time=0.105, loss_ctc=40.321, loss_att=37.650, acc=0.773, loss=38.451, backward_time=0.097, grad_norm=38.941, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.609e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:50:01,722 (trainer:737) INFO: 31epoch:train:10901-11000batch: iter_time=1.225e-04, forward_time=0.104, loss_ctc=39.079, loss_att=42.702, acc=0.742, loss=41.615, backward_time=0.096, grad_norm=38.815, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.608e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 03:50:44,287 (trainer:737) INFO: 31epoch:train:11001-11100batch: iter_time=1.262e-04, forward_time=0.106, loss_ctc=47.795, loss_att=69.361, acc=0.719, loss=62.891, backward_time=0.098, grad_norm=47.864, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.608e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:51:26,764 (trainer:737) INFO: 31epoch:train:11101-11200batch: iter_time=1.217e-04, forward_time=0.106, loss_ctc=50.850, loss_att=59.270, acc=0.721, loss=56.744, backward_time=0.098, grad_norm=53.217, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.607e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:51:52,973 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-16 03:52:12,285 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 03:52:15,850 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 03:52:15,850 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-16 03:52:15,854 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 03:56:37,243 (trainer:737) INFO: 31epoch:train:11201-11300batch: iter_time=2.550, forward_time=0.109, loss_ctc=37.680, loss_att=41.424, acc=0.742, loss=40.301, backward_time=0.097, grad_norm=37.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.607e-04, train_time=3.105 +[gpuc02:0/16] 2024-01-16 03:57:19,760 (trainer:737) INFO: 31epoch:train:11301-11400batch: iter_time=1.035e-04, forward_time=0.105, loss_ctc=46.647, loss_att=48.502, acc=0.737, loss=47.945, backward_time=0.099, grad_norm=46.735, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.607e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 03:58:02,371 (trainer:737) INFO: 31epoch:train:11401-11500batch: iter_time=1.051e-04, forward_time=0.105, loss_ctc=43.133, loss_att=49.529, acc=0.736, loss=47.611, backward_time=0.098, grad_norm=42.729, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.606e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 03:58:44,784 (trainer:737) INFO: 31epoch:train:11501-11600batch: iter_time=1.167e-04, forward_time=0.104, loss_ctc=36.906, loss_att=42.712, acc=0.744, loss=40.971, backward_time=0.097, grad_norm=36.959, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.606e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 03:59:27,524 (trainer:737) INFO: 31epoch:train:11601-11700batch: iter_time=1.173e-04, forward_time=0.106, loss_ctc=51.185, loss_att=58.665, acc=0.746, loss=56.421, backward_time=0.098, grad_norm=46.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.606e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 04:00:10,531 (trainer:737) INFO: 31epoch:train:11701-11800batch: iter_time=1.169e-04, forward_time=0.105, loss_ctc=47.110, loss_att=58.242, acc=0.736, loss=54.902, backward_time=0.098, grad_norm=46.627, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.605e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 04:00:52,917 (trainer:737) INFO: 31epoch:train:11801-11900batch: iter_time=1.117e-04, forward_time=0.105, loss_ctc=45.419, loss_att=55.805, acc=0.735, loss=52.689, backward_time=0.098, grad_norm=49.435, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.605e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:01:35,239 (trainer:737) INFO: 31epoch:train:11901-12000batch: iter_time=1.111e-04, forward_time=0.105, loss_ctc=46.215, loss_att=42.616, acc=0.751, loss=43.695, backward_time=0.098, grad_norm=41.410, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.604e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 04:02:17,809 (trainer:737) INFO: 31epoch:train:12001-12100batch: iter_time=1.171e-04, forward_time=0.104, loss_ctc=39.971, loss_att=34.802, acc=0.778, loss=36.353, backward_time=0.097, grad_norm=39.172, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.604e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:02:59,991 (trainer:737) INFO: 31epoch:train:12101-12200batch: iter_time=9.968e-05, forward_time=0.104, loss_ctc=38.697, loss_att=43.260, acc=0.744, loss=41.891, backward_time=0.097, grad_norm=37.145, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.604e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 04:03:42,609 (trainer:737) INFO: 31epoch:train:12201-12300batch: iter_time=1.027e-04, forward_time=0.107, loss_ctc=39.781, loss_att=51.131, acc=0.745, loss=47.726, backward_time=0.097, grad_norm=38.763, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.603e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 04:04:25,034 (trainer:737) INFO: 31epoch:train:12301-12400batch: iter_time=9.883e-05, forward_time=0.104, loss_ctc=45.834, loss_att=62.304, acc=0.718, loss=57.363, backward_time=0.097, grad_norm=45.933, clip=100.000, loss_scale=2.118e+34, optim_step_time=0.041, optim0_lr0=3.603e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:05:07,482 (trainer:737) INFO: 31epoch:train:12401-12500batch: iter_time=8.948e-05, forward_time=0.105, loss_ctc=54.362, loss_att=59.715, acc=0.720, loss=58.109, backward_time=0.098, grad_norm=50.668, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.602e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:05:10,037 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-16 04:05:29,772 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 04:05:33,448 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 04:05:33,448 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-16 04:05:33,451 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 04:10:22,100 (trainer:737) INFO: 31epoch:train:12501-12600batch: iter_time=2.535, forward_time=0.104, loss_ctc=33.394, loss_att=37.776, acc=0.745, loss=36.462, backward_time=0.096, grad_norm=35.940, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.602e-04, train_time=3.146 +[gpuc02:0/16] 2024-01-16 04:10:27,584 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 04:11:04,525 (trainer:737) INFO: 31epoch:train:12601-12700batch: iter_time=1.218e-04, forward_time=0.105, loss_ctc=46.079, loss_att=46.178, acc=0.753, loss=46.148, backward_time=0.097, grad_norm=41.884, clip=100.000, loss_scale=2.329e+34, optim_step_time=0.041, optim0_lr0=3.602e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:11:46,842 (trainer:737) INFO: 31epoch:train:12701-12800batch: iter_time=1.198e-04, forward_time=0.104, loss_ctc=43.570, loss_att=54.797, acc=0.730, loss=51.429, backward_time=0.097, grad_norm=44.038, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.601e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 04:12:29,757 (trainer:737) INFO: 31epoch:train:12801-12900batch: iter_time=1.160e-04, forward_time=0.104, loss_ctc=46.187, loss_att=51.958, acc=0.734, loss=50.226, backward_time=0.097, grad_norm=43.786, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.601e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 04:13:12,724 (trainer:737) INFO: 31epoch:train:12901-13000batch: iter_time=1.223e-04, forward_time=0.106, loss_ctc=45.858, loss_att=61.400, acc=0.733, loss=56.738, backward_time=0.098, grad_norm=43.363, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.600e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 04:13:55,125 (trainer:737) INFO: 31epoch:train:13001-13100batch: iter_time=1.241e-04, forward_time=0.106, loss_ctc=41.886, loss_att=46.582, acc=0.758, loss=45.173, backward_time=0.097, grad_norm=42.166, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.600e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:14:37,829 (trainer:737) INFO: 31epoch:train:13101-13200batch: iter_time=1.143e-04, forward_time=0.106, loss_ctc=50.294, loss_att=50.114, acc=0.746, loss=50.168, backward_time=0.097, grad_norm=52.889, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.600e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 04:15:20,096 (trainer:737) INFO: 31epoch:train:13201-13300batch: iter_time=1.223e-04, forward_time=0.106, loss_ctc=39.812, loss_att=38.179, acc=0.754, loss=38.669, backward_time=0.096, grad_norm=38.005, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.599e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 04:16:02,438 (trainer:737) INFO: 31epoch:train:13301-13400batch: iter_time=1.116e-04, forward_time=0.106, loss_ctc=40.301, loss_att=37.161, acc=0.774, loss=38.103, backward_time=0.097, grad_norm=39.585, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.599e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 04:16:45,386 (trainer:737) INFO: 31epoch:train:13401-13500batch: iter_time=1.142e-04, forward_time=0.106, loss_ctc=39.190, loss_att=43.456, acc=0.737, loss=42.176, backward_time=0.096, grad_norm=36.937, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.598e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 04:17:29,181 (trainer:737) INFO: 31epoch:train:13501-13600batch: iter_time=1.128e-04, forward_time=0.111, loss_ctc=47.141, loss_att=69.010, acc=0.721, loss=62.449, backward_time=0.098, grad_norm=45.387, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.598e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-16 04:18:12,231 (trainer:737) INFO: 31epoch:train:13601-13700batch: iter_time=1.232e-04, forward_time=0.106, loss_ctc=51.362, loss_att=60.848, acc=0.717, loss=58.002, backward_time=0.097, grad_norm=52.762, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.598e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 04:18:38,482 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-16 04:18:58,235 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 04:19:01,983 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 04:19:01,984 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-16 04:19:01,987 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 04:23:57,599 (trainer:737) INFO: 31epoch:train:13701-13800batch: iter_time=2.645, forward_time=0.105, loss_ctc=37.376, loss_att=41.756, acc=0.741, loss=40.442, backward_time=0.096, grad_norm=35.330, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.597e-04, train_time=3.453 +[gpuc02:0/16] 2024-01-16 04:24:39,995 (trainer:737) INFO: 31epoch:train:13801-13900batch: iter_time=1.291e-04, forward_time=0.107, loss_ctc=46.098, loss_att=48.236, acc=0.737, loss=47.594, backward_time=0.097, grad_norm=45.418, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.597e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:25:22,297 (trainer:737) INFO: 31epoch:train:13901-14000batch: iter_time=1.357e-04, forward_time=0.106, loss_ctc=43.091, loss_att=48.857, acc=0.738, loss=47.127, backward_time=0.097, grad_norm=42.857, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.597e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 04:26:04,772 (trainer:737) INFO: 31epoch:train:14001-14100batch: iter_time=1.209e-04, forward_time=0.109, loss_ctc=36.294, loss_att=42.383, acc=0.745, loss=40.557, backward_time=0.097, grad_norm=38.090, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.596e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:26:47,281 (trainer:737) INFO: 31epoch:train:14101-14200batch: iter_time=1.274e-04, forward_time=0.107, loss_ctc=51.896, loss_att=57.254, acc=0.749, loss=55.647, backward_time=0.098, grad_norm=47.824, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.596e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:27:29,820 (trainer:737) INFO: 31epoch:train:14201-14300batch: iter_time=1.460e-04, forward_time=0.107, loss_ctc=47.416, loss_att=58.187, acc=0.735, loss=54.955, backward_time=0.098, grad_norm=46.387, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.595e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:28:12,526 (trainer:737) INFO: 31epoch:train:14301-14400batch: iter_time=1.469e-04, forward_time=0.106, loss_ctc=44.960, loss_att=54.791, acc=0.739, loss=51.842, backward_time=0.097, grad_norm=49.006, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.595e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 04:28:54,901 (trainer:737) INFO: 31epoch:train:14401-14500batch: iter_time=1.433e-04, forward_time=0.106, loss_ctc=46.167, loss_att=42.184, acc=0.754, loss=43.379, backward_time=0.097, grad_norm=40.335, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.595e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:29:37,288 (trainer:737) INFO: 31epoch:train:14501-14600batch: iter_time=1.478e-04, forward_time=0.106, loss_ctc=40.623, loss_att=35.813, acc=0.775, loss=37.256, backward_time=0.097, grad_norm=39.498, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.594e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 04:30:19,606 (trainer:737) INFO: 31epoch:train:14601-14700batch: iter_time=1.440e-04, forward_time=0.105, loss_ctc=38.814, loss_att=43.629, acc=0.742, loss=42.185, backward_time=0.096, grad_norm=38.550, clip=100.000, loss_scale=3.884e+34, optim_step_time=0.042, optim0_lr0=3.594e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 04:31:02,095 (trainer:737) INFO: 31epoch:train:14701-14800batch: iter_time=1.299e-04, forward_time=0.106, loss_ctc=39.943, loss_att=51.136, acc=0.747, loss=47.778, backward_time=0.097, grad_norm=37.508, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.593e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:31:44,580 (trainer:737) INFO: 31epoch:train:14801-14900batch: iter_time=1.375e-04, forward_time=0.106, loss_ctc=46.211, loss_att=63.047, acc=0.715, loss=57.996, backward_time=0.097, grad_norm=46.247, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.593e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:32:27,098 (trainer:737) INFO: 31epoch:train:14901-15000batch: iter_time=1.201e-04, forward_time=0.107, loss_ctc=53.329, loss_att=59.933, acc=0.715, loss=57.952, backward_time=0.097, grad_norm=50.520, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.593e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:52:40,122 (trainer:343) INFO: 31epoch results: [train] iter_time=0.213, forward_time=0.106, loss_ctc=44.619, loss_att=49.854, acc=0.737, loss=48.284, backward_time=0.097, grad_norm=43.643, clip=100.000, loss_scale=1.990e+34, optim_step_time=0.042, optim0_lr0=3.622e-04, train_time=0.654, time=2 hours, 43 minutes and 37.18 seconds, total_count=465000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=50.029, cer_ctc=0.261, loss_att=50.580, acc=0.612, cer=0.350, wer=0.997, loss=50.415, time=20 minutes and 2.7 seconds, total_count=144801, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-16 04:52:45,100 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-16 04:52:45,126 (trainer:272) INFO: 32/45epoch started. Estimated time to finish: 1 day, 19 hours and 5 minutes +[gpuc02:0/16] 2024-01-16 04:52:45,136 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-16 04:53:04,154 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 04:53:07,824 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 04:53:07,824 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-16 04:53:07,827 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 04:57:50,818 (trainer:737) INFO: 32epoch:train:1-100batch: iter_time=2.610, forward_time=0.109, loss_ctc=47.222, loss_att=55.321, acc=0.731, loss=52.891, backward_time=0.097, grad_norm=47.953, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.592e-04, train_time=3.057 +[gpuc02:0/16] 2024-01-16 04:58:33,316 (trainer:737) INFO: 32epoch:train:101-200batch: iter_time=1.299e-04, forward_time=0.105, loss_ctc=47.647, loss_att=52.941, acc=0.734, loss=51.353, backward_time=0.098, grad_norm=44.457, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.592e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 04:59:16,169 (trainer:737) INFO: 32epoch:train:201-300batch: iter_time=1.371e-04, forward_time=0.107, loss_ctc=43.627, loss_att=51.628, acc=0.745, loss=49.228, backward_time=0.098, grad_norm=41.325, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.592e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 04:59:59,211 (trainer:737) INFO: 32epoch:train:301-400batch: iter_time=1.380e-04, forward_time=0.112, loss_ctc=51.070, loss_att=56.715, acc=0.726, loss=55.022, backward_time=0.098, grad_norm=45.997, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.591e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 05:00:41,439 (trainer:737) INFO: 32epoch:train:401-500batch: iter_time=1.463e-04, forward_time=0.105, loss_ctc=41.243, loss_att=39.625, acc=0.761, loss=40.111, backward_time=0.097, grad_norm=41.414, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.591e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 05:01:23,796 (trainer:737) INFO: 32epoch:train:501-600batch: iter_time=1.438e-04, forward_time=0.106, loss_ctc=38.094, loss_att=46.247, acc=0.737, loss=43.801, backward_time=0.098, grad_norm=36.262, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.590e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:02:05,861 (trainer:737) INFO: 32epoch:train:601-700batch: iter_time=1.272e-04, forward_time=0.106, loss_ctc=42.346, loss_att=44.261, acc=0.745, loss=43.686, backward_time=0.097, grad_norm=37.850, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.590e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 05:02:45,001 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 05:02:49,179 (trainer:737) INFO: 32epoch:train:701-800batch: iter_time=1.295e-04, forward_time=0.106, loss_ctc=48.549, loss_att=54.806, acc=0.716, loss=52.929, backward_time=0.097, grad_norm=48.331, clip=100.000, loss_scale=3.944e+34, optim_step_time=0.041, optim0_lr0=3.590e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 05:03:33,530 (trainer:737) INFO: 32epoch:train:801-900batch: iter_time=1.294e-04, forward_time=0.107, loss_ctc=48.971, loss_att=63.286, acc=0.717, loss=58.992, backward_time=0.098, grad_norm=47.612, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.589e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-16 05:04:22,162 (trainer:737) INFO: 32epoch:train:901-1000batch: iter_time=1.345e-04, forward_time=0.105, loss_ctc=43.190, loss_att=45.437, acc=0.753, loss=44.763, backward_time=0.097, grad_norm=41.699, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.589e-04, train_time=0.486 +[gpuc02:0/16] 2024-01-16 05:05:10,090 (trainer:737) INFO: 32epoch:train:1001-1100batch: iter_time=1.304e-04, forward_time=0.128, loss_ctc=59.693, loss_att=63.650, acc=0.731, loss=62.463, backward_time=0.117, grad_norm=55.025, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.588e-04, train_time=0.479 +[gpuc02:0/16] 2024-01-16 05:05:53,474 (trainer:737) INFO: 32epoch:train:1101-1200batch: iter_time=1.344e-04, forward_time=0.113, loss_ctc=49.211, loss_att=55.452, acc=0.735, loss=53.580, backward_time=0.099, grad_norm=47.203, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.588e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-16 05:06:20,277 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-16 05:06:39,579 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 05:06:43,184 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 05:06:43,184 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-16 05:06:43,187 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 05:11:45,193 (trainer:737) INFO: 32epoch:train:1201-1300batch: iter_time=2.839, forward_time=0.107, loss_ctc=44.114, loss_att=53.015, acc=0.736, loss=50.345, backward_time=0.098, grad_norm=44.038, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.588e-04, train_time=3.517 +[gpuc02:0/16] 2024-01-16 05:12:27,474 (trainer:737) INFO: 32epoch:train:1301-1400batch: iter_time=1.669e-04, forward_time=0.106, loss_ctc=44.640, loss_att=47.805, acc=0.723, loss=46.855, backward_time=0.097, grad_norm=46.193, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.587e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:13:09,856 (trainer:737) INFO: 32epoch:train:1401-1500batch: iter_time=1.636e-04, forward_time=0.105, loss_ctc=47.101, loss_att=52.284, acc=0.735, loss=50.729, backward_time=0.098, grad_norm=43.888, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.587e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 05:13:52,426 (trainer:737) INFO: 32epoch:train:1501-1600batch: iter_time=1.622e-04, forward_time=0.106, loss_ctc=46.115, loss_att=49.491, acc=0.751, loss=48.478, backward_time=0.098, grad_norm=39.321, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.587e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:14:34,787 (trainer:737) INFO: 32epoch:train:1601-1700batch: iter_time=1.623e-04, forward_time=0.105, loss_ctc=47.276, loss_att=51.894, acc=0.732, loss=50.509, backward_time=0.098, grad_norm=44.512, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.586e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:15:17,953 (trainer:737) INFO: 32epoch:train:1701-1800batch: iter_time=1.507e-04, forward_time=0.109, loss_ctc=41.731, loss_att=47.092, acc=0.737, loss=45.484, backward_time=0.098, grad_norm=43.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.586e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-16 05:16:01,289 (trainer:737) INFO: 32epoch:train:1801-1900batch: iter_time=1.510e-04, forward_time=0.112, loss_ctc=37.805, loss_att=40.716, acc=0.746, loss=39.843, backward_time=0.098, grad_norm=35.724, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.585e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 05:16:43,944 (trainer:737) INFO: 32epoch:train:1901-2000batch: iter_time=1.838e-04, forward_time=0.105, loss_ctc=39.333, loss_att=43.401, acc=0.744, loss=42.181, backward_time=0.097, grad_norm=38.128, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.585e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 05:17:26,114 (trainer:737) INFO: 32epoch:train:2001-2100batch: iter_time=1.590e-04, forward_time=0.105, loss_ctc=49.634, loss_att=60.910, acc=0.687, loss=57.527, backward_time=0.097, grad_norm=47.794, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.585e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 05:18:08,441 (trainer:737) INFO: 32epoch:train:2101-2200batch: iter_time=1.633e-04, forward_time=0.105, loss_ctc=46.136, loss_att=55.442, acc=0.723, loss=52.650, backward_time=0.097, grad_norm=45.109, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.584e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:18:52,663 (trainer:737) INFO: 32epoch:train:2201-2300batch: iter_time=1.545e-04, forward_time=0.111, loss_ctc=49.317, loss_att=54.732, acc=0.735, loss=53.108, backward_time=0.108, grad_norm=46.023, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.584e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-16 05:19:35,197 (trainer:737) INFO: 32epoch:train:2301-2400batch: iter_time=1.639e-04, forward_time=0.105, loss_ctc=53.636, loss_att=58.655, acc=0.722, loss=57.149, backward_time=0.097, grad_norm=52.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.583e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:20:17,451 (trainer:737) INFO: 32epoch:train:2401-2500batch: iter_time=1.440e-04, forward_time=0.105, loss_ctc=49.077, loss_att=50.317, acc=0.744, loss=49.945, backward_time=0.097, grad_norm=49.382, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.583e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 05:20:26,867 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-16 05:20:46,128 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 05:20:49,712 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 05:20:49,713 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-16 05:20:49,716 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 05:27:32,987 (trainer:737) INFO: 32epoch:train:2501-2600batch: iter_time=3.848, forward_time=0.164, loss_ctc=45.352, loss_att=53.242, acc=0.726, loss=50.875, backward_time=0.106, grad_norm=46.365, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.583e-04, train_time=4.355 +[gpuc02:0/16] 2024-01-16 05:28:15,622 (trainer:737) INFO: 32epoch:train:2601-2700batch: iter_time=1.278e-04, forward_time=0.105, loss_ctc=45.341, loss_att=49.588, acc=0.733, loss=48.314, backward_time=0.097, grad_norm=40.890, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.582e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 05:28:58,398 (trainer:737) INFO: 32epoch:train:2701-2800batch: iter_time=1.320e-04, forward_time=0.106, loss_ctc=42.938, loss_att=50.244, acc=0.747, loss=48.052, backward_time=0.098, grad_norm=39.395, clip=100.000, loss_scale=2.285e+34, optim_step_time=0.042, optim0_lr0=3.582e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 05:29:41,688 (trainer:737) INFO: 32epoch:train:2801-2900batch: iter_time=1.445e-04, forward_time=0.106, loss_ctc=49.018, loss_att=52.892, acc=0.730, loss=51.730, backward_time=0.098, grad_norm=43.868, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.582e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 05:30:23,999 (trainer:737) INFO: 32epoch:train:2901-3000batch: iter_time=1.530e-04, forward_time=0.106, loss_ctc=41.041, loss_att=39.801, acc=0.761, loss=40.173, backward_time=0.097, grad_norm=41.406, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.581e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:31:06,238 (trainer:737) INFO: 32epoch:train:3001-3100batch: iter_time=1.516e-04, forward_time=0.104, loss_ctc=37.244, loss_att=40.974, acc=0.742, loss=39.855, backward_time=0.096, grad_norm=36.761, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.581e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 05:31:48,814 (trainer:737) INFO: 32epoch:train:3101-3200batch: iter_time=1.402e-04, forward_time=0.105, loss_ctc=40.952, loss_att=43.435, acc=0.744, loss=42.690, backward_time=0.097, grad_norm=37.178, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.580e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 05:32:31,138 (trainer:737) INFO: 32epoch:train:3201-3300batch: iter_time=1.371e-04, forward_time=0.106, loss_ctc=46.531, loss_att=53.980, acc=0.716, loss=51.745, backward_time=0.097, grad_norm=43.909, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.580e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:32:43,913 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 05:33:13,900 (trainer:737) INFO: 32epoch:train:3301-3400batch: iter_time=1.380e-04, forward_time=0.107, loss_ctc=48.153, loss_att=62.605, acc=0.706, loss=58.269, backward_time=0.097, grad_norm=48.768, clip=100.000, loss_scale=2.685e+34, optim_step_time=0.042, optim0_lr0=3.580e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 05:33:56,432 (trainer:737) INFO: 32epoch:train:3401-3500batch: iter_time=1.310e-04, forward_time=0.106, loss_ctc=42.720, loss_att=46.211, acc=0.739, loss=45.164, backward_time=0.097, grad_norm=40.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.579e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:34:39,336 (trainer:737) INFO: 32epoch:train:3501-3600batch: iter_time=1.317e-04, forward_time=0.107, loss_ctc=57.704, loss_att=62.383, acc=0.726, loss=60.980, backward_time=0.098, grad_norm=56.670, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.579e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 05:35:22,243 (trainer:737) INFO: 32epoch:train:3601-3700batch: iter_time=1.171e-04, forward_time=0.109, loss_ctc=48.156, loss_att=54.914, acc=0.729, loss=52.887, backward_time=0.097, grad_norm=45.913, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.578e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 05:35:59,960 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-16 05:36:19,996 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 05:36:23,866 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 05:36:23,866 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-16 05:36:23,869 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 05:40:49,501 (trainer:737) INFO: 32epoch:train:3701-3800batch: iter_time=2.761, forward_time=0.105, loss_ctc=42.100, loss_att=51.303, acc=0.743, loss=48.542, backward_time=0.097, grad_norm=44.664, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.578e-04, train_time=3.272 +[gpuc02:0/16] 2024-01-16 05:41:31,746 (trainer:737) INFO: 32epoch:train:3801-3900batch: iter_time=1.173e-04, forward_time=0.104, loss_ctc=43.180, loss_att=50.806, acc=0.732, loss=48.518, backward_time=0.097, grad_norm=44.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.578e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 05:42:14,221 (trainer:737) INFO: 32epoch:train:3901-4000batch: iter_time=1.420e-04, forward_time=0.104, loss_ctc=46.709, loss_att=52.338, acc=0.737, loss=50.649, backward_time=0.097, grad_norm=42.239, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.577e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:42:56,615 (trainer:737) INFO: 32epoch:train:4001-4100batch: iter_time=1.205e-04, forward_time=0.105, loss_ctc=44.960, loss_att=50.010, acc=0.758, loss=48.495, backward_time=0.097, grad_norm=38.495, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.577e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 05:43:38,907 (trainer:737) INFO: 32epoch:train:4101-4200batch: iter_time=1.240e-04, forward_time=0.104, loss_ctc=46.412, loss_att=51.240, acc=0.735, loss=49.791, backward_time=0.097, grad_norm=43.946, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.577e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:44:21,259 (trainer:737) INFO: 32epoch:train:4201-4300batch: iter_time=1.281e-04, forward_time=0.105, loss_ctc=40.888, loss_att=51.012, acc=0.739, loss=47.975, backward_time=0.097, grad_norm=42.809, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.576e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:45:03,970 (trainer:737) INFO: 32epoch:train:4301-4400batch: iter_time=1.228e-04, forward_time=0.103, loss_ctc=37.977, loss_att=40.274, acc=0.750, loss=39.585, backward_time=0.096, grad_norm=34.798, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.576e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 05:45:46,343 (trainer:737) INFO: 32epoch:train:4401-4500batch: iter_time=1.390e-04, forward_time=0.104, loss_ctc=38.716, loss_att=42.456, acc=0.752, loss=41.334, backward_time=0.097, grad_norm=39.241, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.575e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:46:29,137 (trainer:737) INFO: 32epoch:train:4501-4600batch: iter_time=1.396e-04, forward_time=0.105, loss_ctc=48.732, loss_att=60.570, acc=0.701, loss=57.019, backward_time=0.097, grad_norm=45.619, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.575e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 05:47:11,694 (trainer:737) INFO: 32epoch:train:4601-4700batch: iter_time=1.321e-04, forward_time=0.105, loss_ctc=45.514, loss_att=54.515, acc=0.741, loss=51.815, backward_time=0.097, grad_norm=44.511, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.575e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:47:54,207 (trainer:737) INFO: 32epoch:train:4701-4800batch: iter_time=1.380e-04, forward_time=0.105, loss_ctc=48.373, loss_att=52.963, acc=0.751, loss=51.586, backward_time=0.098, grad_norm=44.158, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.574e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:48:36,904 (trainer:737) INFO: 32epoch:train:4801-4900batch: iter_time=1.305e-04, forward_time=0.104, loss_ctc=51.932, loss_att=58.422, acc=0.732, loss=56.475, backward_time=0.097, grad_norm=51.210, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.574e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 05:49:19,602 (trainer:737) INFO: 32epoch:train:4901-5000batch: iter_time=1.248e-04, forward_time=0.104, loss_ctc=47.166, loss_att=51.852, acc=0.749, loss=50.446, backward_time=0.097, grad_norm=47.435, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.574e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 05:49:24,330 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-16 05:49:44,475 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 05:49:48,351 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 05:49:48,351 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-16 05:49:48,354 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 05:54:41,962 (trainer:737) INFO: 32epoch:train:5001-5100batch: iter_time=2.635, forward_time=0.105, loss_ctc=43.797, loss_att=53.907, acc=0.726, loss=50.874, backward_time=0.098, grad_norm=47.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.573e-04, train_time=3.223 +[gpuc02:0/16] 2024-01-16 05:55:24,395 (trainer:737) INFO: 32epoch:train:5101-5200batch: iter_time=1.251e-04, forward_time=0.105, loss_ctc=45.211, loss_att=49.865, acc=0.734, loss=48.469, backward_time=0.098, grad_norm=41.208, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.573e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 05:56:07,155 (trainer:737) INFO: 32epoch:train:5201-5300batch: iter_time=1.537e-04, forward_time=0.105, loss_ctc=42.668, loss_att=50.915, acc=0.747, loss=48.441, backward_time=0.098, grad_norm=40.676, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.572e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 05:56:49,869 (trainer:737) INFO: 32epoch:train:5301-5400batch: iter_time=1.416e-04, forward_time=0.106, loss_ctc=48.754, loss_att=53.202, acc=0.729, loss=51.867, backward_time=0.098, grad_norm=42.370, clip=100.000, loss_scale=3.531e+34, optim_step_time=0.042, optim0_lr0=3.572e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 05:57:32,162 (trainer:737) INFO: 32epoch:train:5401-5500batch: iter_time=1.394e-04, forward_time=0.105, loss_ctc=40.726, loss_att=39.544, acc=0.763, loss=39.899, backward_time=0.097, grad_norm=43.326, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.572e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:58:14,660 (trainer:737) INFO: 32epoch:train:5501-5600batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=37.026, loss_att=41.583, acc=0.739, loss=40.216, backward_time=0.097, grad_norm=35.918, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.571e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 05:58:56,950 (trainer:737) INFO: 32epoch:train:5601-5700batch: iter_time=1.384e-04, forward_time=0.105, loss_ctc=41.053, loss_att=43.847, acc=0.744, loss=43.009, backward_time=0.098, grad_norm=38.182, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.571e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 05:59:39,597 (trainer:737) INFO: 32epoch:train:5701-5800batch: iter_time=1.384e-04, forward_time=0.105, loss_ctc=45.958, loss_att=54.170, acc=0.717, loss=51.706, backward_time=0.097, grad_norm=43.509, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.570e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:00:22,086 (trainer:737) INFO: 32epoch:train:5801-5900batch: iter_time=1.271e-04, forward_time=0.106, loss_ctc=47.718, loss_att=62.621, acc=0.707, loss=58.150, backward_time=0.098, grad_norm=44.681, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.570e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:01:04,399 (trainer:737) INFO: 32epoch:train:5901-6000batch: iter_time=1.205e-04, forward_time=0.105, loss_ctc=42.611, loss_att=46.091, acc=0.740, loss=45.047, backward_time=0.097, grad_norm=39.708, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.570e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 06:01:47,287 (trainer:737) INFO: 32epoch:train:6001-6100batch: iter_time=1.229e-04, forward_time=0.106, loss_ctc=56.573, loss_att=62.145, acc=0.729, loss=60.474, backward_time=0.098, grad_norm=53.759, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.569e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 06:02:30,001 (trainer:737) INFO: 32epoch:train:6101-6200batch: iter_time=1.294e-04, forward_time=0.105, loss_ctc=47.496, loss_att=54.045, acc=0.732, loss=52.080, backward_time=0.098, grad_norm=45.816, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.569e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:02:55,338 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-16 06:03:14,836 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 06:03:18,753 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 06:03:18,753 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-16 06:03:18,757 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 06:07:46,947 (trainer:737) INFO: 32epoch:train:6201-6300batch: iter_time=2.623, forward_time=0.105, loss_ctc=40.815, loss_att=50.949, acc=0.744, loss=47.909, backward_time=0.097, grad_norm=43.520, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.569e-04, train_time=3.169 +[gpuc02:0/16] 2024-01-16 06:08:29,640 (trainer:737) INFO: 32epoch:train:6301-6400batch: iter_time=1.286e-04, forward_time=0.105, loss_ctc=41.994, loss_att=49.398, acc=0.734, loss=47.177, backward_time=0.097, grad_norm=42.301, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.568e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:09:12,116 (trainer:737) INFO: 32epoch:train:6401-6500batch: iter_time=1.481e-04, forward_time=0.106, loss_ctc=46.553, loss_att=53.006, acc=0.736, loss=51.070, backward_time=0.097, grad_norm=43.109, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.568e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:09:49,541 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 06:09:54,651 (trainer:737) INFO: 32epoch:train:6501-6600batch: iter_time=1.316e-04, forward_time=0.106, loss_ctc=45.201, loss_att=51.079, acc=0.756, loss=49.316, backward_time=0.097, grad_norm=39.278, clip=100.000, loss_scale=3.902e+34, optim_step_time=0.042, optim0_lr0=3.567e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:10:37,109 (trainer:737) INFO: 32epoch:train:6601-6700batch: iter_time=1.477e-04, forward_time=0.106, loss_ctc=46.135, loss_att=51.208, acc=0.736, loss=49.686, backward_time=0.097, grad_norm=44.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.567e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:11:19,498 (trainer:737) INFO: 32epoch:train:6701-6800batch: iter_time=1.365e-04, forward_time=0.106, loss_ctc=40.662, loss_att=50.597, acc=0.742, loss=47.616, backward_time=0.097, grad_norm=41.005, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.567e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:12:01,896 (trainer:737) INFO: 32epoch:train:6801-6900batch: iter_time=1.629e-04, forward_time=0.105, loss_ctc=37.332, loss_att=40.172, acc=0.750, loss=39.320, backward_time=0.096, grad_norm=35.042, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.566e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:12:44,262 (trainer:737) INFO: 32epoch:train:6901-7000batch: iter_time=1.548e-04, forward_time=0.105, loss_ctc=38.389, loss_att=42.339, acc=0.752, loss=41.154, backward_time=0.097, grad_norm=39.160, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.566e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 06:13:27,013 (trainer:737) INFO: 32epoch:train:7001-7100batch: iter_time=1.351e-04, forward_time=0.108, loss_ctc=48.870, loss_att=61.177, acc=0.702, loss=57.485, backward_time=0.097, grad_norm=47.955, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.566e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:14:09,767 (trainer:737) INFO: 32epoch:train:7101-7200batch: iter_time=1.431e-04, forward_time=0.107, loss_ctc=45.285, loss_att=54.308, acc=0.742, loss=51.601, backward_time=0.097, grad_norm=43.500, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.565e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:14:52,456 (trainer:737) INFO: 32epoch:train:7201-7300batch: iter_time=1.191e-04, forward_time=0.107, loss_ctc=48.356, loss_att=52.639, acc=0.751, loss=51.354, backward_time=0.098, grad_norm=46.418, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.565e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:15:34,950 (trainer:737) INFO: 32epoch:train:7301-7400batch: iter_time=1.376e-04, forward_time=0.106, loss_ctc=51.144, loss_att=58.897, acc=0.730, loss=56.571, backward_time=0.097, grad_norm=52.951, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.564e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:16:17,677 (trainer:737) INFO: 32epoch:train:7401-7500batch: iter_time=1.302e-04, forward_time=0.106, loss_ctc=46.400, loss_att=51.825, acc=0.749, loss=50.197, backward_time=0.097, grad_norm=48.666, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.564e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:16:22,139 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-16 06:16:41,629 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 06:16:45,632 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 06:16:45,632 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-16 06:16:45,636 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 06:21:35,789 (trainer:737) INFO: 32epoch:train:7501-7600batch: iter_time=2.616, forward_time=0.105, loss_ctc=43.823, loss_att=53.239, acc=0.736, loss=50.414, backward_time=0.097, grad_norm=44.828, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.564e-04, train_time=3.181 +[gpuc02:0/16] 2024-01-16 06:22:18,385 (trainer:737) INFO: 32epoch:train:7601-7700batch: iter_time=1.247e-04, forward_time=0.105, loss_ctc=44.669, loss_att=51.256, acc=0.740, loss=49.280, backward_time=0.097, grad_norm=41.444, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.563e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:23:01,293 (trainer:737) INFO: 32epoch:train:7701-7800batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=42.214, loss_att=50.789, acc=0.751, loss=48.217, backward_time=0.097, grad_norm=37.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.563e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 06:23:43,892 (trainer:737) INFO: 32epoch:train:7801-7900batch: iter_time=1.132e-04, forward_time=0.106, loss_ctc=48.662, loss_att=55.809, acc=0.731, loss=53.665, backward_time=0.097, grad_norm=42.500, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.563e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:24:26,543 (trainer:737) INFO: 32epoch:train:7901-8000batch: iter_time=1.259e-04, forward_time=0.105, loss_ctc=40.505, loss_att=39.330, acc=0.765, loss=39.682, backward_time=0.096, grad_norm=42.430, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.562e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:25:08,991 (trainer:737) INFO: 32epoch:train:8001-8100batch: iter_time=1.137e-04, forward_time=0.105, loss_ctc=36.870, loss_att=45.035, acc=0.742, loss=42.586, backward_time=0.096, grad_norm=37.365, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.562e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:25:51,712 (trainer:737) INFO: 32epoch:train:8101-8200batch: iter_time=1.066e-04, forward_time=0.104, loss_ctc=40.477, loss_att=43.132, acc=0.750, loss=42.336, backward_time=0.097, grad_norm=37.244, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.561e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:26:34,963 (trainer:737) INFO: 32epoch:train:8201-8300batch: iter_time=1.135e-04, forward_time=0.105, loss_ctc=46.024, loss_att=54.433, acc=0.719, loss=51.911, backward_time=0.096, grad_norm=43.967, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.561e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-16 06:27:17,610 (trainer:737) INFO: 32epoch:train:8301-8400batch: iter_time=1.192e-04, forward_time=0.106, loss_ctc=47.959, loss_att=62.936, acc=0.722, loss=58.443, backward_time=0.097, grad_norm=46.574, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.561e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:28:00,202 (trainer:737) INFO: 32epoch:train:8401-8500batch: iter_time=1.107e-04, forward_time=0.105, loss_ctc=42.001, loss_att=44.943, acc=0.757, loss=44.060, backward_time=0.097, grad_norm=38.720, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.560e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:28:43,027 (trainer:737) INFO: 32epoch:train:8501-8600batch: iter_time=1.189e-04, forward_time=0.107, loss_ctc=55.291, loss_att=62.199, acc=0.735, loss=60.126, backward_time=0.098, grad_norm=56.658, clip=100.000, loss_scale=2.326e+34, optim_step_time=0.041, optim0_lr0=3.560e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 06:29:25,540 (trainer:737) INFO: 32epoch:train:8601-8700batch: iter_time=1.187e-04, forward_time=0.105, loss_ctc=47.249, loss_att=54.892, acc=0.740, loss=52.599, backward_time=0.097, grad_norm=47.020, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.560e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:29:51,478 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-16 06:30:10,976 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 06:30:14,577 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 06:30:14,577 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-16 06:30:14,580 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 06:34:41,087 (trainer:737) INFO: 32epoch:train:8701-8800batch: iter_time=2.618, forward_time=0.105, loss_ctc=39.920, loss_att=51.749, acc=0.741, loss=48.200, backward_time=0.097, grad_norm=44.070, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.559e-04, train_time=3.155 +[gpuc02:0/16] 2024-01-16 06:35:23,456 (trainer:737) INFO: 32epoch:train:8801-8900batch: iter_time=1.315e-04, forward_time=0.104, loss_ctc=42.498, loss_att=45.806, acc=0.730, loss=44.813, backward_time=0.096, grad_norm=43.646, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.559e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 06:36:06,101 (trainer:737) INFO: 32epoch:train:8901-9000batch: iter_time=1.316e-04, forward_time=0.105, loss_ctc=45.932, loss_att=51.704, acc=0.738, loss=49.972, backward_time=0.097, grad_norm=41.408, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.558e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:36:48,518 (trainer:737) INFO: 32epoch:train:9001-9100batch: iter_time=1.246e-04, forward_time=0.106, loss_ctc=44.996, loss_att=48.482, acc=0.755, loss=47.436, backward_time=0.097, grad_norm=39.696, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.558e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:37:30,903 (trainer:737) INFO: 32epoch:train:9101-9200batch: iter_time=1.478e-04, forward_time=0.106, loss_ctc=46.477, loss_att=51.004, acc=0.734, loss=49.646, backward_time=0.097, grad_norm=44.641, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.558e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:38:13,524 (trainer:737) INFO: 32epoch:train:9201-9300batch: iter_time=1.240e-04, forward_time=0.106, loss_ctc=41.060, loss_att=46.246, acc=0.740, loss=44.691, backward_time=0.097, grad_norm=40.994, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.557e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:38:55,621 (trainer:737) INFO: 32epoch:train:9301-9400batch: iter_time=1.324e-04, forward_time=0.104, loss_ctc=36.949, loss_att=39.893, acc=0.748, loss=39.010, backward_time=0.096, grad_norm=34.870, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.557e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 06:39:38,228 (trainer:737) INFO: 32epoch:train:9401-9500batch: iter_time=1.372e-04, forward_time=0.105, loss_ctc=38.064, loss_att=42.827, acc=0.748, loss=41.398, backward_time=0.097, grad_norm=37.612, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.557e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:40:21,051 (trainer:737) INFO: 32epoch:train:9501-9600batch: iter_time=1.462e-04, forward_time=0.105, loss_ctc=48.843, loss_att=60.835, acc=0.689, loss=57.237, backward_time=0.096, grad_norm=48.110, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.556e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 06:40:32,224 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 06:41:03,510 (trainer:737) INFO: 32epoch:train:9601-9700batch: iter_time=1.402e-04, forward_time=0.105, loss_ctc=45.103, loss_att=54.444, acc=0.727, loss=51.641, backward_time=0.097, grad_norm=42.980, clip=100.000, loss_scale=2.601e+34, optim_step_time=0.042, optim0_lr0=3.556e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:41:45,936 (trainer:737) INFO: 32epoch:train:9701-9800batch: iter_time=1.404e-04, forward_time=0.105, loss_ctc=47.946, loss_att=53.884, acc=0.738, loss=52.103, backward_time=0.097, grad_norm=44.144, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.555e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:42:28,651 (trainer:737) INFO: 32epoch:train:9801-9900batch: iter_time=1.337e-04, forward_time=0.106, loss_ctc=50.298, loss_att=59.077, acc=0.725, loss=56.443, backward_time=0.097, grad_norm=49.535, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.555e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 06:43:11,164 (trainer:737) INFO: 32epoch:train:9901-10000batch: iter_time=1.318e-04, forward_time=0.105, loss_ctc=45.591, loss_att=48.733, acc=0.748, loss=47.790, backward_time=0.097, grad_norm=45.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.555e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:43:16,525 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-16 06:43:35,862 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 06:43:39,492 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 06:43:39,492 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-16 06:43:39,495 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 06:48:37,353 (trainer:737) INFO: 32epoch:train:10001-10100batch: iter_time=2.539, forward_time=0.106, loss_ctc=43.785, loss_att=54.851, acc=0.735, loss=51.531, backward_time=0.097, grad_norm=46.675, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.554e-04, train_time=3.262 +[gpuc02:0/16] 2024-01-16 06:49:19,928 (trainer:737) INFO: 32epoch:train:10101-10200batch: iter_time=1.301e-04, forward_time=0.106, loss_ctc=44.055, loss_att=51.501, acc=0.740, loss=49.267, backward_time=0.097, grad_norm=41.396, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.554e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:50:03,218 (trainer:737) INFO: 32epoch:train:10201-10300batch: iter_time=1.317e-04, forward_time=0.107, loss_ctc=42.242, loss_att=51.309, acc=0.750, loss=48.589, backward_time=0.098, grad_norm=40.464, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.554e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 06:50:45,814 (trainer:737) INFO: 32epoch:train:10301-10400batch: iter_time=1.437e-04, forward_time=0.107, loss_ctc=48.162, loss_att=55.670, acc=0.732, loss=53.418, backward_time=0.097, grad_norm=43.263, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.553e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 06:51:28,207 (trainer:737) INFO: 32epoch:train:10401-10500batch: iter_time=1.417e-04, forward_time=0.105, loss_ctc=40.963, loss_att=39.510, acc=0.764, loss=39.946, backward_time=0.096, grad_norm=44.991, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.553e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:52:11,154 (trainer:737) INFO: 32epoch:train:10501-10600batch: iter_time=1.414e-04, forward_time=0.104, loss_ctc=36.760, loss_att=45.213, acc=0.744, loss=42.677, backward_time=0.097, grad_norm=37.027, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.552e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 06:52:53,581 (trainer:737) INFO: 32epoch:train:10601-10700batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=40.337, loss_att=43.260, acc=0.752, loss=42.383, backward_time=0.097, grad_norm=36.255, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.552e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:53:36,051 (trainer:737) INFO: 32epoch:train:10701-10800batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=45.413, loss_att=53.504, acc=0.722, loss=51.077, backward_time=0.097, grad_norm=42.339, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.552e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:54:19,123 (trainer:737) INFO: 32epoch:train:10801-10900batch: iter_time=1.441e-04, forward_time=0.106, loss_ctc=47.173, loss_att=63.010, acc=0.723, loss=58.259, backward_time=0.098, grad_norm=45.307, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.551e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 06:55:01,523 (trainer:737) INFO: 32epoch:train:10901-11000batch: iter_time=1.250e-04, forward_time=0.105, loss_ctc=42.247, loss_att=44.709, acc=0.758, loss=43.970, backward_time=0.097, grad_norm=39.840, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.551e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 06:55:45,196 (trainer:737) INFO: 32epoch:train:11001-11100batch: iter_time=1.350e-04, forward_time=0.109, loss_ctc=54.835, loss_att=62.031, acc=0.737, loss=59.872, backward_time=0.099, grad_norm=58.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.551e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-16 06:56:27,711 (trainer:737) INFO: 32epoch:train:11101-11200batch: iter_time=1.319e-04, forward_time=0.105, loss_ctc=47.334, loss_att=55.272, acc=0.738, loss=52.891, backward_time=0.098, grad_norm=45.108, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.550e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 06:56:52,509 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-16 06:57:12,492 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 06:57:16,226 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 06:57:16,226 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-16 06:57:16,229 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 07:01:37,613 (trainer:737) INFO: 32epoch:train:11201-11300batch: iter_time=2.552, forward_time=0.104, loss_ctc=39.829, loss_att=50.725, acc=0.747, loss=47.456, backward_time=0.098, grad_norm=43.501, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.550e-04, train_time=3.099 +[gpuc02:0/16] 2024-01-16 07:02:20,263 (trainer:737) INFO: 32epoch:train:11301-11400batch: iter_time=1.272e-04, forward_time=0.105, loss_ctc=42.732, loss_att=48.384, acc=0.736, loss=46.688, backward_time=0.097, grad_norm=43.465, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.549e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:03:02,772 (trainer:737) INFO: 32epoch:train:11401-11500batch: iter_time=1.253e-04, forward_time=0.105, loss_ctc=45.534, loss_att=50.944, acc=0.739, loss=49.321, backward_time=0.098, grad_norm=41.380, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.549e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:03:45,357 (trainer:737) INFO: 32epoch:train:11501-11600batch: iter_time=1.147e-04, forward_time=0.105, loss_ctc=45.226, loss_att=49.651, acc=0.759, loss=48.324, backward_time=0.098, grad_norm=39.853, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.549e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:04:22,956 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 07:04:27,992 (trainer:737) INFO: 32epoch:train:11601-11700batch: iter_time=1.101e-04, forward_time=0.105, loss_ctc=46.117, loss_att=50.145, acc=0.738, loss=48.937, backward_time=0.098, grad_norm=41.420, clip=100.000, loss_scale=3.357e+34, optim_step_time=0.042, optim0_lr0=3.548e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:05:10,663 (trainer:737) INFO: 32epoch:train:11701-11800batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=40.682, loss_att=49.796, acc=0.743, loss=47.062, backward_time=0.097, grad_norm=40.300, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.548e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:05:53,411 (trainer:737) INFO: 32epoch:train:11801-11900batch: iter_time=1.125e-04, forward_time=0.104, loss_ctc=36.970, loss_att=39.661, acc=0.753, loss=38.854, backward_time=0.097, grad_norm=34.611, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.548e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 07:06:35,772 (trainer:737) INFO: 32epoch:train:11901-12000batch: iter_time=1.146e-04, forward_time=0.105, loss_ctc=37.779, loss_att=41.935, acc=0.754, loss=40.688, backward_time=0.097, grad_norm=39.521, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.547e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 07:07:18,118 (trainer:737) INFO: 32epoch:train:12001-12100batch: iter_time=1.195e-04, forward_time=0.105, loss_ctc=47.995, loss_att=60.195, acc=0.704, loss=56.535, backward_time=0.097, grad_norm=45.040, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.547e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 07:08:00,612 (trainer:737) INFO: 32epoch:train:12101-12200batch: iter_time=1.266e-04, forward_time=0.105, loss_ctc=44.707, loss_att=53.993, acc=0.743, loss=51.207, backward_time=0.098, grad_norm=42.549, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.546e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:08:43,125 (trainer:737) INFO: 32epoch:train:12201-12300batch: iter_time=1.200e-04, forward_time=0.106, loss_ctc=48.143, loss_att=52.765, acc=0.753, loss=51.378, backward_time=0.098, grad_norm=45.197, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.546e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:09:25,604 (trainer:737) INFO: 32epoch:train:12301-12400batch: iter_time=1.225e-04, forward_time=0.105, loss_ctc=49.972, loss_att=58.156, acc=0.733, loss=55.701, backward_time=0.098, grad_norm=52.174, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.546e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:10:08,088 (trainer:737) INFO: 32epoch:train:12401-12500batch: iter_time=1.119e-04, forward_time=0.105, loss_ctc=45.280, loss_att=50.777, acc=0.751, loss=49.128, backward_time=0.098, grad_norm=44.576, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.545e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:10:12,757 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-16 07:10:33,179 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 07:10:36,925 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 07:10:36,925 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-16 07:10:36,929 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 07:15:20,988 (trainer:737) INFO: 32epoch:train:12501-12600batch: iter_time=2.519, forward_time=0.105, loss_ctc=43.872, loss_att=54.189, acc=0.730, loss=51.094, backward_time=0.097, grad_norm=44.327, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.545e-04, train_time=3.129 +[gpuc02:0/16] 2024-01-16 07:16:03,786 (trainer:737) INFO: 32epoch:train:12601-12700batch: iter_time=1.175e-04, forward_time=0.109, loss_ctc=44.101, loss_att=50.151, acc=0.734, loss=48.336, backward_time=0.097, grad_norm=41.286, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.545e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 07:16:46,188 (trainer:737) INFO: 32epoch:train:12701-12800batch: iter_time=1.173e-04, forward_time=0.105, loss_ctc=42.023, loss_att=51.107, acc=0.745, loss=48.382, backward_time=0.097, grad_norm=38.700, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.544e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:17:28,650 (trainer:737) INFO: 32epoch:train:12801-12900batch: iter_time=1.206e-04, forward_time=0.105, loss_ctc=47.999, loss_att=53.596, acc=0.728, loss=51.917, backward_time=0.097, grad_norm=41.855, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.544e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:18:10,914 (trainer:737) INFO: 32epoch:train:12901-13000batch: iter_time=1.237e-04, forward_time=0.104, loss_ctc=40.018, loss_att=39.124, acc=0.765, loss=39.392, backward_time=0.096, grad_norm=39.389, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.543e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 07:18:53,166 (trainer:737) INFO: 32epoch:train:13001-13100batch: iter_time=1.219e-04, forward_time=0.104, loss_ctc=36.595, loss_att=41.581, acc=0.740, loss=40.085, backward_time=0.096, grad_norm=37.515, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.543e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 07:19:36,058 (trainer:737) INFO: 32epoch:train:13101-13200batch: iter_time=1.275e-04, forward_time=0.104, loss_ctc=40.270, loss_att=44.088, acc=0.744, loss=42.943, backward_time=0.097, grad_norm=37.709, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.543e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 07:20:18,748 (trainer:737) INFO: 32epoch:train:13201-13300batch: iter_time=1.248e-04, forward_time=0.105, loss_ctc=45.167, loss_att=54.641, acc=0.714, loss=51.798, backward_time=0.097, grad_norm=44.095, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.542e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 07:21:01,226 (trainer:737) INFO: 32epoch:train:13301-13400batch: iter_time=1.284e-04, forward_time=0.105, loss_ctc=46.695, loss_att=62.305, acc=0.709, loss=57.622, backward_time=0.097, grad_norm=46.109, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.542e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:21:43,889 (trainer:737) INFO: 32epoch:train:13401-13500batch: iter_time=1.202e-04, forward_time=0.105, loss_ctc=41.387, loss_att=45.556, acc=0.742, loss=44.306, backward_time=0.097, grad_norm=40.125, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.542e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:22:26,705 (trainer:737) INFO: 32epoch:train:13501-13600batch: iter_time=1.288e-04, forward_time=0.106, loss_ctc=54.467, loss_att=62.095, acc=0.727, loss=59.806, backward_time=0.098, grad_norm=56.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.541e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 07:23:09,214 (trainer:737) INFO: 32epoch:train:13601-13700batch: iter_time=1.218e-04, forward_time=0.105, loss_ctc=47.325, loss_att=53.643, acc=0.736, loss=51.748, backward_time=0.097, grad_norm=45.015, clip=100.000, loss_scale=2.326e+34, optim_step_time=0.042, optim0_lr0=3.541e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:23:33,333 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-16 07:23:54,539 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 07:23:58,211 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 07:23:58,211 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-16 07:23:58,214 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 07:28:18,545 (trainer:737) INFO: 32epoch:train:13701-13800batch: iter_time=2.502, forward_time=0.105, loss_ctc=39.701, loss_att=49.944, acc=0.743, loss=46.871, backward_time=0.097, grad_norm=44.981, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.541e-04, train_time=3.093 +[gpuc02:0/16] 2024-01-16 07:28:27,846 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 07:29:00,856 (trainer:737) INFO: 32epoch:train:13801-13900batch: iter_time=9.885e-05, forward_time=0.104, loss_ctc=42.337, loss_att=44.786, acc=0.730, loss=44.052, backward_time=0.096, grad_norm=43.238, clip=100.000, loss_scale=2.517e+34, optim_step_time=0.041, optim0_lr0=3.540e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 07:29:43,325 (trainer:737) INFO: 32epoch:train:13901-14000batch: iter_time=9.802e-05, forward_time=0.104, loss_ctc=46.113, loss_att=50.767, acc=0.740, loss=49.370, backward_time=0.097, grad_norm=42.325, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.540e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:30:25,829 (trainer:737) INFO: 32epoch:train:14001-14100batch: iter_time=9.791e-05, forward_time=0.104, loss_ctc=44.788, loss_att=47.387, acc=0.761, loss=46.608, backward_time=0.097, grad_norm=39.678, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.539e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:31:08,408 (trainer:737) INFO: 32epoch:train:14101-14200batch: iter_time=9.981e-05, forward_time=0.104, loss_ctc=46.534, loss_att=50.343, acc=0.736, loss=49.200, backward_time=0.097, grad_norm=44.919, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.539e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:31:50,709 (trainer:737) INFO: 32epoch:train:14201-14300batch: iter_time=1.075e-04, forward_time=0.104, loss_ctc=40.435, loss_att=45.808, acc=0.742, loss=44.196, backward_time=0.097, grad_norm=42.129, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.539e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 07:32:32,787 (trainer:737) INFO: 32epoch:train:14301-14400batch: iter_time=1.305e-04, forward_time=0.103, loss_ctc=37.036, loss_att=39.672, acc=0.750, loss=38.881, backward_time=0.096, grad_norm=35.168, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.538e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 07:33:15,353 (trainer:737) INFO: 32epoch:train:14401-14500batch: iter_time=1.350e-04, forward_time=0.104, loss_ctc=37.513, loss_att=41.905, acc=0.751, loss=40.587, backward_time=0.097, grad_norm=38.273, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.538e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 07:33:57,807 (trainer:737) INFO: 32epoch:train:14501-14600batch: iter_time=1.367e-04, forward_time=0.104, loss_ctc=47.984, loss_att=59.608, acc=0.692, loss=56.121, backward_time=0.096, grad_norm=47.124, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.538e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:34:40,250 (trainer:737) INFO: 32epoch:train:14601-14700batch: iter_time=1.271e-04, forward_time=0.105, loss_ctc=44.938, loss_att=54.591, acc=0.726, loss=51.695, backward_time=0.097, grad_norm=42.710, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.537e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:35:22,687 (trainer:737) INFO: 32epoch:train:14701-14800batch: iter_time=1.332e-04, forward_time=0.105, loss_ctc=47.337, loss_att=52.997, acc=0.739, loss=51.299, backward_time=0.097, grad_norm=45.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.537e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:36:05,086 (trainer:737) INFO: 32epoch:train:14801-14900batch: iter_time=1.382e-04, forward_time=0.105, loss_ctc=49.684, loss_att=58.162, acc=0.727, loss=55.619, backward_time=0.097, grad_norm=51.756, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.536e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 07:36:47,718 (trainer:737) INFO: 32epoch:train:14901-15000batch: iter_time=1.270e-04, forward_time=0.104, loss_ctc=45.148, loss_att=49.559, acc=0.746, loss=48.235, backward_time=0.097, grad_norm=45.644, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.536e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 07:56:52,391 (trainer:343) INFO: 32epoch results: [train] iter_time=0.218, forward_time=0.106, loss_ctc=44.763, loss_att=51.066, acc=0.737, loss=49.175, backward_time=0.097, grad_norm=43.353, clip=100.000, loss_scale=2.605e+34, optim_step_time=0.042, optim0_lr0=3.564e-04, train_time=0.656, time=2 hours, 44 minutes and 12.93 seconds, total_count=480000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=49.298, cer_ctc=0.261, loss_att=49.292, acc=0.618, cer=0.332, wer=0.997, loss=49.294, time=19 minutes and 54.17 seconds, total_count=149472, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-16 07:56:57,090 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-16 07:56:57,098 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/27epoch.pth +[gpuc02:0/16] 2024-01-16 07:56:57,098 (trainer:272) INFO: 33/45epoch started. Estimated time to finish: 1 day, 16 hours and 22.12 seconds +[gpuc02:0/16] 2024-01-16 07:56:57,107 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-16 07:57:17,034 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 07:57:20,536 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 07:57:20,536 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-16 07:57:20,540 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 08:01:56,626 (trainer:737) INFO: 33epoch:train:1-100batch: iter_time=2.398, forward_time=0.105, loss_ctc=52.346, loss_att=59.699, acc=0.727, loss=57.493, backward_time=0.099, grad_norm=58.499, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.536e-04, train_time=2.995 +[gpuc02:0/16] 2024-01-16 08:02:39,066 (trainer:737) INFO: 33epoch:train:101-200batch: iter_time=1.048e-04, forward_time=0.105, loss_ctc=39.887, loss_att=49.194, acc=0.761, loss=46.402, backward_time=0.099, grad_norm=39.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.535e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 08:03:21,338 (trainer:737) INFO: 33epoch:train:201-300batch: iter_time=1.152e-04, forward_time=0.103, loss_ctc=34.969, loss_att=42.071, acc=0.740, loss=39.940, backward_time=0.098, grad_norm=34.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.535e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:04:03,477 (trainer:737) INFO: 33epoch:train:301-400batch: iter_time=1.150e-04, forward_time=0.104, loss_ctc=42.613, loss_att=48.903, acc=0.745, loss=47.016, backward_time=0.099, grad_norm=49.179, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.535e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 08:04:45,916 (trainer:737) INFO: 33epoch:train:401-500batch: iter_time=1.073e-04, forward_time=0.104, loss_ctc=41.458, loss_att=43.599, acc=0.740, loss=42.957, backward_time=0.098, grad_norm=44.146, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.534e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 08:05:29,279 (trainer:737) INFO: 33epoch:train:501-600batch: iter_time=1.107e-04, forward_time=0.108, loss_ctc=49.179, loss_att=55.784, acc=0.720, loss=53.802, backward_time=0.098, grad_norm=46.826, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.534e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 08:06:12,343 (trainer:737) INFO: 33epoch:train:601-700batch: iter_time=1.156e-04, forward_time=0.104, loss_ctc=40.622, loss_att=44.911, acc=0.752, loss=43.624, backward_time=0.098, grad_norm=37.530, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.534e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 08:06:56,427 (trainer:737) INFO: 33epoch:train:701-800batch: iter_time=1.277e-04, forward_time=0.105, loss_ctc=48.472, loss_att=55.825, acc=0.716, loss=53.619, backward_time=0.098, grad_norm=45.049, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.533e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-16 08:07:38,497 (trainer:737) INFO: 33epoch:train:801-900batch: iter_time=1.177e-04, forward_time=0.103, loss_ctc=40.340, loss_att=42.466, acc=0.738, loss=41.828, backward_time=0.096, grad_norm=39.430, clip=100.000, loss_scale=3.697e+34, optim_step_time=0.041, optim0_lr0=3.533e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 08:08:22,515 (trainer:737) INFO: 33epoch:train:901-1000batch: iter_time=1.175e-04, forward_time=0.109, loss_ctc=47.469, loss_att=49.460, acc=0.746, loss=48.863, backward_time=0.097, grad_norm=48.672, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.532e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-16 08:09:05,348 (trainer:737) INFO: 33epoch:train:1001-1100batch: iter_time=1.186e-04, forward_time=0.104, loss_ctc=45.751, loss_att=61.555, acc=0.711, loss=56.814, backward_time=0.097, grad_norm=47.966, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.532e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 08:09:47,545 (trainer:737) INFO: 33epoch:train:1101-1200batch: iter_time=1.171e-04, forward_time=0.104, loss_ctc=40.563, loss_att=48.955, acc=0.736, loss=46.437, backward_time=0.097, grad_norm=40.749, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.532e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:10:11,267 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-16 08:10:30,945 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 08:10:34,618 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 08:10:34,618 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-16 08:10:34,621 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 08:17:08,374 (trainer:737) INFO: 33epoch:train:1201-1300batch: iter_time=2.606, forward_time=0.105, loss_ctc=44.884, loss_att=51.320, acc=0.751, loss=49.389, backward_time=0.098, grad_norm=42.641, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.531e-04, train_time=4.408 +[gpuc02:0/16] 2024-01-16 08:17:50,620 (trainer:737) INFO: 33epoch:train:1301-1400batch: iter_time=1.165e-04, forward_time=0.105, loss_ctc=40.229, loss_att=45.743, acc=0.753, loss=44.089, backward_time=0.097, grad_norm=46.822, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.531e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:18:33,569 (trainer:737) INFO: 33epoch:train:1401-1500batch: iter_time=1.080e-04, forward_time=0.105, loss_ctc=40.203, loss_att=48.901, acc=0.755, loss=46.291, backward_time=0.098, grad_norm=36.277, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.531e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 08:19:15,958 (trainer:737) INFO: 33epoch:train:1501-1600batch: iter_time=1.307e-04, forward_time=0.104, loss_ctc=39.279, loss_att=43.269, acc=0.736, loss=42.072, backward_time=0.097, grad_norm=37.064, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.530e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 08:19:58,985 (trainer:737) INFO: 33epoch:train:1601-1700batch: iter_time=1.230e-04, forward_time=0.109, loss_ctc=40.310, loss_att=48.129, acc=0.727, loss=45.784, backward_time=0.098, grad_norm=48.016, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=3.530e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 08:20:38,612 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 08:20:41,580 (trainer:737) INFO: 33epoch:train:1701-1800batch: iter_time=1.351e-04, forward_time=0.106, loss_ctc=48.303, loss_att=49.066, acc=0.738, loss=48.837, backward_time=0.098, grad_norm=44.958, clip=100.000, loss_scale=4.007e+34, optim_step_time=0.042, optim0_lr0=3.529e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 08:21:23,868 (trainer:737) INFO: 33epoch:train:1801-1900batch: iter_time=1.343e-04, forward_time=0.105, loss_ctc=42.990, loss_att=47.602, acc=0.724, loss=46.218, backward_time=0.097, grad_norm=40.875, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.529e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 08:22:08,389 (trainer:737) INFO: 33epoch:train:1901-2000batch: iter_time=2.397e-04, forward_time=0.113, loss_ctc=42.951, loss_att=53.862, acc=0.715, loss=50.589, backward_time=0.098, grad_norm=42.737, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.529e-04, train_time=0.445 +[gpuc02:0/16] 2024-01-16 08:22:50,582 (trainer:737) INFO: 33epoch:train:2001-2100batch: iter_time=1.217e-04, forward_time=0.105, loss_ctc=41.698, loss_att=42.826, acc=0.737, loss=42.487, backward_time=0.097, grad_norm=39.274, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.528e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:23:32,861 (trainer:737) INFO: 33epoch:train:2101-2200batch: iter_time=1.055e-04, forward_time=0.105, loss_ctc=50.832, loss_att=55.884, acc=0.703, loss=54.368, backward_time=0.097, grad_norm=51.389, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.528e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 08:24:15,258 (trainer:737) INFO: 33epoch:train:2201-2300batch: iter_time=1.029e-04, forward_time=0.105, loss_ctc=40.924, loss_att=46.922, acc=0.748, loss=45.123, backward_time=0.096, grad_norm=39.267, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.528e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 08:24:58,046 (trainer:737) INFO: 33epoch:train:2301-2400batch: iter_time=1.227e-04, forward_time=0.110, loss_ctc=45.151, loss_att=59.842, acc=0.709, loss=55.435, backward_time=0.097, grad_norm=43.005, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.527e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 08:25:40,185 (trainer:737) INFO: 33epoch:train:2401-2500batch: iter_time=9.607e-05, forward_time=0.105, loss_ctc=38.890, loss_att=43.002, acc=0.745, loss=41.769, backward_time=0.096, grad_norm=37.115, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.527e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 08:25:44,811 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-16 08:26:04,997 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 08:26:08,745 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 08:26:08,745 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-16 08:26:08,749 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 08:31:00,601 (trainer:737) INFO: 33epoch:train:2501-2600batch: iter_time=2.677, forward_time=0.126, loss_ctc=48.250, loss_att=57.715, acc=0.730, loss=54.875, backward_time=0.102, grad_norm=56.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.527e-04, train_time=3.204 +[gpuc02:0/16] 2024-01-16 08:31:43,086 (trainer:737) INFO: 33epoch:train:2601-2700batch: iter_time=1.312e-04, forward_time=0.105, loss_ctc=38.513, loss_att=48.026, acc=0.765, loss=45.172, backward_time=0.097, grad_norm=35.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.526e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 08:32:25,311 (trainer:737) INFO: 33epoch:train:2701-2800batch: iter_time=1.329e-04, forward_time=0.104, loss_ctc=34.136, loss_att=41.384, acc=0.745, loss=39.210, backward_time=0.097, grad_norm=35.715, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.526e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:33:07,948 (trainer:737) INFO: 33epoch:train:2801-2900batch: iter_time=1.516e-04, forward_time=0.105, loss_ctc=41.322, loss_att=47.212, acc=0.752, loss=45.445, backward_time=0.097, grad_norm=47.596, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.525e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 08:33:50,480 (trainer:737) INFO: 33epoch:train:2901-3000batch: iter_time=1.441e-04, forward_time=0.105, loss_ctc=40.221, loss_att=42.362, acc=0.747, loss=41.720, backward_time=0.097, grad_norm=41.815, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.525e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 08:34:33,875 (trainer:737) INFO: 33epoch:train:3001-3100batch: iter_time=1.260e-04, forward_time=0.105, loss_ctc=47.934, loss_att=54.456, acc=0.722, loss=52.499, backward_time=0.097, grad_norm=45.827, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.525e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-16 08:34:34,248 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 08:35:16,364 (trainer:737) INFO: 33epoch:train:3101-3200batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=39.612, loss_att=43.879, acc=0.756, loss=42.599, backward_time=0.097, grad_norm=35.799, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.524e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 08:35:58,990 (trainer:737) INFO: 33epoch:train:3201-3300batch: iter_time=1.439e-04, forward_time=0.105, loss_ctc=46.661, loss_att=54.678, acc=0.718, loss=52.273, backward_time=0.097, grad_norm=42.593, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.524e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 08:36:41,120 (trainer:737) INFO: 33epoch:train:3301-3400batch: iter_time=1.402e-04, forward_time=0.104, loss_ctc=39.058, loss_att=42.998, acc=0.735, loss=41.816, backward_time=0.096, grad_norm=39.205, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.524e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 08:37:23,470 (trainer:737) INFO: 33epoch:train:3401-3500batch: iter_time=1.424e-04, forward_time=0.105, loss_ctc=47.307, loss_att=49.436, acc=0.746, loss=48.797, backward_time=0.097, grad_norm=48.163, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.523e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 08:38:06,086 (trainer:737) INFO: 33epoch:train:3501-3600batch: iter_time=1.512e-04, forward_time=0.105, loss_ctc=45.234, loss_att=61.332, acc=0.712, loss=56.503, backward_time=0.097, grad_norm=46.555, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.523e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 08:38:48,351 (trainer:737) INFO: 33epoch:train:3601-3700batch: iter_time=1.419e-04, forward_time=0.104, loss_ctc=39.516, loss_att=48.067, acc=0.738, loss=45.502, backward_time=0.097, grad_norm=37.827, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.523e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:39:14,294 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-16 08:39:34,438 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 08:39:38,111 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 08:39:38,111 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-16 08:39:38,115 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 08:44:08,479 (trainer:737) INFO: 33epoch:train:3701-3800batch: iter_time=2.548, forward_time=0.114, loss_ctc=44.413, loss_att=51.005, acc=0.752, loss=49.027, backward_time=0.099, grad_norm=40.201, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.522e-04, train_time=3.201 +[gpuc02:0/16] 2024-01-16 08:44:50,673 (trainer:737) INFO: 33epoch:train:3801-3900batch: iter_time=1.454e-04, forward_time=0.105, loss_ctc=38.398, loss_att=45.644, acc=0.755, loss=43.470, backward_time=0.097, grad_norm=47.586, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.522e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:45:33,318 (trainer:737) INFO: 33epoch:train:3901-4000batch: iter_time=1.486e-04, forward_time=0.106, loss_ctc=39.536, loss_att=49.181, acc=0.756, loss=46.288, backward_time=0.098, grad_norm=35.987, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.521e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 08:46:15,561 (trainer:737) INFO: 33epoch:train:4001-4100batch: iter_time=1.503e-04, forward_time=0.105, loss_ctc=38.873, loss_att=44.183, acc=0.736, loss=42.590, backward_time=0.097, grad_norm=37.666, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.521e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:46:57,809 (trainer:737) INFO: 33epoch:train:4101-4200batch: iter_time=1.429e-04, forward_time=0.105, loss_ctc=39.977, loss_att=49.115, acc=0.725, loss=46.374, backward_time=0.097, grad_norm=48.101, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.521e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 08:47:40,249 (trainer:737) INFO: 33epoch:train:4201-4300batch: iter_time=1.141e-04, forward_time=0.105, loss_ctc=47.833, loss_att=48.963, acc=0.739, loss=48.624, backward_time=0.097, grad_norm=45.263, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.520e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 08:48:22,729 (trainer:737) INFO: 33epoch:train:4301-4400batch: iter_time=1.251e-04, forward_time=0.104, loss_ctc=42.550, loss_att=47.696, acc=0.727, loss=46.152, backward_time=0.096, grad_norm=41.065, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.520e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 08:49:05,143 (trainer:737) INFO: 33epoch:train:4401-4500batch: iter_time=1.489e-04, forward_time=0.106, loss_ctc=42.337, loss_att=53.642, acc=0.716, loss=50.251, backward_time=0.097, grad_norm=40.155, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.520e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 08:49:47,697 (trainer:737) INFO: 33epoch:train:4501-4600batch: iter_time=1.669e-04, forward_time=0.106, loss_ctc=41.273, loss_att=42.796, acc=0.740, loss=42.339, backward_time=0.097, grad_norm=40.142, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.519e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 08:50:30,497 (trainer:737) INFO: 33epoch:train:4601-4700batch: iter_time=1.686e-04, forward_time=0.106, loss_ctc=49.050, loss_att=54.685, acc=0.705, loss=52.994, backward_time=0.097, grad_norm=51.319, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.519e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 08:51:13,297 (trainer:737) INFO: 33epoch:train:4701-4800batch: iter_time=1.503e-04, forward_time=0.105, loss_ctc=40.291, loss_att=46.264, acc=0.750, loss=44.472, backward_time=0.097, grad_norm=40.227, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.519e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 08:51:56,306 (trainer:737) INFO: 33epoch:train:4801-4900batch: iter_time=1.461e-04, forward_time=0.107, loss_ctc=45.181, loss_att=59.253, acc=0.711, loss=55.031, backward_time=0.098, grad_norm=43.116, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.518e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 08:52:38,606 (trainer:737) INFO: 33epoch:train:4901-5000batch: iter_time=1.452e-04, forward_time=0.106, loss_ctc=38.687, loss_att=42.101, acc=0.751, loss=41.077, backward_time=0.097, grad_norm=37.770, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.518e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 08:52:45,379 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-16 08:53:04,578 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 08:53:08,133 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 08:53:08,133 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-16 08:53:08,136 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 08:58:15,256 (trainer:737) INFO: 33epoch:train:5001-5100batch: iter_time=2.885, forward_time=0.115, loss_ctc=47.339, loss_att=54.411, acc=0.729, loss=52.289, backward_time=0.099, grad_norm=53.329, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.517e-04, train_time=3.366 +[gpuc02:0/16] 2024-01-16 08:58:57,620 (trainer:737) INFO: 33epoch:train:5101-5200batch: iter_time=1.201e-04, forward_time=0.104, loss_ctc=38.434, loss_att=46.893, acc=0.768, loss=44.355, backward_time=0.097, grad_norm=37.073, clip=100.000, loss_scale=2.067e+34, optim_step_time=0.041, optim0_lr0=3.517e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 08:59:39,790 (trainer:737) INFO: 33epoch:train:5201-5300batch: iter_time=1.250e-04, forward_time=0.103, loss_ctc=33.742, loss_att=38.106, acc=0.750, loss=36.796, backward_time=0.096, grad_norm=33.131, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.517e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 09:00:22,109 (trainer:737) INFO: 33epoch:train:5301-5400batch: iter_time=1.342e-04, forward_time=0.104, loss_ctc=40.880, loss_att=45.220, acc=0.750, loss=43.918, backward_time=0.097, grad_norm=44.011, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.516e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:01:04,507 (trainer:737) INFO: 33epoch:train:5401-5500batch: iter_time=1.420e-04, forward_time=0.104, loss_ctc=40.034, loss_att=42.555, acc=0.734, loss=41.799, backward_time=0.096, grad_norm=43.169, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.516e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:01:47,668 (trainer:737) INFO: 33epoch:train:5501-5600batch: iter_time=1.213e-04, forward_time=0.107, loss_ctc=47.371, loss_att=53.702, acc=0.722, loss=51.803, backward_time=0.097, grad_norm=45.569, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.516e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-16 09:02:30,302 (trainer:737) INFO: 33epoch:train:5601-5700batch: iter_time=1.270e-04, forward_time=0.105, loss_ctc=39.491, loss_att=44.150, acc=0.753, loss=42.752, backward_time=0.096, grad_norm=36.028, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.515e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:03:12,966 (trainer:737) INFO: 33epoch:train:5701-5800batch: iter_time=1.486e-04, forward_time=0.105, loss_ctc=47.191, loss_att=55.439, acc=0.707, loss=52.965, backward_time=0.097, grad_norm=42.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.515e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:03:55,162 (trainer:737) INFO: 33epoch:train:5801-5900batch: iter_time=1.388e-04, forward_time=0.104, loss_ctc=38.519, loss_att=42.859, acc=0.727, loss=41.557, backward_time=0.096, grad_norm=38.827, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.515e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:04:37,598 (trainer:737) INFO: 33epoch:train:5901-6000batch: iter_time=1.359e-04, forward_time=0.105, loss_ctc=47.164, loss_att=48.879, acc=0.739, loss=48.364, backward_time=0.096, grad_norm=47.745, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.514e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:05:03,803 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 09:05:19,920 (trainer:737) INFO: 33epoch:train:6001-6100batch: iter_time=1.535e-04, forward_time=0.105, loss_ctc=44.761, loss_att=58.846, acc=0.705, loss=54.620, backward_time=0.096, grad_norm=44.554, clip=100.000, loss_scale=1.678e+34, optim_step_time=0.041, optim0_lr0=3.514e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:06:02,433 (trainer:737) INFO: 33epoch:train:6101-6200batch: iter_time=1.453e-04, forward_time=0.104, loss_ctc=39.460, loss_att=46.684, acc=0.737, loss=44.517, backward_time=0.096, grad_norm=39.222, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.513e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:06:30,392 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-16 09:06:49,914 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 09:06:53,576 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 09:06:53,576 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-16 09:06:53,580 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 09:11:22,499 (trainer:737) INFO: 33epoch:train:6201-6300batch: iter_time=2.498, forward_time=0.105, loss_ctc=43.704, loss_att=52.784, acc=0.749, loss=50.060, backward_time=0.097, grad_norm=41.449, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.513e-04, train_time=3.200 +[gpuc02:0/16] 2024-01-16 09:12:04,797 (trainer:737) INFO: 33epoch:train:6301-6400batch: iter_time=1.048e-04, forward_time=0.104, loss_ctc=39.293, loss_att=46.005, acc=0.761, loss=43.991, backward_time=0.097, grad_norm=47.223, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.513e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:12:47,199 (trainer:737) INFO: 33epoch:train:6401-6500batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=38.771, loss_att=48.896, acc=0.763, loss=45.858, backward_time=0.097, grad_norm=35.474, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.512e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:13:29,810 (trainer:737) INFO: 33epoch:train:6501-6600batch: iter_time=1.065e-04, forward_time=0.104, loss_ctc=38.875, loss_att=48.120, acc=0.731, loss=45.347, backward_time=0.097, grad_norm=38.491, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.512e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:14:12,149 (trainer:737) INFO: 33epoch:train:6601-6700batch: iter_time=1.185e-04, forward_time=0.104, loss_ctc=39.622, loss_att=48.005, acc=0.745, loss=45.490, backward_time=0.097, grad_norm=43.751, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.512e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:14:54,640 (trainer:737) INFO: 33epoch:train:6701-6800batch: iter_time=1.087e-04, forward_time=0.105, loss_ctc=47.574, loss_att=48.652, acc=0.746, loss=48.329, backward_time=0.097, grad_norm=44.914, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.511e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:15:36,948 (trainer:737) INFO: 33epoch:train:6801-6900batch: iter_time=1.188e-04, forward_time=0.104, loss_ctc=42.305, loss_att=48.091, acc=0.733, loss=46.355, backward_time=0.097, grad_norm=41.303, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.511e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:16:19,513 (trainer:737) INFO: 33epoch:train:6901-7000batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=41.940, loss_att=53.245, acc=0.725, loss=49.853, backward_time=0.097, grad_norm=40.919, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.511e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:17:01,754 (trainer:737) INFO: 33epoch:train:7001-7100batch: iter_time=1.167e-04, forward_time=0.104, loss_ctc=41.024, loss_att=42.777, acc=0.744, loss=42.251, backward_time=0.097, grad_norm=41.111, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.510e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:17:44,077 (trainer:737) INFO: 33epoch:train:7101-7200batch: iter_time=1.090e-04, forward_time=0.104, loss_ctc=48.887, loss_att=53.547, acc=0.719, loss=52.149, backward_time=0.098, grad_norm=51.111, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.510e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:18:26,421 (trainer:737) INFO: 33epoch:train:7201-7300batch: iter_time=1.105e-04, forward_time=0.104, loss_ctc=40.217, loss_att=48.808, acc=0.752, loss=46.231, backward_time=0.098, grad_norm=41.553, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.510e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:19:08,859 (trainer:737) INFO: 33epoch:train:7301-7400batch: iter_time=1.090e-04, forward_time=0.105, loss_ctc=43.991, loss_att=59.892, acc=0.722, loss=55.122, backward_time=0.098, grad_norm=41.626, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.509e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:19:51,863 (trainer:737) INFO: 33epoch:train:7401-7500batch: iter_time=9.823e-05, forward_time=0.104, loss_ctc=38.469, loss_att=42.538, acc=0.748, loss=41.317, backward_time=0.097, grad_norm=37.421, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.509e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 09:19:54,304 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-16 09:20:14,267 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 09:20:18,242 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 09:20:18,242 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-16 09:20:18,245 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 09:25:03,671 (trainer:737) INFO: 33epoch:train:7501-7600batch: iter_time=2.518, forward_time=0.105, loss_ctc=47.433, loss_att=56.584, acc=0.725, loss=53.839, backward_time=0.097, grad_norm=56.084, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.508e-04, train_time=3.118 +[gpuc02:0/16] 2024-01-16 09:25:46,792 (trainer:737) INFO: 33epoch:train:7601-7700batch: iter_time=1.470e-04, forward_time=0.104, loss_ctc=38.094, loss_att=47.790, acc=0.764, loss=44.881, backward_time=0.097, grad_norm=36.419, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.508e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-16 09:26:29,196 (trainer:737) INFO: 33epoch:train:7701-7800batch: iter_time=1.440e-04, forward_time=0.104, loss_ctc=33.730, loss_att=38.279, acc=0.750, loss=36.914, backward_time=0.097, grad_norm=34.441, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.508e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:27:11,817 (trainer:737) INFO: 33epoch:train:7801-7900batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=40.570, loss_att=45.967, acc=0.748, loss=44.348, backward_time=0.097, grad_norm=44.128, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.507e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:27:54,590 (trainer:737) INFO: 33epoch:train:7901-8000batch: iter_time=1.357e-04, forward_time=0.105, loss_ctc=40.063, loss_att=43.482, acc=0.731, loss=42.456, backward_time=0.097, grad_norm=44.652, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.507e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 09:28:37,498 (trainer:737) INFO: 33epoch:train:8001-8100batch: iter_time=1.472e-04, forward_time=0.105, loss_ctc=46.874, loss_att=53.032, acc=0.725, loss=51.185, backward_time=0.097, grad_norm=44.689, clip=100.000, loss_scale=1.433e+34, optim_step_time=0.042, optim0_lr0=3.507e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-16 09:29:19,816 (trainer:737) INFO: 33epoch:train:8101-8200batch: iter_time=1.327e-04, forward_time=0.104, loss_ctc=38.910, loss_att=43.618, acc=0.753, loss=42.206, backward_time=0.097, grad_norm=36.477, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.506e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:30:02,114 (trainer:737) INFO: 33epoch:train:8201-8300batch: iter_time=1.438e-04, forward_time=0.105, loss_ctc=46.106, loss_att=54.773, acc=0.708, loss=52.173, backward_time=0.097, grad_norm=42.813, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.506e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:30:44,171 (trainer:737) INFO: 33epoch:train:8301-8400batch: iter_time=1.426e-04, forward_time=0.103, loss_ctc=38.282, loss_att=43.002, acc=0.727, loss=41.586, backward_time=0.097, grad_norm=39.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.506e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 09:31:26,784 (trainer:737) INFO: 33epoch:train:8401-8500batch: iter_time=1.416e-04, forward_time=0.105, loss_ctc=47.402, loss_att=48.766, acc=0.740, loss=48.357, backward_time=0.097, grad_norm=45.637, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.505e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:32:09,040 (trainer:737) INFO: 33epoch:train:8501-8600batch: iter_time=1.434e-04, forward_time=0.104, loss_ctc=44.113, loss_att=58.729, acc=0.706, loss=54.344, backward_time=0.097, grad_norm=45.708, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.505e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:32:51,249 (trainer:737) INFO: 33epoch:train:8601-8700batch: iter_time=1.407e-04, forward_time=0.104, loss_ctc=39.034, loss_att=45.623, acc=0.741, loss=43.646, backward_time=0.097, grad_norm=39.303, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.504e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:33:16,301 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-16 09:33:35,512 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 09:33:39,104 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 09:33:39,104 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-16 09:33:39,107 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 09:38:07,322 (trainer:737) INFO: 33epoch:train:8701-8800batch: iter_time=2.509, forward_time=0.105, loss_ctc=43.809, loss_att=52.803, acc=0.750, loss=50.105, backward_time=0.098, grad_norm=41.180, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.504e-04, train_time=3.161 +[gpuc02:0/16] 2024-01-16 09:38:49,963 (trainer:737) INFO: 33epoch:train:8801-8900batch: iter_time=9.181e-05, forward_time=0.104, loss_ctc=37.342, loss_att=44.998, acc=0.762, loss=42.701, backward_time=0.097, grad_norm=46.456, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.504e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:39:32,330 (trainer:737) INFO: 33epoch:train:8901-9000batch: iter_time=9.512e-05, forward_time=0.105, loss_ctc=39.130, loss_att=48.813, acc=0.762, loss=45.908, backward_time=0.098, grad_norm=35.616, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.503e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:40:14,670 (trainer:737) INFO: 33epoch:train:9001-9100batch: iter_time=1.055e-04, forward_time=0.105, loss_ctc=38.143, loss_att=47.767, acc=0.731, loss=44.880, backward_time=0.097, grad_norm=37.670, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.503e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:40:57,083 (trainer:737) INFO: 33epoch:train:9101-9200batch: iter_time=1.354e-04, forward_time=0.106, loss_ctc=39.371, loss_att=47.912, acc=0.745, loss=45.349, backward_time=0.098, grad_norm=42.133, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.503e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:41:39,587 (trainer:737) INFO: 33epoch:train:9201-9300batch: iter_time=1.432e-04, forward_time=0.106, loss_ctc=47.216, loss_att=48.035, acc=0.747, loss=47.789, backward_time=0.098, grad_norm=44.771, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.502e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:42:22,250 (trainer:737) INFO: 33epoch:train:9301-9400batch: iter_time=1.006e-04, forward_time=0.108, loss_ctc=41.619, loss_att=47.342, acc=0.735, loss=45.625, backward_time=0.097, grad_norm=40.857, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.502e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 09:43:04,970 (trainer:737) INFO: 33epoch:train:9401-9500batch: iter_time=1.128e-04, forward_time=0.105, loss_ctc=41.733, loss_att=53.293, acc=0.725, loss=49.825, backward_time=0.098, grad_norm=38.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.502e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 09:43:47,200 (trainer:737) INFO: 33epoch:train:9501-9600batch: iter_time=1.021e-04, forward_time=0.105, loss_ctc=40.796, loss_att=42.261, acc=0.745, loss=41.821, backward_time=0.097, grad_norm=40.023, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.501e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:44:29,504 (trainer:737) INFO: 33epoch:train:9601-9700batch: iter_time=1.052e-04, forward_time=0.105, loss_ctc=48.082, loss_att=53.365, acc=0.719, loss=51.780, backward_time=0.097, grad_norm=50.806, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.501e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:45:12,488 (trainer:737) INFO: 33epoch:train:9701-9800batch: iter_time=9.883e-05, forward_time=0.104, loss_ctc=39.760, loss_att=48.416, acc=0.754, loss=45.819, backward_time=0.097, grad_norm=41.177, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.501e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 09:45:54,883 (trainer:737) INFO: 33epoch:train:9801-9900batch: iter_time=1.260e-04, forward_time=0.105, loss_ctc=44.472, loss_att=60.249, acc=0.722, loss=55.516, backward_time=0.097, grad_norm=43.763, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.500e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:46:37,384 (trainer:737) INFO: 33epoch:train:9901-10000batch: iter_time=1.104e-04, forward_time=0.104, loss_ctc=38.120, loss_att=42.819, acc=0.750, loss=41.409, backward_time=0.096, grad_norm=37.372, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.500e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:46:40,043 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-16 09:47:00,058 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 09:47:03,751 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 09:47:03,751 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-16 09:47:03,755 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 09:51:57,948 (trainer:737) INFO: 33epoch:train:10001-10100batch: iter_time=2.657, forward_time=0.104, loss_ctc=46.608, loss_att=56.316, acc=0.726, loss=53.404, backward_time=0.097, grad_norm=53.926, clip=100.000, loss_scale=2.866e+34, optim_step_time=0.042, optim0_lr0=3.499e-04, train_time=3.205 +[gpuc02:0/16] 2024-01-16 09:52:40,369 (trainer:737) INFO: 33epoch:train:10101-10200batch: iter_time=1.286e-04, forward_time=0.105, loss_ctc=38.159, loss_att=47.203, acc=0.769, loss=44.490, backward_time=0.097, grad_norm=39.055, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.499e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:52:54,977 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 09:53:22,878 (trainer:737) INFO: 33epoch:train:10201-10300batch: iter_time=1.239e-04, forward_time=0.104, loss_ctc=33.676, loss_att=38.785, acc=0.749, loss=37.252, backward_time=0.097, grad_norm=33.471, clip=100.000, loss_scale=2.769e+34, optim_step_time=0.041, optim0_lr0=3.499e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:54:05,264 (trainer:737) INFO: 33epoch:train:10301-10400batch: iter_time=1.216e-04, forward_time=0.104, loss_ctc=40.593, loss_att=45.526, acc=0.750, loss=44.046, backward_time=0.097, grad_norm=40.250, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.498e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:54:47,563 (trainer:737) INFO: 33epoch:train:10401-10500batch: iter_time=1.352e-04, forward_time=0.104, loss_ctc=39.845, loss_att=42.888, acc=0.735, loss=41.975, backward_time=0.096, grad_norm=44.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.498e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 09:55:30,003 (trainer:737) INFO: 33epoch:train:10501-10600batch: iter_time=1.383e-04, forward_time=0.104, loss_ctc=46.751, loss_att=53.522, acc=0.723, loss=51.491, backward_time=0.097, grad_norm=44.878, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.498e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:56:12,423 (trainer:737) INFO: 33epoch:train:10601-10700batch: iter_time=1.187e-04, forward_time=0.103, loss_ctc=38.981, loss_att=43.775, acc=0.754, loss=42.337, backward_time=0.097, grad_norm=36.041, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.497e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 09:56:54,971 (trainer:737) INFO: 33epoch:train:10701-10800batch: iter_time=1.351e-04, forward_time=0.105, loss_ctc=45.950, loss_att=55.252, acc=0.708, loss=52.462, backward_time=0.097, grad_norm=43.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.497e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 09:57:37,151 (trainer:737) INFO: 33epoch:train:10801-10900batch: iter_time=1.294e-04, forward_time=0.103, loss_ctc=38.489, loss_att=42.898, acc=0.730, loss=41.576, backward_time=0.096, grad_norm=42.027, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.497e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:58:20,465 (trainer:737) INFO: 33epoch:train:10901-11000batch: iter_time=1.216e-04, forward_time=0.104, loss_ctc=45.771, loss_att=48.074, acc=0.742, loss=47.383, backward_time=0.096, grad_norm=47.612, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.496e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-16 09:59:02,715 (trainer:737) INFO: 33epoch:train:11001-11100batch: iter_time=1.273e-04, forward_time=0.105, loss_ctc=44.465, loss_att=59.160, acc=0.704, loss=54.751, backward_time=0.097, grad_norm=44.801, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.496e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 09:59:45,023 (trainer:737) INFO: 33epoch:train:11101-11200batch: iter_time=1.500e-04, forward_time=0.105, loss_ctc=39.001, loss_att=46.791, acc=0.735, loss=44.454, backward_time=0.097, grad_norm=38.766, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.496e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:00:10,164 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-16 10:00:30,663 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 10:00:34,389 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 10:00:34,389 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-16 10:00:34,393 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 10:05:35,372 (trainer:737) INFO: 33epoch:train:11201-11300batch: iter_time=2.525, forward_time=0.106, loss_ctc=43.918, loss_att=50.266, acc=0.750, loss=48.362, backward_time=0.097, grad_norm=39.868, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.495e-04, train_time=3.503 +[gpuc02:0/16] 2024-01-16 10:06:19,640 (trainer:737) INFO: 33epoch:train:11301-11400batch: iter_time=1.411e-04, forward_time=0.114, loss_ctc=37.720, loss_att=44.118, acc=0.758, loss=42.199, backward_time=0.101, grad_norm=48.063, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.495e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-16 10:07:02,615 (trainer:737) INFO: 33epoch:train:11401-11500batch: iter_time=1.413e-04, forward_time=0.104, loss_ctc=38.884, loss_att=48.094, acc=0.760, loss=45.331, backward_time=0.097, grad_norm=35.518, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.494e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-16 10:07:45,120 (trainer:737) INFO: 33epoch:train:11501-11600batch: iter_time=1.424e-04, forward_time=0.104, loss_ctc=38.152, loss_att=43.725, acc=0.739, loss=42.053, backward_time=0.096, grad_norm=38.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.494e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 10:08:27,418 (trainer:737) INFO: 33epoch:train:11601-11700batch: iter_time=1.390e-04, forward_time=0.105, loss_ctc=39.687, loss_att=47.937, acc=0.730, loss=45.462, backward_time=0.096, grad_norm=46.712, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.494e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:09:10,154 (trainer:737) INFO: 33epoch:train:11701-11800batch: iter_time=1.433e-04, forward_time=0.106, loss_ctc=47.038, loss_att=48.643, acc=0.742, loss=48.161, backward_time=0.097, grad_norm=46.033, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.493e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 10:09:52,440 (trainer:737) INFO: 33epoch:train:11801-11900batch: iter_time=1.310e-04, forward_time=0.105, loss_ctc=41.698, loss_att=46.771, acc=0.730, loss=45.249, backward_time=0.096, grad_norm=39.447, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.493e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:10:34,790 (trainer:737) INFO: 33epoch:train:11901-12000batch: iter_time=1.299e-04, forward_time=0.105, loss_ctc=41.606, loss_att=53.506, acc=0.717, loss=49.936, backward_time=0.096, grad_norm=40.052, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.493e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:11:17,057 (trainer:737) INFO: 33epoch:train:12001-12100batch: iter_time=1.451e-04, forward_time=0.105, loss_ctc=40.189, loss_att=42.244, acc=0.742, loss=41.627, backward_time=0.096, grad_norm=39.540, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.492e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 10:12:00,537 (trainer:737) INFO: 33epoch:train:12101-12200batch: iter_time=1.323e-04, forward_time=0.105, loss_ctc=47.713, loss_att=53.354, acc=0.709, loss=51.662, backward_time=0.096, grad_norm=48.450, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.492e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-16 10:12:42,871 (trainer:737) INFO: 33epoch:train:12201-12300batch: iter_time=1.381e-04, forward_time=0.104, loss_ctc=39.608, loss_att=45.559, acc=0.753, loss=43.774, backward_time=0.096, grad_norm=41.600, clip=100.000, loss_scale=3.448e+34, optim_step_time=0.041, optim0_lr0=3.492e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:13:25,729 (trainer:737) INFO: 33epoch:train:12301-12400batch: iter_time=1.468e-04, forward_time=0.106, loss_ctc=44.115, loss_att=58.160, acc=0.714, loss=53.946, backward_time=0.097, grad_norm=41.772, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.491e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 10:13:42,082 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 10:14:07,820 (trainer:737) INFO: 33epoch:train:12401-12500batch: iter_time=1.339e-04, forward_time=0.105, loss_ctc=38.325, loss_att=41.708, acc=0.752, loss=40.693, backward_time=0.096, grad_norm=36.758, clip=100.000, loss_scale=2.874e+34, optim_step_time=0.041, optim0_lr0=3.491e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 10:14:13,929 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-16 10:14:34,723 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 10:14:38,501 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 10:14:38,501 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-16 10:14:38,504 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 10:19:31,703 (trainer:737) INFO: 33epoch:train:12501-12600batch: iter_time=2.754, forward_time=0.105, loss_ctc=47.606, loss_att=57.879, acc=0.734, loss=54.797, backward_time=0.098, grad_norm=52.748, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.491e-04, train_time=3.239 +[gpuc02:0/16] 2024-01-16 10:20:14,140 (trainer:737) INFO: 33epoch:train:12601-12700batch: iter_time=1.078e-04, forward_time=0.104, loss_ctc=37.570, loss_att=47.687, acc=0.768, loss=44.652, backward_time=0.098, grad_norm=36.479, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.490e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 10:20:56,083 (trainer:737) INFO: 33epoch:train:12701-12800batch: iter_time=1.045e-04, forward_time=0.104, loss_ctc=33.614, loss_att=41.528, acc=0.745, loss=39.154, backward_time=0.097, grad_norm=35.080, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.490e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-16 10:21:38,262 (trainer:737) INFO: 33epoch:train:12801-12900batch: iter_time=1.147e-04, forward_time=0.105, loss_ctc=40.403, loss_att=48.082, acc=0.752, loss=45.779, backward_time=0.098, grad_norm=39.768, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.490e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 10:22:20,357 (trainer:737) INFO: 33epoch:train:12901-13000batch: iter_time=1.216e-04, forward_time=0.104, loss_ctc=39.603, loss_att=42.760, acc=0.747, loss=41.813, backward_time=0.098, grad_norm=43.085, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.489e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 10:23:02,983 (trainer:737) INFO: 33epoch:train:13001-13100batch: iter_time=1.337e-04, forward_time=0.105, loss_ctc=46.304, loss_att=54.140, acc=0.725, loss=51.789, backward_time=0.098, grad_norm=43.794, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.489e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 10:23:45,330 (trainer:737) INFO: 33epoch:train:13101-13200batch: iter_time=1.284e-04, forward_time=0.104, loss_ctc=39.192, loss_att=43.750, acc=0.757, loss=42.382, backward_time=0.098, grad_norm=36.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.488e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:24:27,995 (trainer:737) INFO: 33epoch:train:13201-13300batch: iter_time=1.332e-04, forward_time=0.106, loss_ctc=46.028, loss_att=54.660, acc=0.721, loss=52.071, backward_time=0.098, grad_norm=41.993, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.488e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 10:25:09,996 (trainer:737) INFO: 33epoch:train:13301-13400batch: iter_time=1.349e-04, forward_time=0.104, loss_ctc=38.030, loss_att=41.591, acc=0.744, loss=40.522, backward_time=0.097, grad_norm=38.877, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.488e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 10:25:52,546 (trainer:737) INFO: 33epoch:train:13401-13500batch: iter_time=1.371e-04, forward_time=0.105, loss_ctc=45.879, loss_att=47.951, acc=0.751, loss=47.329, backward_time=0.097, grad_norm=47.553, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.487e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 10:26:34,819 (trainer:737) INFO: 33epoch:train:13501-13600batch: iter_time=1.415e-04, forward_time=0.105, loss_ctc=43.738, loss_att=60.772, acc=0.715, loss=55.662, backward_time=0.097, grad_norm=44.971, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.487e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 10:27:17,610 (trainer:737) INFO: 33epoch:train:13601-13700batch: iter_time=1.452e-04, forward_time=0.105, loss_ctc=38.956, loss_att=47.657, acc=0.742, loss=45.047, backward_time=0.097, grad_norm=40.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.487e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-16 10:27:42,253 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-16 10:28:01,532 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 10:28:05,692 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 10:28:05,692 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-16 10:28:05,696 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 10:32:27,036 (trainer:737) INFO: 33epoch:train:13701-13800batch: iter_time=2.598, forward_time=0.106, loss_ctc=43.599, loss_att=51.884, acc=0.755, loss=49.398, backward_time=0.098, grad_norm=39.265, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.486e-04, train_time=3.094 +[gpuc02:0/16] 2024-01-16 10:33:09,345 (trainer:737) INFO: 33epoch:train:13801-13900batch: iter_time=1.197e-04, forward_time=0.105, loss_ctc=38.329, loss_att=43.332, acc=0.767, loss=41.831, backward_time=0.097, grad_norm=47.728, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.486e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:33:51,758 (trainer:737) INFO: 33epoch:train:13901-14000batch: iter_time=1.330e-04, forward_time=0.106, loss_ctc=38.555, loss_att=48.154, acc=0.764, loss=45.274, backward_time=0.097, grad_norm=35.789, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.486e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 10:34:34,315 (trainer:737) INFO: 33epoch:train:14001-14100batch: iter_time=1.354e-04, forward_time=0.105, loss_ctc=38.216, loss_att=48.058, acc=0.730, loss=45.105, backward_time=0.097, grad_norm=38.375, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.485e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 10:35:16,838 (trainer:737) INFO: 33epoch:train:14101-14200batch: iter_time=1.459e-04, forward_time=0.105, loss_ctc=39.034, loss_att=46.932, acc=0.748, loss=44.562, backward_time=0.097, grad_norm=43.803, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.485e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 10:35:59,248 (trainer:737) INFO: 33epoch:train:14201-14300batch: iter_time=1.416e-04, forward_time=0.107, loss_ctc=46.849, loss_att=48.066, acc=0.745, loss=47.701, backward_time=0.097, grad_norm=44.249, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.485e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 10:36:41,510 (trainer:737) INFO: 33epoch:train:14301-14400batch: iter_time=1.283e-04, forward_time=0.106, loss_ctc=41.845, loss_att=47.386, acc=0.736, loss=45.723, backward_time=0.097, grad_norm=38.673, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.484e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-16 10:37:23,811 (trainer:737) INFO: 33epoch:train:14401-14500batch: iter_time=1.372e-04, forward_time=0.106, loss_ctc=41.854, loss_att=53.731, acc=0.725, loss=50.168, backward_time=0.097, grad_norm=40.432, clip=100.000, loss_scale=3.344e+34, optim_step_time=0.041, optim0_lr0=3.484e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:38:06,128 (trainer:737) INFO: 33epoch:train:14501-14600batch: iter_time=1.550e-04, forward_time=0.104, loss_ctc=40.093, loss_att=41.257, acc=0.751, loss=40.908, backward_time=0.097, grad_norm=39.310, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.484e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:38:49,838 (trainer:737) INFO: 33epoch:train:14601-14700batch: iter_time=1.400e-04, forward_time=0.104, loss_ctc=47.257, loss_att=52.333, acc=0.722, loss=50.810, backward_time=0.097, grad_norm=49.484, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.483e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-16 10:39:32,143 (trainer:737) INFO: 33epoch:train:14701-14800batch: iter_time=1.486e-04, forward_time=0.105, loss_ctc=39.335, loss_att=47.921, acc=0.757, loss=45.345, backward_time=0.097, grad_norm=39.544, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.483e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 10:40:14,618 (trainer:737) INFO: 33epoch:train:14801-14900batch: iter_time=1.365e-04, forward_time=0.105, loss_ctc=44.304, loss_att=59.390, acc=0.728, loss=54.864, backward_time=0.098, grad_norm=41.630, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=3.482e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 10:40:55,387 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-16 10:40:57,088 (trainer:737) INFO: 33epoch:train:14901-15000batch: iter_time=1.331e-04, forward_time=0.104, loss_ctc=38.257, loss_att=42.905, acc=0.751, loss=41.510, backward_time=0.097, grad_norm=36.891, clip=100.000, loss_scale=4.070e+34, optim_step_time=0.042, optim0_lr0=3.482e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-16 11:01:04,649 (trainer:343) INFO: 33epoch results: [train] iter_time=0.208, forward_time=0.105, loss_ctc=41.981, loss_att=48.838, acc=0.738, loss=46.781, backward_time=0.097, grad_norm=42.210, clip=100.000, loss_scale=2.063e+34, optim_step_time=0.042, optim0_lr0=3.509e-04, train_time=0.656, time=2 hours, 44 minutes and 10.47 seconds, total_count=495000, gpu_max_cached_mem_GB=26.281, [valid] loss_ctc=50.677, cer_ctc=0.258, loss_att=51.548, acc=0.595, cer=0.379, wer=0.999, loss=51.287, time=19 minutes and 56.92 seconds, total_count=154143, gpu_max_cached_mem_GB=26.281 +[gpuc02:0/16] 2024-01-16 11:01:09,311 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-16 11:01:09,319 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/28epoch.pth +[gpuc02:0/16] 2024-01-16 11:01:09,319 (trainer:272) INFO: 34/45epoch started. Estimated time to finish: 1 day, 12 hours and 55 minutes +[gpuc02:0/16] 2024-01-16 11:01:09,329 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-16 11:01:29,171 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 11:01:32,864 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 11:01:32,864 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-16 11:01:32,868 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 11:06:08,927 (trainer:737) INFO: 34epoch:train:1-100batch: iter_time=2.427, forward_time=0.105, loss_ctc=57.960, loss_att=64.362, acc=0.700, loss=62.442, backward_time=0.098, grad_norm=55.033, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.482e-04, train_time=2.996 +[gpuc02:0/16] 2024-01-16 11:06:51,100 (trainer:737) INFO: 34epoch:train:101-200batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=49.624, loss_att=50.300, acc=0.727, loss=50.097, backward_time=0.098, grad_norm=46.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.481e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 11:07:33,594 (trainer:737) INFO: 34epoch:train:201-300batch: iter_time=1.010e-04, forward_time=0.104, loss_ctc=36.944, loss_att=39.587, acc=0.743, loss=38.794, backward_time=0.097, grad_norm=38.265, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.481e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 11:08:15,718 (trainer:737) INFO: 34epoch:train:301-400batch: iter_time=1.107e-04, forward_time=0.105, loss_ctc=44.884, loss_att=56.701, acc=0.720, loss=53.156, backward_time=0.098, grad_norm=44.377, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.481e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 11:08:58,410 (trainer:737) INFO: 34epoch:train:401-500batch: iter_time=1.089e-04, forward_time=0.105, loss_ctc=44.239, loss_att=48.151, acc=0.724, loss=46.978, backward_time=0.097, grad_norm=44.433, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.480e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-16 11:09:40,548 (trainer:737) INFO: 34epoch:train:501-600batch: iter_time=1.153e-04, forward_time=0.105, loss_ctc=44.264, loss_att=52.698, acc=0.733, loss=50.168, backward_time=0.098, grad_norm=48.671, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.480e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-16 11:10:22,854 (trainer:737) INFO: 34epoch:train:601-700batch: iter_time=9.879e-05, forward_time=0.105, loss_ctc=39.980, loss_att=51.123, acc=0.749, loss=47.780, backward_time=0.098, grad_norm=39.592, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.480e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-16 11:11:05,408 (trainer:737) INFO: 34epoch:train:701-800batch: iter_time=1.116e-04, forward_time=0.104, loss_ctc=34.069, loss_att=38.372, acc=0.772, loss=37.081, backward_time=0.097, grad_norm=35.800, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.479e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-16 11:11:47,407 (trainer:737) INFO: 34epoch:train:801-900batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=44.564, loss_att=46.173, acc=0.736, loss=45.691, backward_time=0.097, grad_norm=45.710, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.479e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-16 11:12:30,074 (trainer:737) INFO: 34epoch:train:901-1000batch: iter_time=1.122e-04, forward_time=0.105, loss_ctc=50.113, loss_att=56.389, acc=0.728, loss=54.506, backward_time=0.098, grad_norm=52.223, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.479e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-16 11:13:17,793 (trainer:737) INFO: 34epoch:train:1001-1100batch: iter_time=1.147e-04, forward_time=0.113, loss_ctc=43.241, loss_att=43.335, acc=0.748, loss=43.307, backward_time=0.104, grad_norm=44.968, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.478e-04, train_time=0.477 +[gpuc02:0/16] 2024-01-16 11:14:02,725 (trainer:737) INFO: 34epoch:train:1101-1200batch: iter_time=1.216e-04, forward_time=0.105, loss_ctc=43.926, loss_att=44.727, acc=0.729, loss=44.486, backward_time=0.098, grad_norm=42.585, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.478e-04, train_time=0.449 +[gpuc02:0/16] 2024-01-16 11:14:37,482 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-16 11:14:57,228 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-16 11:15:00,853 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-16 11:15:00,854 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-16 11:15:00,857 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-16 11:20:21,282 (trainer:737) INFO: 34epoch:train:1201-1300batch: iter_time=3.102, forward_time=0.118, loss_ctc=45.367, loss_att=54.449, acc=0.728, loss=51.724, backward_time=0.099, grad_norm=44.193, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.478e-04, train_time=3.785 +[gpuc02:0/16] 2024-01-16 11:21:03,563 (trainer:737) INFO: 34epoch:train:1301-1400batch: iter_time=1.215e-04, forward_time=0.106, loss_ctc=51.649, loss_att=56.931, acc=0.734, loss=55.346, backward_time=0.097, grad_norm=50.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.477e-04, train_time=0.423 +srun: Job step aborted: Waiting up to 32 seconds for job step to finish. +slurmstepd: error: *** STEP 2858112.0 ON gpuc02 CANCELLED AT 2024-01-16T11:21:41 *** diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.2.log b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.2.log new file mode 100644 index 0000000000000000000000000000000000000000..1fc199751648f71c9e3795daca31a11d6ad9c98a --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.2.log @@ -0,0 +1,2367 @@ +# Running on gpuc02.delta.ncsa.illinois.edu +# Started at Sat Jan 13 23:45:40 CST 2024 +# SLURMD_NODENAME=gpuc02 +# SLURM_CLUSTER_NAME=delta +# SLURM_CONF=/var/spool/slurmd/conf-cache/slurm.conf +# SLURM_CPUS_ON_NODE=128 +# SLURM_CPUS_PER_TASK=128 +# SLURM_EXPORT_ENV=PATH +# SLURM_GET_USER_ENV=1 +# SLURM_GPUS_ON_NODE=8 +# SLURM_GTIDS=0 +# SLURM_JOBID=2857828 +# SLURM_JOB_ACCOUNT=bbjs-delta-gpu +# SLURM_JOB_CPUS_PER_NODE='128(x2)' +# SLURM_JOB_END_TIME=1705383918 +# SLURM_JOB_GID=202 +# SLURM_JOB_GPUS=0,1,2,3,4,5,6,7 +# SLURM_JOB_ID=2857828 +# SLURM_JOB_NAME=exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log +# SLURM_JOB_NODELIST='gpuc[02,04]' +# SLURM_JOB_NUM_NODES=2 +# SLURM_JOB_PARTITION=gpuA100x8 +# SLURM_JOB_QOS=bbjs-delta-gpu +# SLURM_JOB_START_TIME=1705211118 +# SLURM_JOB_UID=68077 +# SLURM_JOB_USER=peng6 +# SLURM_LOCALID=0 +# SLURM_MEM_PER_NODE=2000000 +# SLURM_NNODES=2 +# SLURM_NODEID=0 +# SLURM_NODELIST='gpuc[02,04]' +# SLURM_NODE_ALIASES='(null)' +# SLURM_OPEN_MODE=a +# SLURM_PRIO_PROCESS=0 +# SLURM_PROCID=0 +# SLURM_SUBMIT_DIR=/scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1 +# SLURM_SUBMIT_HOST=dt-login01.delta.ncsa.illinois.edu +# SLURM_TASKS_PER_NODE='1(x2)' +# SLURM_TASK_PID=1245766 +# SLURM_TOPOLOGY_ADDR=ss00.ss05.gpuc02 +# SLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.node +# SLURM_WORKING_CLUSTER=delta:dt-sched:6817:9984:109 +# srun --export=ALL python3 -m espnet2.bin.s2t_train --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_68891fd4-62b2-4f8e-90c8-ad36169b65e2 +/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/spe/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8ech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_68891fd4-62b2-4f8e-90c8-ad36169b65e2 + --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_68891fd4-62b2-4f8e-90c8-ad36169b65e2 +[gpuc02:0/16] 2024-01-13 23:48:29,700 (distributed_c10d:319) INFO: Added key: store_based_barrier_key:1 to store for rank: 0 +[gpuc02:0/16] 2024-01-13 23:48:30,232 (distributed_c10d:353) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. +[gpuc02:0/16] 2024-01-13 23:48:30,289 (s2t:464) INFO: Vocabulary size: 50002 +[gpuc02:0/16] 2024-01-13 23:48:38,862 (abs_task:1231) INFO: pytorch.version=1.13.1, cuda.available=True, cudnn.version=8500, cudnn.benchmark=False, cudnn.deterministic=True +[gpuc02:0/16] 2024-01-13 23:48:38,867 (abs_task:1232) INFO: Model structure: +ESPnetS2TModel( + (frontend): DefaultFrontend( + (stft): Stft(n_fft=512, win_length=400, hop_length=160, center=True, normalized=False, onesided=True) + (frontend): Frontend() + (logmel): LogMel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000.0, htk=False) + ) + (specaug): SpecAug( + (freq_mask): MaskAlongAxis(mask_width_range=[0, 27], num_mask=1, axis=freq) + (time_mask): MaskAlongAxisVariableMaxWidth(mask_width_ratio_range=[0.0, 0.05], num_mask=1, axis=time) + ) + (normalize): GlobalMVN(stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz, norm_means=True, norm_vars=True) + (encoder): EBranchformerEncoder( + (embed): Conv2dSubsampling( + (conv): Sequential( + (0): Conv2d(1, 384, kernel_size=(3, 3), stride=(2, 2)) + (1): ReLU() + (2): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2)) + (3): ReLU() + ) + (out): Sequential( + (0): Linear(in_features=7296, out_features=384, bias=True) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (encoders): MultiSequential( + (0): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (1): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (2): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (3): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (4): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (5): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + ) + (decoder): TransformerDecoder( + (embed): Sequential( + (0): Embedding(50002, 384) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (output_layer): Linear(in_features=384, out_features=50002, bias=True) + (decoders): MultiSequential( + (0): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (1): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (2): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (3): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (4): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (5): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (criterion_att): LabelSmoothingLoss( + (criterion): KLDivLoss() + ) + (ctc): CTC( + (ctc_lo): Linear(in_features=384, out_features=50002, bias=True) + (ctc_loss): CTCLoss() + ) +) + +Model summary: + Class Name: ESPnetS2TModel + Total Number of model parameters: 101.18 M + Number of trainable parameters: 101.18 M (100.0%) + Size: 404.73 MB + Type: torch.float32 +[gpuc02:0/16] 2024-01-13 23:48:38,868 (abs_task:1235) INFO: Optimizer: +AdamW ( +Parameter Group 0 + amsgrad: False + betas: [0.9, 0.98] + capturable: False + eps: 1e-06 + foreach: None + initial_lr: 0.001 + lr: 3.3333333333333334e-09 + maximize: False + weight_decay: 0.0 +) +[gpuc02:0/16] 2024-01-13 23:48:38,868 (abs_task:1236) INFO: Scheduler: PiecewiseLinearWarmupLR(warmup_steps_list=[0, 30000, 60000], warmup_lr_list=[0.0, 0.0001, 0.001]) +[gpuc02:0/16] 2024-01-13 23:48:38,885 (abs_task:1245) INFO: Saving the configuration in exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml +[gpuc02:0/16] 2024-01-13 23:48:44,774 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 23:48:45,741 (abs_task:1616) INFO: [valid] dataset: +ESPnetDataset( + speech: {"path": "dump/raw/dev_v3/wav.scp", "type": "kaldi_ark"} + text_prev: {"path": "dump/raw/dev_v3/text.prev", "type": "text"} + text_ctc: {"path": "dump/raw/dev_v3/text.ctc", "type": "text"} + text: {"path": "dump/raw/dev_v3/text", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 23:48:45,741 (abs_task:1617) INFO: [valid] Batch sampler: UnsortedBatchSampler(N-batch=4671, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/valid/speech_shape, +[gpuc02:0/16] 2024-01-13 23:48:45,742 (abs_task:1618) INFO: [valid] mini-batch sizes summary: N-batch=4671, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 23:48:50,861 (trainer:159) INFO: The training was resumed using exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/checkpoint.pth +gpuc02:1245918:1245918 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245918:1245918 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245918:1245918 [0] NCCL INFO cudaDriverVersion 12020 +NCCL version 2.14.3+cuda11.7 +[gpuc02:0/16] 2024-01-13 23:48:57,735 (trainer:284) INFO: 16/45epoch started +[gpuc02:0/16] 2024-01-13 23:48:57,782 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 23:49:17,572 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 23:49:21,214 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 23:49:21,214 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 23:49:21,217 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +gpuc02:1245919:1245919 [1] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245919:1245919 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245919:1245919 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245919:1246014 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245919:1246014 [1] NCCL INFO Using network IB +gpuc02:1245919:1246014 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc02:1245919:1246014 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0 +gpuc02:1245919:1246014 [1] NCCL INFO Channel 00/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc02:1245919:1246014 [1] NCCL INFO Channel 01/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc02:1245919:1246014 [1] NCCL INFO Connected all rings +gpuc02:1245919:1246014 [1] NCCL INFO Channel 00/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc02:1245919:1246014 [1] NCCL INFO Channel 01/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc02:1245919:1246014 [1] NCCL INFO Connected all trees +gpuc02:1245919:1246014 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245919:1246014 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245919:1246014 [1] NCCL INFO comm 0x11d68ea0 rank 1 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc02:1245918:1246011 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245918:1246011 [0] NCCL INFO Using network IB +gpuc02:1245918:1246011 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 00/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 01/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc02:1245918:1246011 [0] NCCL INFO Trees [0] 1/8/-1->0->-1 [1] 1/-1/-1->0->8 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 00/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc02:1245918:1246011 [0] NCCL INFO Channel 01/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc02:1245918:1246011 [0] NCCL INFO Connected all rings +gpuc04:1854598:1854598 [3] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854598:1854598 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854598:1854598 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854598:1854679 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854598:1854679 [3] NCCL INFO Using network IB +gpuc04:1854598:1854679 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc04:1854598:1854679 [3] NCCL INFO Trees [0] 12/-1/-1->11->10 [1] 12/-1/-1->11->10 +gpuc04:1854598:1854679 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc04:1854598:1854679 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc04:1854598:1854679 [3] NCCL INFO Connected all rings +gpuc04:1854598:1854679 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc04:1854598:1854679 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc02:1245918:1246011 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1245918:1246011 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1245918:1246011 [0] NCCL INFO Connected all trees +gpuc02:1245918:1246011 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245918:1246011 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245918:1246011 [0] NCCL INFO comm 0x543ab2d0 rank 0 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc04:1854598:1854679 [3] NCCL INFO Connected all trees +gpuc04:1854598:1854679 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854598:1854679 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854598:1854679 [3] NCCL INFO comm 0xb7b8a70 rank 11 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc02:1245923:1245923 [5] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245923:1245923 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245923:1245923 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245923:1246013 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245923:1246013 [5] NCCL INFO Using network IB +gpuc02:1245923:1246013 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc02:1245923:1246013 [5] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] 6/-1/-1->5->4 +gpuc02:1245923:1246013 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc02:1245923:1246013 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc02:1245923:1246013 [5] NCCL INFO Connected all rings +gpuc02:1245923:1246013 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc02:1245923:1246013 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc04:1854597:1854597 [2] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854597:1854597 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854597:1854597 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854597:1854681 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854597:1854681 [2] NCCL INFO Using network IB +gpuc04:1854597:1854681 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc04:1854597:1854681 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/-1/-1->10->9 +gpuc04:1854597:1854681 [2] NCCL INFO Channel 00/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc04:1854597:1854681 [2] NCCL INFO Channel 01/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc04:1854597:1854681 [2] NCCL INFO Connected all rings +gpuc04:1854597:1854681 [2] NCCL INFO Channel 00/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc04:1854597:1854681 [2] NCCL INFO Channel 01/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc02:1245923:1246013 [5] NCCL INFO Connected all trees +gpuc02:1245923:1246013 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245923:1246013 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245923:1246013 [5] NCCL INFO comm 0xc9b2350 rank 5 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc02:1245921:1245921 [3] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245921:1245921 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245921:1245921 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245921:1246010 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245921:1246010 [3] NCCL INFO Using network IB +gpuc02:1245921:1246010 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc02:1245921:1246010 [3] NCCL INFO Trees [0] 4/-1/-1->3->2 [1] 4/-1/-1->3->2 +gpuc02:1245921:1246010 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc04:1854597:1854681 [2] NCCL INFO Connected all trees +gpuc04:1854597:1854681 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854597:1854681 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854597:1854681 [2] NCCL INFO comm 0x94cccf0 rank 10 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc02:1245921:1246010 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc02:1245921:1246010 [3] NCCL INFO Connected all rings +gpuc02:1245921:1246010 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc02:1245921:1246010 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc02:1245921:1246010 [3] NCCL INFO Connected all trees +gpuc02:1245921:1246010 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245921:1246010 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245921:1246010 [3] NCCL INFO comm 0x114da910 rank 3 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc04:1854601:1854601 [6] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854601:1854601 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854601:1854601 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854601:1854680 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854601:1854680 [6] NCCL INFO Using network IB +gpuc04:1854601:1854680 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc04:1854601:1854680 [6] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->13 +gpuc04:1854601:1854680 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc04:1854601:1854680 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc04:1854601:1854680 [6] NCCL INFO Connected all rings +gpuc04:1854601:1854680 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc04:1854601:1854680 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc02:1245925:1245925 [7] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245925:1245925 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245925:1245925 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245925:1246009 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245925:1246009 [7] NCCL INFO Using network IB +gpuc02:1245925:1246009 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc02:1245925:1246009 [7] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] -1/-1/-1->7->6 +gpuc02:1245925:1246009 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1245925:1246009 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc02:1245925:1246009 [7] NCCL INFO Connected all rings +gpuc02:1245925:1246009 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc02:1245925:1246009 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc04:1854601:1854680 [6] NCCL INFO Connected all trees +gpuc04:1854601:1854680 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854601:1854680 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854601:1854680 [6] NCCL INFO comm 0x11002390 rank 14 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc02:1245925:1246009 [7] NCCL INFO Connected all trees +gpuc02:1245925:1246009 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245925:1246009 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245925:1246009 [7] NCCL INFO comm 0x5606e9a0 rank 7 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc04:1854595:1854595 [0] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854595:1854595 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854595:1854595 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854595:1854682 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854595:1854682 [0] NCCL INFO Using network IB +gpuc04:1854595:1854682 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc04:1854595:1854682 [0] NCCL INFO Trees [0] 9/-1/-1->8->0 [1] 9/0/-1->8->-1 +gpuc04:1854595:1854682 [0] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:1854595:1854682 [0] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:1854595:1854682 [0] NCCL INFO Channel 00/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc04:1854595:1854682 [0] NCCL INFO Channel 01/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc04:1854595:1854682 [0] NCCL INFO Connected all rings +gpuc02:1245920:1245920 [2] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245920:1245920 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245920:1245920 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245920:1246015 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245920:1246015 [2] NCCL INFO Using network IB +gpuc02:1245920:1246015 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc02:1245920:1246015 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1 +gpuc02:1245920:1246015 [2] NCCL INFO Channel 00/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc02:1245920:1246015 [2] NCCL INFO Channel 01/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc02:1245920:1246015 [2] NCCL INFO Connected all rings +gpuc02:1245920:1246015 [2] NCCL INFO Channel 00/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc02:1245920:1246015 [2] NCCL INFO Channel 01/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc04:1854595:1854682 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:1854595:1854682 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc04:1854595:1854682 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc04:1854595:1854682 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc04:1854595:1854682 [0] NCCL INFO Connected all trees +gpuc04:1854595:1854682 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854595:1854682 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854595:1854682 [0] NCCL INFO comm 0xe7dd2b0 rank 8 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc02:1245920:1246015 [2] NCCL INFO Connected all trees +gpuc02:1245920:1246015 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245920:1246015 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245920:1246015 [2] NCCL INFO comm 0x52ee1b20 rank 2 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc04:1854602:1854602 [7] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854602:1854602 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854602:1854602 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854602:1854684 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854602:1854684 [7] NCCL INFO Using network IB +gpuc04:1854602:1854684 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc04:1854602:1854684 [7] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] -1/-1/-1->15->14 +gpuc04:1854602:1854684 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc04:1854602:1854684 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc04:1854602:1854684 [7] NCCL INFO Connected all rings +gpuc04:1854602:1854684 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc04:1854602:1854684 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc02:1245924:1245924 [6] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245924:1245924 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245924:1245924 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245924:1246008 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245924:1246008 [6] NCCL INFO Using network IB +gpuc02:1245924:1246008 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc02:1245924:1246008 [6] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->5 +gpuc02:1245924:1246008 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc02:1245924:1246008 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc02:1245924:1246008 [6] NCCL INFO Connected all rings +gpuc02:1245924:1246008 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc02:1245924:1246008 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc04:1854602:1854684 [7] NCCL INFO Connected all trees +gpuc04:1854602:1854684 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854602:1854684 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854602:1854684 [7] NCCL INFO comm 0x1023f050 rank 15 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc02:1245924:1246008 [6] NCCL INFO Connected all trees +gpuc02:1245924:1246008 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245924:1246008 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245924:1246008 [6] NCCL INFO comm 0x6294c570 rank 6 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc04:1854599:1854599 [4] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854599:1854599 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854599:1854599 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854599:1854683 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854599:1854683 [4] NCCL INFO Using network IB +gpuc04:1854599:1854683 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc04:1854599:1854683 [4] NCCL INFO Trees [0] 13/-1/-1->12->11 [1] 13/-1/-1->12->11 +gpuc04:1854599:1854683 [4] NCCL INFO Channel 00/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc04:1854599:1854683 [4] NCCL INFO Channel 01/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc04:1854599:1854683 [4] NCCL INFO Connected all rings +gpuc04:1854599:1854683 [4] NCCL INFO Channel 00/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc04:1854599:1854683 [4] NCCL INFO Channel 01/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc02:1245922:1245922 [4] NCCL INFO cudaDriverVersion 12020 +gpuc02:1245922:1245922 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:1245922:1245922 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:1245922:1246012 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:1245922:1246012 [4] NCCL INFO Using network IB +gpuc02:1245922:1246012 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc02:1245922:1246012 [4] NCCL INFO Trees [0] 5/-1/-1->4->3 [1] 5/-1/-1->4->3 +gpuc02:1245922:1246012 [4] NCCL INFO Channel 00/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc02:1245922:1246012 [4] NCCL INFO Channel 01/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc02:1245922:1246012 [4] NCCL INFO Connected all rings +gpuc02:1245922:1246012 [4] NCCL INFO Channel 00/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc02:1245922:1246012 [4] NCCL INFO Channel 01/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc04:1854599:1854683 [4] NCCL INFO Connected all trees +gpuc04:1854599:1854683 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854599:1854683 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854599:1854683 [4] NCCL INFO comm 0x1121eee0 rank 12 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +gpuc02:1245922:1246012 [4] NCCL INFO Connected all trees +gpuc02:1245922:1246012 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:1245922:1246012 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:1245922:1246012 [4] NCCL INFO comm 0x52f86d40 rank 4 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +gpuc04:1854600:1854600 [5] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854600:1854600 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854600:1854600 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854600:1854685 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854600:1854685 [5] NCCL INFO Using network IB +gpuc04:1854600:1854685 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc04:1854600:1854685 [5] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] 14/-1/-1->13->12 +gpuc04:1854600:1854685 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc04:1854600:1854685 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc04:1854600:1854685 [5] NCCL INFO Connected all rings +gpuc04:1854600:1854685 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc04:1854600:1854685 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc04:1854600:1854685 [5] NCCL INFO Connected all trees +gpuc04:1854600:1854685 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854600:1854685 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854600:1854685 [5] NCCL INFO comm 0x54d7ff60 rank 13 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc04:1854596:1854596 [1] NCCL INFO cudaDriverVersion 12020 +gpuc04:1854596:1854596 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:1854596:1854596 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:1854596:1854686 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:1854596:1854686 [1] NCCL INFO Using network IB +gpuc04:1854596:1854686 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc04:1854596:1854686 [1] NCCL INFO Trees [0] 10/-1/-1->9->8 [1] 10/-1/-1->9->8 +gpuc04:1854596:1854686 [1] NCCL INFO Channel 00/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc04:1854596:1854686 [1] NCCL INFO Channel 01/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc04:1854596:1854686 [1] NCCL INFO Connected all rings +gpuc04:1854596:1854686 [1] NCCL INFO Channel 00/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc04:1854596:1854686 [1] NCCL INFO Channel 01/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc04:1854596:1854686 [1] NCCL INFO Connected all trees +gpuc04:1854596:1854686 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:1854596:1854686 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:1854596:1854686 [1] NCCL INFO comm 0xbf81ea0 rank 9 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +[gpuc02:0/16] 2024-01-13 23:53:28,523 (distributed:1027) INFO: Reducer buckets have been rebuilt in this iteration. +[gpuc02:0/16] 2024-01-13 23:54:11,410 (trainer:737) INFO: 16epoch:train:1-100batch: iter_time=2.348, forward_time=0.186, loss_ctc=45.535, loss_att=50.003, acc=0.718, loss=48.662, backward_time=0.106, grad_norm=33.021, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=5.164e-04, train_time=3.136 +[gpuc02:0/16] 2024-01-13 23:54:56,543 (trainer:737) INFO: 16epoch:train:101-200batch: iter_time=1.050e-04, forward_time=0.105, loss_ctc=54.103, loss_att=60.293, acc=0.700, loss=58.436, backward_time=0.097, grad_norm=48.018, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.162e-04, train_time=0.452 +[gpuc02:0/16] 2024-01-13 23:55:38,807 (trainer:737) INFO: 16epoch:train:201-300batch: iter_time=1.022e-04, forward_time=0.105, loss_ctc=55.703, loss_att=59.403, acc=0.699, loss=58.293, backward_time=0.097, grad_norm=45.596, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.161e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 23:56:20,825 (trainer:737) INFO: 16epoch:train:301-400batch: iter_time=1.110e-04, forward_time=0.104, loss_ctc=44.816, loss_att=56.487, acc=0.714, loss=52.986, backward_time=0.097, grad_norm=33.769, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.160e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-13 23:57:02,992 (trainer:737) INFO: 16epoch:train:401-500batch: iter_time=1.036e-04, forward_time=0.105, loss_ctc=52.016, loss_att=59.999, acc=0.725, loss=57.604, backward_time=0.098, grad_norm=37.559, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.159e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-13 23:57:44,944 (trainer:737) INFO: 16epoch:train:501-600batch: iter_time=1.055e-04, forward_time=0.104, loss_ctc=42.965, loss_att=51.458, acc=0.728, loss=48.910, backward_time=0.096, grad_norm=32.326, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.158e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 23:58:27,188 (trainer:737) INFO: 16epoch:train:601-700batch: iter_time=1.176e-04, forward_time=0.105, loss_ctc=50.893, loss_att=57.418, acc=0.730, loss=55.460, backward_time=0.098, grad_norm=37.693, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.157e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 23:59:09,136 (trainer:737) INFO: 16epoch:train:701-800batch: iter_time=1.104e-04, forward_time=0.104, loss_ctc=47.303, loss_att=49.293, acc=0.717, loss=48.696, backward_time=0.096, grad_norm=35.642, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.156e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 23:59:51,072 (trainer:737) INFO: 16epoch:train:801-900batch: iter_time=1.129e-04, forward_time=0.104, loss_ctc=43.754, loss_att=48.996, acc=0.712, loss=47.423, backward_time=0.096, grad_norm=33.813, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.154e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 00:00:42,014 (trainer:737) INFO: 16epoch:train:901-1000batch: iter_time=1.016e-04, forward_time=0.103, loss_ctc=42.880, loss_att=48.924, acc=0.709, loss=47.111, backward_time=0.096, grad_norm=36.645, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.153e-04, train_time=0.509 +[gpuc02:0/16] 2024-01-14 00:01:33,794 (trainer:737) INFO: 16epoch:train:1001-1100batch: iter_time=1.057e-04, forward_time=0.107, loss_ctc=46.041, loss_att=48.284, acc=0.732, loss=47.611, backward_time=0.097, grad_norm=34.587, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.152e-04, train_time=0.518 +[gpuc02:0/16] 2024-01-14 00:01:42,710 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 00:02:15,933 (trainer:737) INFO: 16epoch:train:1101-1200batch: iter_time=1.043e-04, forward_time=0.104, loss_ctc=51.393, loss_att=52.755, acc=0.722, loss=52.346, backward_time=0.097, grad_norm=36.961, clip=100.000, loss_scale=2.496e+34, optim_step_time=0.040, optim0_lr0=5.151e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 00:02:50,659 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 00:03:10,553 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 00:03:14,237 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 00:03:14,237 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 00:03:14,241 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 00:10:46,290 (trainer:737) INFO: 16epoch:train:1201-1300batch: iter_time=3.152, forward_time=0.109, loss_ctc=54.815, loss_att=64.636, acc=0.709, loss=61.690, backward_time=0.098, grad_norm=45.004, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.150e-04, train_time=5.103 +[gpuc02:0/16] 2024-01-14 00:11:28,709 (trainer:737) INFO: 16epoch:train:1301-1400batch: iter_time=1.624e-04, forward_time=0.104, loss_ctc=53.626, loss_att=56.313, acc=0.710, loss=55.507, backward_time=0.098, grad_norm=46.133, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=5.149e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:12:11,440 (trainer:737) INFO: 16epoch:train:1401-1500batch: iter_time=1.359e-04, forward_time=0.102, loss_ctc=46.505, loss_att=55.576, acc=0.698, loss=52.854, backward_time=0.098, grad_norm=40.636, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.148e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 00:12:57,472 (trainer:737) INFO: 16epoch:train:1501-1600batch: iter_time=1.377e-04, forward_time=0.101, loss_ctc=50.750, loss_att=60.397, acc=0.724, loss=57.503, backward_time=0.098, grad_norm=40.335, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.146e-04, train_time=0.460 +[gpuc02:0/16] 2024-01-14 00:13:39,987 (trainer:737) INFO: 16epoch:train:1601-1700batch: iter_time=1.299e-04, forward_time=0.104, loss_ctc=47.680, loss_att=57.004, acc=0.724, loss=54.207, backward_time=0.098, grad_norm=34.025, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.145e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 00:14:22,526 (trainer:737) INFO: 16epoch:train:1701-1800batch: iter_time=1.433e-04, forward_time=0.104, loss_ctc=50.163, loss_att=62.536, acc=0.730, loss=58.824, backward_time=0.098, grad_norm=34.612, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.144e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 00:15:04,985 (trainer:737) INFO: 16epoch:train:1801-1900batch: iter_time=1.649e-04, forward_time=0.104, loss_ctc=46.647, loss_att=55.997, acc=0.732, loss=53.192, backward_time=0.098, grad_norm=35.401, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.143e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:15:47,408 (trainer:737) INFO: 16epoch:train:1901-2000batch: iter_time=1.400e-04, forward_time=0.102, loss_ctc=46.179, loss_att=52.824, acc=0.738, loss=50.830, backward_time=0.098, grad_norm=35.712, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.142e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:16:29,623 (trainer:737) INFO: 16epoch:train:2001-2100batch: iter_time=1.429e-04, forward_time=0.101, loss_ctc=42.702, loss_att=45.621, acc=0.728, loss=44.745, backward_time=0.097, grad_norm=33.220, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.141e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 00:17:11,934 (trainer:737) INFO: 16epoch:train:2101-2200batch: iter_time=1.348e-04, forward_time=0.102, loss_ctc=44.469, loss_att=54.812, acc=0.706, loss=51.709, backward_time=0.097, grad_norm=33.520, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.140e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:17:54,319 (trainer:737) INFO: 16epoch:train:2201-2300batch: iter_time=1.435e-04, forward_time=0.102, loss_ctc=45.783, loss_att=47.720, acc=0.744, loss=47.139, backward_time=0.097, grad_norm=35.147, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.138e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:18:36,705 (trainer:737) INFO: 16epoch:train:2301-2400batch: iter_time=1.372e-04, forward_time=0.103, loss_ctc=47.915, loss_att=52.800, acc=0.733, loss=51.334, backward_time=0.098, grad_norm=35.645, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.137e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:19:19,023 (trainer:737) INFO: 16epoch:train:2401-2500batch: iter_time=1.086e-04, forward_time=0.103, loss_ctc=55.789, loss_att=56.301, acc=0.722, loss=56.147, backward_time=0.098, grad_norm=43.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.136e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:19:26,787 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 00:19:46,630 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 00:19:50,610 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 00:19:50,610 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 00:19:50,614 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 00:24:15,655 (trainer:737) INFO: 16epoch:train:2501-2600batch: iter_time=2.399, forward_time=0.104, loss_ctc=44.423, loss_att=48.360, acc=0.730, loss=47.179, backward_time=0.097, grad_norm=32.501, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.135e-04, train_time=2.966 +[gpuc02:0/16] 2024-01-14 00:24:58,158 (trainer:737) INFO: 16epoch:train:2601-2700batch: iter_time=1.382e-04, forward_time=0.105, loss_ctc=51.885, loss_att=61.417, acc=0.702, loss=58.558, backward_time=0.098, grad_norm=44.014, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.134e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 00:25:40,614 (trainer:737) INFO: 16epoch:train:2701-2800batch: iter_time=1.339e-04, forward_time=0.105, loss_ctc=52.669, loss_att=59.525, acc=0.700, loss=57.468, backward_time=0.098, grad_norm=44.940, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.133e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:26:22,930 (trainer:737) INFO: 16epoch:train:2801-2900batch: iter_time=1.599e-04, forward_time=0.104, loss_ctc=44.313, loss_att=57.041, acc=0.722, loss=53.222, backward_time=0.098, grad_norm=33.375, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.132e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:27:05,506 (trainer:737) INFO: 16epoch:train:2901-3000batch: iter_time=1.559e-04, forward_time=0.106, loss_ctc=51.193, loss_att=59.461, acc=0.739, loss=56.980, backward_time=0.098, grad_norm=36.150, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.131e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 00:27:50,068 (trainer:737) INFO: 16epoch:train:3001-3100batch: iter_time=1.437e-04, forward_time=0.104, loss_ctc=42.359, loss_att=54.123, acc=0.732, loss=50.594, backward_time=0.097, grad_norm=32.218, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.129e-04, train_time=0.445 +[gpuc02:0/16] 2024-01-14 00:28:33,435 (trainer:737) INFO: 16epoch:train:3101-3200batch: iter_time=1.486e-04, forward_time=0.105, loss_ctc=49.449, loss_att=57.121, acc=0.738, loss=54.819, backward_time=0.098, grad_norm=33.850, clip=100.000, loss_scale=3.718e+34, optim_step_time=0.041, optim0_lr0=5.128e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 00:29:15,880 (trainer:737) INFO: 16epoch:train:3201-3300batch: iter_time=1.401e-04, forward_time=0.103, loss_ctc=46.385, loss_att=49.188, acc=0.726, loss=48.347, backward_time=0.097, grad_norm=35.556, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.127e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:29:58,241 (trainer:737) INFO: 16epoch:train:3301-3400batch: iter_time=1.246e-04, forward_time=0.104, loss_ctc=43.420, loss_att=50.618, acc=0.725, loss=48.459, backward_time=0.097, grad_norm=33.572, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.126e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:30:40,516 (trainer:737) INFO: 16epoch:train:3401-3500batch: iter_time=1.437e-04, forward_time=0.104, loss_ctc=41.947, loss_att=47.326, acc=0.730, loss=45.713, backward_time=0.097, grad_norm=34.335, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.125e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:31:22,879 (trainer:737) INFO: 16epoch:train:3501-3600batch: iter_time=1.373e-04, forward_time=0.105, loss_ctc=44.301, loss_att=46.151, acc=0.756, loss=45.596, backward_time=0.098, grad_norm=32.600, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.124e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:32:05,286 (trainer:737) INFO: 16epoch:train:3601-3700batch: iter_time=1.460e-04, forward_time=0.105, loss_ctc=50.050, loss_att=51.916, acc=0.727, loss=51.356, backward_time=0.098, grad_norm=34.893, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.123e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:32:29,673 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 00:32:50,008 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 00:32:53,868 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 00:32:53,868 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 00:32:53,871 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 00:36:57,317 (trainer:737) INFO: 16epoch:train:3701-3800batch: iter_time=2.494, forward_time=0.105, loss_ctc=53.171, loss_att=61.503, acc=0.715, loss=59.004, backward_time=0.097, grad_norm=43.592, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.122e-04, train_time=2.920 +[gpuc02:0/16] 2024-01-14 00:37:39,794 (trainer:737) INFO: 16epoch:train:3801-3900batch: iter_time=1.662e-04, forward_time=0.106, loss_ctc=53.165, loss_att=54.909, acc=0.715, loss=54.386, backward_time=0.097, grad_norm=43.986, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.120e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 00:38:22,080 (trainer:737) INFO: 16epoch:train:3901-4000batch: iter_time=1.543e-04, forward_time=0.106, loss_ctc=45.225, loss_att=53.260, acc=0.702, loss=50.849, backward_time=0.097, grad_norm=39.321, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.119e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:39:04,573 (trainer:737) INFO: 16epoch:train:4001-4100batch: iter_time=1.456e-04, forward_time=0.107, loss_ctc=49.568, loss_att=58.696, acc=0.728, loss=55.958, backward_time=0.098, grad_norm=40.556, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.118e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 00:39:46,888 (trainer:737) INFO: 16epoch:train:4101-4200batch: iter_time=1.334e-04, forward_time=0.106, loss_ctc=47.022, loss_att=56.110, acc=0.727, loss=53.384, backward_time=0.097, grad_norm=33.928, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.117e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:40:29,359 (trainer:737) INFO: 16epoch:train:4201-4300batch: iter_time=1.615e-04, forward_time=0.106, loss_ctc=49.155, loss_att=61.364, acc=0.734, loss=57.701, backward_time=0.098, grad_norm=33.642, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.116e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:40:58,983 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 00:41:11,758 (trainer:737) INFO: 16epoch:train:4301-4400batch: iter_time=1.453e-04, forward_time=0.106, loss_ctc=46.360, loss_att=55.012, acc=0.735, loss=52.416, backward_time=0.098, grad_norm=34.949, clip=100.000, loss_scale=3.524e+34, optim_step_time=0.040, optim0_lr0=5.115e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:41:54,119 (trainer:737) INFO: 16epoch:train:4401-4500batch: iter_time=1.365e-04, forward_time=0.105, loss_ctc=45.359, loss_att=51.949, acc=0.740, loss=49.972, backward_time=0.098, grad_norm=34.411, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.114e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:42:36,299 (trainer:737) INFO: 16epoch:train:4501-4600batch: iter_time=1.306e-04, forward_time=0.105, loss_ctc=43.352, loss_att=45.900, acc=0.729, loss=45.136, backward_time=0.097, grad_norm=34.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.113e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 00:43:18,586 (trainer:737) INFO: 16epoch:train:4601-4700batch: iter_time=1.383e-04, forward_time=0.105, loss_ctc=43.697, loss_att=53.328, acc=0.710, loss=50.439, backward_time=0.097, grad_norm=33.997, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.112e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:44:03,665 (trainer:737) INFO: 16epoch:train:4701-4800batch: iter_time=1.485e-04, forward_time=0.105, loss_ctc=44.840, loss_att=47.093, acc=0.746, loss=46.417, backward_time=0.097, grad_norm=32.313, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.110e-04, train_time=0.451 +[gpuc02:0/16] 2024-01-14 00:44:46,549 (trainer:737) INFO: 16epoch:train:4801-4900batch: iter_time=1.199e-04, forward_time=0.105, loss_ctc=46.975, loss_att=52.783, acc=0.735, loss=51.040, backward_time=0.097, grad_norm=33.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.109e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 00:45:28,876 (trainer:737) INFO: 16epoch:train:4901-5000batch: iter_time=1.194e-04, forward_time=0.105, loss_ctc=54.140, loss_att=56.569, acc=0.724, loss=55.840, backward_time=0.097, grad_norm=42.219, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.108e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:45:33,309 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 00:45:54,121 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 00:45:57,827 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 00:45:57,827 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 00:45:57,830 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 00:50:42,538 (trainer:737) INFO: 16epoch:train:5001-5100batch: iter_time=2.374, forward_time=0.199, loss_ctc=44.050, loss_att=48.122, acc=0.732, loss=46.901, backward_time=0.109, grad_norm=32.424, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=5.107e-04, train_time=3.136 +[gpuc02:0/16] 2024-01-14 00:51:26,785 (trainer:737) INFO: 16epoch:train:5101-5200batch: iter_time=1.280e-04, forward_time=0.117, loss_ctc=50.736, loss_att=59.538, acc=0.707, loss=56.897, backward_time=0.100, grad_norm=45.953, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.106e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-14 00:52:09,495 (trainer:737) INFO: 16epoch:train:5201-5300batch: iter_time=1.351e-04, forward_time=0.106, loss_ctc=52.245, loss_att=58.011, acc=0.707, loss=56.282, backward_time=0.098, grad_norm=42.673, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.105e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 00:52:51,811 (trainer:737) INFO: 16epoch:train:5301-5400batch: iter_time=1.628e-04, forward_time=0.105, loss_ctc=43.873, loss_att=56.462, acc=0.723, loss=52.685, backward_time=0.097, grad_norm=31.943, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.104e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:53:34,367 (trainer:737) INFO: 16epoch:train:5401-5500batch: iter_time=1.444e-04, forward_time=0.106, loss_ctc=50.425, loss_att=59.211, acc=0.742, loss=56.575, backward_time=0.098, grad_norm=36.657, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.103e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 00:54:16,630 (trainer:737) INFO: 16epoch:train:5501-5600batch: iter_time=1.053e-04, forward_time=0.105, loss_ctc=41.317, loss_att=52.952, acc=0.735, loss=49.461, backward_time=0.097, grad_norm=31.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.102e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 00:54:59,240 (trainer:737) INFO: 16epoch:train:5601-5700batch: iter_time=1.198e-04, forward_time=0.107, loss_ctc=49.102, loss_att=56.501, acc=0.742, loss=54.282, backward_time=0.099, grad_norm=34.054, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.100e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 00:55:41,487 (trainer:737) INFO: 16epoch:train:5701-5800batch: iter_time=1.217e-04, forward_time=0.106, loss_ctc=46.074, loss_att=48.428, acc=0.730, loss=47.722, backward_time=0.097, grad_norm=34.637, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.099e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 00:56:23,733 (trainer:737) INFO: 16epoch:train:5801-5900batch: iter_time=1.113e-04, forward_time=0.106, loss_ctc=42.785, loss_att=49.357, acc=0.729, loss=47.385, backward_time=0.097, grad_norm=32.993, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.098e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 00:57:06,013 (trainer:737) INFO: 16epoch:train:5901-6000batch: iter_time=1.216e-04, forward_time=0.105, loss_ctc=41.203, loss_att=46.768, acc=0.732, loss=45.098, backward_time=0.097, grad_norm=33.344, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.097e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 00:57:48,467 (trainer:737) INFO: 16epoch:train:6001-6100batch: iter_time=1.086e-04, forward_time=0.106, loss_ctc=44.316, loss_att=46.456, acc=0.755, loss=45.814, backward_time=0.098, grad_norm=32.346, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.096e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:58:30,870 (trainer:737) INFO: 16epoch:train:6101-6200batch: iter_time=1.031e-04, forward_time=0.106, loss_ctc=49.949, loss_att=52.904, acc=0.724, loss=52.017, backward_time=0.097, grad_norm=35.978, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.095e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 00:59:07,392 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 00:59:28,158 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 00:59:31,928 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 00:59:31,928 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 00:59:31,932 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 01:05:11,305 (trainer:737) INFO: 16epoch:train:6201-6300batch: iter_time=3.331, forward_time=0.105, loss_ctc=51.706, loss_att=63.223, acc=0.710, loss=59.768, backward_time=0.097, grad_norm=43.235, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.094e-04, train_time=4.004 +[gpuc02:0/16] 2024-01-14 01:05:53,728 (trainer:737) INFO: 16epoch:train:6301-6400batch: iter_time=9.335e-05, forward_time=0.105, loss_ctc=53.092, loss_att=56.493, acc=0.712, loss=55.473, backward_time=0.097, grad_norm=42.008, clip=100.000, loss_scale=2.700e+34, optim_step_time=0.041, optim0_lr0=5.093e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:06:35,892 (trainer:737) INFO: 16epoch:train:6401-6500batch: iter_time=1.040e-04, forward_time=0.105, loss_ctc=45.134, loss_att=54.828, acc=0.699, loss=51.920, backward_time=0.097, grad_norm=38.080, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.092e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 01:07:18,304 (trainer:737) INFO: 16epoch:train:6501-6600batch: iter_time=1.081e-04, forward_time=0.105, loss_ctc=48.784, loss_att=58.676, acc=0.728, loss=55.709, backward_time=0.098, grad_norm=38.856, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.091e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:08:00,685 (trainer:737) INFO: 16epoch:train:6601-6700batch: iter_time=1.098e-04, forward_time=0.105, loss_ctc=46.819, loss_att=56.880, acc=0.718, loss=53.861, backward_time=0.098, grad_norm=35.125, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.089e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:08:43,134 (trainer:737) INFO: 16epoch:train:6701-6800batch: iter_time=1.105e-04, forward_time=0.105, loss_ctc=48.777, loss_att=61.543, acc=0.728, loss=57.713, backward_time=0.098, grad_norm=33.907, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.088e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:09:25,502 (trainer:737) INFO: 16epoch:train:6801-6900batch: iter_time=1.009e-04, forward_time=0.106, loss_ctc=45.849, loss_att=52.944, acc=0.730, loss=50.815, backward_time=0.098, grad_norm=34.766, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.087e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:10:08,034 (trainer:737) INFO: 16epoch:train:6901-7000batch: iter_time=1.102e-04, forward_time=0.108, loss_ctc=44.887, loss_att=51.297, acc=0.736, loss=49.374, backward_time=0.097, grad_norm=34.198, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.086e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:10:50,226 (trainer:737) INFO: 16epoch:train:7001-7100batch: iter_time=1.179e-04, forward_time=0.104, loss_ctc=42.639, loss_att=43.517, acc=0.728, loss=43.253, backward_time=0.096, grad_norm=33.972, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.085e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:11:32,393 (trainer:737) INFO: 16epoch:train:7101-7200batch: iter_time=1.122e-04, forward_time=0.105, loss_ctc=43.528, loss_att=55.591, acc=0.689, loss=51.972, backward_time=0.097, grad_norm=35.572, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.084e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 01:12:14,897 (trainer:737) INFO: 16epoch:train:7201-7300batch: iter_time=1.200e-04, forward_time=0.105, loss_ctc=44.522, loss_att=47.721, acc=0.734, loss=46.761, backward_time=0.098, grad_norm=32.370, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.083e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:13:00,302 (trainer:737) INFO: 16epoch:train:7301-7400batch: iter_time=1.053e-04, forward_time=0.122, loss_ctc=46.720, loss_att=53.000, acc=0.727, loss=51.116, backward_time=0.105, grad_norm=34.566, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=5.082e-04, train_time=0.454 +[gpuc02:0/16] 2024-01-14 01:13:42,755 (trainer:737) INFO: 16epoch:train:7401-7500batch: iter_time=1.023e-04, forward_time=0.104, loss_ctc=53.830, loss_att=56.060, acc=0.725, loss=55.391, backward_time=0.097, grad_norm=41.920, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.081e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:13:50,788 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 01:14:11,243 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 01:14:15,012 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 01:14:15,012 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 01:14:15,015 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 01:19:01,869 (trainer:737) INFO: 16epoch:train:7501-7600batch: iter_time=2.731, forward_time=0.105, loss_ctc=44.020, loss_att=49.865, acc=0.731, loss=48.112, backward_time=0.098, grad_norm=33.349, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.080e-04, train_time=3.191 +[gpuc02:0/16] 2024-01-14 01:19:44,726 (trainer:737) INFO: 16epoch:train:7601-7700batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=50.182, loss_att=60.093, acc=0.707, loss=57.119, backward_time=0.098, grad_norm=46.401, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.078e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 01:20:28,440 (trainer:737) INFO: 16epoch:train:7701-7800batch: iter_time=1.078e-04, forward_time=0.105, loss_ctc=51.652, loss_att=58.208, acc=0.708, loss=56.241, backward_time=0.098, grad_norm=44.256, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.077e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-14 01:21:12,632 (trainer:737) INFO: 16epoch:train:7801-7900batch: iter_time=1.386e-04, forward_time=0.105, loss_ctc=43.558, loss_att=56.810, acc=0.723, loss=52.835, backward_time=0.097, grad_norm=33.050, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.076e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-14 01:21:55,136 (trainer:737) INFO: 16epoch:train:7901-8000batch: iter_time=1.354e-04, forward_time=0.106, loss_ctc=50.332, loss_att=59.252, acc=0.742, loss=56.576, backward_time=0.098, grad_norm=35.210, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.075e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:22:37,456 (trainer:737) INFO: 16epoch:train:8001-8100batch: iter_time=1.401e-04, forward_time=0.105, loss_ctc=41.502, loss_att=53.341, acc=0.736, loss=49.789, backward_time=0.097, grad_norm=32.327, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.074e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:23:20,058 (trainer:737) INFO: 16epoch:train:8101-8200batch: iter_time=1.321e-04, forward_time=0.106, loss_ctc=49.056, loss_att=56.557, acc=0.742, loss=54.307, backward_time=0.098, grad_norm=34.593, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.073e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 01:24:02,290 (trainer:737) INFO: 16epoch:train:8201-8300batch: iter_time=1.291e-04, forward_time=0.104, loss_ctc=44.826, loss_att=48.106, acc=0.731, loss=47.122, backward_time=0.097, grad_norm=33.898, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.072e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:24:44,507 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 01:24:44,514 (trainer:737) INFO: 16epoch:train:8301-8400batch: iter_time=1.328e-04, forward_time=0.105, loss_ctc=42.344, loss_att=49.457, acc=0.730, loss=47.323, backward_time=0.097, grad_norm=35.161, clip=100.000, loss_scale=5.371e+34, optim_step_time=0.040, optim0_lr0=5.071e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:25:26,851 (trainer:737) INFO: 16epoch:train:8401-8500batch: iter_time=1.107e-04, forward_time=0.105, loss_ctc=41.246, loss_att=47.267, acc=0.732, loss=45.461, backward_time=0.097, grad_norm=32.323, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.070e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:26:09,234 (trainer:737) INFO: 16epoch:train:8501-8600batch: iter_time=1.296e-04, forward_time=0.106, loss_ctc=43.774, loss_att=46.482, acc=0.755, loss=45.669, backward_time=0.097, grad_norm=32.168, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.069e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:26:51,529 (trainer:737) INFO: 16epoch:train:8601-8700batch: iter_time=1.235e-04, forward_time=0.106, loss_ctc=49.589, loss_att=52.815, acc=0.725, loss=51.847, backward_time=0.097, grad_norm=36.156, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.068e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:27:17,115 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 01:27:37,357 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 01:27:41,518 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 01:27:41,518 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 01:27:41,521 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 01:31:56,290 (trainer:737) INFO: 16epoch:train:8701-8800batch: iter_time=2.467, forward_time=0.106, loss_ctc=51.208, loss_att=62.001, acc=0.710, loss=58.763, backward_time=0.098, grad_norm=41.118, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.067e-04, train_time=3.047 +[gpuc02:0/16] 2024-01-14 01:32:38,638 (trainer:737) INFO: 16epoch:train:8801-8900batch: iter_time=1.268e-04, forward_time=0.105, loss_ctc=50.587, loss_att=53.825, acc=0.716, loss=52.854, backward_time=0.097, grad_norm=41.405, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.065e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:33:20,987 (trainer:737) INFO: 16epoch:train:8901-9000batch: iter_time=1.139e-04, forward_time=0.105, loss_ctc=45.025, loss_att=54.106, acc=0.700, loss=51.382, backward_time=0.097, grad_norm=36.608, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.064e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:34:03,372 (trainer:737) INFO: 16epoch:train:9001-9100batch: iter_time=1.078e-04, forward_time=0.106, loss_ctc=48.239, loss_att=57.818, acc=0.731, loss=54.945, backward_time=0.098, grad_norm=40.041, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.063e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:34:45,637 (trainer:737) INFO: 16epoch:train:9101-9200batch: iter_time=1.031e-04, forward_time=0.106, loss_ctc=46.600, loss_att=56.451, acc=0.717, loss=53.495, backward_time=0.097, grad_norm=34.497, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.062e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:35:28,104 (trainer:737) INFO: 16epoch:train:9201-9300batch: iter_time=1.139e-04, forward_time=0.106, loss_ctc=49.130, loss_att=61.605, acc=0.730, loss=57.863, backward_time=0.098, grad_norm=34.974, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.061e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:36:10,584 (trainer:737) INFO: 16epoch:train:9301-9400batch: iter_time=1.060e-04, forward_time=0.106, loss_ctc=45.696, loss_att=53.236, acc=0.729, loss=50.974, backward_time=0.098, grad_norm=34.863, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.060e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:36:52,966 (trainer:737) INFO: 16epoch:train:9401-9500batch: iter_time=1.264e-04, forward_time=0.105, loss_ctc=44.604, loss_att=51.014, acc=0.738, loss=49.091, backward_time=0.097, grad_norm=36.543, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.059e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:37:35,188 (trainer:737) INFO: 16epoch:train:9501-9600batch: iter_time=9.897e-05, forward_time=0.105, loss_ctc=42.472, loss_att=43.502, acc=0.727, loss=43.193, backward_time=0.097, grad_norm=33.699, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.058e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:38:17,905 (trainer:737) INFO: 16epoch:train:9601-9700batch: iter_time=1.047e-04, forward_time=0.104, loss_ctc=43.195, loss_att=54.321, acc=0.691, loss=50.983, backward_time=0.097, grad_norm=37.754, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.057e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 01:39:01,182 (trainer:737) INFO: 16epoch:train:9701-9800batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=44.125, loss_att=47.177, acc=0.736, loss=46.261, backward_time=0.097, grad_norm=33.079, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.056e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 01:39:19,983 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 01:39:45,161 (trainer:737) INFO: 16epoch:train:9801-9900batch: iter_time=1.054e-04, forward_time=0.106, loss_ctc=46.436, loss_att=52.508, acc=0.726, loss=50.686, backward_time=0.097, grad_norm=36.553, clip=100.000, loss_scale=2.958e+34, optim_step_time=0.040, optim0_lr0=5.055e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-14 01:40:28,802 (trainer:737) INFO: 16epoch:train:9901-10000batch: iter_time=1.120e-04, forward_time=0.105, loss_ctc=53.414, loss_att=57.534, acc=0.721, loss=56.298, backward_time=0.097, grad_norm=43.832, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.054e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-14 01:40:35,013 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 01:40:55,321 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 01:40:59,000 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 01:40:59,000 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 01:40:59,003 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 01:45:31,891 (trainer:737) INFO: 16epoch:train:10001-10100batch: iter_time=2.561, forward_time=0.104, loss_ctc=43.520, loss_att=47.054, acc=0.728, loss=45.994, backward_time=0.097, grad_norm=31.078, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.053e-04, train_time=3.031 +[gpuc02:0/16] 2024-01-14 01:46:14,422 (trainer:737) INFO: 16epoch:train:10101-10200batch: iter_time=1.221e-04, forward_time=0.105, loss_ctc=49.436, loss_att=58.086, acc=0.707, loss=55.491, backward_time=0.097, grad_norm=44.663, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.051e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:46:56,902 (trainer:737) INFO: 16epoch:train:10201-10300batch: iter_time=1.170e-04, forward_time=0.106, loss_ctc=51.537, loss_att=57.654, acc=0.706, loss=55.819, backward_time=0.097, grad_norm=44.370, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.050e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:47:39,529 (trainer:737) INFO: 16epoch:train:10301-10400batch: iter_time=1.567e-04, forward_time=0.107, loss_ctc=43.172, loss_att=55.459, acc=0.720, loss=51.773, backward_time=0.096, grad_norm=33.396, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.049e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 01:48:22,019 (trainer:737) INFO: 16epoch:train:10401-10500batch: iter_time=1.580e-04, forward_time=0.106, loss_ctc=49.905, loss_att=59.090, acc=0.730, loss=56.335, backward_time=0.098, grad_norm=33.860, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.048e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 01:49:04,328 (trainer:737) INFO: 16epoch:train:10501-10600batch: iter_time=1.692e-04, forward_time=0.105, loss_ctc=41.028, loss_att=50.401, acc=0.733, loss=47.589, backward_time=0.097, grad_norm=33.181, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.047e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:49:46,973 (trainer:737) INFO: 16epoch:train:10601-10700batch: iter_time=1.801e-04, forward_time=0.106, loss_ctc=48.290, loss_att=56.021, acc=0.738, loss=53.702, backward_time=0.098, grad_norm=35.168, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.046e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 01:50:29,179 (trainer:737) INFO: 16epoch:train:10701-10800batch: iter_time=1.626e-04, forward_time=0.105, loss_ctc=45.099, loss_att=47.603, acc=0.726, loss=46.852, backward_time=0.097, grad_norm=34.103, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.045e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:51:11,429 (trainer:737) INFO: 16epoch:train:10801-10900batch: iter_time=1.716e-04, forward_time=0.104, loss_ctc=42.561, loss_att=47.977, acc=0.718, loss=46.352, backward_time=0.096, grad_norm=34.141, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.044e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 01:51:53,721 (trainer:737) INFO: 16epoch:train:10901-11000batch: iter_time=1.395e-04, forward_time=0.105, loss_ctc=40.970, loss_att=47.446, acc=0.717, loss=45.503, backward_time=0.097, grad_norm=33.119, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.043e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 01:52:36,104 (trainer:737) INFO: 16epoch:train:11001-11100batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=43.766, loss_att=46.907, acc=0.740, loss=45.965, backward_time=0.097, grad_norm=34.554, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.042e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:53:18,554 (trainer:737) INFO: 16epoch:train:11101-11200batch: iter_time=1.623e-04, forward_time=0.105, loss_ctc=49.921, loss_att=52.267, acc=0.728, loss=51.563, backward_time=0.097, grad_norm=49.535, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.041e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:53:46,176 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 01:54:06,444 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 01:54:10,203 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 01:54:10,203 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 01:54:10,207 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 01:58:27,610 (trainer:737) INFO: 16epoch:train:11201-11300batch: iter_time=2.650, forward_time=0.105, loss_ctc=50.439, loss_att=60.538, acc=0.714, loss=57.508, backward_time=0.097, grad_norm=41.537, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.040e-04, train_time=3.090 +[gpuc02:0/16] 2024-01-14 01:59:10,038 (trainer:737) INFO: 16epoch:train:11301-11400batch: iter_time=2.005e-04, forward_time=0.107, loss_ctc=51.399, loss_att=53.064, acc=0.720, loss=52.565, backward_time=0.098, grad_norm=44.134, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.039e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 01:59:52,414 (trainer:737) INFO: 16epoch:train:11401-11500batch: iter_time=1.742e-04, forward_time=0.105, loss_ctc=44.336, loss_att=52.208, acc=0.704, loss=49.846, backward_time=0.097, grad_norm=37.655, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.038e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:00:34,995 (trainer:737) INFO: 16epoch:train:11501-11600batch: iter_time=1.319e-04, forward_time=0.107, loss_ctc=47.380, loss_att=56.282, acc=0.732, loss=53.611, backward_time=0.098, grad_norm=39.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.036e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 02:01:17,545 (trainer:737) INFO: 16epoch:train:11601-11700batch: iter_time=1.455e-04, forward_time=0.105, loss_ctc=46.565, loss_att=55.594, acc=0.719, loss=52.885, backward_time=0.097, grad_norm=34.650, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.035e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 02:02:00,209 (trainer:737) INFO: 16epoch:train:11701-11800batch: iter_time=1.418e-04, forward_time=0.106, loss_ctc=49.003, loss_att=61.017, acc=0.731, loss=57.413, backward_time=0.098, grad_norm=36.180, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.034e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 02:02:42,651 (trainer:737) INFO: 16epoch:train:11801-11900batch: iter_time=1.475e-04, forward_time=0.106, loss_ctc=45.041, loss_att=51.759, acc=0.731, loss=49.744, backward_time=0.097, grad_norm=34.914, clip=100.000, loss_scale=3.261e+34, optim_step_time=0.040, optim0_lr0=5.033e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:03:25,070 (trainer:737) INFO: 16epoch:train:11901-12000batch: iter_time=1.486e-04, forward_time=0.106, loss_ctc=44.993, loss_att=51.388, acc=0.738, loss=49.469, backward_time=0.097, grad_norm=34.513, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.032e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:04:07,370 (trainer:737) INFO: 16epoch:train:12001-12100batch: iter_time=1.598e-04, forward_time=0.105, loss_ctc=42.174, loss_att=43.024, acc=0.728, loss=42.769, backward_time=0.096, grad_norm=33.332, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=5.031e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 02:04:49,651 (trainer:737) INFO: 16epoch:train:12101-12200batch: iter_time=1.379e-04, forward_time=0.105, loss_ctc=42.948, loss_att=53.389, acc=0.695, loss=50.257, backward_time=0.096, grad_norm=35.396, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.030e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 02:05:32,094 (trainer:737) INFO: 16epoch:train:12201-12300batch: iter_time=1.303e-04, forward_time=0.105, loss_ctc=44.461, loss_att=47.171, acc=0.736, loss=46.358, backward_time=0.097, grad_norm=32.868, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=5.029e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:06:04,421 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 02:06:14,589 (trainer:737) INFO: 16epoch:train:12301-12400batch: iter_time=1.244e-04, forward_time=0.106, loss_ctc=46.550, loss_att=52.158, acc=0.729, loss=50.475, backward_time=0.098, grad_norm=35.799, clip=100.000, loss_scale=3.650e+34, optim_step_time=0.041, optim0_lr0=5.028e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 02:06:56,944 (trainer:737) INFO: 16epoch:train:12401-12500batch: iter_time=1.233e-04, forward_time=0.105, loss_ctc=52.971, loss_att=56.636, acc=0.724, loss=55.536, backward_time=0.097, grad_norm=43.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.027e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 02:07:02,507 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 02:07:22,831 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 02:07:26,911 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 02:07:26,911 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 02:07:26,914 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 02:12:12,476 (trainer:737) INFO: 16epoch:train:12501-12600batch: iter_time=2.694, forward_time=0.109, loss_ctc=43.361, loss_att=51.426, acc=0.729, loss=49.007, backward_time=0.098, grad_norm=32.132, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.026e-04, train_time=3.155 +[gpuc02:0/16] 2024-01-14 02:12:54,981 (trainer:737) INFO: 16epoch:train:12601-12700batch: iter_time=1.552e-04, forward_time=0.106, loss_ctc=49.300, loss_att=60.035, acc=0.709, loss=56.815, backward_time=0.097, grad_norm=42.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.025e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 02:13:37,557 (trainer:737) INFO: 16epoch:train:12701-12800batch: iter_time=1.614e-04, forward_time=0.105, loss_ctc=51.053, loss_att=58.041, acc=0.709, loss=55.945, backward_time=0.098, grad_norm=45.239, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.024e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 02:14:19,994 (trainer:737) INFO: 16epoch:train:12801-12900batch: iter_time=1.628e-04, forward_time=0.105, loss_ctc=43.473, loss_att=57.388, acc=0.723, loss=53.214, backward_time=0.098, grad_norm=34.682, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.023e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:15:02,781 (trainer:737) INFO: 16epoch:train:12901-13000batch: iter_time=1.121e-04, forward_time=0.107, loss_ctc=49.837, loss_att=59.278, acc=0.742, loss=56.446, backward_time=0.099, grad_norm=35.991, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.022e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 02:15:45,220 (trainer:737) INFO: 16epoch:train:13001-13100batch: iter_time=1.211e-04, forward_time=0.106, loss_ctc=41.016, loss_att=53.098, acc=0.736, loss=49.473, backward_time=0.098, grad_norm=31.935, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.021e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:16:27,969 (trainer:737) INFO: 16epoch:train:13101-13200batch: iter_time=1.377e-04, forward_time=0.107, loss_ctc=48.215, loss_att=56.553, acc=0.744, loss=54.052, backward_time=0.099, grad_norm=33.837, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.020e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 02:17:10,450 (trainer:737) INFO: 16epoch:train:13201-13300batch: iter_time=1.331e-04, forward_time=0.105, loss_ctc=45.140, loss_att=48.599, acc=0.729, loss=47.561, backward_time=0.098, grad_norm=35.788, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.018e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 02:17:52,886 (trainer:737) INFO: 16epoch:train:13301-13400batch: iter_time=1.422e-04, forward_time=0.106, loss_ctc=43.179, loss_att=50.592, acc=0.729, loss=48.368, backward_time=0.097, grad_norm=32.563, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=5.017e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:18:35,260 (trainer:737) INFO: 16epoch:train:13401-13500batch: iter_time=1.389e-04, forward_time=0.106, loss_ctc=40.986, loss_att=47.220, acc=0.733, loss=45.350, backward_time=0.097, grad_norm=31.882, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.016e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:19:19,342 (trainer:737) INFO: 16epoch:train:13501-13600batch: iter_time=1.533e-04, forward_time=0.106, loss_ctc=43.707, loss_att=46.603, acc=0.756, loss=45.734, backward_time=0.098, grad_norm=32.579, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.015e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-14 02:20:05,156 (trainer:737) INFO: 16epoch:train:13601-13700batch: iter_time=1.475e-04, forward_time=0.108, loss_ctc=49.495, loss_att=52.284, acc=0.727, loss=51.447, backward_time=0.098, grad_norm=35.690, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.014e-04, train_time=0.458 +[gpuc02:0/16] 2024-01-14 02:20:36,876 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 02:20:57,395 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 02:21:01,186 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 02:21:01,186 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 02:21:01,189 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 02:25:08,692 (trainer:737) INFO: 16epoch:train:13701-13800batch: iter_time=2.605, forward_time=0.110, loss_ctc=50.490, loss_att=62.478, acc=0.712, loss=58.882, backward_time=0.098, grad_norm=44.122, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.013e-04, train_time=3.035 +[gpuc02:0/16] 2024-01-14 02:25:51,073 (trainer:737) INFO: 16epoch:train:13801-13900batch: iter_time=1.900e-04, forward_time=0.104, loss_ctc=51.026, loss_att=53.779, acc=0.720, loss=52.953, backward_time=0.097, grad_norm=43.302, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.012e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:26:33,478 (trainer:737) INFO: 16epoch:train:13901-14000batch: iter_time=1.865e-04, forward_time=0.104, loss_ctc=43.924, loss_att=53.232, acc=0.704, loss=50.440, backward_time=0.097, grad_norm=36.302, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.011e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:27:16,018 (trainer:737) INFO: 16epoch:train:14001-14100batch: iter_time=1.817e-04, forward_time=0.105, loss_ctc=47.975, loss_att=57.575, acc=0.731, loss=54.695, backward_time=0.098, grad_norm=40.863, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.010e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 02:27:58,470 (trainer:737) INFO: 16epoch:train:14101-14200batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=46.409, loss_att=56.128, acc=0.719, loss=53.213, backward_time=0.098, grad_norm=35.027, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.009e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:28:41,407 (trainer:737) INFO: 16epoch:train:14201-14300batch: iter_time=1.566e-04, forward_time=0.109, loss_ctc=48.300, loss_att=60.772, acc=0.732, loss=57.030, backward_time=0.098, grad_norm=33.590, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.008e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 02:29:23,983 (trainer:737) INFO: 16epoch:train:14301-14400batch: iter_time=1.514e-04, forward_time=0.105, loss_ctc=44.868, loss_att=52.414, acc=0.731, loss=50.150, backward_time=0.098, grad_norm=35.399, clip=100.000, loss_scale=2.575e+34, optim_step_time=0.040, optim0_lr0=5.007e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 02:29:27,774 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 02:30:06,389 (trainer:737) INFO: 16epoch:train:14401-14500batch: iter_time=2.022e-04, forward_time=0.105, loss_ctc=44.252, loss_att=50.985, acc=0.739, loss=48.965, backward_time=0.098, grad_norm=36.856, clip=100.000, loss_scale=2.245e+34, optim_step_time=0.040, optim0_lr0=5.006e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:30:48,701 (trainer:737) INFO: 16epoch:train:14501-14600batch: iter_time=2.015e-04, forward_time=0.105, loss_ctc=42.933, loss_att=43.710, acc=0.728, loss=43.477, backward_time=0.097, grad_norm=34.539, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.005e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 02:31:31,073 (trainer:737) INFO: 16epoch:train:14601-14700batch: iter_time=1.929e-04, forward_time=0.104, loss_ctc=42.937, loss_att=53.548, acc=0.694, loss=50.364, backward_time=0.097, grad_norm=35.464, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.004e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 02:32:13,520 (trainer:737) INFO: 16epoch:train:14701-14800batch: iter_time=1.959e-04, forward_time=0.105, loss_ctc=43.851, loss_att=46.835, acc=0.737, loss=45.940, backward_time=0.097, grad_norm=33.891, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.003e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:32:56,748 (trainer:737) INFO: 16epoch:train:14801-14900batch: iter_time=2.141e-04, forward_time=0.105, loss_ctc=46.276, loss_att=51.298, acc=0.730, loss=49.791, backward_time=0.098, grad_norm=36.321, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.002e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-14 02:33:39,155 (trainer:737) INFO: 16epoch:train:14901-15000batch: iter_time=1.733e-04, forward_time=0.105, loss_ctc=53.053, loss_att=57.331, acc=0.722, loss=56.047, backward_time=0.098, grad_norm=41.796, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=5.001e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 02:53:28,517 (trainer:343) INFO: 16epoch results: [train] iter_time=0.212, forward_time=0.106, loss_ctc=46.950, loss_att=53.785, acc=0.725, loss=51.735, backward_time=0.098, grad_norm=36.679, clip=100.000, loss_scale=2.972e+34, optim_step_time=0.040, optim0_lr0=5.081e-04, train_time=0.659, time=2 hours, 44 minutes and 49.7 seconds, total_count=240000, gpu_max_cached_mem_GB=27.297, [valid] loss_ctc=57.539, cer_ctc=0.290, loss_att=60.703, acc=0.563, cer=0.406, wer=1.000, loss=59.754, time=19 minutes and 40.8 seconds, total_count=74736, gpu_max_cached_mem_GB=27.297 +[gpuc02:0/16] 2024-01-14 02:53:38,427 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-14 02:53:38,438 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/11epoch.pth +[gpuc02:0/16] 2024-01-14 02:53:38,438 (trainer:272) INFO: 17/45epoch started. Estimated time to finish: 3 days, 17 hours and 15 minutes +[gpuc02:0/16] 2024-01-14 02:53:38,447 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 02:53:58,066 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 02:54:01,612 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 02:54:01,612 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 02:54:01,615 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 02:58:38,019 (trainer:737) INFO: 17epoch:train:1-100batch: iter_time=2.432, forward_time=0.134, loss_ctc=47.381, loss_att=57.474, acc=0.697, loss=54.446, backward_time=0.104, grad_norm=41.464, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=5.000e-04, train_time=2.995 +[gpuc02:0/16] 2024-01-14 02:59:20,573 (trainer:737) INFO: 17epoch:train:101-200batch: iter_time=1.090e-04, forward_time=0.105, loss_ctc=53.382, loss_att=54.733, acc=0.703, loss=54.327, backward_time=0.099, grad_norm=40.141, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.999e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 03:00:02,978 (trainer:737) INFO: 17epoch:train:201-300batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=48.697, loss_att=60.592, acc=0.719, loss=57.024, backward_time=0.100, grad_norm=40.296, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.998e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:00:45,387 (trainer:737) INFO: 17epoch:train:301-400batch: iter_time=1.092e-04, forward_time=0.106, loss_ctc=51.935, loss_att=59.255, acc=0.717, loss=57.059, backward_time=0.100, grad_norm=38.937, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.997e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:01:29,544 (trainer:737) INFO: 17epoch:train:401-500batch: iter_time=1.160e-04, forward_time=0.116, loss_ctc=47.971, loss_att=48.873, acc=0.707, loss=48.602, backward_time=0.098, grad_norm=39.384, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.995e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-14 03:02:14,976 (trainer:737) INFO: 17epoch:train:501-600batch: iter_time=1.152e-04, forward_time=0.105, loss_ctc=52.029, loss_att=52.888, acc=0.742, loss=52.631, backward_time=0.099, grad_norm=48.038, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.994e-04, train_time=0.454 +[gpuc02:0/16] 2024-01-14 03:02:57,299 (trainer:737) INFO: 17epoch:train:601-700batch: iter_time=1.034e-04, forward_time=0.105, loss_ctc=51.199, loss_att=55.099, acc=0.714, loss=53.929, backward_time=0.098, grad_norm=41.344, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.993e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:03:44,965 (trainer:737) INFO: 17epoch:train:701-800batch: iter_time=9.871e-05, forward_time=0.107, loss_ctc=45.940, loss_att=44.223, acc=0.739, loss=44.738, backward_time=0.098, grad_norm=37.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.992e-04, train_time=0.476 +[gpuc02:0/16] 2024-01-14 03:04:34,533 (trainer:737) INFO: 17epoch:train:801-900batch: iter_time=1.128e-04, forward_time=0.106, loss_ctc=46.651, loss_att=59.087, acc=0.730, loss=55.356, backward_time=0.099, grad_norm=33.614, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.991e-04, train_time=0.495 +[gpuc02:0/16] 2024-01-14 03:05:17,963 (trainer:737) INFO: 17epoch:train:901-1000batch: iter_time=1.045e-04, forward_time=0.105, loss_ctc=42.764, loss_att=45.611, acc=0.738, loss=44.757, backward_time=0.098, grad_norm=35.386, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.990e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-14 03:06:00,048 (trainer:737) INFO: 17epoch:train:1001-1100batch: iter_time=1.064e-04, forward_time=0.104, loss_ctc=47.407, loss_att=52.613, acc=0.721, loss=51.052, backward_time=0.097, grad_norm=37.956, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.989e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 03:06:44,718 (trainer:737) INFO: 17epoch:train:1101-1200batch: iter_time=1.126e-04, forward_time=0.116, loss_ctc=59.793, loss_att=66.081, acc=0.710, loss=64.195, backward_time=0.109, grad_norm=49.368, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.988e-04, train_time=0.446 +[gpuc02:0/16] 2024-01-14 03:07:26,759 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 03:07:47,072 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 03:07:50,722 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 03:07:50,722 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 03:07:50,725 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 03:14:59,335 (trainer:737) INFO: 17epoch:train:1201-1300batch: iter_time=3.645, forward_time=0.110, loss_ctc=46.647, loss_att=50.942, acc=0.731, loss=49.654, backward_time=0.098, grad_norm=38.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.987e-04, train_time=4.946 +[gpuc02:0/16] 2024-01-14 03:15:42,201 (trainer:737) INFO: 17epoch:train:1301-1400batch: iter_time=1.576e-04, forward_time=0.104, loss_ctc=49.836, loss_att=56.319, acc=0.675, loss=54.374, backward_time=0.097, grad_norm=39.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.986e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 03:16:26,924 (trainer:737) INFO: 17epoch:train:1401-1500batch: iter_time=1.688e-04, forward_time=0.105, loss_ctc=51.823, loss_att=66.757, acc=0.695, loss=62.277, backward_time=0.098, grad_norm=39.771, clip=100.000, loss_scale=3.967e+34, optim_step_time=0.041, optim0_lr0=4.985e-04, train_time=0.447 +[gpuc02:0/16] 2024-01-14 03:17:09,548 (trainer:737) INFO: 17epoch:train:1501-1600batch: iter_time=1.618e-04, forward_time=0.105, loss_ctc=45.948, loss_att=51.489, acc=0.733, loss=49.827, backward_time=0.098, grad_norm=35.682, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.984e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 03:17:51,824 (trainer:737) INFO: 17epoch:train:1601-1700batch: iter_time=1.658e-04, forward_time=0.105, loss_ctc=48.030, loss_att=52.205, acc=0.697, loss=50.952, backward_time=0.097, grad_norm=37.733, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.983e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:18:34,133 (trainer:737) INFO: 17epoch:train:1701-1800batch: iter_time=1.763e-04, forward_time=0.106, loss_ctc=48.005, loss_att=46.803, acc=0.738, loss=47.163, backward_time=0.097, grad_norm=36.988, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.982e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:19:16,485 (trainer:737) INFO: 17epoch:train:1801-1900batch: iter_time=1.291e-04, forward_time=0.106, loss_ctc=52.721, loss_att=51.128, acc=0.719, loss=51.606, backward_time=0.097, grad_norm=45.941, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.981e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:19:58,631 (trainer:737) INFO: 17epoch:train:1901-2000batch: iter_time=1.446e-04, forward_time=0.105, loss_ctc=46.199, loss_att=51.991, acc=0.702, loss=50.254, backward_time=0.096, grad_norm=36.865, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.980e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 03:20:40,951 (trainer:737) INFO: 17epoch:train:2001-2100batch: iter_time=1.754e-04, forward_time=0.105, loss_ctc=47.385, loss_att=47.230, acc=0.748, loss=47.276, backward_time=0.097, grad_norm=33.888, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.979e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:21:23,313 (trainer:737) INFO: 17epoch:train:2101-2200batch: iter_time=1.563e-04, forward_time=0.105, loss_ctc=44.103, loss_att=56.614, acc=0.707, loss=52.861, backward_time=0.098, grad_norm=38.042, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.978e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:22:05,498 (trainer:737) INFO: 17epoch:train:2201-2300batch: iter_time=1.659e-04, forward_time=0.105, loss_ctc=40.762, loss_att=42.036, acc=0.744, loss=41.654, backward_time=0.097, grad_norm=33.630, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.977e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 03:22:47,884 (trainer:737) INFO: 17epoch:train:2301-2400batch: iter_time=1.675e-04, forward_time=0.106, loss_ctc=61.123, loss_att=72.633, acc=0.670, loss=69.180, backward_time=0.098, grad_norm=52.477, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.976e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:23:30,193 (trainer:737) INFO: 17epoch:train:2401-2500batch: iter_time=1.529e-04, forward_time=0.105, loss_ctc=48.188, loss_att=43.813, acc=0.753, loss=45.126, backward_time=0.097, grad_norm=36.128, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.975e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:23:37,867 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 03:23:58,312 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 03:24:02,098 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 03:24:02,098 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 03:24:02,101 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 03:29:39,664 (trainer:737) INFO: 17epoch:train:2501-2600batch: iter_time=3.207, forward_time=0.146, loss_ctc=44.903, loss_att=53.814, acc=0.691, loss=51.141, backward_time=0.110, grad_norm=36.818, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=4.974e-04, train_time=3.694 +[gpuc02:0/16] 2024-01-14 03:30:21,896 (trainer:737) INFO: 17epoch:train:2601-2700batch: iter_time=2.218e-04, forward_time=0.105, loss_ctc=50.840, loss_att=53.431, acc=0.702, loss=52.654, backward_time=0.096, grad_norm=37.485, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.973e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 03:31:04,255 (trainer:737) INFO: 17epoch:train:2701-2800batch: iter_time=2.460e-04, forward_time=0.105, loss_ctc=46.471, loss_att=58.427, acc=0.718, loss=54.840, backward_time=0.097, grad_norm=35.305, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.972e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:31:46,643 (trainer:737) INFO: 17epoch:train:2801-2900batch: iter_time=1.972e-04, forward_time=0.106, loss_ctc=50.176, loss_att=57.990, acc=0.713, loss=55.646, backward_time=0.097, grad_norm=39.264, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.971e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:32:30,085 (trainer:737) INFO: 17epoch:train:2901-3000batch: iter_time=1.966e-04, forward_time=0.104, loss_ctc=46.526, loss_att=49.060, acc=0.697, loss=48.300, backward_time=0.096, grad_norm=37.457, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.970e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-14 03:33:14,212 (trainer:737) INFO: 17epoch:train:3001-3100batch: iter_time=1.854e-04, forward_time=0.106, loss_ctc=49.508, loss_att=49.837, acc=0.742, loss=49.738, backward_time=0.097, grad_norm=41.622, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.969e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-14 03:33:56,998 (trainer:737) INFO: 17epoch:train:3101-3200batch: iter_time=1.762e-04, forward_time=0.105, loss_ctc=49.295, loss_att=51.890, acc=0.720, loss=51.112, backward_time=0.097, grad_norm=36.391, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.968e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 03:34:39,249 (trainer:737) INFO: 17epoch:train:3201-3300batch: iter_time=1.719e-04, forward_time=0.105, loss_ctc=45.209, loss_att=44.461, acc=0.731, loss=44.686, backward_time=0.096, grad_norm=35.170, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.967e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 03:35:13,486 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 03:35:21,643 (trainer:737) INFO: 17epoch:train:3301-3400batch: iter_time=1.594e-04, forward_time=0.107, loss_ctc=45.945, loss_att=58.030, acc=0.721, loss=54.405, backward_time=0.097, grad_norm=34.157, clip=100.000, loss_scale=3.755e+34, optim_step_time=0.041, optim0_lr0=4.966e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:36:03,950 (trainer:737) INFO: 17epoch:train:3401-3500batch: iter_time=1.686e-04, forward_time=0.105, loss_ctc=41.480, loss_att=44.281, acc=0.734, loss=43.441, backward_time=0.097, grad_norm=33.595, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.965e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:36:46,128 (trainer:737) INFO: 17epoch:train:3501-3600batch: iter_time=1.805e-04, forward_time=0.105, loss_ctc=46.868, loss_att=52.255, acc=0.716, loss=50.639, backward_time=0.096, grad_norm=35.470, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.964e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 03:37:28,481 (trainer:737) INFO: 17epoch:train:3601-3700batch: iter_time=1.862e-04, forward_time=0.106, loss_ctc=57.433, loss_att=64.012, acc=0.698, loss=62.038, backward_time=0.097, grad_norm=46.644, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.963e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:37:59,928 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 03:38:19,989 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 03:38:23,739 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 03:38:23,739 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 03:38:23,742 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 03:42:56,589 (trainer:737) INFO: 17epoch:train:3701-3800batch: iter_time=2.725, forward_time=0.110, loss_ctc=44.764, loss_att=47.997, acc=0.743, loss=47.027, backward_time=0.098, grad_norm=34.098, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.962e-04, train_time=3.281 +[gpuc02:0/16] 2024-01-14 03:43:38,978 (trainer:737) INFO: 17epoch:train:3801-3900batch: iter_time=1.779e-04, forward_time=0.106, loss_ctc=48.797, loss_att=56.566, acc=0.685, loss=54.235, backward_time=0.098, grad_norm=39.518, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.961e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:44:21,513 (trainer:737) INFO: 17epoch:train:3901-4000batch: iter_time=1.829e-04, forward_time=0.106, loss_ctc=50.279, loss_att=66.966, acc=0.702, loss=61.959, backward_time=0.098, grad_norm=40.150, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.960e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 03:45:04,177 (trainer:737) INFO: 17epoch:train:4001-4100batch: iter_time=1.446e-04, forward_time=0.105, loss_ctc=44.606, loss_att=49.946, acc=0.746, loss=48.344, backward_time=0.098, grad_norm=34.162, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.959e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 03:45:46,538 (trainer:737) INFO: 17epoch:train:4101-4200batch: iter_time=1.520e-04, forward_time=0.105, loss_ctc=47.258, loss_att=52.227, acc=0.706, loss=50.736, backward_time=0.097, grad_norm=36.807, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.957e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:46:29,126 (trainer:737) INFO: 17epoch:train:4201-4300batch: iter_time=1.475e-04, forward_time=0.107, loss_ctc=47.665, loss_att=45.990, acc=0.753, loss=46.492, backward_time=0.097, grad_norm=36.261, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.956e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 03:47:11,461 (trainer:737) INFO: 17epoch:train:4301-4400batch: iter_time=1.408e-04, forward_time=0.105, loss_ctc=49.897, loss_att=55.209, acc=0.716, loss=53.615, backward_time=0.097, grad_norm=45.244, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.955e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:47:53,725 (trainer:737) INFO: 17epoch:train:4401-4500batch: iter_time=1.558e-04, forward_time=0.104, loss_ctc=45.392, loss_att=50.635, acc=0.715, loss=49.062, backward_time=0.097, grad_norm=37.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.954e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 03:48:36,168 (trainer:737) INFO: 17epoch:train:4501-4600batch: iter_time=1.573e-04, forward_time=0.105, loss_ctc=46.426, loss_att=46.625, acc=0.760, loss=46.566, backward_time=0.097, grad_norm=33.450, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.953e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 03:49:19,615 (trainer:737) INFO: 17epoch:train:4601-4700batch: iter_time=1.564e-04, forward_time=0.105, loss_ctc=43.050, loss_att=56.354, acc=0.725, loss=52.363, backward_time=0.097, grad_norm=34.942, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.952e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-14 03:50:03,931 (trainer:737) INFO: 17epoch:train:4701-4800batch: iter_time=1.540e-04, forward_time=0.105, loss_ctc=40.164, loss_att=41.395, acc=0.756, loss=41.025, backward_time=0.097, grad_norm=31.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.951e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-14 03:50:47,021 (trainer:737) INFO: 17epoch:train:4801-4900batch: iter_time=1.469e-04, forward_time=0.106, loss_ctc=60.098, loss_att=73.531, acc=0.687, loss=69.501, backward_time=0.098, grad_norm=51.200, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.950e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 03:51:29,377 (trainer:737) INFO: 17epoch:train:4901-5000batch: iter_time=1.125e-04, forward_time=0.105, loss_ctc=47.463, loss_att=44.923, acc=0.761, loss=45.685, backward_time=0.097, grad_norm=34.026, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.949e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:51:34,320 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 03:51:54,285 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 03:51:58,062 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 03:51:58,062 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 03:51:58,065 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 03:56:35,531 (trainer:737) INFO: 17epoch:train:5001-5100batch: iter_time=2.514, forward_time=0.107, loss_ctc=44.329, loss_att=53.024, acc=0.705, loss=50.415, backward_time=0.099, grad_norm=36.605, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.948e-04, train_time=3.061 +[gpuc02:0/16] 2024-01-14 03:57:17,874 (trainer:737) INFO: 17epoch:train:5101-5200batch: iter_time=1.739e-04, forward_time=0.106, loss_ctc=50.285, loss_att=53.312, acc=0.710, loss=52.404, backward_time=0.098, grad_norm=38.256, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.947e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 03:58:00,380 (trainer:737) INFO: 17epoch:train:5201-5300batch: iter_time=1.594e-04, forward_time=0.105, loss_ctc=45.272, loss_att=57.215, acc=0.729, loss=53.632, backward_time=0.098, grad_norm=34.424, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.946e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 03:58:42,938 (trainer:737) INFO: 17epoch:train:5301-5400batch: iter_time=1.696e-04, forward_time=0.105, loss_ctc=48.866, loss_att=57.321, acc=0.723, loss=54.785, backward_time=0.098, grad_norm=37.263, clip=100.000, loss_scale=2.472e+34, optim_step_time=0.041, optim0_lr0=4.945e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 03:59:25,118 (trainer:737) INFO: 17epoch:train:5401-5500batch: iter_time=1.956e-04, forward_time=0.104, loss_ctc=45.001, loss_att=47.399, acc=0.713, loss=46.680, backward_time=0.097, grad_norm=34.068, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.944e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:00:07,562 (trainer:737) INFO: 17epoch:train:5501-5600batch: iter_time=1.688e-04, forward_time=0.105, loss_ctc=47.948, loss_att=51.877, acc=0.747, loss=50.699, backward_time=0.098, grad_norm=41.400, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.943e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:00:49,876 (trainer:737) INFO: 17epoch:train:5601-5700batch: iter_time=1.670e-04, forward_time=0.105, loss_ctc=49.016, loss_att=53.454, acc=0.723, loss=52.122, backward_time=0.098, grad_norm=36.923, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.942e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:01:32,114 (trainer:737) INFO: 17epoch:train:5701-5800batch: iter_time=1.704e-04, forward_time=0.105, loss_ctc=44.236, loss_att=43.543, acc=0.743, loss=43.751, backward_time=0.097, grad_norm=35.268, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.941e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:02:14,655 (trainer:737) INFO: 17epoch:train:5801-5900batch: iter_time=1.680e-04, forward_time=0.106, loss_ctc=45.415, loss_att=58.613, acc=0.735, loss=54.653, backward_time=0.098, grad_norm=32.849, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.940e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:02:56,967 (trainer:737) INFO: 17epoch:train:5901-6000batch: iter_time=1.804e-04, forward_time=0.105, loss_ctc=41.104, loss_att=44.106, acc=0.745, loss=43.206, backward_time=0.098, grad_norm=34.099, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.939e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:03:39,205 (trainer:737) INFO: 17epoch:train:6001-6100batch: iter_time=1.861e-04, forward_time=0.105, loss_ctc=45.656, loss_att=51.246, acc=0.726, loss=49.569, backward_time=0.097, grad_norm=36.900, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.938e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:03:51,870 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 04:04:21,681 (trainer:737) INFO: 17epoch:train:6101-6200batch: iter_time=1.887e-04, forward_time=0.106, loss_ctc=55.825, loss_att=63.288, acc=0.716, loss=61.049, backward_time=0.098, grad_norm=44.276, clip=100.000, loss_scale=2.685e+34, optim_step_time=0.042, optim0_lr0=4.937e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:04:47,303 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 04:05:07,492 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 04:05:11,600 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 04:05:11,600 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 04:05:11,603 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 04:09:37,992 (trainer:737) INFO: 17epoch:train:6201-6300batch: iter_time=2.548, forward_time=0.106, loss_ctc=43.622, loss_att=47.732, acc=0.743, loss=46.499, backward_time=0.098, grad_norm=33.933, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.936e-04, train_time=3.163 +[gpuc02:0/16] 2024-01-14 04:10:20,492 (trainer:737) INFO: 17epoch:train:6301-6400batch: iter_time=1.968e-04, forward_time=0.106, loss_ctc=47.841, loss_att=53.519, acc=0.692, loss=51.816, backward_time=0.097, grad_norm=36.757, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.935e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:11:03,340 (trainer:737) INFO: 17epoch:train:6401-6500batch: iter_time=1.593e-04, forward_time=0.106, loss_ctc=49.947, loss_att=65.459, acc=0.706, loss=60.806, backward_time=0.098, grad_norm=39.503, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.934e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 04:11:45,948 (trainer:737) INFO: 17epoch:train:6501-6600batch: iter_time=1.728e-04, forward_time=0.105, loss_ctc=44.319, loss_att=49.237, acc=0.748, loss=47.761, backward_time=0.097, grad_norm=34.042, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.933e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 04:12:28,298 (trainer:737) INFO: 17epoch:train:6601-6700batch: iter_time=1.981e-04, forward_time=0.105, loss_ctc=46.295, loss_att=51.410, acc=0.708, loss=49.875, backward_time=0.097, grad_norm=35.049, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.932e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:13:10,723 (trainer:737) INFO: 17epoch:train:6701-6800batch: iter_time=1.666e-04, forward_time=0.104, loss_ctc=46.490, loss_att=45.028, acc=0.754, loss=45.467, backward_time=0.097, grad_norm=34.413, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.931e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:13:53,247 (trainer:737) INFO: 17epoch:train:6801-6900batch: iter_time=1.458e-04, forward_time=0.105, loss_ctc=48.552, loss_att=53.874, acc=0.718, loss=52.278, backward_time=0.097, grad_norm=46.242, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.930e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:14:35,585 (trainer:737) INFO: 17epoch:train:6901-7000batch: iter_time=1.268e-04, forward_time=0.104, loss_ctc=44.822, loss_att=50.129, acc=0.716, loss=48.537, backward_time=0.096, grad_norm=36.360, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.929e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:15:18,095 (trainer:737) INFO: 17epoch:train:7001-7100batch: iter_time=1.715e-04, forward_time=0.105, loss_ctc=45.897, loss_att=45.540, acc=0.763, loss=45.647, backward_time=0.098, grad_norm=32.098, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.928e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:16:00,638 (trainer:737) INFO: 17epoch:train:7101-7200batch: iter_time=1.658e-04, forward_time=0.106, loss_ctc=42.531, loss_att=55.169, acc=0.728, loss=51.378, backward_time=0.098, grad_norm=36.014, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.927e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:16:42,956 (trainer:737) INFO: 17epoch:train:7201-7300batch: iter_time=1.973e-04, forward_time=0.105, loss_ctc=40.031, loss_att=40.893, acc=0.758, loss=40.634, backward_time=0.097, grad_norm=32.725, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.926e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:17:25,501 (trainer:737) INFO: 17epoch:train:7301-7400batch: iter_time=2.073e-04, forward_time=0.106, loss_ctc=58.698, loss_att=71.747, acc=0.690, loss=67.832, backward_time=0.098, grad_norm=48.510, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.925e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:18:07,972 (trainer:737) INFO: 17epoch:train:7401-7500batch: iter_time=1.780e-04, forward_time=0.105, loss_ctc=46.814, loss_att=44.176, acc=0.763, loss=44.968, backward_time=0.098, grad_norm=35.891, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.924e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:18:13,389 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 04:18:33,867 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 04:18:37,627 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 04:18:37,627 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 04:18:37,630 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 04:23:44,840 (trainer:737) INFO: 17epoch:train:7501-7600batch: iter_time=2.460, forward_time=0.105, loss_ctc=44.449, loss_att=57.904, acc=0.686, loss=53.867, backward_time=0.097, grad_norm=36.974, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.923e-04, train_time=3.368 +[gpuc02:0/16] 2024-01-14 04:24:27,834 (trainer:737) INFO: 17epoch:train:7601-7700batch: iter_time=1.289e-04, forward_time=0.107, loss_ctc=49.977, loss_att=53.889, acc=0.705, loss=52.716, backward_time=0.097, grad_norm=40.613, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.922e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 04:25:11,572 (trainer:737) INFO: 17epoch:train:7701-7800batch: iter_time=1.463e-04, forward_time=0.105, loss_ctc=45.724, loss_att=59.013, acc=0.720, loss=55.026, backward_time=0.097, grad_norm=37.909, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.921e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-14 04:25:55,941 (trainer:737) INFO: 17epoch:train:7801-7900batch: iter_time=1.649e-04, forward_time=0.105, loss_ctc=49.047, loss_att=58.010, acc=0.712, loss=55.321, backward_time=0.097, grad_norm=37.103, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.920e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-14 04:26:38,049 (trainer:737) INFO: 17epoch:train:7901-8000batch: iter_time=1.807e-04, forward_time=0.103, loss_ctc=44.949, loss_att=48.600, acc=0.699, loss=47.505, backward_time=0.096, grad_norm=34.004, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.919e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 04:27:20,685 (trainer:737) INFO: 17epoch:train:8001-8100batch: iter_time=1.521e-04, forward_time=0.104, loss_ctc=46.458, loss_att=49.429, acc=0.744, loss=48.537, backward_time=0.097, grad_norm=39.742, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.918e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 04:28:03,004 (trainer:737) INFO: 17epoch:train:8101-8200batch: iter_time=1.619e-04, forward_time=0.104, loss_ctc=48.160, loss_att=51.700, acc=0.725, loss=50.638, backward_time=0.097, grad_norm=36.873, clip=100.000, loss_scale=3.531e+34, optim_step_time=0.041, optim0_lr0=4.917e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:28:45,296 (trainer:737) INFO: 17epoch:train:8201-8300batch: iter_time=1.697e-04, forward_time=0.105, loss_ctc=44.152, loss_att=44.553, acc=0.732, loss=44.433, backward_time=0.097, grad_norm=34.665, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.916e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:29:27,790 (trainer:737) INFO: 17epoch:train:8301-8400batch: iter_time=1.533e-04, forward_time=0.105, loss_ctc=45.487, loss_att=58.508, acc=0.721, loss=54.601, backward_time=0.097, grad_norm=33.780, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.915e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:30:10,051 (trainer:737) INFO: 17epoch:train:8401-8500batch: iter_time=1.656e-04, forward_time=0.104, loss_ctc=40.504, loss_att=44.271, acc=0.736, loss=43.141, backward_time=0.097, grad_norm=34.529, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.914e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:30:52,269 (trainer:737) INFO: 17epoch:train:8501-8600batch: iter_time=1.389e-04, forward_time=0.105, loss_ctc=45.144, loss_att=51.930, acc=0.718, loss=49.894, backward_time=0.096, grad_norm=36.276, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.913e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:31:34,686 (trainer:737) INFO: 17epoch:train:8601-8700batch: iter_time=1.523e-04, forward_time=0.105, loss_ctc=56.172, loss_att=63.892, acc=0.699, loss=61.576, backward_time=0.097, grad_norm=46.177, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.912e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:32:01,781 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 04:32:22,368 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 04:32:26,140 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 04:32:26,140 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 04:32:26,143 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 04:36:58,304 (trainer:737) INFO: 17epoch:train:8701-8800batch: iter_time=2.488, forward_time=0.105, loss_ctc=44.114, loss_att=46.682, acc=0.747, loss=45.911, backward_time=0.097, grad_norm=34.779, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.911e-04, train_time=3.236 +[gpuc02:0/16] 2024-01-14 04:37:40,608 (trainer:737) INFO: 17epoch:train:8801-8900batch: iter_time=1.406e-04, forward_time=0.105, loss_ctc=47.523, loss_att=54.257, acc=0.691, loss=52.237, backward_time=0.097, grad_norm=37.179, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.910e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:38:23,142 (trainer:737) INFO: 17epoch:train:8901-9000batch: iter_time=1.720e-04, forward_time=0.106, loss_ctc=49.706, loss_att=66.810, acc=0.704, loss=61.679, backward_time=0.098, grad_norm=39.544, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.909e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:39:05,510 (trainer:737) INFO: 17epoch:train:9001-9100batch: iter_time=1.669e-04, forward_time=0.106, loss_ctc=44.434, loss_att=49.587, acc=0.747, loss=48.041, backward_time=0.098, grad_norm=33.391, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.908e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:39:47,826 (trainer:737) INFO: 17epoch:train:9101-9200batch: iter_time=1.785e-04, forward_time=0.105, loss_ctc=45.886, loss_att=51.657, acc=0.710, loss=49.925, backward_time=0.098, grad_norm=35.275, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.908e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:39:57,096 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 04:40:30,036 (trainer:737) INFO: 17epoch:train:9201-9300batch: iter_time=1.703e-04, forward_time=0.105, loss_ctc=46.602, loss_att=45.204, acc=0.754, loss=45.623, backward_time=0.097, grad_norm=34.681, clip=100.000, loss_scale=2.517e+34, optim_step_time=0.041, optim0_lr0=4.907e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:41:12,336 (trainer:737) INFO: 17epoch:train:9301-9400batch: iter_time=1.484e-04, forward_time=0.106, loss_ctc=47.925, loss_att=53.122, acc=0.724, loss=51.563, backward_time=0.098, grad_norm=43.645, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.906e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:41:54,550 (trainer:737) INFO: 17epoch:train:9401-9500batch: iter_time=1.350e-04, forward_time=0.104, loss_ctc=44.510, loss_att=49.647, acc=0.720, loss=48.106, backward_time=0.097, grad_norm=34.384, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.905e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:42:36,923 (trainer:737) INFO: 17epoch:train:9501-9600batch: iter_time=1.579e-04, forward_time=0.106, loss_ctc=45.920, loss_att=45.807, acc=0.763, loss=45.841, backward_time=0.097, grad_norm=32.509, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.904e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:43:19,981 (trainer:737) INFO: 17epoch:train:9601-9700batch: iter_time=1.289e-04, forward_time=0.106, loss_ctc=42.490, loss_att=55.249, acc=0.727, loss=51.421, backward_time=0.098, grad_norm=34.884, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.903e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 04:44:02,541 (trainer:737) INFO: 17epoch:train:9701-9800batch: iter_time=1.295e-04, forward_time=0.105, loss_ctc=39.802, loss_att=41.336, acc=0.756, loss=40.876, backward_time=0.098, grad_norm=33.026, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.902e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:44:45,639 (trainer:737) INFO: 17epoch:train:9801-9900batch: iter_time=1.187e-04, forward_time=0.106, loss_ctc=57.658, loss_att=72.037, acc=0.692, loss=67.723, backward_time=0.098, grad_norm=55.230, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.901e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 04:45:30,188 (trainer:737) INFO: 17epoch:train:9901-10000batch: iter_time=1.046e-04, forward_time=0.105, loss_ctc=45.971, loss_att=44.755, acc=0.761, loss=45.120, backward_time=0.098, grad_norm=34.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.900e-04, train_time=0.445 +[gpuc02:0/16] 2024-01-14 04:45:37,731 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 04:45:58,190 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 04:46:02,222 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 04:46:02,222 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 04:46:02,225 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 04:51:00,102 (trainer:737) INFO: 17epoch:train:10001-10100batch: iter_time=2.524, forward_time=0.104, loss_ctc=43.801, loss_att=52.896, acc=0.706, loss=50.168, backward_time=0.097, grad_norm=37.520, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.899e-04, train_time=3.299 +[gpuc02:0/16] 2024-01-14 04:51:42,477 (trainer:737) INFO: 17epoch:train:10101-10200batch: iter_time=1.155e-04, forward_time=0.104, loss_ctc=49.360, loss_att=52.322, acc=0.713, loss=51.433, backward_time=0.098, grad_norm=38.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.898e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:52:25,099 (trainer:737) INFO: 17epoch:train:10201-10300batch: iter_time=1.016e-04, forward_time=0.106, loss_ctc=45.110, loss_att=56.802, acc=0.732, loss=53.294, backward_time=0.098, grad_norm=34.446, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.897e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 04:53:07,626 (trainer:737) INFO: 17epoch:train:10301-10400batch: iter_time=1.164e-04, forward_time=0.106, loss_ctc=48.287, loss_att=56.460, acc=0.728, loss=54.008, backward_time=0.099, grad_norm=34.557, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.896e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:53:50,166 (trainer:737) INFO: 17epoch:train:10401-10500batch: iter_time=1.106e-04, forward_time=0.105, loss_ctc=44.537, loss_att=47.256, acc=0.714, loss=46.440, backward_time=0.097, grad_norm=35.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.895e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:54:32,632 (trainer:737) INFO: 17epoch:train:10501-10600batch: iter_time=1.238e-04, forward_time=0.105, loss_ctc=46.045, loss_att=51.813, acc=0.743, loss=50.082, backward_time=0.098, grad_norm=39.533, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.894e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:55:15,044 (trainer:737) INFO: 17epoch:train:10601-10700batch: iter_time=1.189e-04, forward_time=0.105, loss_ctc=48.599, loss_att=52.532, acc=0.727, loss=51.352, backward_time=0.097, grad_norm=38.479, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.893e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 04:55:57,274 (trainer:737) INFO: 17epoch:train:10701-10800batch: iter_time=1.239e-04, forward_time=0.105, loss_ctc=43.159, loss_att=42.850, acc=0.746, loss=42.943, backward_time=0.098, grad_norm=36.650, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.892e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:56:39,834 (trainer:737) INFO: 17epoch:train:10801-10900batch: iter_time=1.244e-04, forward_time=0.106, loss_ctc=45.338, loss_att=57.975, acc=0.736, loss=54.184, backward_time=0.099, grad_norm=33.601, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.891e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:57:22,171 (trainer:737) INFO: 17epoch:train:10901-11000batch: iter_time=1.087e-04, forward_time=0.105, loss_ctc=40.239, loss_att=43.041, acc=0.750, loss=42.200, backward_time=0.098, grad_norm=32.989, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.890e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 04:58:04,435 (trainer:737) INFO: 17epoch:train:11001-11100batch: iter_time=1.383e-04, forward_time=0.104, loss_ctc=44.856, loss_att=51.365, acc=0.728, loss=49.412, backward_time=0.098, grad_norm=35.030, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.889e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 04:58:46,937 (trainer:737) INFO: 17epoch:train:11101-11200batch: iter_time=1.294e-04, forward_time=0.106, loss_ctc=55.489, loss_att=63.675, acc=0.719, loss=61.219, backward_time=0.099, grad_norm=46.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.888e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 04:59:14,842 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 04:59:35,320 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 04:59:39,103 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 04:59:39,103 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 04:59:39,106 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 05:04:11,164 (trainer:737) INFO: 17epoch:train:11201-11300batch: iter_time=2.439, forward_time=0.105, loss_ctc=43.568, loss_att=48.544, acc=0.741, loss=47.051, backward_time=0.097, grad_norm=34.508, clip=100.000, loss_scale=3.697e+34, optim_step_time=0.041, optim0_lr0=4.887e-04, train_time=3.242 +[gpuc02:0/16] 2024-01-14 05:04:53,302 (trainer:737) INFO: 17epoch:train:11301-11400batch: iter_time=1.245e-04, forward_time=0.104, loss_ctc=47.569, loss_att=55.914, acc=0.681, loss=53.411, backward_time=0.096, grad_norm=38.387, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.886e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:05:35,665 (trainer:737) INFO: 17epoch:train:11401-11500batch: iter_time=1.282e-04, forward_time=0.105, loss_ctc=49.286, loss_att=65.646, acc=0.703, loss=60.738, backward_time=0.097, grad_norm=39.131, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.885e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:06:18,253 (trainer:737) INFO: 17epoch:train:11501-11600batch: iter_time=1.023e-04, forward_time=0.106, loss_ctc=44.018, loss_att=51.032, acc=0.739, loss=48.928, backward_time=0.097, grad_norm=32.768, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.884e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 05:07:00,711 (trainer:737) INFO: 17epoch:train:11601-11700batch: iter_time=1.130e-04, forward_time=0.108, loss_ctc=45.747, loss_att=51.126, acc=0.702, loss=49.513, backward_time=0.096, grad_norm=33.823, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.883e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 05:07:42,803 (trainer:737) INFO: 17epoch:train:11701-11800batch: iter_time=9.997e-05, forward_time=0.104, loss_ctc=46.331, loss_att=46.000, acc=0.742, loss=46.100, backward_time=0.096, grad_norm=35.735, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.882e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:08:05,551 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 05:08:24,948 (trainer:737) INFO: 17epoch:train:11801-11900batch: iter_time=1.184e-04, forward_time=0.104, loss_ctc=47.824, loss_att=50.100, acc=0.728, loss=49.417, backward_time=0.096, grad_norm=44.781, clip=100.000, loss_scale=3.189e+34, optim_step_time=0.041, optim0_lr0=4.881e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:09:07,013 (trainer:737) INFO: 17epoch:train:11901-12000batch: iter_time=1.026e-04, forward_time=0.103, loss_ctc=44.472, loss_att=51.511, acc=0.707, loss=49.399, backward_time=0.096, grad_norm=37.857, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.880e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 05:09:49,263 (trainer:737) INFO: 17epoch:train:12001-12100batch: iter_time=1.101e-04, forward_time=0.105, loss_ctc=45.482, loss_att=46.101, acc=0.752, loss=45.915, backward_time=0.097, grad_norm=33.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.879e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:10:31,577 (trainer:737) INFO: 17epoch:train:12101-12200batch: iter_time=1.003e-04, forward_time=0.104, loss_ctc=42.205, loss_att=55.337, acc=0.715, loss=51.397, backward_time=0.097, grad_norm=34.319, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.878e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:11:13,736 (trainer:737) INFO: 17epoch:train:12201-12300batch: iter_time=1.123e-04, forward_time=0.102, loss_ctc=39.699, loss_att=41.549, acc=0.748, loss=40.994, backward_time=0.096, grad_norm=32.228, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.877e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:11:56,121 (trainer:737) INFO: 17epoch:train:12301-12400batch: iter_time=1.131e-04, forward_time=0.105, loss_ctc=58.614, loss_att=72.202, acc=0.674, loss=68.126, backward_time=0.097, grad_norm=53.448, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.876e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 05:12:38,356 (trainer:737) INFO: 17epoch:train:12401-12500batch: iter_time=1.042e-04, forward_time=0.104, loss_ctc=46.052, loss_att=43.151, acc=0.758, loss=44.021, backward_time=0.097, grad_norm=35.275, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.875e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:12:41,929 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 05:13:02,358 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 05:13:06,090 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 05:13:06,091 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 05:13:06,094 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 05:18:04,147 (trainer:737) INFO: 17epoch:train:12501-12600batch: iter_time=2.435, forward_time=0.105, loss_ctc=43.358, loss_att=52.683, acc=0.695, loss=49.885, backward_time=0.097, grad_norm=35.946, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.874e-04, train_time=3.258 +[gpuc02:0/16] 2024-01-14 05:18:46,436 (trainer:737) INFO: 17epoch:train:12601-12700batch: iter_time=1.323e-04, forward_time=0.105, loss_ctc=49.178, loss_att=52.313, acc=0.708, loss=51.372, backward_time=0.097, grad_norm=38.289, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.873e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:19:28,716 (trainer:737) INFO: 17epoch:train:12701-12800batch: iter_time=1.496e-04, forward_time=0.106, loss_ctc=44.948, loss_att=57.374, acc=0.724, loss=53.646, backward_time=0.098, grad_norm=37.215, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.872e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:20:10,986 (trainer:737) INFO: 17epoch:train:12801-12900batch: iter_time=1.564e-04, forward_time=0.106, loss_ctc=47.699, loss_att=56.179, acc=0.716, loss=53.635, backward_time=0.098, grad_norm=35.736, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.871e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:20:53,004 (trainer:737) INFO: 17epoch:train:12901-13000batch: iter_time=1.523e-04, forward_time=0.105, loss_ctc=44.050, loss_att=47.474, acc=0.703, loss=46.447, backward_time=0.097, grad_norm=34.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.871e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 05:21:35,228 (trainer:737) INFO: 17epoch:train:13001-13100batch: iter_time=1.684e-04, forward_time=0.105, loss_ctc=46.512, loss_att=49.721, acc=0.745, loss=48.758, backward_time=0.097, grad_norm=41.942, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.870e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:22:17,449 (trainer:737) INFO: 17epoch:train:13101-13200batch: iter_time=1.430e-04, forward_time=0.105, loss_ctc=48.456, loss_att=51.213, acc=0.726, loss=50.386, backward_time=0.097, grad_norm=36.782, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.869e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:22:59,591 (trainer:737) INFO: 17epoch:train:13201-13300batch: iter_time=1.460e-04, forward_time=0.105, loss_ctc=43.128, loss_att=43.779, acc=0.734, loss=43.584, backward_time=0.097, grad_norm=36.764, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.868e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:23:41,917 (trainer:737) INFO: 17epoch:train:13301-13400batch: iter_time=1.515e-04, forward_time=0.106, loss_ctc=45.168, loss_att=57.908, acc=0.723, loss=54.086, backward_time=0.098, grad_norm=34.078, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.867e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:24:24,403 (trainer:737) INFO: 17epoch:train:13401-13500batch: iter_time=1.431e-04, forward_time=0.105, loss_ctc=40.150, loss_att=43.557, acc=0.740, loss=42.535, backward_time=0.097, grad_norm=33.453, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.866e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 05:25:07,739 (trainer:737) INFO: 17epoch:train:13501-13600batch: iter_time=1.610e-04, forward_time=0.105, loss_ctc=44.733, loss_att=50.859, acc=0.720, loss=49.021, backward_time=0.097, grad_norm=35.951, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.865e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-14 05:25:52,287 (trainer:737) INFO: 17epoch:train:13601-13700batch: iter_time=1.651e-04, forward_time=0.105, loss_ctc=55.602, loss_att=63.632, acc=0.701, loss=61.223, backward_time=0.098, grad_norm=45.961, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.864e-04, train_time=0.445 +[gpuc02:0/16] 2024-01-14 05:26:16,534 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 05:26:36,899 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 05:26:40,608 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 05:26:40,608 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 05:26:40,611 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 05:31:25,133 (trainer:737) INFO: 17epoch:train:13701-13800batch: iter_time=2.453, forward_time=0.105, loss_ctc=43.297, loss_att=45.479, acc=0.745, loss=44.824, backward_time=0.098, grad_norm=34.198, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.863e-04, train_time=3.328 +[gpuc02:0/16] 2024-01-14 05:32:07,221 (trainer:737) INFO: 17epoch:train:13801-13900batch: iter_time=1.109e-04, forward_time=0.104, loss_ctc=47.749, loss_att=53.174, acc=0.686, loss=51.546, backward_time=0.097, grad_norm=39.618, clip=100.000, loss_scale=3.032e+34, optim_step_time=0.042, optim0_lr0=4.862e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:32:49,628 (trainer:737) INFO: 17epoch:train:13901-14000batch: iter_time=1.182e-04, forward_time=0.106, loss_ctc=49.010, loss_att=63.434, acc=0.706, loss=59.107, backward_time=0.098, grad_norm=39.910, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.861e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 05:33:32,004 (trainer:737) INFO: 17epoch:train:14001-14100batch: iter_time=1.324e-04, forward_time=0.105, loss_ctc=43.765, loss_att=49.449, acc=0.741, loss=47.744, backward_time=0.098, grad_norm=32.601, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.860e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 05:34:14,222 (trainer:737) INFO: 17epoch:train:14101-14200batch: iter_time=1.143e-04, forward_time=0.104, loss_ctc=45.261, loss_att=50.386, acc=0.705, loss=48.848, backward_time=0.097, grad_norm=34.832, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.859e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:34:56,308 (trainer:737) INFO: 17epoch:train:14201-14300batch: iter_time=1.153e-04, forward_time=0.104, loss_ctc=46.219, loss_att=45.344, acc=0.743, loss=45.606, backward_time=0.097, grad_norm=35.430, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.858e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:35:38,544 (trainer:737) INFO: 17epoch:train:14301-14400batch: iter_time=1.327e-04, forward_time=0.105, loss_ctc=46.779, loss_att=48.702, acc=0.730, loss=48.125, backward_time=0.097, grad_norm=42.369, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.857e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 05:36:20,606 (trainer:737) INFO: 17epoch:train:14401-14500batch: iter_time=1.263e-04, forward_time=0.104, loss_ctc=44.549, loss_att=50.740, acc=0.709, loss=48.883, backward_time=0.097, grad_norm=36.871, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.856e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 05:37:02,893 (trainer:737) INFO: 17epoch:train:14501-14600batch: iter_time=1.025e-04, forward_time=0.106, loss_ctc=45.315, loss_att=45.869, acc=0.753, loss=45.703, backward_time=0.098, grad_norm=32.565, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.855e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:37:45,195 (trainer:737) INFO: 17epoch:train:14601-14700batch: iter_time=1.076e-04, forward_time=0.106, loss_ctc=41.852, loss_att=54.299, acc=0.716, loss=50.565, backward_time=0.098, grad_norm=34.277, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.854e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:38:27,338 (trainer:737) INFO: 17epoch:train:14701-14800batch: iter_time=1.160e-04, forward_time=0.105, loss_ctc=39.403, loss_att=40.992, acc=0.750, loss=40.515, backward_time=0.097, grad_norm=33.251, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.853e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 05:39:09,651 (trainer:737) INFO: 17epoch:train:14801-14900batch: iter_time=1.065e-04, forward_time=0.105, loss_ctc=57.861, loss_att=72.256, acc=0.675, loss=67.938, backward_time=0.098, grad_norm=51.801, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.852e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 05:39:51,886 (trainer:737) INFO: 17epoch:train:14901-15000batch: iter_time=1.069e-04, forward_time=0.105, loss_ctc=45.613, loss_att=42.443, acc=0.760, loss=43.394, backward_time=0.097, grad_norm=33.788, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.851e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:00:00,866 (trainer:343) INFO: 17epoch results: [train] iter_time=0.213, forward_time=0.106, loss_ctc=47.022, loss_att=52.633, acc=0.723, loss=50.950, backward_time=0.098, grad_norm=37.599, clip=100.000, loss_scale=2.851e+34, optim_step_time=0.041, optim0_lr0=4.924e-04, train_time=0.665, time=2 hours, 46 minutes and 23.16 seconds, total_count=255000, gpu_max_cached_mem_GB=27.297, [valid] loss_ctc=58.479, cer_ctc=0.301, loss_att=56.389, acc=0.575, cer=0.366, wer=0.999, loss=57.016, time=19 minutes and 59.04 seconds, total_count=79407, gpu_max_cached_mem_GB=27.297 +[gpuc02:0/16] 2024-01-14 06:00:05,910 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-14 06:00:05,914 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/12epoch.pth +[gpuc02:0/16] 2024-01-14 06:00:05,914 (trainer:272) INFO: 18/45epoch started. Estimated time to finish: 3 days, 14 hours and 35 minutes +[gpuc02:0/16] 2024-01-14 06:00:05,925 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 06:00:25,564 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 06:00:29,135 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 06:00:29,136 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 06:00:29,139 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 06:05:15,159 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 06:05:21,119 (trainer:737) INFO: 18epoch:train:1-100batch: iter_time=2.329, forward_time=0.156, loss_ctc=41.843, loss_att=51.365, acc=0.728, loss=48.508, backward_time=0.103, grad_norm=34.585, clip=100.000, loss_scale=3.860e+34, optim_step_time=0.043, optim0_lr0=4.850e-04, train_time=3.152 +[gpuc02:0/16] 2024-01-14 06:06:07,177 (trainer:737) INFO: 18epoch:train:101-200batch: iter_time=9.038e-05, forward_time=0.104, loss_ctc=51.631, loss_att=56.485, acc=0.711, loss=55.029, backward_time=0.099, grad_norm=37.144, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.849e-04, train_time=0.460 +[gpuc02:0/16] 2024-01-14 06:06:49,519 (trainer:737) INFO: 18epoch:train:201-300batch: iter_time=8.924e-05, forward_time=0.103, loss_ctc=42.058, loss_att=42.768, acc=0.716, loss=42.555, backward_time=0.098, grad_norm=32.957, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.849e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 06:07:34,905 (trainer:737) INFO: 18epoch:train:301-400batch: iter_time=1.001e-04, forward_time=0.104, loss_ctc=49.984, loss_att=56.145, acc=0.712, loss=54.297, backward_time=0.099, grad_norm=39.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.848e-04, train_time=0.454 +[gpuc02:0/16] 2024-01-14 06:08:21,019 (trainer:737) INFO: 18epoch:train:401-500batch: iter_time=9.777e-05, forward_time=0.104, loss_ctc=59.863, loss_att=58.065, acc=0.716, loss=58.604, backward_time=0.098, grad_norm=55.318, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.847e-04, train_time=0.461 +[gpuc02:0/16] 2024-01-14 06:09:07,631 (trainer:737) INFO: 18epoch:train:501-600batch: iter_time=1.051e-04, forward_time=0.104, loss_ctc=48.178, loss_att=63.580, acc=0.694, loss=58.959, backward_time=0.098, grad_norm=38.679, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.846e-04, train_time=0.466 +[gpuc02:0/16] 2024-01-14 06:09:51,406 (trainer:737) INFO: 18epoch:train:601-700batch: iter_time=9.399e-05, forward_time=0.104, loss_ctc=59.247, loss_att=54.661, acc=0.722, loss=56.037, backward_time=0.098, grad_norm=45.045, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.845e-04, train_time=0.438 +[gpuc02:0/16] 2024-01-14 06:10:34,436 (trainer:737) INFO: 18epoch:train:701-800batch: iter_time=9.257e-05, forward_time=0.104, loss_ctc=46.259, loss_att=54.185, acc=0.716, loss=51.807, backward_time=0.097, grad_norm=35.022, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.844e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 06:11:16,837 (trainer:737) INFO: 18epoch:train:801-900batch: iter_time=9.244e-05, forward_time=0.105, loss_ctc=56.534, loss_att=56.749, acc=0.720, loss=56.685, backward_time=0.099, grad_norm=40.423, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.843e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 06:11:59,628 (trainer:737) INFO: 18epoch:train:901-1000batch: iter_time=9.692e-05, forward_time=0.104, loss_ctc=46.430, loss_att=52.844, acc=0.733, loss=50.920, backward_time=0.098, grad_norm=36.448, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.842e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 06:12:41,850 (trainer:737) INFO: 18epoch:train:1001-1100batch: iter_time=9.833e-05, forward_time=0.105, loss_ctc=53.546, loss_att=60.393, acc=0.715, loss=58.339, backward_time=0.098, grad_norm=43.408, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.841e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:13:26,448 (trainer:737) INFO: 18epoch:train:1101-1200batch: iter_time=9.786e-05, forward_time=0.124, loss_ctc=45.276, loss_att=48.439, acc=0.702, loss=47.490, backward_time=0.098, grad_norm=39.954, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.840e-04, train_time=0.446 +[gpuc02:0/16] 2024-01-14 06:13:54,455 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 06:14:14,845 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 06:14:18,636 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 06:14:18,637 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 06:14:18,640 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 06:21:48,600 (trainer:737) INFO: 18epoch:train:1201-1300batch: iter_time=2.573, forward_time=0.110, loss_ctc=41.627, loss_att=51.464, acc=0.710, loss=48.513, backward_time=0.098, grad_norm=34.833, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.839e-04, train_time=5.021 +[gpuc02:0/16] 2024-01-14 06:22:31,247 (trainer:737) INFO: 18epoch:train:1301-1400batch: iter_time=9.741e-05, forward_time=0.109, loss_ctc=48.627, loss_att=52.014, acc=0.733, loss=50.998, backward_time=0.099, grad_norm=33.616, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.838e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 06:23:13,942 (trainer:737) INFO: 18epoch:train:1401-1500batch: iter_time=1.077e-04, forward_time=0.105, loss_ctc=44.234, loss_att=47.063, acc=0.731, loss=46.215, backward_time=0.098, grad_norm=31.932, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.837e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 06:23:56,339 (trainer:737) INFO: 18epoch:train:1501-1600batch: iter_time=1.144e-04, forward_time=0.104, loss_ctc=41.861, loss_att=42.250, acc=0.708, loss=42.133, backward_time=0.099, grad_norm=36.263, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.836e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 06:24:39,808 (trainer:737) INFO: 18epoch:train:1601-1700batch: iter_time=1.273e-04, forward_time=0.107, loss_ctc=53.582, loss_att=61.682, acc=0.713, loss=59.252, backward_time=0.099, grad_norm=49.542, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.835e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-14 06:25:22,656 (trainer:737) INFO: 18epoch:train:1701-1800batch: iter_time=1.246e-04, forward_time=0.105, loss_ctc=54.350, loss_att=55.191, acc=0.728, loss=54.939, backward_time=0.098, grad_norm=38.788, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.834e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 06:26:05,619 (trainer:737) INFO: 18epoch:train:1801-1900batch: iter_time=1.053e-04, forward_time=0.107, loss_ctc=48.689, loss_att=54.765, acc=0.719, loss=52.942, backward_time=0.099, grad_norm=40.527, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.833e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 06:26:48,134 (trainer:737) INFO: 18epoch:train:1901-2000batch: iter_time=1.045e-04, forward_time=0.104, loss_ctc=53.582, loss_att=53.016, acc=0.716, loss=53.186, backward_time=0.098, grad_norm=43.266, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.832e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 06:27:30,422 (trainer:737) INFO: 18epoch:train:2001-2100batch: iter_time=1.527e-04, forward_time=0.105, loss_ctc=52.773, loss_att=60.495, acc=0.722, loss=58.178, backward_time=0.098, grad_norm=41.728, clip=100.000, loss_scale=2.368e+34, optim_step_time=0.042, optim0_lr0=4.832e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 06:28:12,928 (trainer:737) INFO: 18epoch:train:2101-2200batch: iter_time=1.411e-04, forward_time=0.105, loss_ctc=46.871, loss_att=51.326, acc=0.718, loss=49.990, backward_time=0.098, grad_norm=33.725, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.831e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 06:28:55,533 (trainer:737) INFO: 18epoch:train:2201-2300batch: iter_time=1.428e-04, forward_time=0.104, loss_ctc=51.339, loss_att=53.593, acc=0.745, loss=52.916, backward_time=0.098, grad_norm=36.341, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.830e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 06:29:37,888 (trainer:737) INFO: 18epoch:train:2301-2400batch: iter_time=1.433e-04, forward_time=0.105, loss_ctc=50.775, loss_att=60.245, acc=0.693, loss=57.404, backward_time=0.099, grad_norm=46.824, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.829e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 06:29:38,696 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 06:30:21,608 (trainer:737) INFO: 18epoch:train:2401-2500batch: iter_time=1.311e-04, forward_time=0.109, loss_ctc=41.268, loss_att=45.701, acc=0.715, loss=44.371, backward_time=0.099, grad_norm=33.536, clip=100.000, loss_scale=2.098e+34, optim_step_time=0.049, optim0_lr0=4.828e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-14 06:30:42,587 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 06:31:03,278 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 06:31:07,018 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 06:31:07,018 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 06:31:07,021 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 06:37:25,651 (trainer:737) INFO: 18epoch:train:2501-2600batch: iter_time=3.501, forward_time=0.110, loss_ctc=40.349, loss_att=51.770, acc=0.721, loss=48.344, backward_time=0.098, grad_norm=34.247, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.827e-04, train_time=4.240 +[gpuc02:0/16] 2024-01-14 06:38:07,872 (trainer:737) INFO: 18epoch:train:2601-2700batch: iter_time=8.926e-05, forward_time=0.105, loss_ctc=49.904, loss_att=54.218, acc=0.702, loss=52.924, backward_time=0.097, grad_norm=34.964, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.826e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:38:49,887 (trainer:737) INFO: 18epoch:train:2701-2800batch: iter_time=9.942e-05, forward_time=0.105, loss_ctc=39.815, loss_att=41.344, acc=0.721, loss=40.886, backward_time=0.096, grad_norm=33.500, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.825e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 06:39:32,086 (trainer:737) INFO: 18epoch:train:2801-2900batch: iter_time=1.254e-04, forward_time=0.104, loss_ctc=48.617, loss_att=55.711, acc=0.705, loss=53.583, backward_time=0.097, grad_norm=38.710, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.824e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:40:14,312 (trainer:737) INFO: 18epoch:train:2901-3000batch: iter_time=1.372e-04, forward_time=0.105, loss_ctc=55.255, loss_att=55.468, acc=0.713, loss=55.404, backward_time=0.098, grad_norm=49.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.823e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:40:57,212 (trainer:737) INFO: 18epoch:train:3001-3100batch: iter_time=1.094e-04, forward_time=0.105, loss_ctc=46.756, loss_att=62.615, acc=0.687, loss=57.858, backward_time=0.098, grad_norm=37.823, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.822e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 06:41:40,687 (trainer:737) INFO: 18epoch:train:3101-3200batch: iter_time=1.022e-04, forward_time=0.111, loss_ctc=57.895, loss_att=51.588, acc=0.725, loss=53.480, backward_time=0.098, grad_norm=43.613, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.821e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-14 06:42:23,235 (trainer:737) INFO: 18epoch:train:3201-3300batch: iter_time=1.001e-04, forward_time=0.107, loss_ctc=44.342, loss_att=50.769, acc=0.708, loss=48.841, backward_time=0.097, grad_norm=36.117, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.820e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 06:43:07,317 (trainer:737) INFO: 18epoch:train:3301-3400batch: iter_time=1.049e-04, forward_time=0.114, loss_ctc=54.950, loss_att=55.669, acc=0.715, loss=55.453, backward_time=0.098, grad_norm=40.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.819e-04, train_time=0.441 +[gpuc02:0/16] 2024-01-14 06:43:52,724 (trainer:737) INFO: 18epoch:train:3401-3500batch: iter_time=9.994e-05, forward_time=0.112, loss_ctc=44.999, loss_att=49.887, acc=0.729, loss=48.421, backward_time=0.112, grad_norm=36.727, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.818e-04, train_time=0.454 +[gpuc02:0/16] 2024-01-14 06:44:35,503 (trainer:737) INFO: 18epoch:train:3501-3600batch: iter_time=1.001e-04, forward_time=0.106, loss_ctc=51.675, loss_att=59.535, acc=0.712, loss=57.177, backward_time=0.098, grad_norm=41.984, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.817e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 06:45:18,091 (trainer:737) INFO: 18epoch:train:3601-3700batch: iter_time=1.013e-04, forward_time=0.107, loss_ctc=43.752, loss_att=47.202, acc=0.699, loss=46.167, backward_time=0.097, grad_norm=39.550, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.817e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 06:45:52,077 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 06:46:12,064 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 06:46:15,764 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 06:46:15,764 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 06:46:15,768 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 06:51:10,964 (trainer:737) INFO: 18epoch:train:3701-3800batch: iter_time=2.769, forward_time=0.105, loss_ctc=40.989, loss_att=52.270, acc=0.694, loss=48.886, backward_time=0.097, grad_norm=34.333, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.816e-04, train_time=3.529 +[gpuc02:0/16] 2024-01-14 06:51:53,295 (trainer:737) INFO: 18epoch:train:3801-3900batch: iter_time=1.081e-04, forward_time=0.105, loss_ctc=47.907, loss_att=49.835, acc=0.724, loss=49.257, backward_time=0.098, grad_norm=35.972, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.815e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 06:52:35,449 (trainer:737) INFO: 18epoch:train:3901-4000batch: iter_time=1.186e-04, forward_time=0.104, loss_ctc=44.147, loss_att=46.992, acc=0.722, loss=46.139, backward_time=0.097, grad_norm=33.547, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.814e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 06:53:17,331 (trainer:737) INFO: 18epoch:train:4001-4100batch: iter_time=1.079e-04, forward_time=0.103, loss_ctc=41.197, loss_att=42.916, acc=0.698, loss=42.400, backward_time=0.096, grad_norm=34.812, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.813e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 06:53:59,552 (trainer:737) INFO: 18epoch:train:4101-4200batch: iter_time=1.100e-04, forward_time=0.105, loss_ctc=52.517, loss_att=59.627, acc=0.708, loss=57.494, backward_time=0.097, grad_norm=47.779, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.812e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:54:41,725 (trainer:737) INFO: 18epoch:train:4201-4300batch: iter_time=1.096e-04, forward_time=0.105, loss_ctc=53.361, loss_att=54.923, acc=0.722, loss=54.454, backward_time=0.097, grad_norm=40.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.811e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 06:55:23,881 (trainer:737) INFO: 18epoch:train:4301-4400batch: iter_time=1.135e-04, forward_time=0.105, loss_ctc=47.525, loss_att=53.964, acc=0.711, loss=52.032, backward_time=0.097, grad_norm=36.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.810e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 06:56:05,938 (trainer:737) INFO: 18epoch:train:4401-4500batch: iter_time=1.090e-04, forward_time=0.104, loss_ctc=52.045, loss_att=51.317, acc=0.709, loss=51.536, backward_time=0.097, grad_norm=41.544, clip=100.000, loss_scale=4.112e+34, optim_step_time=0.041, optim0_lr0=4.809e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 06:56:48,049 (trainer:737) INFO: 18epoch:train:4501-4600batch: iter_time=1.053e-04, forward_time=0.105, loss_ctc=52.047, loss_att=58.197, acc=0.718, loss=56.352, backward_time=0.097, grad_norm=38.596, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.808e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 06:57:30,058 (trainer:737) INFO: 18epoch:train:4601-4700batch: iter_time=9.782e-05, forward_time=0.104, loss_ctc=45.723, loss_att=50.292, acc=0.706, loss=48.921, backward_time=0.096, grad_norm=35.778, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.807e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 06:58:12,461 (trainer:737) INFO: 18epoch:train:4701-4800batch: iter_time=1.033e-04, forward_time=0.105, loss_ctc=51.243, loss_att=51.810, acc=0.746, loss=51.640, backward_time=0.097, grad_norm=37.097, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.806e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 06:58:54,855 (trainer:737) INFO: 18epoch:train:4801-4900batch: iter_time=1.019e-04, forward_time=0.105, loss_ctc=49.848, loss_att=58.885, acc=0.687, loss=56.174, backward_time=0.097, grad_norm=44.919, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.805e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 06:59:37,825 (trainer:737) INFO: 18epoch:train:4901-5000batch: iter_time=9.017e-05, forward_time=0.104, loss_ctc=40.464, loss_att=46.665, acc=0.696, loss=44.805, backward_time=0.096, grad_norm=34.568, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.805e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 06:59:40,938 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 07:00:01,012 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 07:00:05,051 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 07:00:05,051 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 07:00:05,054 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 07:04:52,829 (trainer:737) INFO: 18epoch:train:5001-5100batch: iter_time=2.385, forward_time=0.118, loss_ctc=39.867, loss_att=49.521, acc=0.734, loss=46.625, backward_time=0.099, grad_norm=34.514, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.804e-04, train_time=3.150 +[gpuc02:0/16] 2024-01-14 07:05:35,159 (trainer:737) INFO: 18epoch:train:5101-5200batch: iter_time=1.089e-04, forward_time=0.105, loss_ctc=49.257, loss_att=54.802, acc=0.718, loss=53.138, backward_time=0.098, grad_norm=35.442, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.803e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:06:17,113 (trainer:737) INFO: 18epoch:train:5201-5300batch: iter_time=1.374e-04, forward_time=0.103, loss_ctc=39.450, loss_att=40.113, acc=0.726, loss=39.914, backward_time=0.097, grad_norm=32.504, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.802e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 07:06:59,358 (trainer:737) INFO: 18epoch:train:5301-5400batch: iter_time=1.644e-04, forward_time=0.105, loss_ctc=48.242, loss_att=55.180, acc=0.718, loss=53.099, backward_time=0.098, grad_norm=38.049, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.801e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:07:41,597 (trainer:737) INFO: 18epoch:train:5401-5500batch: iter_time=1.400e-04, forward_time=0.106, loss_ctc=55.228, loss_att=55.436, acc=0.722, loss=55.373, backward_time=0.098, grad_norm=49.055, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.800e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:08:23,858 (trainer:737) INFO: 18epoch:train:5501-5600batch: iter_time=1.130e-04, forward_time=0.105, loss_ctc=46.563, loss_att=62.165, acc=0.701, loss=57.484, backward_time=0.098, grad_norm=38.648, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.799e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:09:06,156 (trainer:737) INFO: 18epoch:train:5601-5700batch: iter_time=1.122e-04, forward_time=0.106, loss_ctc=56.222, loss_att=53.020, acc=0.727, loss=53.981, backward_time=0.098, grad_norm=42.676, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.798e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:09:48,373 (trainer:737) INFO: 18epoch:train:5701-5800batch: iter_time=1.112e-04, forward_time=0.105, loss_ctc=44.390, loss_att=52.565, acc=0.724, loss=50.112, backward_time=0.098, grad_norm=34.532, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.797e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:10:30,570 (trainer:737) INFO: 18epoch:train:5801-5900batch: iter_time=1.042e-04, forward_time=0.106, loss_ctc=54.666, loss_att=55.757, acc=0.725, loss=55.430, backward_time=0.098, grad_norm=39.874, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.796e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:11:12,856 (trainer:737) INFO: 18epoch:train:5901-6000batch: iter_time=1.039e-04, forward_time=0.105, loss_ctc=44.801, loss_att=51.728, acc=0.739, loss=49.650, backward_time=0.098, grad_norm=35.183, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.795e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:11:55,187 (trainer:737) INFO: 18epoch:train:6001-6100batch: iter_time=1.147e-04, forward_time=0.106, loss_ctc=51.333, loss_att=59.979, acc=0.717, loss=57.385, backward_time=0.098, grad_norm=43.228, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.794e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:12:37,348 (trainer:737) INFO: 18epoch:train:6101-6200batch: iter_time=1.085e-04, forward_time=0.105, loss_ctc=42.726, loss_att=48.051, acc=0.707, loss=46.454, backward_time=0.097, grad_norm=37.849, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.793e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 07:13:02,984 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 07:13:23,150 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 07:13:26,864 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 07:13:26,865 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 07:13:26,868 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 07:18:01,015 (trainer:737) INFO: 18epoch:train:6201-6300batch: iter_time=2.413, forward_time=0.139, loss_ctc=40.370, loss_att=52.156, acc=0.707, loss=48.620, backward_time=0.100, grad_norm=34.572, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=4.793e-04, train_time=3.236 +[gpuc02:0/16] 2024-01-14 07:18:44,068 (trainer:737) INFO: 18epoch:train:6301-6400batch: iter_time=1.197e-04, forward_time=0.109, loss_ctc=47.683, loss_att=50.825, acc=0.737, loss=49.883, backward_time=0.099, grad_norm=34.635, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.792e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 07:19:11,463 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 07:19:26,334 (trainer:737) INFO: 18epoch:train:6401-6500batch: iter_time=1.192e-04, forward_time=0.104, loss_ctc=44.164, loss_att=46.477, acc=0.733, loss=45.783, backward_time=0.098, grad_norm=32.298, clip=100.000, loss_scale=6.755e+34, optim_step_time=0.041, optim0_lr0=4.791e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:20:08,400 (trainer:737) INFO: 18epoch:train:6501-6600batch: iter_time=1.438e-04, forward_time=0.103, loss_ctc=40.657, loss_att=41.035, acc=0.713, loss=40.921, backward_time=0.097, grad_norm=36.216, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.790e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 07:20:50,870 (trainer:737) INFO: 18epoch:train:6601-6700batch: iter_time=1.782e-04, forward_time=0.106, loss_ctc=51.978, loss_att=60.723, acc=0.715, loss=58.099, backward_time=0.098, grad_norm=48.161, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.789e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 07:21:33,296 (trainer:737) INFO: 18epoch:train:6701-6800batch: iter_time=1.378e-04, forward_time=0.105, loss_ctc=52.628, loss_att=54.679, acc=0.729, loss=54.064, backward_time=0.098, grad_norm=38.379, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.788e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 07:22:16,012 (trainer:737) INFO: 18epoch:train:6801-6900batch: iter_time=1.248e-04, forward_time=0.105, loss_ctc=46.092, loss_att=53.361, acc=0.723, loss=51.181, backward_time=0.098, grad_norm=37.506, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.787e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 07:22:58,300 (trainer:737) INFO: 18epoch:train:6901-7000batch: iter_time=1.267e-04, forward_time=0.105, loss_ctc=51.288, loss_att=52.332, acc=0.718, loss=52.019, backward_time=0.097, grad_norm=41.091, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.786e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:23:40,959 (trainer:737) INFO: 18epoch:train:7001-7100batch: iter_time=1.268e-04, forward_time=0.106, loss_ctc=50.979, loss_att=59.485, acc=0.727, loss=56.933, backward_time=0.098, grad_norm=41.605, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.785e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 07:24:23,280 (trainer:737) INFO: 18epoch:train:7101-7200batch: iter_time=1.189e-04, forward_time=0.105, loss_ctc=46.155, loss_att=50.715, acc=0.720, loss=49.347, backward_time=0.097, grad_norm=34.760, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.784e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:25:05,671 (trainer:737) INFO: 18epoch:train:7201-7300batch: iter_time=1.270e-04, forward_time=0.105, loss_ctc=50.877, loss_att=53.485, acc=0.747, loss=52.703, backward_time=0.098, grad_norm=37.836, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.783e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 07:25:48,123 (trainer:737) INFO: 18epoch:train:7301-7400batch: iter_time=1.129e-04, forward_time=0.105, loss_ctc=49.331, loss_att=59.935, acc=0.694, loss=56.754, backward_time=0.098, grad_norm=45.824, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.782e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 07:26:30,283 (trainer:737) INFO: 18epoch:train:7401-7500batch: iter_time=1.134e-04, forward_time=0.104, loss_ctc=40.077, loss_att=46.034, acc=0.715, loss=44.247, backward_time=0.097, grad_norm=33.772, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.782e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 07:26:33,335 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 07:26:53,475 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 07:26:57,180 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 07:26:57,180 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 07:26:57,183 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 07:31:56,609 (trainer:737) INFO: 18epoch:train:7501-7600batch: iter_time=2.401, forward_time=0.105, loss_ctc=40.444, loss_att=51.503, acc=0.722, loss=48.185, backward_time=0.098, grad_norm=34.811, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.781e-04, train_time=3.263 +[gpuc02:0/16] 2024-01-14 07:32:38,947 (trainer:737) INFO: 18epoch:train:7601-7700batch: iter_time=1.533e-04, forward_time=0.105, loss_ctc=49.352, loss_att=53.939, acc=0.703, loss=52.562, backward_time=0.097, grad_norm=35.450, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.780e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:32:50,241 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 07:33:20,946 (trainer:737) INFO: 18epoch:train:7701-7800batch: iter_time=1.624e-04, forward_time=0.103, loss_ctc=39.272, loss_att=40.270, acc=0.728, loss=39.971, backward_time=0.097, grad_norm=32.855, clip=100.000, loss_scale=2.622e+34, optim_step_time=0.042, optim0_lr0=4.779e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 07:34:03,178 (trainer:737) INFO: 18epoch:train:7801-7900batch: iter_time=1.577e-04, forward_time=0.105, loss_ctc=47.737, loss_att=55.025, acc=0.707, loss=52.839, backward_time=0.097, grad_norm=39.448, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.778e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:34:46,183 (trainer:737) INFO: 18epoch:train:7901-8000batch: iter_time=1.509e-04, forward_time=0.105, loss_ctc=54.425, loss_att=55.428, acc=0.714, loss=55.127, backward_time=0.098, grad_norm=51.592, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.777e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 07:35:28,867 (trainer:737) INFO: 18epoch:train:8001-8100batch: iter_time=1.525e-04, forward_time=0.105, loss_ctc=46.709, loss_att=62.245, acc=0.688, loss=57.584, backward_time=0.097, grad_norm=40.012, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.776e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 07:36:11,431 (trainer:737) INFO: 18epoch:train:8101-8200batch: iter_time=1.821e-04, forward_time=0.106, loss_ctc=55.304, loss_att=50.907, acc=0.729, loss=52.226, backward_time=0.098, grad_norm=42.076, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.775e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 07:36:54,976 (trainer:737) INFO: 18epoch:train:8201-8300batch: iter_time=1.480e-04, forward_time=0.105, loss_ctc=44.214, loss_att=50.602, acc=0.710, loss=48.686, backward_time=0.097, grad_norm=34.053, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.774e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-14 07:37:37,755 (trainer:737) INFO: 18epoch:train:8301-8400batch: iter_time=1.294e-04, forward_time=0.105, loss_ctc=54.549, loss_att=55.605, acc=0.720, loss=55.288, backward_time=0.097, grad_norm=39.652, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.773e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 07:38:19,917 (trainer:737) INFO: 18epoch:train:8401-8500batch: iter_time=1.303e-04, forward_time=0.105, loss_ctc=44.712, loss_att=50.067, acc=0.728, loss=48.461, backward_time=0.097, grad_norm=36.035, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.772e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 07:39:02,144 (trainer:737) INFO: 18epoch:train:8501-8600batch: iter_time=1.373e-04, forward_time=0.105, loss_ctc=51.045, loss_att=59.278, acc=0.716, loss=56.808, backward_time=0.098, grad_norm=40.366, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.772e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:39:44,477 (trainer:737) INFO: 18epoch:train:8601-8700batch: iter_time=1.394e-04, forward_time=0.108, loss_ctc=42.714, loss_att=47.852, acc=0.695, loss=46.311, backward_time=0.097, grad_norm=39.030, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.771e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:40:10,203 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 07:40:29,934 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 07:40:33,563 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 07:40:33,563 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 07:40:33,567 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 07:45:08,330 (trainer:737) INFO: 18epoch:train:8701-8800batch: iter_time=2.413, forward_time=0.104, loss_ctc=40.005, loss_att=51.395, acc=0.701, loss=47.978, backward_time=0.097, grad_norm=33.438, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.770e-04, train_time=3.238 +[gpuc02:0/16] 2024-01-14 07:45:50,616 (trainer:737) INFO: 18epoch:train:8801-8900batch: iter_time=1.121e-04, forward_time=0.106, loss_ctc=47.135, loss_att=49.197, acc=0.728, loss=48.579, backward_time=0.099, grad_norm=35.820, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.769e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 07:46:32,772 (trainer:737) INFO: 18epoch:train:8901-9000batch: iter_time=1.291e-04, forward_time=0.105, loss_ctc=43.067, loss_att=46.208, acc=0.724, loss=45.266, backward_time=0.098, grad_norm=52.887, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.768e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 07:47:14,660 (trainer:737) INFO: 18epoch:train:9001-9100batch: iter_time=1.615e-04, forward_time=0.103, loss_ctc=40.305, loss_att=41.561, acc=0.705, loss=41.184, backward_time=0.096, grad_norm=35.607, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.767e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 07:47:56,896 (trainer:737) INFO: 18epoch:train:9101-9200batch: iter_time=1.896e-04, forward_time=0.104, loss_ctc=52.538, loss_att=62.035, acc=0.709, loss=59.186, backward_time=0.098, grad_norm=46.767, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.766e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:48:39,073 (trainer:737) INFO: 18epoch:train:9201-9300batch: iter_time=1.591e-04, forward_time=0.104, loss_ctc=52.026, loss_att=55.052, acc=0.724, loss=54.144, backward_time=0.097, grad_norm=37.447, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.765e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:49:21,226 (trainer:737) INFO: 18epoch:train:9301-9400batch: iter_time=1.347e-04, forward_time=0.104, loss_ctc=46.959, loss_att=53.409, acc=0.715, loss=51.474, backward_time=0.097, grad_norm=38.942, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.764e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 07:50:03,278 (trainer:737) INFO: 18epoch:train:9401-9500batch: iter_time=1.026e-04, forward_time=0.104, loss_ctc=51.490, loss_att=50.849, acc=0.711, loss=51.041, backward_time=0.096, grad_norm=41.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.763e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 07:50:45,443 (trainer:737) INFO: 18epoch:train:9501-9600batch: iter_time=1.036e-04, forward_time=0.104, loss_ctc=50.918, loss_att=56.995, acc=0.722, loss=55.172, backward_time=0.097, grad_norm=39.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.763e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 07:51:27,476 (trainer:737) INFO: 18epoch:train:9601-9700batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=46.118, loss_att=50.775, acc=0.707, loss=49.378, backward_time=0.097, grad_norm=36.344, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.762e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 07:52:09,687 (trainer:737) INFO: 18epoch:train:9701-9800batch: iter_time=1.139e-04, forward_time=0.105, loss_ctc=50.094, loss_att=50.675, acc=0.750, loss=50.501, backward_time=0.097, grad_norm=36.329, clip=100.000, loss_scale=3.593e+34, optim_step_time=0.042, optim0_lr0=4.761e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:52:51,885 (trainer:737) INFO: 18epoch:train:9801-9900batch: iter_time=1.059e-04, forward_time=0.105, loss_ctc=48.980, loss_att=59.025, acc=0.687, loss=56.011, backward_time=0.097, grad_norm=45.253, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.760e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 07:53:33,852 (trainer:737) INFO: 18epoch:train:9901-10000batch: iter_time=9.533e-05, forward_time=0.103, loss_ctc=39.509, loss_att=46.072, acc=0.702, loss=44.103, backward_time=0.096, grad_norm=33.106, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.759e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 07:53:39,495 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 07:53:59,957 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 07:54:03,718 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 07:54:03,718 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 07:54:03,721 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 07:58:59,751 (trainer:737) INFO: 18epoch:train:10001-10100batch: iter_time=2.451, forward_time=0.106, loss_ctc=40.319, loss_att=49.479, acc=0.737, loss=46.731, backward_time=0.097, grad_norm=34.932, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.758e-04, train_time=3.259 +[gpuc02:0/16] 2024-01-14 07:59:42,627 (trainer:737) INFO: 18epoch:train:10101-10200batch: iter_time=1.122e-04, forward_time=0.108, loss_ctc=49.289, loss_att=54.526, acc=0.720, loss=52.955, backward_time=0.097, grad_norm=35.729, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.757e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 07:59:48,044 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 08:00:24,589 (trainer:737) INFO: 18epoch:train:10201-10300batch: iter_time=1.214e-04, forward_time=0.102, loss_ctc=38.941, loss_att=40.678, acc=0.725, loss=40.157, backward_time=0.096, grad_norm=32.411, clip=100.000, loss_scale=2.329e+34, optim_step_time=0.041, optim0_lr0=4.756e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 08:01:06,892 (trainer:737) INFO: 18epoch:train:10301-10400batch: iter_time=1.037e-04, forward_time=0.104, loss_ctc=47.812, loss_att=54.513, acc=0.720, loss=52.503, backward_time=0.097, grad_norm=39.638, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.755e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:01:49,154 (trainer:737) INFO: 18epoch:train:10401-10500batch: iter_time=1.050e-04, forward_time=0.105, loss_ctc=56.087, loss_att=58.207, acc=0.724, loss=57.571, backward_time=0.097, grad_norm=49.502, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.754e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:02:31,622 (trainer:737) INFO: 18epoch:train:10501-10600batch: iter_time=9.724e-05, forward_time=0.104, loss_ctc=45.792, loss_att=62.105, acc=0.703, loss=57.211, backward_time=0.097, grad_norm=37.233, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.754e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 08:03:13,886 (trainer:737) INFO: 18epoch:train:10601-10700batch: iter_time=1.031e-04, forward_time=0.104, loss_ctc=56.285, loss_att=53.298, acc=0.730, loss=54.194, backward_time=0.098, grad_norm=45.867, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.753e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:03:56,124 (trainer:737) INFO: 18epoch:train:10701-10800batch: iter_time=1.016e-04, forward_time=0.106, loss_ctc=43.757, loss_att=52.445, acc=0.725, loss=49.839, backward_time=0.097, grad_norm=33.024, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.752e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:04:38,303 (trainer:737) INFO: 18epoch:train:10801-10900batch: iter_time=9.753e-05, forward_time=0.106, loss_ctc=54.384, loss_att=55.829, acc=0.726, loss=55.396, backward_time=0.097, grad_norm=40.814, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.751e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:05:20,497 (trainer:737) INFO: 18epoch:train:10901-11000batch: iter_time=8.991e-05, forward_time=0.105, loss_ctc=44.587, loss_att=51.241, acc=0.740, loss=49.245, backward_time=0.097, grad_norm=35.618, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.750e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:06:02,796 (trainer:737) INFO: 18epoch:train:11001-11100batch: iter_time=1.005e-04, forward_time=0.104, loss_ctc=50.716, loss_att=59.030, acc=0.724, loss=56.536, backward_time=0.097, grad_norm=40.695, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.749e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:06:44,903 (trainer:737) INFO: 18epoch:train:11101-11200batch: iter_time=9.854e-05, forward_time=0.105, loss_ctc=42.290, loss_att=47.068, acc=0.712, loss=45.634, backward_time=0.097, grad_norm=38.147, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.748e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 08:07:09,428 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 08:07:29,809 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 08:07:33,484 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 08:07:33,485 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 08:07:33,488 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 08:12:00,609 (trainer:737) INFO: 18epoch:train:11201-11300batch: iter_time=2.404, forward_time=0.104, loss_ctc=39.873, loss_att=52.239, acc=0.708, loss=48.529, backward_time=0.097, grad_norm=35.857, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.747e-04, train_time=3.157 +[gpuc02:0/16] 2024-01-14 08:12:42,940 (trainer:737) INFO: 18epoch:train:11301-11400batch: iter_time=1.072e-04, forward_time=0.104, loss_ctc=47.066, loss_att=50.551, acc=0.726, loss=49.506, backward_time=0.098, grad_norm=34.514, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.746e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:13:25,713 (trainer:737) INFO: 18epoch:train:11401-11500batch: iter_time=1.291e-04, forward_time=0.104, loss_ctc=43.667, loss_att=47.248, acc=0.724, loss=46.174, backward_time=0.097, grad_norm=33.542, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.746e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 08:14:08,231 (trainer:737) INFO: 18epoch:train:11501-11600batch: iter_time=1.399e-04, forward_time=0.103, loss_ctc=40.371, loss_att=41.611, acc=0.706, loss=41.239, backward_time=0.096, grad_norm=36.425, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.745e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 08:14:50,727 (trainer:737) INFO: 18epoch:train:11601-11700batch: iter_time=1.506e-04, forward_time=0.104, loss_ctc=51.959, loss_att=60.516, acc=0.708, loss=57.949, backward_time=0.097, grad_norm=48.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.744e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 08:15:34,168 (trainer:737) INFO: 18epoch:train:11701-11800batch: iter_time=1.208e-04, forward_time=0.105, loss_ctc=51.960, loss_att=54.770, acc=0.723, loss=53.927, backward_time=0.097, grad_norm=38.722, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.743e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-14 08:16:16,872 (trainer:737) INFO: 18epoch:train:11801-11900batch: iter_time=1.108e-04, forward_time=0.104, loss_ctc=46.219, loss_att=53.193, acc=0.716, loss=51.101, backward_time=0.097, grad_norm=37.850, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.742e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 08:16:59,803 (trainer:737) INFO: 18epoch:train:11901-12000batch: iter_time=9.767e-05, forward_time=0.104, loss_ctc=51.289, loss_att=50.727, acc=0.713, loss=50.896, backward_time=0.096, grad_norm=40.822, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.741e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 08:17:42,201 (trainer:737) INFO: 18epoch:train:12001-12100batch: iter_time=1.162e-04, forward_time=0.104, loss_ctc=50.619, loss_att=57.188, acc=0.721, loss=55.217, backward_time=0.096, grad_norm=38.801, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.740e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 08:18:24,172 (trainer:737) INFO: 18epoch:train:12101-12200batch: iter_time=1.183e-04, forward_time=0.104, loss_ctc=45.915, loss_att=50.897, acc=0.708, loss=49.403, backward_time=0.096, grad_norm=34.593, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.739e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 08:19:06,326 (trainer:737) INFO: 18epoch:train:12201-12300batch: iter_time=1.374e-04, forward_time=0.105, loss_ctc=50.216, loss_att=51.025, acc=0.751, loss=50.782, backward_time=0.097, grad_norm=36.743, clip=100.000, loss_scale=3.884e+34, optim_step_time=0.041, optim0_lr0=4.738e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 08:19:48,483 (trainer:737) INFO: 18epoch:train:12301-12400batch: iter_time=1.238e-04, forward_time=0.105, loss_ctc=48.524, loss_att=58.840, acc=0.687, loss=55.745, backward_time=0.097, grad_norm=44.527, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.738e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 08:20:30,673 (trainer:737) INFO: 18epoch:train:12401-12500batch: iter_time=1.099e-04, forward_time=0.103, loss_ctc=39.520, loss_att=45.963, acc=0.701, loss=44.030, backward_time=0.096, grad_norm=33.636, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.737e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:20:34,124 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 08:20:54,696 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 08:20:58,746 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 08:20:58,747 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 08:20:58,750 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 08:25:43,619 (trainer:737) INFO: 18epoch:train:12501-12600batch: iter_time=2.386, forward_time=0.106, loss_ctc=40.165, loss_att=48.773, acc=0.737, loss=46.190, backward_time=0.098, grad_norm=33.681, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.736e-04, train_time=3.129 +[gpuc02:0/16] 2024-01-14 08:26:25,906 (trainer:737) INFO: 18epoch:train:12601-12700batch: iter_time=1.256e-04, forward_time=0.105, loss_ctc=49.248, loss_att=54.488, acc=0.720, loss=52.916, backward_time=0.100, grad_norm=35.954, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.735e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:27:07,930 (trainer:737) INFO: 18epoch:train:12701-12800batch: iter_time=1.333e-04, forward_time=0.104, loss_ctc=38.910, loss_att=39.823, acc=0.728, loss=39.549, backward_time=0.097, grad_norm=32.439, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.734e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 08:27:50,237 (trainer:737) INFO: 18epoch:train:12801-12900batch: iter_time=1.064e-04, forward_time=0.105, loss_ctc=46.419, loss_att=54.195, acc=0.721, loss=51.862, backward_time=0.098, grad_norm=36.430, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.733e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:28:32,471 (trainer:737) INFO: 18epoch:train:12901-13000batch: iter_time=1.218e-04, forward_time=0.105, loss_ctc=54.000, loss_att=54.600, acc=0.727, loss=54.420, backward_time=0.097, grad_norm=48.938, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.732e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:29:14,714 (trainer:737) INFO: 18epoch:train:13001-13100batch: iter_time=1.241e-04, forward_time=0.105, loss_ctc=45.811, loss_att=61.754, acc=0.704, loss=56.971, backward_time=0.098, grad_norm=39.151, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.731e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:29:57,014 (trainer:737) INFO: 18epoch:train:13101-13200batch: iter_time=1.371e-04, forward_time=0.107, loss_ctc=54.955, loss_att=52.342, acc=0.731, loss=53.126, backward_time=0.099, grad_norm=44.079, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.730e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:30:39,279 (trainer:737) INFO: 18epoch:train:13201-13300batch: iter_time=1.166e-04, forward_time=0.106, loss_ctc=43.505, loss_att=51.607, acc=0.726, loss=49.177, backward_time=0.098, grad_norm=34.662, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.730e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:31:21,622 (trainer:737) INFO: 18epoch:train:13301-13400batch: iter_time=1.039e-04, forward_time=0.105, loss_ctc=53.510, loss_att=55.209, acc=0.728, loss=54.700, backward_time=0.098, grad_norm=38.945, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.729e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:32:04,142 (trainer:737) INFO: 18epoch:train:13401-13500batch: iter_time=1.097e-04, forward_time=0.105, loss_ctc=44.040, loss_att=50.985, acc=0.740, loss=48.901, backward_time=0.099, grad_norm=34.548, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.728e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 08:32:46,571 (trainer:737) INFO: 18epoch:train:13501-13600batch: iter_time=1.148e-04, forward_time=0.107, loss_ctc=50.235, loss_att=59.223, acc=0.722, loss=56.526, backward_time=0.099, grad_norm=42.240, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.727e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 08:33:28,746 (trainer:737) INFO: 18epoch:train:13601-13700batch: iter_time=1.041e-04, forward_time=0.106, loss_ctc=41.583, loss_att=47.550, acc=0.710, loss=45.760, backward_time=0.098, grad_norm=36.057, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.726e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:33:54,073 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 08:34:14,013 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 08:34:17,727 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 08:34:17,727 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 08:34:17,731 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 08:38:50,881 (trainer:737) INFO: 18epoch:train:13701-13800batch: iter_time=2.437, forward_time=0.106, loss_ctc=39.493, loss_att=52.912, acc=0.703, loss=48.886, backward_time=0.098, grad_norm=34.033, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.725e-04, train_time=3.221 +[gpuc02:0/16] 2024-01-14 08:39:33,184 (trainer:737) INFO: 18epoch:train:13801-13900batch: iter_time=1.380e-04, forward_time=0.105, loss_ctc=46.873, loss_att=50.857, acc=0.725, loss=49.662, backward_time=0.097, grad_norm=34.849, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.724e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 08:40:15,402 (trainer:737) INFO: 18epoch:train:13901-14000batch: iter_time=1.494e-04, forward_time=0.105, loss_ctc=42.986, loss_att=47.368, acc=0.724, loss=46.053, backward_time=0.097, grad_norm=32.366, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.723e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:40:57,643 (trainer:737) INFO: 18epoch:train:14001-14100batch: iter_time=1.142e-04, forward_time=0.104, loss_ctc=39.910, loss_att=42.254, acc=0.703, loss=41.551, backward_time=0.096, grad_norm=36.964, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.723e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:41:27,189 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 08:41:39,812 (trainer:737) INFO: 18epoch:train:14101-14200batch: iter_time=1.561e-04, forward_time=0.105, loss_ctc=51.705, loss_att=60.310, acc=0.709, loss=57.728, backward_time=0.097, grad_norm=46.851, clip=100.000, loss_scale=3.524e+34, optim_step_time=0.041, optim0_lr0=4.722e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 08:42:22,033 (trainer:737) INFO: 18epoch:train:14201-14300batch: iter_time=1.694e-04, forward_time=0.106, loss_ctc=51.814, loss_att=53.894, acc=0.726, loss=53.270, backward_time=0.098, grad_norm=39.283, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.721e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:43:04,176 (trainer:737) INFO: 18epoch:train:14301-14400batch: iter_time=1.477e-04, forward_time=0.105, loss_ctc=45.913, loss_att=53.266, acc=0.715, loss=51.060, backward_time=0.097, grad_norm=37.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.720e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 08:43:46,656 (trainer:737) INFO: 18epoch:train:14401-14500batch: iter_time=1.485e-04, forward_time=0.109, loss_ctc=50.427, loss_att=50.532, acc=0.713, loss=50.501, backward_time=0.097, grad_norm=41.308, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.719e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 08:44:28,890 (trainer:737) INFO: 18epoch:train:14501-14600batch: iter_time=1.248e-04, forward_time=0.105, loss_ctc=50.543, loss_att=56.985, acc=0.720, loss=55.052, backward_time=0.097, grad_norm=38.083, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.718e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:45:10,953 (trainer:737) INFO: 18epoch:train:14601-14700batch: iter_time=1.328e-04, forward_time=0.105, loss_ctc=45.931, loss_att=50.515, acc=0.708, loss=49.140, backward_time=0.097, grad_norm=35.808, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.717e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 08:45:53,493 (trainer:737) INFO: 18epoch:train:14701-14800batch: iter_time=1.306e-04, forward_time=0.106, loss_ctc=50.056, loss_att=50.778, acc=0.751, loss=50.562, backward_time=0.097, grad_norm=37.172, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.716e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 08:46:35,754 (trainer:737) INFO: 18epoch:train:14801-14900batch: iter_time=1.255e-04, forward_time=0.106, loss_ctc=48.715, loss_att=58.714, acc=0.688, loss=55.715, backward_time=0.098, grad_norm=45.763, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.716e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 08:47:17,762 (trainer:737) INFO: 18epoch:train:14901-15000batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=39.574, loss_att=45.948, acc=0.702, loss=44.036, backward_time=0.097, grad_norm=33.523, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.715e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 09:07:36,009 (trainer:343) INFO: 18epoch results: [train] iter_time=0.203, forward_time=0.106, loss_ctc=47.574, loss_att=52.677, acc=0.717, loss=51.146, backward_time=0.098, grad_norm=38.584, clip=100.000, loss_scale=2.948e+34, optim_step_time=0.041, optim0_lr0=4.782e-04, train_time=0.669, time=2 hours, 47 minutes and 21.34 seconds, total_count=270000, gpu_max_cached_mem_GB=27.297, [valid] loss_ctc=56.238, cer_ctc=0.293, loss_att=56.327, acc=0.571, cer=0.355, wer=0.999, loss=56.300, time=20 minutes and 8.53 seconds, total_count=84078, gpu_max_cached_mem_GB=27.297 +[gpuc02:0/16] 2024-01-14 09:07:41,177 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-14 09:07:41,181 (trainer:272) INFO: 19/45epoch started. Estimated time to finish: 3 days, 11 hours and 48 minutes +[gpuc02:0/16] 2024-01-14 09:07:41,190 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-14 09:07:59,749 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 09:08:03,256 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 09:08:03,257 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-14 09:08:03,260 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 09:12:45,083 (trainer:737) INFO: 19epoch:train:1-100batch: iter_time=2.302, forward_time=0.106, loss_ctc=42.671, loss_att=46.521, acc=0.743, loss=45.366, backward_time=0.098, grad_norm=35.559, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.714e-04, train_time=3.039 +[gpuc02:0/16] 2024-01-14 09:13:29,448 (trainer:737) INFO: 19epoch:train:101-200batch: iter_time=1.026e-04, forward_time=0.108, loss_ctc=63.166, loss_att=72.129, acc=0.705, loss=69.440, backward_time=0.099, grad_norm=50.473, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.713e-04, train_time=0.443 +[gpuc02:0/16] 2024-01-14 09:14:12,310 (trainer:737) INFO: 19epoch:train:201-300batch: iter_time=9.566e-05, forward_time=0.106, loss_ctc=49.093, loss_att=55.553, acc=0.721, loss=53.615, backward_time=0.099, grad_norm=36.010, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.712e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 09:14:56,561 (trainer:737) INFO: 19epoch:train:301-400batch: iter_time=1.018e-04, forward_time=0.106, loss_ctc=43.778, loss_att=44.546, acc=0.741, loss=44.315, backward_time=0.098, grad_norm=33.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.711e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-14 09:15:39,104 (trainer:737) INFO: 19epoch:train:401-500batch: iter_time=1.011e-04, forward_time=0.106, loss_ctc=55.434, loss_att=63.956, acc=0.694, loss=61.400, backward_time=0.099, grad_norm=44.233, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.710e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 09:16:24,205 (trainer:737) INFO: 19epoch:train:501-600batch: iter_time=1.035e-04, forward_time=0.106, loss_ctc=55.635, loss_att=54.879, acc=0.716, loss=55.106, backward_time=0.099, grad_norm=45.052, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.709e-04, train_time=0.451 +[gpuc02:0/16] 2024-01-14 09:17:11,348 (trainer:737) INFO: 19epoch:train:601-700batch: iter_time=9.139e-05, forward_time=0.109, loss_ctc=47.278, loss_att=52.014, acc=0.733, loss=50.593, backward_time=0.098, grad_norm=35.941, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.709e-04, train_time=0.471 +[gpuc02:0/16] 2024-01-14 09:17:57,192 (trainer:737) INFO: 19epoch:train:701-800batch: iter_time=9.560e-05, forward_time=0.106, loss_ctc=42.167, loss_att=44.086, acc=0.742, loss=43.510, backward_time=0.098, grad_norm=33.940, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.708e-04, train_time=0.458 +[gpuc02:0/16] 2024-01-14 09:18:39,779 (trainer:737) INFO: 19epoch:train:801-900batch: iter_time=9.534e-05, forward_time=0.106, loss_ctc=61.963, loss_att=62.098, acc=0.701, loss=62.057, backward_time=0.098, grad_norm=62.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.707e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 09:19:22,468 (trainer:737) INFO: 19epoch:train:901-1000batch: iter_time=8.814e-05, forward_time=0.106, loss_ctc=49.709, loss_att=53.026, acc=0.740, loss=52.031, backward_time=0.099, grad_norm=39.234, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.706e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 09:20:05,258 (trainer:737) INFO: 19epoch:train:1001-1100batch: iter_time=9.760e-05, forward_time=0.105, loss_ctc=39.916, loss_att=47.738, acc=0.727, loss=45.391, backward_time=0.098, grad_norm=32.103, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.705e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 09:20:47,941 (trainer:737) INFO: 19epoch:train:1101-1200batch: iter_time=9.619e-05, forward_time=0.105, loss_ctc=41.138, loss_att=47.049, acc=0.728, loss=45.276, backward_time=0.098, grad_norm=36.718, clip=100.000, loss_scale=2.700e+34, optim_step_time=0.041, optim0_lr0=4.704e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 09:21:13,920 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-14 09:21:33,840 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 09:21:37,646 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 09:21:37,646 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-14 09:21:37,649 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 09:26:02,257 (trainer:737) INFO: 19epoch:train:1201-1300batch: iter_time=2.615, forward_time=0.107, loss_ctc=51.051, loss_att=52.945, acc=0.726, loss=52.377, backward_time=0.098, grad_norm=42.378, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.703e-04, train_time=3.143 +[gpuc02:0/16] 2024-01-14 09:26:44,699 (trainer:737) INFO: 19epoch:train:1301-1400batch: iter_time=1.263e-04, forward_time=0.107, loss_ctc=57.910, loss_att=61.138, acc=0.731, loss=60.169, backward_time=0.099, grad_norm=41.900, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.703e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 09:27:26,937 (trainer:737) INFO: 19epoch:train:1401-1500batch: iter_time=1.378e-04, forward_time=0.105, loss_ctc=43.900, loss_att=58.746, acc=0.723, loss=54.292, backward_time=0.098, grad_norm=36.689, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.702e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:28:09,494 (trainer:737) INFO: 19epoch:train:1501-1600batch: iter_time=1.366e-04, forward_time=0.106, loss_ctc=49.152, loss_att=47.865, acc=0.732, loss=48.251, backward_time=0.099, grad_norm=35.963, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.701e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 09:28:52,124 (trainer:737) INFO: 19epoch:train:1601-1700batch: iter_time=1.202e-04, forward_time=0.107, loss_ctc=47.820, loss_att=58.394, acc=0.710, loss=55.222, backward_time=0.100, grad_norm=37.758, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.700e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 09:29:34,304 (trainer:737) INFO: 19epoch:train:1701-1800batch: iter_time=1.240e-04, forward_time=0.104, loss_ctc=54.707, loss_att=51.816, acc=0.714, loss=52.683, backward_time=0.097, grad_norm=45.988, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.699e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:30:16,602 (trainer:737) INFO: 19epoch:train:1801-1900batch: iter_time=1.236e-04, forward_time=0.105, loss_ctc=47.715, loss_att=54.050, acc=0.738, loss=52.150, backward_time=0.098, grad_norm=36.094, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.698e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 09:30:58,762 (trainer:737) INFO: 19epoch:train:1901-2000batch: iter_time=1.437e-04, forward_time=0.104, loss_ctc=42.600, loss_att=44.331, acc=0.734, loss=43.812, backward_time=0.097, grad_norm=33.975, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.697e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 09:31:41,355 (trainer:737) INFO: 19epoch:train:2001-2100batch: iter_time=1.209e-04, forward_time=0.105, loss_ctc=50.440, loss_att=55.721, acc=0.716, loss=54.136, backward_time=0.097, grad_norm=40.173, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.696e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 09:32:23,966 (trainer:737) INFO: 19epoch:train:2101-2200batch: iter_time=1.423e-04, forward_time=0.105, loss_ctc=58.845, loss_att=63.069, acc=0.722, loss=61.802, backward_time=0.098, grad_norm=52.612, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.696e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 09:33:06,140 (trainer:737) INFO: 19epoch:train:2201-2300batch: iter_time=1.339e-04, forward_time=0.105, loss_ctc=39.602, loss_att=48.203, acc=0.746, loss=45.623, backward_time=0.098, grad_norm=30.231, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.695e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:33:48,399 (trainer:737) INFO: 19epoch:train:2301-2400batch: iter_time=1.277e-04, forward_time=0.105, loss_ctc=41.209, loss_att=47.909, acc=0.727, loss=45.899, backward_time=0.097, grad_norm=33.453, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.694e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:34:31,204 (trainer:737) INFO: 19epoch:train:2401-2500batch: iter_time=1.187e-04, forward_time=0.107, loss_ctc=48.496, loss_att=49.412, acc=0.723, loss=49.137, backward_time=0.097, grad_norm=43.622, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.693e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-14 09:34:37,942 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-14 09:34:58,922 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 09:35:02,733 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 09:35:02,733 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-14 09:35:02,737 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 09:41:13,739 (trainer:737) INFO: 19epoch:train:2501-2600batch: iter_time=3.205, forward_time=0.129, loss_ctc=41.839, loss_att=47.482, acc=0.735, loss=45.790, backward_time=0.103, grad_norm=35.483, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=4.692e-04, train_time=4.025 +[gpuc02:0/16] 2024-01-14 09:41:56,175 (trainer:737) INFO: 19epoch:train:2601-2700batch: iter_time=1.458e-04, forward_time=0.107, loss_ctc=58.400, loss_att=70.726, acc=0.705, loss=67.029, backward_time=0.098, grad_norm=44.632, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.691e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 09:42:38,350 (trainer:737) INFO: 19epoch:train:2701-2800batch: iter_time=1.439e-04, forward_time=0.106, loss_ctc=47.858, loss_att=56.675, acc=0.711, loss=54.030, backward_time=0.098, grad_norm=36.748, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.690e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:43:20,518 (trainer:737) INFO: 19epoch:train:2801-2900batch: iter_time=1.534e-04, forward_time=0.106, loss_ctc=42.714, loss_att=44.618, acc=0.729, loss=44.047, backward_time=0.098, grad_norm=33.357, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.690e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 09:44:02,744 (trainer:737) INFO: 19epoch:train:2901-3000batch: iter_time=1.480e-04, forward_time=0.105, loss_ctc=53.322, loss_att=64.172, acc=0.690, loss=60.917, backward_time=0.098, grad_norm=42.988, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.689e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:44:16,172 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 09:44:45,078 (trainer:737) INFO: 19epoch:train:3001-3100batch: iter_time=1.551e-04, forward_time=0.105, loss_ctc=49.466, loss_att=51.903, acc=0.716, loss=51.171, backward_time=0.097, grad_norm=39.451, clip=100.000, loss_scale=2.727e+34, optim_step_time=0.041, optim0_lr0=4.688e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 09:45:27,256 (trainer:737) INFO: 19epoch:train:3101-3200batch: iter_time=1.558e-04, forward_time=0.106, loss_ctc=46.185, loss_att=48.030, acc=0.736, loss=47.476, backward_time=0.098, grad_norm=35.071, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.687e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:46:09,345 (trainer:737) INFO: 19epoch:train:3201-3300batch: iter_time=1.379e-04, forward_time=0.105, loss_ctc=41.460, loss_att=43.689, acc=0.735, loss=43.020, backward_time=0.097, grad_norm=34.469, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.686e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 09:46:51,549 (trainer:737) INFO: 19epoch:train:3301-3400batch: iter_time=1.250e-04, forward_time=0.106, loss_ctc=60.864, loss_att=63.100, acc=0.702, loss=62.429, backward_time=0.098, grad_norm=57.550, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.685e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:47:33,789 (trainer:737) INFO: 19epoch:train:3401-3500batch: iter_time=1.246e-04, forward_time=0.106, loss_ctc=48.670, loss_att=51.597, acc=0.732, loss=50.719, backward_time=0.098, grad_norm=37.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.684e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:48:15,812 (trainer:737) INFO: 19epoch:train:3501-3600batch: iter_time=1.291e-04, forward_time=0.105, loss_ctc=38.937, loss_att=46.951, acc=0.725, loss=44.546, backward_time=0.097, grad_norm=31.661, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.684e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 09:48:57,849 (trainer:737) INFO: 19epoch:train:3601-3700batch: iter_time=1.277e-04, forward_time=0.105, loss_ctc=39.932, loss_att=47.177, acc=0.723, loss=45.003, backward_time=0.097, grad_norm=35.694, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.683e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 09:49:28,923 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-14 09:49:49,394 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 09:49:53,227 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 09:49:53,227 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-14 09:49:53,230 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 09:56:12,543 (trainer:737) INFO: 19epoch:train:3701-3800batch: iter_time=3.884, forward_time=0.138, loss_ctc=50.366, loss_att=52.628, acc=0.722, loss=51.950, backward_time=0.103, grad_norm=43.766, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.682e-04, train_time=4.347 +[gpuc02:0/16] 2024-01-14 09:57:19,342 (trainer:737) INFO: 19epoch:train:3801-3900batch: iter_time=1.786e-04, forward_time=0.109, loss_ctc=55.651, loss_att=62.203, acc=0.714, loss=60.237, backward_time=0.099, grad_norm=43.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.681e-04, train_time=0.668 +[gpuc02:0/16] 2024-01-14 09:58:01,555 (trainer:737) INFO: 19epoch:train:3901-4000batch: iter_time=1.862e-04, forward_time=0.107, loss_ctc=42.849, loss_att=57.614, acc=0.721, loss=53.185, backward_time=0.099, grad_norm=35.167, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.680e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:58:43,816 (trainer:737) INFO: 19epoch:train:4001-4100batch: iter_time=1.748e-04, forward_time=0.108, loss_ctc=48.496, loss_att=47.875, acc=0.722, loss=48.061, backward_time=0.100, grad_norm=36.250, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.679e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 09:59:26,300 (trainer:737) INFO: 19epoch:train:4101-4200batch: iter_time=1.934e-04, forward_time=0.108, loss_ctc=47.228, loss_att=58.421, acc=0.697, loss=55.063, backward_time=0.098, grad_norm=39.011, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.678e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 10:00:08,867 (trainer:737) INFO: 19epoch:train:4201-4300batch: iter_time=1.567e-04, forward_time=0.107, loss_ctc=51.195, loss_att=49.492, acc=0.722, loss=50.003, backward_time=0.097, grad_norm=42.593, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.678e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 10:00:50,922 (trainer:737) INFO: 19epoch:train:4301-4400batch: iter_time=1.366e-04, forward_time=0.106, loss_ctc=47.122, loss_att=51.385, acc=0.733, loss=50.106, backward_time=0.097, grad_norm=35.801, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.677e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 10:01:33,036 (trainer:737) INFO: 19epoch:train:4401-4500batch: iter_time=1.572e-04, forward_time=0.107, loss_ctc=42.132, loss_att=42.422, acc=0.736, loss=42.335, backward_time=0.098, grad_norm=33.118, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.676e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:02:15,114 (trainer:737) INFO: 19epoch:train:4501-4600batch: iter_time=1.604e-04, forward_time=0.107, loss_ctc=49.241, loss_att=54.043, acc=0.711, loss=52.602, backward_time=0.097, grad_norm=40.178, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.675e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:02:57,315 (trainer:737) INFO: 19epoch:train:4601-4700batch: iter_time=1.517e-04, forward_time=0.107, loss_ctc=57.256, loss_att=61.930, acc=0.712, loss=60.528, backward_time=0.097, grad_norm=55.089, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.674e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:03:39,418 (trainer:737) INFO: 19epoch:train:4701-4800batch: iter_time=1.433e-04, forward_time=0.107, loss_ctc=39.047, loss_att=47.996, acc=0.743, loss=45.311, backward_time=0.097, grad_norm=30.004, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.673e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:04:21,627 (trainer:737) INFO: 19epoch:train:4801-4900batch: iter_time=1.435e-04, forward_time=0.107, loss_ctc=40.218, loss_att=46.974, acc=0.725, loss=44.947, backward_time=0.097, grad_norm=33.073, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.672e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:05:03,662 (trainer:737) INFO: 19epoch:train:4901-5000batch: iter_time=1.276e-04, forward_time=0.106, loss_ctc=47.736, loss_att=49.588, acc=0.714, loss=49.033, backward_time=0.097, grad_norm=44.607, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.672e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 10:05:29,178 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-14 10:05:49,369 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 10:05:53,079 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 10:05:53,079 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-14 10:05:53,083 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 10:11:18,776 (trainer:737) INFO: 19epoch:train:5001-5100batch: iter_time=3.255, forward_time=0.166, loss_ctc=41.441, loss_att=43.457, acc=0.746, loss=42.852, backward_time=0.102, grad_norm=33.516, clip=100.000, loss_scale=3.489e+34, optim_step_time=0.044, optim0_lr0=4.671e-04, train_time=3.751 +[gpuc02:0/16] 2024-01-14 10:12:01,525 (trainer:737) INFO: 19epoch:train:5101-5200batch: iter_time=1.879e-04, forward_time=0.109, loss_ctc=57.688, loss_att=69.765, acc=0.708, loss=66.142, backward_time=0.100, grad_norm=43.245, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.043, optim0_lr0=4.670e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 10:12:22,396 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 10:12:43,928 (trainer:737) INFO: 19epoch:train:5201-5300batch: iter_time=1.987e-04, forward_time=0.107, loss_ctc=47.661, loss_att=53.847, acc=0.719, loss=51.991, backward_time=0.099, grad_norm=34.379, clip=100.000, loss_scale=3.084e+34, optim_step_time=0.042, optim0_lr0=4.669e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:13:26,334 (trainer:737) INFO: 19epoch:train:5301-5400batch: iter_time=2.167e-04, forward_time=0.107, loss_ctc=42.372, loss_att=42.647, acc=0.735, loss=42.564, backward_time=0.098, grad_norm=32.888, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.668e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:14:08,557 (trainer:737) INFO: 19epoch:train:5401-5500batch: iter_time=1.995e-04, forward_time=0.106, loss_ctc=52.120, loss_att=61.253, acc=0.698, loss=58.513, backward_time=0.098, grad_norm=40.367, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.667e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:14:51,227 (trainer:737) INFO: 19epoch:train:5501-5600batch: iter_time=1.875e-04, forward_time=0.105, loss_ctc=47.414, loss_att=50.913, acc=0.717, loss=49.863, backward_time=0.097, grad_norm=42.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.667e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 10:15:34,340 (trainer:737) INFO: 19epoch:train:5601-5700batch: iter_time=1.876e-04, forward_time=0.106, loss_ctc=45.986, loss_att=47.515, acc=0.738, loss=47.056, backward_time=0.098, grad_norm=37.256, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.666e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-14 10:16:17,112 (trainer:737) INFO: 19epoch:train:5701-5800batch: iter_time=1.792e-04, forward_time=0.113, loss_ctc=41.158, loss_att=43.856, acc=0.735, loss=43.046, backward_time=0.097, grad_norm=32.402, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.665e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 10:16:59,450 (trainer:737) INFO: 19epoch:train:5801-5900batch: iter_time=1.626e-04, forward_time=0.106, loss_ctc=57.898, loss_att=59.100, acc=0.704, loss=58.739, backward_time=0.096, grad_norm=60.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.664e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:17:41,547 (trainer:737) INFO: 19epoch:train:5901-6000batch: iter_time=1.661e-04, forward_time=0.107, loss_ctc=47.499, loss_att=50.873, acc=0.734, loss=49.861, backward_time=0.097, grad_norm=37.807, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.663e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:18:23,887 (trainer:737) INFO: 19epoch:train:6001-6100batch: iter_time=1.595e-04, forward_time=0.106, loss_ctc=38.608, loss_att=47.119, acc=0.728, loss=44.565, backward_time=0.098, grad_norm=31.240, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=4.662e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:19:05,805 (trainer:737) INFO: 19epoch:train:6101-6200batch: iter_time=1.472e-04, forward_time=0.105, loss_ctc=39.119, loss_att=47.041, acc=0.724, loss=44.664, backward_time=0.096, grad_norm=34.725, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.661e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-14 10:19:36,025 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-14 10:19:56,243 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 10:19:59,934 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 10:19:59,934 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-14 10:19:59,938 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 10:24:29,033 (trainer:737) INFO: 19epoch:train:6201-6300batch: iter_time=2.808, forward_time=0.107, loss_ctc=49.203, loss_att=52.284, acc=0.724, loss=51.360, backward_time=0.097, grad_norm=41.852, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.661e-04, train_time=3.232 +[gpuc02:0/16] 2024-01-14 10:25:11,426 (trainer:737) INFO: 19epoch:train:6301-6400batch: iter_time=1.437e-04, forward_time=0.108, loss_ctc=54.862, loss_att=61.541, acc=0.716, loss=59.538, backward_time=0.098, grad_norm=43.496, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.660e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:25:53,785 (trainer:737) INFO: 19epoch:train:6401-6500batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=43.024, loss_att=58.320, acc=0.720, loss=53.731, backward_time=0.099, grad_norm=33.739, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.659e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:26:36,059 (trainer:737) INFO: 19epoch:train:6501-6600batch: iter_time=1.437e-04, forward_time=0.106, loss_ctc=48.482, loss_att=47.723, acc=0.723, loss=47.951, backward_time=0.099, grad_norm=34.750, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.658e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:27:18,571 (trainer:737) INFO: 19epoch:train:6601-6700batch: iter_time=1.409e-04, forward_time=0.106, loss_ctc=46.775, loss_att=58.502, acc=0.700, loss=54.984, backward_time=0.098, grad_norm=36.992, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.657e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 10:28:00,695 (trainer:737) INFO: 19epoch:train:6701-6800batch: iter_time=1.401e-04, forward_time=0.106, loss_ctc=49.132, loss_att=48.722, acc=0.724, loss=48.845, backward_time=0.097, grad_norm=42.559, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.656e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:28:43,725 (trainer:737) INFO: 19epoch:train:6801-6900batch: iter_time=1.296e-04, forward_time=0.106, loss_ctc=47.169, loss_att=50.659, acc=0.734, loss=49.612, backward_time=0.098, grad_norm=37.492, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.656e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 10:29:25,900 (trainer:737) INFO: 19epoch:train:6901-7000batch: iter_time=1.320e-04, forward_time=0.106, loss_ctc=42.240, loss_att=42.345, acc=0.735, loss=42.314, backward_time=0.097, grad_norm=32.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.655e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:30:08,453 (trainer:737) INFO: 19epoch:train:7001-7100batch: iter_time=1.456e-04, forward_time=0.106, loss_ctc=49.137, loss_att=53.337, acc=0.714, loss=52.077, backward_time=0.098, grad_norm=41.480, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.654e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 10:30:51,161 (trainer:737) INFO: 19epoch:train:7101-7200batch: iter_time=1.429e-04, forward_time=0.106, loss_ctc=55.687, loss_att=58.795, acc=0.716, loss=57.863, backward_time=0.098, grad_norm=52.852, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.653e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 10:31:33,610 (trainer:737) INFO: 19epoch:train:7201-7300batch: iter_time=1.428e-04, forward_time=0.106, loss_ctc=38.908, loss_att=47.443, acc=0.745, loss=44.882, backward_time=0.097, grad_norm=31.322, clip=100.000, loss_scale=3.136e+34, optim_step_time=0.041, optim0_lr0=4.652e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:32:15,652 (trainer:737) INFO: 19epoch:train:7301-7400batch: iter_time=1.502e-04, forward_time=0.105, loss_ctc=40.213, loss_att=47.465, acc=0.723, loss=45.289, backward_time=0.097, grad_norm=33.291, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.651e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 10:32:57,943 (trainer:737) INFO: 19epoch:train:7401-7500batch: iter_time=1.346e-04, forward_time=0.104, loss_ctc=46.844, loss_att=48.737, acc=0.716, loss=48.169, backward_time=0.097, grad_norm=43.190, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.651e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:33:02,393 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-14 10:33:22,656 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 10:33:26,487 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 10:33:26,487 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-14 10:33:26,491 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 10:38:23,738 (trainer:737) INFO: 19epoch:train:7501-7600batch: iter_time=2.534, forward_time=0.117, loss_ctc=41.099, loss_att=45.983, acc=0.748, loss=44.518, backward_time=0.102, grad_norm=35.080, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.650e-04, train_time=3.258 +[gpuc02:0/16] 2024-01-14 10:39:06,117 (trainer:737) INFO: 19epoch:train:7601-7700batch: iter_time=1.421e-04, forward_time=0.106, loss_ctc=56.114, loss_att=69.881, acc=0.717, loss=65.751, backward_time=0.100, grad_norm=43.758, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.649e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:39:48,575 (trainer:737) INFO: 19epoch:train:7701-7800batch: iter_time=1.471e-04, forward_time=0.105, loss_ctc=47.466, loss_att=56.051, acc=0.724, loss=53.475, backward_time=0.099, grad_norm=35.509, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.648e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:40:30,701 (trainer:737) INFO: 19epoch:train:7801-7900batch: iter_time=1.551e-04, forward_time=0.105, loss_ctc=42.323, loss_att=44.688, acc=0.743, loss=43.978, backward_time=0.099, grad_norm=33.211, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.647e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:41:12,928 (trainer:737) INFO: 19epoch:train:7901-8000batch: iter_time=1.507e-04, forward_time=0.105, loss_ctc=51.805, loss_att=62.323, acc=0.701, loss=59.168, backward_time=0.098, grad_norm=44.206, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.646e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:41:55,161 (trainer:737) INFO: 19epoch:train:8001-8100batch: iter_time=1.769e-04, forward_time=0.104, loss_ctc=46.836, loss_att=53.233, acc=0.718, loss=51.314, backward_time=0.099, grad_norm=42.161, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.646e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:42:37,470 (trainer:737) INFO: 19epoch:train:8101-8200batch: iter_time=1.709e-04, forward_time=0.106, loss_ctc=45.890, loss_att=52.032, acc=0.737, loss=50.189, backward_time=0.099, grad_norm=36.351, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.645e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:43:19,597 (trainer:737) INFO: 19epoch:train:8201-8300batch: iter_time=1.585e-04, forward_time=0.105, loss_ctc=40.846, loss_att=43.568, acc=0.745, loss=42.751, backward_time=0.098, grad_norm=32.653, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.644e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:44:01,802 (trainer:737) INFO: 19epoch:train:8301-8400batch: iter_time=1.835e-04, forward_time=0.105, loss_ctc=57.504, loss_att=60.704, acc=0.706, loss=59.744, backward_time=0.099, grad_norm=54.555, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.643e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:44:44,054 (trainer:737) INFO: 19epoch:train:8401-8500batch: iter_time=1.556e-04, forward_time=0.106, loss_ctc=47.470, loss_att=52.841, acc=0.741, loss=51.230, backward_time=0.099, grad_norm=37.784, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.642e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:45:26,122 (trainer:737) INFO: 19epoch:train:8501-8600batch: iter_time=1.362e-04, forward_time=0.105, loss_ctc=37.813, loss_att=47.552, acc=0.732, loss=44.630, backward_time=0.098, grad_norm=30.899, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.641e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 10:46:08,432 (trainer:737) INFO: 19epoch:train:8601-8700batch: iter_time=1.405e-04, forward_time=0.105, loss_ctc=39.202, loss_att=46.764, acc=0.733, loss=44.495, backward_time=0.098, grad_norm=33.789, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.641e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:46:26,555 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 10:46:34,671 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-14 10:46:54,141 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 10:46:57,741 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 10:46:57,741 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-14 10:46:57,744 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 10:51:18,464 (trainer:737) INFO: 19epoch:train:8701-8800batch: iter_time=2.587, forward_time=0.106, loss_ctc=47.968, loss_att=51.176, acc=0.736, loss=50.214, backward_time=0.098, grad_norm=40.033, clip=100.000, loss_scale=2.958e+34, optim_step_time=0.042, optim0_lr0=4.640e-04, train_time=3.100 +[gpuc02:0/16] 2024-01-14 10:52:01,140 (trainer:737) INFO: 19epoch:train:8801-8900batch: iter_time=1.616e-04, forward_time=0.106, loss_ctc=54.498, loss_att=62.874, acc=0.716, loss=60.361, backward_time=0.098, grad_norm=43.691, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.639e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-14 10:52:43,321 (trainer:737) INFO: 19epoch:train:8901-9000batch: iter_time=1.414e-04, forward_time=0.104, loss_ctc=42.271, loss_att=58.077, acc=0.722, loss=53.335, backward_time=0.097, grad_norm=33.369, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.638e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:53:25,467 (trainer:737) INFO: 19epoch:train:9001-9100batch: iter_time=1.441e-04, forward_time=0.104, loss_ctc=48.236, loss_att=48.650, acc=0.723, loss=48.526, backward_time=0.097, grad_norm=35.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.637e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:54:07,623 (trainer:737) INFO: 19epoch:train:9101-9200batch: iter_time=1.451e-04, forward_time=0.106, loss_ctc=46.564, loss_att=58.287, acc=0.701, loss=54.770, backward_time=0.097, grad_norm=41.182, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.636e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:54:50,272 (trainer:737) INFO: 19epoch:train:9201-9300batch: iter_time=1.332e-04, forward_time=0.105, loss_ctc=48.542, loss_att=49.144, acc=0.721, loss=48.964, backward_time=0.096, grad_norm=45.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.636e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 10:55:32,535 (trainer:737) INFO: 19epoch:train:9301-9400batch: iter_time=1.230e-04, forward_time=0.106, loss_ctc=46.937, loss_att=51.031, acc=0.734, loss=49.803, backward_time=0.097, grad_norm=37.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.635e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:56:14,952 (trainer:737) INFO: 19epoch:train:9401-9500batch: iter_time=1.172e-04, forward_time=0.108, loss_ctc=42.380, loss_att=42.963, acc=0.735, loss=42.788, backward_time=0.097, grad_norm=33.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.634e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 10:56:57,211 (trainer:737) INFO: 19epoch:train:9501-9600batch: iter_time=1.379e-04, forward_time=0.106, loss_ctc=48.169, loss_att=53.264, acc=0.714, loss=51.735, backward_time=0.098, grad_norm=41.942, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.633e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 10:57:39,493 (trainer:737) INFO: 19epoch:train:9601-9700batch: iter_time=1.175e-04, forward_time=0.106, loss_ctc=54.929, loss_att=60.606, acc=0.714, loss=58.903, backward_time=0.098, grad_norm=53.685, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.632e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 10:58:22,024 (trainer:737) INFO: 19epoch:train:9701-9800batch: iter_time=1.126e-04, forward_time=0.106, loss_ctc=38.741, loss_att=47.140, acc=0.746, loss=44.620, backward_time=0.097, grad_norm=31.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.631e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 10:59:04,130 (trainer:737) INFO: 19epoch:train:9801-9900batch: iter_time=1.171e-04, forward_time=0.105, loss_ctc=40.116, loss_att=47.414, acc=0.724, loss=45.225, backward_time=0.097, grad_norm=33.545, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.631e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 10:59:46,183 (trainer:737) INFO: 19epoch:train:9901-10000batch: iter_time=1.205e-04, forward_time=0.105, loss_ctc=46.029, loss_att=49.176, acc=0.712, loss=48.232, backward_time=0.097, grad_norm=39.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.630e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 10:59:50,487 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-14 11:00:09,442 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 11:00:13,029 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 11:00:13,030 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-14 11:00:13,033 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 11:04:53,954 (trainer:737) INFO: 19epoch:train:10001-10100batch: iter_time=2.542, forward_time=0.105, loss_ctc=41.616, loss_att=45.326, acc=0.751, loss=44.213, backward_time=0.099, grad_norm=33.596, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.629e-04, train_time=3.077 +[gpuc02:0/16] 2024-01-14 11:05:37,024 (trainer:737) INFO: 19epoch:train:10101-10200batch: iter_time=1.183e-04, forward_time=0.106, loss_ctc=56.119, loss_att=68.734, acc=0.717, loss=64.950, backward_time=0.101, grad_norm=42.735, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.628e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-14 11:06:19,301 (trainer:737) INFO: 19epoch:train:10201-10300batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=46.851, loss_att=54.085, acc=0.729, loss=51.915, backward_time=0.099, grad_norm=34.210, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.627e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:07:01,799 (trainer:737) INFO: 19epoch:train:10301-10400batch: iter_time=1.204e-04, forward_time=0.105, loss_ctc=41.832, loss_att=43.441, acc=0.747, loss=42.958, backward_time=0.099, grad_norm=33.440, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.626e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 11:07:44,439 (trainer:737) INFO: 19epoch:train:10401-10500batch: iter_time=1.493e-04, forward_time=0.105, loss_ctc=51.644, loss_att=61.955, acc=0.702, loss=58.862, backward_time=0.100, grad_norm=42.288, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.626e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 11:08:26,950 (trainer:737) INFO: 19epoch:train:10501-10600batch: iter_time=1.306e-04, forward_time=0.105, loss_ctc=45.757, loss_att=52.462, acc=0.720, loss=50.451, backward_time=0.099, grad_norm=44.142, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.625e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 11:09:09,472 (trainer:737) INFO: 19epoch:train:10601-10700batch: iter_time=1.349e-04, forward_time=0.106, loss_ctc=45.405, loss_att=50.944, acc=0.740, loss=49.282, backward_time=0.098, grad_norm=35.474, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.624e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 11:09:51,512 (trainer:737) INFO: 19epoch:train:10701-10800batch: iter_time=1.258e-04, forward_time=0.104, loss_ctc=40.696, loss_att=43.335, acc=0.747, loss=42.543, backward_time=0.097, grad_norm=33.029, clip=100.000, loss_scale=3.261e+34, optim_step_time=0.041, optim0_lr0=4.623e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 11:10:18,969 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 11:10:33,965 (trainer:737) INFO: 19epoch:train:10801-10900batch: iter_time=1.265e-04, forward_time=0.105, loss_ctc=58.593, loss_att=62.558, acc=0.708, loss=61.369, backward_time=0.098, grad_norm=53.990, clip=100.000, loss_scale=3.420e+34, optim_step_time=0.041, optim0_lr0=4.622e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 11:11:16,932 (trainer:737) INFO: 19epoch:train:10901-11000batch: iter_time=1.279e-04, forward_time=0.105, loss_ctc=46.980, loss_att=51.614, acc=0.745, loss=50.224, backward_time=0.098, grad_norm=37.377, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.622e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 11:11:59,547 (trainer:737) INFO: 19epoch:train:11001-11100batch: iter_time=1.295e-04, forward_time=0.104, loss_ctc=38.029, loss_att=46.943, acc=0.733, loss=44.269, backward_time=0.097, grad_norm=32.133, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.621e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 11:12:41,546 (trainer:737) INFO: 19epoch:train:11101-11200batch: iter_time=1.276e-04, forward_time=0.104, loss_ctc=38.883, loss_att=46.225, acc=0.733, loss=44.022, backward_time=0.097, grad_norm=33.457, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.620e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 11:13:09,390 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-14 11:13:28,819 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 11:13:32,517 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 11:13:32,518 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-14 11:13:32,521 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 11:17:52,786 (trainer:737) INFO: 19epoch:train:11201-11300batch: iter_time=2.535, forward_time=0.119, loss_ctc=48.313, loss_att=52.097, acc=0.732, loss=50.962, backward_time=0.099, grad_norm=40.719, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=4.619e-04, train_time=3.112 +[gpuc02:0/16] 2024-01-14 11:18:35,383 (trainer:737) INFO: 19epoch:train:11301-11400batch: iter_time=1.255e-04, forward_time=0.106, loss_ctc=54.939, loss_att=59.677, acc=0.734, loss=58.255, backward_time=0.099, grad_norm=42.109, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.618e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 11:19:17,625 (trainer:737) INFO: 19epoch:train:11401-11500batch: iter_time=1.626e-04, forward_time=0.106, loss_ctc=42.188, loss_att=57.379, acc=0.728, loss=52.821, backward_time=0.098, grad_norm=34.091, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.617e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:19:59,910 (trainer:737) INFO: 19epoch:train:11501-11600batch: iter_time=1.666e-04, forward_time=0.107, loss_ctc=47.833, loss_att=48.488, acc=0.734, loss=48.291, backward_time=0.098, grad_norm=35.765, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.617e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:20:42,120 (trainer:737) INFO: 19epoch:train:11601-11700batch: iter_time=1.556e-04, forward_time=0.106, loss_ctc=46.161, loss_att=57.333, acc=0.714, loss=53.981, backward_time=0.098, grad_norm=37.634, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.616e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:21:24,408 (trainer:737) INFO: 19epoch:train:11701-11800batch: iter_time=1.588e-04, forward_time=0.105, loss_ctc=47.972, loss_att=50.184, acc=0.718, loss=49.520, backward_time=0.097, grad_norm=43.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.615e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:22:06,736 (trainer:737) INFO: 19epoch:train:11801-11900batch: iter_time=1.485e-04, forward_time=0.106, loss_ctc=46.847, loss_att=53.595, acc=0.742, loss=51.570, backward_time=0.099, grad_norm=37.101, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.614e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:22:48,948 (trainer:737) INFO: 19epoch:train:11901-12000batch: iter_time=1.263e-04, forward_time=0.104, loss_ctc=42.093, loss_att=44.896, acc=0.736, loss=44.055, backward_time=0.099, grad_norm=33.857, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.613e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:23:31,234 (trainer:737) INFO: 19epoch:train:12001-12100batch: iter_time=1.347e-04, forward_time=0.105, loss_ctc=48.374, loss_att=54.390, acc=0.718, loss=52.585, backward_time=0.099, grad_norm=37.655, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.612e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:24:13,599 (trainer:737) INFO: 19epoch:train:12101-12200batch: iter_time=1.440e-04, forward_time=0.105, loss_ctc=55.534, loss_att=60.037, acc=0.725, loss=58.686, backward_time=0.099, grad_norm=54.203, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.612e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:24:56,142 (trainer:737) INFO: 19epoch:train:12201-12300batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=38.264, loss_att=47.943, acc=0.748, loss=45.040, backward_time=0.099, grad_norm=30.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.611e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 11:25:38,261 (trainer:737) INFO: 19epoch:train:12301-12400batch: iter_time=1.247e-04, forward_time=0.104, loss_ctc=39.856, loss_att=47.124, acc=0.733, loss=44.944, backward_time=0.098, grad_norm=31.701, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.610e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 11:26:20,878 (trainer:737) INFO: 19epoch:train:12401-12500batch: iter_time=1.158e-04, forward_time=0.105, loss_ctc=46.114, loss_att=48.159, acc=0.727, loss=47.546, backward_time=0.098, grad_norm=40.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.609e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-14 11:26:27,987 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-14 11:26:47,002 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 11:26:50,604 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 11:26:50,604 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-14 11:26:50,608 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 11:31:36,683 (trainer:737) INFO: 19epoch:train:12501-12600batch: iter_time=2.592, forward_time=0.106, loss_ctc=40.771, loss_att=43.137, acc=0.752, loss=42.427, backward_time=0.098, grad_norm=33.756, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.608e-04, train_time=3.158 +[gpuc02:0/16] 2024-01-14 11:32:19,151 (trainer:737) INFO: 19epoch:train:12601-12700batch: iter_time=1.430e-04, forward_time=0.106, loss_ctc=55.914, loss_att=67.745, acc=0.720, loss=64.195, backward_time=0.099, grad_norm=42.311, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.608e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-14 11:33:01,420 (trainer:737) INFO: 19epoch:train:12701-12800batch: iter_time=1.392e-04, forward_time=0.104, loss_ctc=46.894, loss_att=54.452, acc=0.729, loss=52.185, backward_time=0.098, grad_norm=33.956, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.607e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:33:43,933 (trainer:737) INFO: 19epoch:train:12801-12900batch: iter_time=1.457e-04, forward_time=0.104, loss_ctc=42.263, loss_att=43.327, acc=0.746, loss=43.008, backward_time=0.098, grad_norm=33.542, clip=100.000, loss_scale=2.804e+34, optim_step_time=0.041, optim0_lr0=4.606e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 11:34:26,192 (trainer:737) INFO: 19epoch:train:12901-13000batch: iter_time=1.624e-04, forward_time=0.105, loss_ctc=51.335, loss_att=61.480, acc=0.704, loss=58.437, backward_time=0.098, grad_norm=41.403, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.605e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:35:08,335 (trainer:737) INFO: 19epoch:train:13001-13100batch: iter_time=1.419e-04, forward_time=0.104, loss_ctc=45.808, loss_att=51.407, acc=0.722, loss=49.728, backward_time=0.098, grad_norm=42.763, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.604e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 11:35:50,891 (trainer:737) INFO: 19epoch:train:13101-13200batch: iter_time=1.423e-04, forward_time=0.104, loss_ctc=45.392, loss_att=51.292, acc=0.738, loss=49.522, backward_time=0.098, grad_norm=35.667, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.604e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-14 11:36:33,036 (trainer:737) INFO: 19epoch:train:13201-13300batch: iter_time=1.495e-04, forward_time=0.104, loss_ctc=40.784, loss_att=42.890, acc=0.747, loss=42.258, backward_time=0.098, grad_norm=33.439, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.603e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 11:37:15,308 (trainer:737) INFO: 19epoch:train:13301-13400batch: iter_time=1.804e-04, forward_time=0.105, loss_ctc=56.720, loss_att=59.911, acc=0.709, loss=58.954, backward_time=0.098, grad_norm=53.775, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.602e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:37:57,614 (trainer:737) INFO: 19epoch:train:13401-13500batch: iter_time=1.440e-04, forward_time=0.105, loss_ctc=46.957, loss_att=51.355, acc=0.747, loss=50.036, backward_time=0.098, grad_norm=37.793, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.601e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:38:39,967 (trainer:737) INFO: 19epoch:train:13501-13600batch: iter_time=1.271e-04, forward_time=0.103, loss_ctc=37.828, loss_att=46.530, acc=0.735, loss=43.919, backward_time=0.097, grad_norm=31.855, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.600e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-14 11:39:21,954 (trainer:737) INFO: 19epoch:train:13601-13700batch: iter_time=1.408e-04, forward_time=0.102, loss_ctc=38.736, loss_att=46.022, acc=0.736, loss=43.836, backward_time=0.097, grad_norm=34.225, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.599e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-14 11:39:48,894 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-14 11:40:08,126 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-14 11:40:12,076 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-14 11:40:12,077 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-14 11:40:12,080 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-14 11:44:41,199 (trainer:737) INFO: 19epoch:train:13701-13800batch: iter_time=2.539, forward_time=0.105, loss_ctc=46.994, loss_att=50.726, acc=0.738, loss=49.607, backward_time=0.098, grad_norm=38.425, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.042, optim0_lr0=4.599e-04, train_time=3.192 +[gpuc02:0/16] 2024-01-14 11:45:24,125 (trainer:737) INFO: 19epoch:train:13801-13900batch: iter_time=1.478e-04, forward_time=0.106, loss_ctc=53.670, loss_att=64.293, acc=0.715, loss=61.106, backward_time=0.097, grad_norm=42.088, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.598e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-14 11:46:06,307 (trainer:737) INFO: 19epoch:train:13901-14000batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=42.212, loss_att=57.966, acc=0.723, loss=53.240, backward_time=0.097, grad_norm=35.134, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=4.597e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-14 11:46:14,241 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc02:0/16] 2024-01-14 11:46:48,456 (trainer:737) INFO: 19epoch:train:14001-14100batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=47.587, loss_att=48.780, acc=0.723, loss=48.422, backward_time=0.097, grad_norm=35.758, clip=100.000, loss_scale=2.455e+34, optim_step_time=0.041, optim0_lr0=4.596e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-14 11:47:30,638 (trainer:737) INFO: 19epoch:train:14101-14200batch: iter_time=1.471e-04, forward_time=0.104, loss_ctc=46.218, loss_att=58.441, acc=0.703, loss=54.774, backward_time=0.097, grad_norm=37.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=4.595e-04, train_time=0.422 + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245918:1246033 [0] transport/net_ib.cc:1237 NCCL WARN NET/IB : Got completion from peer 172.28.23.204<46958> with error 12, opcode 129, len 16, vendor err 129 + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port error + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245923:1246017 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245918:1246019 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245919:1246018 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245922:1246021 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245924:1246016 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245920:1246020 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245925:1246023 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc02:1245921:1246022 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : port active + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854595:1854688 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854597:1854692 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854601:1854691 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854602:1854693 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854598:1854687 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854596:1854694 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854599:1854690 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change + +gpuc04:1854600:1854689 [0] transport/net_ib.cc:93 NCCL WARN NET/IB : Got async event : GID table change +gpuc02:1245918:1246033 [0] NCCL INFO include/net.h:35 -> 6 +gpuc02:1245918:1246033 [0] NCCL INFO transport/net.cc:1034 -> 6 +gpuc02:1245918:1246033 [0] NCCL INFO proxy.cc:520 -> 6 +gpuc02:1245918:1246033 [0] NCCL INFO proxy.cc:684 -> 6 [Proxy Thread] +Process SpawnProcess-1: +Traceback (most recent call last): + File "/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap + self.run() + File "/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/lib/python3.10/multiprocessing/process.py", line 108, in run + self._target(*self._args, **self._kwargs) + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/tasks/abs_task.py", line 1393, in main_worker + cls.trainer.run( + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/train/trainer.py", line 290, in run + all_steps_are_invalid = cls.train_one_epoch( + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/train/trainer.py", line 615, in train_one_epoch + stats, weight = recursive_average(stats, weight, distributed) + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/torch_utils/recursive_op.py", line 41, in recursive_average + obj = recursive_sum(obj, weight, distributed) + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/torch_utils/recursive_op.py", line 13, in recursive_sum + return {k: recursive_sum(v, weight, distributed) for k, v in obj.items()} + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/torch_utils/recursive_op.py", line 13, in + return {k: recursive_sum(v, weight, distributed) for k, v in obj.items()} + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/torch_utils/recursive_op.py", line 18, in recursive_sum + torch.distributed.all_reduce(obj, op=ReduceOp.SUM) + File "/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1541, in all_reduce + work.wait() +RuntimeError: NCCL error: remote process exited or there was a network error, NCCL version 2.14.3 +ncclRemoteError: A call failed possibly due to a network error or a remote process exiting prematurely. +Last error: +NET/IB : Got async event : GID table change +gpuc02:1245918:1245918 [0] NCCL INFO comm 0x543ab2d0 rank 0 nranks 16 cudaDev 0 busId 7000 - Abort COMPLETE +Traceback (most recent call last): + File "/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/lib/python3.10/runpy.py", line 196, in _run_module_as_main + return _run_code(code, main_globals, None, + File "/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/lib/python3.10/runpy.py", line 86, in _run_code + exec(code, run_globals) + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py", line 23, in + main() + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py", line 19, in main + S2TTask.main(cmd=cmd) + File "/scratch/bbjs/peng6/espnet-whisper-public/espnet2/tasks/abs_task.py", line 1134, in main + while not ProcessContext(processes, error_queues).join(): + File "/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 149, in join + raise ProcessExitedException( +torch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with exit code 1 +srun: error: gpuc02: task 0: Exited with exit code 1 +srun: Job step aborted: Waiting up to 32 seconds for job step to finish. diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.3.log b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.3.log new file mode 100644 index 0000000000000000000000000000000000000000..1b1bb4bfcd7195aad6464567ad1fbba7fc720c03 --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.3.log @@ -0,0 +1,5431 @@ +# Running on gpuc02.delta.ncsa.illinois.edu +# Started at Thu Jan 11 23:24:30 CST 2024 +# SLURMD_NODENAME=gpuc02 +# SLURM_CLUSTER_NAME=delta +# SLURM_CONF=/var/spool/slurmd/conf-cache/slurm.conf +# SLURM_CPUS_ON_NODE=128 +# SLURM_CPUS_PER_TASK=128 +# SLURM_EXPORT_ENV=PATH +# SLURM_GET_USER_ENV=1 +# SLURM_GPUS_ON_NODE=8 +# SLURM_GTIDS=0 +# SLURM_JOBID=2855139 +# SLURM_JOB_ACCOUNT=bbjs-delta-gpu +# SLURM_JOB_CPUS_PER_NODE='128(x2)' +# SLURM_JOB_END_TIME=1705209848 +# SLURM_JOB_GID=202 +# SLURM_JOB_GPUS=0,1,2,3,4,5,6,7 +# SLURM_JOB_ID=2855139 +# SLURM_JOB_NAME=exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log +# SLURM_JOB_NODELIST='gpuc[02,05]' +# SLURM_JOB_NUM_NODES=2 +# SLURM_JOB_PARTITION=gpuA100x8 +# SLURM_JOB_QOS=bbjs-delta-gpu +# SLURM_JOB_START_TIME=1705037048 +# SLURM_JOB_UID=68077 +# SLURM_JOB_USER=peng6 +# SLURM_LOCALID=0 +# SLURM_MEM_PER_NODE=2000000 +# SLURM_NNODES=2 +# SLURM_NODEID=0 +# SLURM_NODELIST='gpuc[02,05]' +# SLURM_NODE_ALIASES='(null)' +# SLURM_OPEN_MODE=a +# SLURM_PRIO_PROCESS=0 +# SLURM_PROCID=0 +# SLURM_SUBMIT_DIR=/scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1 +# SLURM_SUBMIT_HOST=dt-login01.delta.ncsa.illinois.edu +# SLURM_TASKS_PER_NODE='1(x2)' +# SLURM_TASK_PID=191473 +# SLURM_TOPOLOGY_ADDR=ss00.ss05.gpuc02 +# SLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.node +# SLURM_WORKING_CLUSTER=delta:dt-sched:6817:9984:109 +# srun --export=ALL python3 -m espnet2.bin.s2t_train --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_76e4f837-19da-4a99-b112-53c1402d3c83 +/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/spe/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_76e4f837-19da-4a99-b112-53c1402d3c83 +ech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_76e4f837-19da-4a99-b112-53c1402d3c83 +[gpuc02:0/16] 2024-01-11 23:27:36,412 (distributed_c10d:319) INFO: Added key: store_based_barrier_key:1 to store for rank: 0 +[gpuc02:0/16] 2024-01-11 23:27:36,586 (distributed_c10d:353) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. +[gpuc02:0/16] 2024-01-11 23:27:36,731 (s2t:464) INFO: Vocabulary size: 50002 +[gpuc02:0/16] 2024-01-11 23:27:45,044 (abs_task:1231) INFO: pytorch.version=1.13.1, cuda.available=True, cudnn.version=8500, cudnn.benchmark=False, cudnn.deterministic=True +[gpuc02:0/16] 2024-01-11 23:27:45,050 (abs_task:1232) INFO: Model structure: +ESPnetS2TModel( + (frontend): DefaultFrontend( + (stft): Stft(n_fft=512, win_length=400, hop_length=160, center=True, normalized=False, onesided=True) + (frontend): Frontend() + (logmel): LogMel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000.0, htk=False) + ) + (specaug): SpecAug( + (freq_mask): MaskAlongAxis(mask_width_range=[0, 27], num_mask=1, axis=freq) + (time_mask): MaskAlongAxisVariableMaxWidth(mask_width_ratio_range=[0.0, 0.05], num_mask=1, axis=time) + ) + (normalize): GlobalMVN(stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz, norm_means=True, norm_vars=True) + (encoder): EBranchformerEncoder( + (embed): Conv2dSubsampling( + (conv): Sequential( + (0): Conv2d(1, 384, kernel_size=(3, 3), stride=(2, 2)) + (1): ReLU() + (2): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2)) + (3): ReLU() + ) + (out): Sequential( + (0): Linear(in_features=7296, out_features=384, bias=True) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (encoders): MultiSequential( + (0): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (1): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (2): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (3): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (4): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (5): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + ) + (decoder): TransformerDecoder( + (embed): Sequential( + (0): Embedding(50002, 384) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (output_layer): Linear(in_features=384, out_features=50002, bias=True) + (decoders): MultiSequential( + (0): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (1): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (2): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (3): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (4): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (5): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (criterion_att): LabelSmoothingLoss( + (criterion): KLDivLoss() + ) + (ctc): CTC( + (ctc_lo): Linear(in_features=384, out_features=50002, bias=True) + (ctc_loss): CTCLoss() + ) +) + +Model summary: + Class Name: ESPnetS2TModel + Total Number of model parameters: 101.18 M + Number of trainable parameters: 101.18 M (100.0%) + Size: 404.73 MB + Type: torch.float32 +[gpuc02:0/16] 2024-01-11 23:27:45,050 (abs_task:1235) INFO: Optimizer: +AdamW ( +Parameter Group 0 + amsgrad: False + betas: [0.9, 0.98] + capturable: False + eps: 1e-06 + foreach: None + initial_lr: 0.001 + lr: 3.3333333333333334e-09 + maximize: False + weight_decay: 0.0 +) +[gpuc02:0/16] 2024-01-11 23:27:45,050 (abs_task:1236) INFO: Scheduler: PiecewiseLinearWarmupLR(warmup_steps_list=[0, 30000, 60000], warmup_lr_list=[0.0, 0.0001, 0.001]) +[gpuc02:0/16] 2024-01-11 23:27:45,051 (abs_task:1245) INFO: Saving the configuration in exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml +[gpuc02:0/16] 2024-01-11 23:27:51,640 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-11 23:27:52,607 (abs_task:1616) INFO: [valid] dataset: +ESPnetDataset( + speech: {"path": "dump/raw/dev_v3/wav.scp", "type": "kaldi_ark"} + text_prev: {"path": "dump/raw/dev_v3/text.prev", "type": "text"} + text_ctc: {"path": "dump/raw/dev_v3/text.ctc", "type": "text"} + text: {"path": "dump/raw/dev_v3/text", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-11 23:27:52,607 (abs_task:1617) INFO: [valid] Batch sampler: UnsortedBatchSampler(N-batch=4671, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/valid/speech_shape, +[gpuc02:0/16] 2024-01-11 23:27:52,609 (abs_task:1618) INFO: [valid] mini-batch sizes summary: N-batch=4671, mean=256.0, min=256, max=257 +gpuc02:191629:191629 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191629:191629 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191629:191629 [0] NCCL INFO cudaDriverVersion 12020 +NCCL version 2.14.3+cuda11.7 +[gpuc02:0/16] 2024-01-11 23:28:00,310 (trainer:284) INFO: 1/45epoch started +[gpuc02:0/16] 2024-01-11 23:28:00,359 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-11 23:28:19,766 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-11 23:28:23,614 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-11 23:28:23,614 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-11 23:28:23,618 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +gpuc05:1572112:1572112 [3] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572112:1572112 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572112:1572112 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572112:1572199 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572112:1572199 [3] NCCL INFO Using network IB +gpuc05:1572112:1572199 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc05:1572112:1572199 [3] NCCL INFO Trees [0] 12/-1/-1->11->10 [1] 12/-1/-1->11->10 +gpuc05:1572112:1572199 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc05:1572112:1572199 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc05:1572112:1572199 [3] NCCL INFO Connected all rings +gpuc05:1572112:1572199 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc05:1572112:1572199 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc05:1572112:1572199 [3] NCCL INFO Connected all trees +gpuc05:1572112:1572199 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572112:1572199 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572112:1572199 [3] NCCL INFO comm 0xe9c8780 rank 11 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc05:1572114:1572114 [5] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572114:1572114 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572114:1572114 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572114:1572194 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572114:1572194 [5] NCCL INFO Using network IB +gpuc05:1572114:1572194 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc05:1572114:1572194 [5] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] 14/-1/-1->13->12 +gpuc05:1572114:1572194 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc05:1572114:1572194 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc05:1572114:1572194 [5] NCCL INFO Connected all rings +gpuc05:1572114:1572194 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc05:1572114:1572194 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc05:1572114:1572194 [5] NCCL INFO Connected all trees +gpuc05:1572114:1572194 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572114:1572194 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572114:1572194 [5] NCCL INFO comm 0xe78e1b0 rank 13 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc05:1572111:1572111 [2] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572111:1572111 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572111:1572111 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572111:1572188 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572111:1572188 [2] NCCL INFO Using network IB +gpuc05:1572111:1572188 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc05:1572111:1572188 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/-1/-1->10->9 +gpuc05:1572111:1572188 [2] NCCL INFO Channel 00/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc05:1572111:1572188 [2] NCCL INFO Channel 01/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc05:1572111:1572188 [2] NCCL INFO Connected all rings +gpuc05:1572111:1572188 [2] NCCL INFO Channel 00/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc05:1572111:1572188 [2] NCCL INFO Channel 01/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc05:1572111:1572188 [2] NCCL INFO Connected all trees +gpuc05:1572111:1572188 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572111:1572188 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572111:1572188 [2] NCCL INFO comm 0xfa4f550 rank 10 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc05:1572109:1572109 [0] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572109:1572109 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572109:1572109 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572109:1572189 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572109:1572189 [0] NCCL INFO Using network IB +gpuc05:1572109:1572189 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc05:1572109:1572189 [0] NCCL INFO Trees [0] 9/-1/-1->8->0 [1] 9/0/-1->8->-1 +gpuc05:1572109:1572189 [0] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc05:1572109:1572189 [0] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc05:1572109:1572189 [0] NCCL INFO Channel 00/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc05:1572109:1572189 [0] NCCL INFO Channel 01/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc05:1572109:1572189 [0] NCCL INFO Connected all rings +gpuc05:1572109:1572189 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc05:1572109:1572189 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc05:1572109:1572189 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc05:1572109:1572189 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc05:1572109:1572189 [0] NCCL INFO Connected all trees +gpuc05:1572109:1572189 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572109:1572189 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572109:1572189 [0] NCCL INFO comm 0x10c4c0c0 rank 8 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc05:1572116:1572116 [7] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572116:1572116 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572116:1572116 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572116:1572200 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572116:1572200 [7] NCCL INFO Using network IB +gpuc05:1572116:1572200 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc05:1572116:1572200 [7] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] -1/-1/-1->15->14 +gpuc05:1572116:1572200 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc05:1572116:1572200 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc05:1572116:1572200 [7] NCCL INFO Connected all rings +gpuc05:1572116:1572200 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc05:1572116:1572200 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc05:1572116:1572200 [7] NCCL INFO Connected all trees +gpuc05:1572116:1572200 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572116:1572200 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572116:1572200 [7] NCCL INFO comm 0xaed6250 rank 15 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc05:1572115:1572115 [6] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572115:1572115 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572115:1572115 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572115:1572198 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572115:1572198 [6] NCCL INFO Using network IB +gpuc05:1572115:1572198 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc05:1572115:1572198 [6] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->13 +gpuc05:1572115:1572198 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc05:1572115:1572198 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc05:1572115:1572198 [6] NCCL INFO Connected all rings +gpuc05:1572115:1572198 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc05:1572115:1572198 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc05:1572115:1572198 [6] NCCL INFO Connected all trees +gpuc05:1572115:1572198 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572115:1572198 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572115:1572198 [6] NCCL INFO comm 0x10dc8d60 rank 14 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc02:191629:191713 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191629:191713 [0] NCCL INFO Using network IB +gpuc02:191629:191713 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc02:191629:191713 [0] NCCL INFO Channel 00/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc02:191629:191713 [0] NCCL INFO Channel 01/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc02:191629:191713 [0] NCCL INFO Trees [0] 1/8/-1->0->-1 [1] 1/-1/-1->0->8 +gpuc02:191629:191713 [0] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:191629:191713 [0] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:191629:191713 [0] NCCL INFO Channel 00/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc02:191629:191713 [0] NCCL INFO Channel 01/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc02:191629:191713 [0] NCCL INFO Connected all rings +gpuc02:191629:191713 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:191629:191713 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc02:191629:191713 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc02:191629:191713 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc02:191629:191713 [0] NCCL INFO Connected all trees +gpuc02:191629:191713 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191629:191713 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191629:191713 [0] NCCL INFO comm 0xf895300 rank 0 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc02:191631:191631 [2] NCCL INFO cudaDriverVersion 12020 +gpuc02:191631:191631 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191631:191631 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191631:191715 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191631:191715 [2] NCCL INFO Using network IB +gpuc02:191631:191715 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc02:191631:191715 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1 +gpuc02:191631:191715 [2] NCCL INFO Channel 00/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc02:191631:191715 [2] NCCL INFO Channel 01/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc02:191631:191715 [2] NCCL INFO Connected all rings +gpuc02:191631:191715 [2] NCCL INFO Channel 00/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc02:191631:191715 [2] NCCL INFO Channel 01/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc02:191631:191715 [2] NCCL INFO Connected all trees +gpuc02:191631:191715 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191631:191715 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191631:191715 [2] NCCL INFO comm 0xd090940 rank 2 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc05:1572113:1572113 [4] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572113:1572113 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572113:1572113 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572113:1572191 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572113:1572191 [4] NCCL INFO Using network IB +gpuc05:1572113:1572191 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc05:1572113:1572191 [4] NCCL INFO Trees [0] 13/-1/-1->12->11 [1] 13/-1/-1->12->11 +gpuc05:1572113:1572191 [4] NCCL INFO Channel 00/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc05:1572113:1572191 [4] NCCL INFO Channel 01/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc05:1572113:1572191 [4] NCCL INFO Connected all rings +gpuc05:1572113:1572191 [4] NCCL INFO Channel 00/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc05:1572113:1572191 [4] NCCL INFO Channel 01/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc05:1572113:1572191 [4] NCCL INFO Connected all trees +gpuc05:1572113:1572191 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572113:1572191 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572113:1572191 [4] NCCL INFO comm 0x10eb7d00 rank 12 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +gpuc02:191632:191632 [3] NCCL INFO cudaDriverVersion 12020 +gpuc02:191632:191632 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191632:191632 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191632:191719 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191632:191719 [3] NCCL INFO Using network IB +gpuc02:191632:191719 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc02:191632:191719 [3] NCCL INFO Trees [0] 4/-1/-1->3->2 [1] 4/-1/-1->3->2 +gpuc02:191632:191719 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc02:191632:191719 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc02:191632:191719 [3] NCCL INFO Connected all rings +gpuc02:191632:191719 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc02:191632:191719 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc02:191632:191719 [3] NCCL INFO Connected all trees +gpuc02:191632:191719 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191632:191719 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191632:191719 [3] NCCL INFO comm 0x101d0c60 rank 3 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc02:191635:191635 [6] NCCL INFO cudaDriverVersion 12020 +gpuc02:191635:191635 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191635:191635 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191635:191714 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191635:191714 [6] NCCL INFO Using network IB +gpuc02:191635:191714 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc02:191635:191714 [6] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->5 +gpuc02:191635:191714 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc02:191635:191714 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc02:191635:191714 [6] NCCL INFO Connected all rings +gpuc02:191635:191714 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc02:191635:191714 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc02:191635:191714 [6] NCCL INFO Connected all trees +gpuc02:191635:191714 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191635:191714 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191635:191714 [6] NCCL INFO comm 0x109f6f80 rank 6 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc02:191630:191630 [1] NCCL INFO cudaDriverVersion 12020 +gpuc02:191630:191630 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191630:191630 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191630:191718 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191630:191718 [1] NCCL INFO Using network IB +gpuc02:191630:191718 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc02:191630:191718 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0 +gpuc02:191630:191718 [1] NCCL INFO Channel 00/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc02:191630:191718 [1] NCCL INFO Channel 01/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc02:191630:191718 [1] NCCL INFO Connected all rings +gpuc02:191630:191718 [1] NCCL INFO Channel 00/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc02:191630:191718 [1] NCCL INFO Channel 01/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc02:191630:191718 [1] NCCL INFO Connected all trees +gpuc02:191630:191718 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191630:191718 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191630:191718 [1] NCCL INFO comm 0x9ad28c0 rank 1 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc05:1572110:1572110 [1] NCCL INFO cudaDriverVersion 12020 +gpuc05:1572110:1572110 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.205<0> +gpuc05:1572110:1572110 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc05:1572110:1572190 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.205<0> +gpuc05:1572110:1572190 [1] NCCL INFO Using network IB +gpuc05:1572110:1572190 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc05:1572110:1572190 [1] NCCL INFO Trees [0] 10/-1/-1->9->8 [1] 10/-1/-1->9->8 +gpuc05:1572110:1572190 [1] NCCL INFO Channel 00/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc05:1572110:1572190 [1] NCCL INFO Channel 01/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc05:1572110:1572190 [1] NCCL INFO Connected all rings +gpuc05:1572110:1572190 [1] NCCL INFO Channel 00/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc05:1572110:1572190 [1] NCCL INFO Channel 01/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc05:1572110:1572190 [1] NCCL INFO Connected all trees +gpuc05:1572110:1572190 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc05:1572110:1572190 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc05:1572110:1572190 [1] NCCL INFO comm 0x92fde30 rank 9 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc02:191636:191636 [7] NCCL INFO cudaDriverVersion 12020 +gpuc02:191636:191636 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191636:191636 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191636:191717 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191636:191717 [7] NCCL INFO Using network IB +gpuc02:191636:191717 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc02:191636:191717 [7] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] -1/-1/-1->7->6 +gpuc02:191636:191717 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc02:191636:191717 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc02:191636:191717 [7] NCCL INFO Connected all rings +gpuc02:191636:191717 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc02:191636:191717 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc02:191636:191717 [7] NCCL INFO Connected all trees +gpuc02:191636:191717 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191636:191717 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191636:191717 [7] NCCL INFO comm 0x104f3a80 rank 7 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc02:191634:191634 [5] NCCL INFO cudaDriverVersion 12020 +gpuc02:191634:191634 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191634:191634 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191634:191720 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191634:191720 [5] NCCL INFO Using network IB +gpuc02:191634:191720 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc02:191634:191720 [5] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] 6/-1/-1->5->4 +gpuc02:191634:191720 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc02:191634:191720 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc02:191634:191720 [5] NCCL INFO Connected all rings +gpuc02:191634:191720 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc02:191634:191720 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc02:191634:191720 [5] NCCL INFO Connected all trees +gpuc02:191634:191720 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191634:191720 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191634:191720 [5] NCCL INFO comm 0xf55f8d0 rank 5 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc02:191633:191633 [4] NCCL INFO cudaDriverVersion 12020 +gpuc02:191633:191633 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.202<0> +gpuc02:191633:191633 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc02:191633:191721 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.202<0> +gpuc02:191633:191721 [4] NCCL INFO Using network IB +gpuc02:191633:191721 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc02:191633:191721 [4] NCCL INFO Trees [0] 5/-1/-1->4->3 [1] 5/-1/-1->4->3 +gpuc02:191633:191721 [4] NCCL INFO Channel 00/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc02:191633:191721 [4] NCCL INFO Channel 01/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc02:191633:191721 [4] NCCL INFO Connected all rings +gpuc02:191633:191721 [4] NCCL INFO Channel 00/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc02:191633:191721 [4] NCCL INFO Channel 01/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc02:191633:191721 [4] NCCL INFO Connected all trees +gpuc02:191633:191721 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc02:191633:191721 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc02:191633:191721 [4] NCCL INFO comm 0x1125adf0 rank 4 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +[gpuc02:0/16] 2024-01-11 23:32:21,974 (distributed:1027) INFO: Reducer buckets have been rebuilt in this iteration. +[gpuc02:0/16] 2024-01-11 23:33:03,745 (trainer:737) INFO: 1epoch:train:1-100batch: iter_time=2.391, forward_time=0.183, loss_ctc=7.457e+03, loss_att=391.280, acc=3.121e-05, loss=2.511e+03, backward_time=0.108, grad_norm=4.391e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.030, optim0_lr0=1.717e-07, train_time=3.033 +[gpuc02:0/16] 2024-01-11 23:33:44,873 (trainer:737) INFO: 1epoch:train:101-200batch: iter_time=1.106e-04, forward_time=0.103, loss_ctc=6.975e+03, loss_att=397.791, acc=2.337e-05, loss=2.371e+03, backward_time=0.098, grad_norm=8.599e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=5.050e-07, train_time=0.412 +[gpuc02:0/16] 2024-01-11 23:34:26,073 (trainer:737) INFO: 1epoch:train:201-300batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=4.555e+03, loss_att=431.826, acc=3.918e-05, loss=1.669e+03, backward_time=0.099, grad_norm=1.058e+04, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=8.383e-07, train_time=0.412 +[gpuc02:0/16] 2024-01-11 23:35:08,222 (trainer:737) INFO: 1epoch:train:301-400batch: iter_time=1.026e-04, forward_time=0.103, loss_ctc=1.454e+03, loss_att=373.331, acc=2.875e-05, loss=697.422, backward_time=0.097, grad_norm=4.358e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=1.172e-06, train_time=0.421 +[gpuc02:0/16] 2024-01-11 23:35:51,519 (trainer:737) INFO: 1epoch:train:401-500batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=804.950, loss_att=399.800, acc=2.928e-05, loss=521.345, backward_time=0.097, grad_norm=2.016e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=1.505e-06, train_time=0.433 +[gpuc02:0/16] 2024-01-11 23:36:32,432 (trainer:737) INFO: 1epoch:train:501-600batch: iter_time=1.198e-04, forward_time=0.104, loss_ctc=712.421, loss_att=398.908, acc=4.393e-05, loss=492.962, backward_time=0.098, grad_norm=1.678e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=1.838e-06, train_time=0.409 +[gpuc02:0/16] 2024-01-11 23:37:13,339 (trainer:737) INFO: 1epoch:train:601-700batch: iter_time=1.115e-04, forward_time=0.104, loss_ctc=635.638, loss_att=394.027, acc=6.123e-05, loss=466.510, backward_time=0.098, grad_norm=1.494e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=2.172e-06, train_time=0.409 +[gpuc02:0/16] 2024-01-11 23:37:54,079 (trainer:737) INFO: 1epoch:train:701-800batch: iter_time=1.131e-04, forward_time=0.104, loss_ctc=556.085, loss_att=344.927, acc=6.498e-05, loss=408.274, backward_time=0.096, grad_norm=1.338e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=2.505e-06, train_time=0.407 +[gpuc02:0/16] 2024-01-11 23:38:34,913 (trainer:737) INFO: 1epoch:train:801-900batch: iter_time=1.114e-04, forward_time=0.104, loss_ctc=566.535, loss_att=405.032, acc=1.454e-04, loss=453.483, backward_time=0.097, grad_norm=1.130e+03, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=2.838e-06, train_time=0.408 +[gpuc02:0/16] 2024-01-11 23:39:15,664 (trainer:737) INFO: 1epoch:train:901-1000batch: iter_time=1.176e-04, forward_time=0.104, loss_ctc=507.043, loss_att=375.760, acc=3.569e-04, loss=415.145, backward_time=0.097, grad_norm=972.188, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.028, optim0_lr0=3.172e-06, train_time=0.407 +[gpuc02:0/16] 2024-01-11 23:39:56,479 (trainer:737) INFO: 1epoch:train:1001-1100batch: iter_time=1.188e-04, forward_time=0.104, loss_ctc=486.487, loss_att=389.476, acc=0.004, loss=418.579, backward_time=0.097, grad_norm=795.188, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=3.505e-06, train_time=0.408 +[gpuc02:0/16] 2024-01-11 23:40:37,367 (trainer:737) INFO: 1epoch:train:1101-1200batch: iter_time=1.075e-04, forward_time=0.104, loss_ctc=471.975, loss_att=392.589, acc=0.021, loss=416.405, backward_time=0.097, grad_norm=622.823, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=3.838e-06, train_time=0.409 +[gpuc02:0/16] 2024-01-11 23:41:12,859 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-11 23:41:32,927 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-11 23:41:36,867 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-11 23:41:36,867 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-11 23:41:36,870 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-11 23:45:55,227 (trainer:737) INFO: 1epoch:train:1201-1300batch: iter_time=2.438, forward_time=0.104, loss_ctc=424.154, loss_att=375.678, acc=0.040, loss=390.221, backward_time=0.097, grad_norm=489.343, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=4.172e-06, train_time=3.178 +[gpuc02:0/16] 2024-01-11 23:46:36,810 (trainer:737) INFO: 1epoch:train:1301-1400batch: iter_time=1.171e-04, forward_time=0.106, loss_ctc=424.779, loss_att=425.098, acc=0.048, loss=425.002, backward_time=0.099, grad_norm=353.790, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=4.505e-06, train_time=0.416 +[gpuc02:0/16] 2024-01-11 23:47:18,393 (trainer:737) INFO: 1epoch:train:1401-1500batch: iter_time=1.242e-04, forward_time=0.106, loss_ctc=398.299, loss_att=406.543, acc=0.062, loss=404.070, backward_time=0.099, grad_norm=277.497, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=4.838e-06, train_time=0.416 +[gpuc02:0/16] 2024-01-11 23:47:59,698 (trainer:737) INFO: 1epoch:train:1501-1600batch: iter_time=1.139e-04, forward_time=0.104, loss_ctc=356.666, loss_att=373.747, acc=0.056, loss=368.623, backward_time=0.098, grad_norm=215.948, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=5.172e-06, train_time=0.413 +[gpuc02:0/16] 2024-01-11 23:48:41,037 (trainer:737) INFO: 1epoch:train:1601-1700batch: iter_time=1.191e-04, forward_time=0.105, loss_ctc=372.536, loss_att=387.160, acc=0.051, loss=382.773, backward_time=0.099, grad_norm=161.251, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=5.505e-06, train_time=0.413 +[gpuc02:0/16] 2024-01-11 23:49:22,295 (trainer:737) INFO: 1epoch:train:1701-1800batch: iter_time=1.206e-04, forward_time=0.105, loss_ctc=333.016, loss_att=356.025, acc=0.046, loss=349.122, backward_time=0.098, grad_norm=132.581, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=5.838e-06, train_time=0.412 +[gpuc02:0/16] 2024-01-11 23:50:05,396 (trainer:737) INFO: 1epoch:train:1801-1900batch: iter_time=1.306e-04, forward_time=0.105, loss_ctc=339.241, loss_att=363.112, acc=0.051, loss=355.951, backward_time=0.098, grad_norm=118.765, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.030, optim0_lr0=6.172e-06, train_time=0.431 +[gpuc02:0/16] 2024-01-11 23:50:49,382 (trainer:737) INFO: 1epoch:train:1901-2000batch: iter_time=1.241e-04, forward_time=0.106, loss_ctc=332.506, loss_att=360.393, acc=0.046, loss=352.026, backward_time=0.099, grad_norm=98.719, clip=100.000, loss_scale=6.554e+04, optim_step_time=0.029, optim0_lr0=6.505e-06, train_time=0.440 +[gpuc02:0/16] 2024-01-11 23:51:31,026 (trainer:737) INFO: 1epoch:train:2001-2100batch: iter_time=1.311e-04, forward_time=0.105, loss_ctc=319.152, loss_att=340.797, acc=0.048, loss=334.304, backward_time=0.098, grad_norm=87.736, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=6.838e-06, train_time=0.416 +[gpuc02:0/16] 2024-01-11 23:52:12,417 (trainer:737) INFO: 1epoch:train:2101-2200batch: iter_time=1.397e-04, forward_time=0.106, loss_ctc=317.378, loss_att=334.206, acc=0.053, loss=329.157, backward_time=0.098, grad_norm=80.259, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.030, optim0_lr0=7.172e-06, train_time=0.414 +[gpuc02:0/16] 2024-01-11 23:52:53,725 (trainer:737) INFO: 1epoch:train:2201-2300batch: iter_time=1.331e-04, forward_time=0.105, loss_ctc=307.266, loss_att=332.630, acc=0.048, loss=325.021, backward_time=0.098, grad_norm=72.657, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.030, optim0_lr0=7.505e-06, train_time=0.413 +[gpuc02:0/16] 2024-01-11 23:53:35,252 (trainer:737) INFO: 1epoch:train:2301-2400batch: iter_time=1.325e-04, forward_time=0.107, loss_ctc=337.023, loss_att=360.536, acc=0.059, loss=353.482, backward_time=0.099, grad_norm=84.253, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=7.838e-06, train_time=0.415 +[gpuc02:0/16] 2024-01-11 23:54:16,710 (trainer:737) INFO: 1epoch:train:2401-2500batch: iter_time=1.176e-04, forward_time=0.106, loss_ctc=326.057, loss_att=342.688, acc=0.067, loss=337.699, backward_time=0.099, grad_norm=75.545, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=8.172e-06, train_time=0.414 +[gpuc02:0/16] 2024-01-11 23:54:19,201 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-11 23:54:39,081 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-11 23:54:42,742 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-11 23:54:42,742 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-11 23:54:42,745 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-11 23:59:13,438 (trainer:737) INFO: 1epoch:train:2501-2600batch: iter_time=2.373, forward_time=0.106, loss_ctc=305.572, loss_att=313.952, acc=0.084, loss=311.438, backward_time=0.098, grad_norm=77.911, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=8.505e-06, train_time=2.967 +[gpuc02:0/16] 2024-01-11 23:59:54,888 (trainer:737) INFO: 1epoch:train:2601-2700batch: iter_time=1.114e-04, forward_time=0.105, loss_ctc=301.482, loss_att=317.152, acc=0.088, loss=312.451, backward_time=0.097, grad_norm=66.634, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=8.838e-06, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:00:36,608 (trainer:737) INFO: 1epoch:train:2701-2800batch: iter_time=1.088e-04, forward_time=0.106, loss_ctc=319.267, loss_att=337.943, acc=0.098, loss=332.340, backward_time=0.098, grad_norm=70.096, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=9.172e-06, train_time=0.417 +[gpuc02:0/16] 2024-01-12 00:01:17,978 (trainer:737) INFO: 1epoch:train:2801-2900batch: iter_time=1.437e-04, forward_time=0.105, loss_ctc=280.464, loss_att=288.349, acc=0.102, loss=285.983, backward_time=0.097, grad_norm=61.955, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=9.505e-06, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:01:59,297 (trainer:737) INFO: 1epoch:train:2901-3000batch: iter_time=1.512e-04, forward_time=0.106, loss_ctc=300.902, loss_att=312.886, acc=0.098, loss=309.291, backward_time=0.097, grad_norm=71.501, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=9.838e-06, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:02:40,767 (trainer:737) INFO: 1epoch:train:3001-3100batch: iter_time=1.630e-04, forward_time=0.106, loss_ctc=303.073, loss_att=308.899, acc=0.099, loss=307.151, backward_time=0.097, grad_norm=67.366, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.017e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:03:22,186 (trainer:737) INFO: 1epoch:train:3101-3200batch: iter_time=1.593e-04, forward_time=0.104, loss_ctc=290.971, loss_att=305.513, acc=0.108, loss=301.151, backward_time=0.097, grad_norm=77.801, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.050e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:04:03,233 (trainer:737) INFO: 1epoch:train:3201-3300batch: iter_time=1.471e-04, forward_time=0.104, loss_ctc=256.728, loss_att=267.192, acc=0.109, loss=264.053, backward_time=0.096, grad_norm=58.156, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.084e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 00:04:44,887 (trainer:737) INFO: 1epoch:train:3301-3400batch: iter_time=1.519e-04, forward_time=0.106, loss_ctc=302.670, loss_att=311.523, acc=0.103, loss=308.867, backward_time=0.098, grad_norm=68.632, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.117e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 00:05:27,553 (trainer:737) INFO: 1epoch:train:3401-3500batch: iter_time=1.319e-04, forward_time=0.105, loss_ctc=279.956, loss_att=288.233, acc=0.109, loss=285.750, backward_time=0.097, grad_norm=61.635, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.151e-05, train_time=0.426 +[gpuc02:0/16] 2024-01-12 00:06:10,921 (trainer:737) INFO: 1epoch:train:3501-3600batch: iter_time=1.507e-04, forward_time=0.106, loss_ctc=284.730, loss_att=298.079, acc=0.110, loss=294.075, backward_time=0.097, grad_norm=64.143, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.184e-05, train_time=0.433 +[gpuc02:0/16] 2024-01-12 00:06:52,434 (trainer:737) INFO: 1epoch:train:3601-3700batch: iter_time=1.345e-04, forward_time=0.106, loss_ctc=301.571, loss_att=302.401, acc=0.108, loss=302.152, backward_time=0.097, grad_norm=68.867, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.029, optim0_lr0=1.217e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 00:07:16,122 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 00:07:35,167 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 00:07:38,818 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 00:07:38,819 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 00:07:38,822 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 00:11:44,356 (trainer:737) INFO: 1epoch:train:3701-3800batch: iter_time=2.327, forward_time=0.105, loss_ctc=290.290, loss_att=290.519, acc=0.115, loss=290.450, backward_time=0.097, grad_norm=70.353, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.028, optim0_lr0=1.251e-05, train_time=2.919 +[gpuc02:0/16] 2024-01-12 00:12:26,207 (trainer:737) INFO: 1epoch:train:3801-3900batch: iter_time=8.860e-05, forward_time=0.106, loss_ctc=301.305, loss_att=335.660, acc=0.103, loss=325.354, backward_time=0.098, grad_norm=74.580, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.028, optim0_lr0=1.284e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 00:13:07,770 (trainer:737) INFO: 1epoch:train:3901-4000batch: iter_time=1.004e-04, forward_time=0.106, loss_ctc=297.353, loss_att=318.866, acc=0.109, loss=312.412, backward_time=0.098, grad_norm=71.092, clip=100.000, loss_scale=1.311e+05, optim_step_time=0.028, optim0_lr0=1.317e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 00:13:49,241 (trainer:737) INFO: 1epoch:train:4001-4100batch: iter_time=1.059e-04, forward_time=0.104, loss_ctc=267.328, loss_att=292.179, acc=0.115, loss=284.724, backward_time=0.097, grad_norm=65.389, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.350e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:14:30,591 (trainer:737) INFO: 1epoch:train:4101-4200batch: iter_time=9.962e-05, forward_time=0.105, loss_ctc=299.345, loss_att=313.846, acc=0.112, loss=309.496, backward_time=0.097, grad_norm=77.511, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.384e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:15:11,982 (trainer:737) INFO: 1epoch:train:4201-4300batch: iter_time=9.379e-05, forward_time=0.107, loss_ctc=265.865, loss_att=290.893, acc=0.112, loss=283.385, backward_time=0.097, grad_norm=70.585, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.417e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:15:53,319 (trainer:737) INFO: 1epoch:train:4301-4400batch: iter_time=1.036e-04, forward_time=0.105, loss_ctc=287.046, loss_att=306.420, acc=0.120, loss=300.608, backward_time=0.098, grad_norm=79.057, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.451e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:16:34,688 (trainer:737) INFO: 1epoch:train:4401-4500batch: iter_time=9.689e-05, forward_time=0.105, loss_ctc=279.985, loss_att=305.752, acc=0.115, loss=298.022, backward_time=0.098, grad_norm=77.380, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.484e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:17:15,972 (trainer:737) INFO: 1epoch:train:4501-4600batch: iter_time=1.032e-04, forward_time=0.105, loss_ctc=278.390, loss_att=295.806, acc=0.120, loss=290.581, backward_time=0.097, grad_norm=82.742, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.517e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:17:57,115 (trainer:737) INFO: 1epoch:train:4601-4700batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=281.668, loss_att=292.218, acc=0.121, loss=289.053, backward_time=0.097, grad_norm=78.880, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.551e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 00:18:38,328 (trainer:737) INFO: 1epoch:train:4701-4800batch: iter_time=9.680e-05, forward_time=0.104, loss_ctc=270.332, loss_att=292.751, acc=0.115, loss=286.025, backward_time=0.097, grad_norm=74.419, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.584e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:19:19,766 (trainer:737) INFO: 1epoch:train:4801-4900batch: iter_time=9.923e-05, forward_time=0.105, loss_ctc=300.938, loss_att=322.525, acc=0.112, loss=316.049, backward_time=0.098, grad_norm=90.088, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.617e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:20:00,997 (trainer:737) INFO: 1epoch:train:4901-5000batch: iter_time=9.882e-05, forward_time=0.105, loss_ctc=291.876, loss_att=306.462, acc=0.119, loss=302.086, backward_time=0.098, grad_norm=81.905, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.650e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:20:03,930 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 00:20:23,189 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 00:20:26,873 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 00:20:26,873 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 00:20:26,876 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 00:24:46,867 (trainer:737) INFO: 1epoch:train:5001-5100batch: iter_time=2.420, forward_time=0.104, loss_ctc=280.728, loss_att=288.688, acc=0.130, loss=286.300, backward_time=0.097, grad_norm=78.423, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.684e-05, train_time=2.858 +[gpuc02:0/16] 2024-01-12 00:25:28,407 (trainer:737) INFO: 1epoch:train:5101-5200batch: iter_time=1.073e-04, forward_time=0.104, loss_ctc=281.317, loss_att=294.482, acc=0.117, loss=290.533, backward_time=0.097, grad_norm=72.719, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.717e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 00:26:10,000 (trainer:737) INFO: 1epoch:train:5201-5300batch: iter_time=1.020e-04, forward_time=0.104, loss_ctc=295.537, loss_att=311.284, acc=0.121, loss=306.560, backward_time=0.098, grad_norm=78.115, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.751e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 00:26:51,269 (trainer:737) INFO: 1epoch:train:5301-5400batch: iter_time=1.100e-04, forward_time=0.103, loss_ctc=262.903, loss_att=268.381, acc=0.133, loss=266.738, backward_time=0.097, grad_norm=76.070, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.784e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:27:32,598 (trainer:737) INFO: 1epoch:train:5401-5500batch: iter_time=1.097e-04, forward_time=0.103, loss_ctc=285.521, loss_att=294.414, acc=0.126, loss=291.746, backward_time=0.097, grad_norm=80.355, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.817e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:28:13,932 (trainer:737) INFO: 1epoch:train:5501-5600batch: iter_time=1.020e-04, forward_time=0.104, loss_ctc=291.887, loss_att=293.730, acc=0.132, loss=293.177, backward_time=0.097, grad_norm=103.555, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.850e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:28:55,211 (trainer:737) INFO: 1epoch:train:5601-5700batch: iter_time=1.041e-04, forward_time=0.103, loss_ctc=280.958, loss_att=290.747, acc=0.132, loss=287.811, backward_time=0.097, grad_norm=82.859, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.884e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:29:40,410 (trainer:737) INFO: 1epoch:train:5701-5800batch: iter_time=1.009e-04, forward_time=0.126, loss_ctc=249.403, loss_att=255.738, acc=0.139, loss=253.837, backward_time=0.101, grad_norm=83.337, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.917e-05, train_time=0.451 +[gpuc02:0/16] 2024-01-12 00:30:21,945 (trainer:737) INFO: 1epoch:train:5801-5900batch: iter_time=1.045e-04, forward_time=0.103, loss_ctc=293.258, loss_att=296.392, acc=0.132, loss=295.452, backward_time=0.097, grad_norm=100.952, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.951e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 00:31:03,047 (trainer:737) INFO: 1epoch:train:5901-6000batch: iter_time=1.007e-04, forward_time=0.103, loss_ctc=271.899, loss_att=275.249, acc=0.133, loss=274.244, backward_time=0.097, grad_norm=101.109, clip=100.000, loss_scale=2.621e+05, optim_step_time=0.028, optim0_lr0=1.984e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 00:31:45,714 (trainer:737) INFO: 1epoch:train:6001-6100batch: iter_time=1.010e-04, forward_time=0.118, loss_ctc=275.676, loss_att=281.359, acc=0.133, loss=279.654, backward_time=0.097, grad_norm=101.605, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.028, optim0_lr0=2.017e-05, train_time=0.426 +[gpuc02:0/16] 2024-01-12 00:32:27,167 (trainer:737) INFO: 1epoch:train:6101-6200batch: iter_time=1.033e-04, forward_time=0.105, loss_ctc=293.458, loss_att=285.191, acc=0.136, loss=287.671, backward_time=0.098, grad_norm=107.615, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.028, optim0_lr0=2.051e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:33:02,510 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 00:33:21,588 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 00:33:25,322 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 00:33:25,323 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 00:33:25,326 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 00:38:47,825 (trainer:737) INFO: 1epoch:train:6201-6300batch: iter_time=3.368, forward_time=0.104, loss_ctc=285.711, loss_att=275.120, acc=0.141, loss=278.297, backward_time=0.098, grad_norm=103.901, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.028, optim0_lr0=2.084e-05, train_time=3.806 +[gpuc02:0/16] 2024-01-12 00:39:29,169 (trainer:737) INFO: 1epoch:train:6301-6400batch: iter_time=1.585e-04, forward_time=0.106, loss_ctc=294.820, loss_att=297.920, acc=0.126, loss=296.990, backward_time=0.099, grad_norm=106.253, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.117e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:40:10,973 (trainer:737) INFO: 1epoch:train:6401-6500batch: iter_time=1.508e-04, forward_time=0.105, loss_ctc=287.768, loss_att=295.420, acc=0.133, loss=293.125, backward_time=0.098, grad_norm=94.944, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.151e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 00:40:52,210 (trainer:737) INFO: 1epoch:train:6501-6600batch: iter_time=1.883e-04, forward_time=0.104, loss_ctc=260.030, loss_att=257.944, acc=0.140, loss=258.570, backward_time=0.097, grad_norm=83.671, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.184e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:41:33,489 (trainer:737) INFO: 1epoch:train:6601-6700batch: iter_time=1.729e-04, forward_time=0.104, loss_ctc=292.357, loss_att=282.796, acc=0.137, loss=285.664, backward_time=0.098, grad_norm=127.516, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.217e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:42:14,588 (trainer:737) INFO: 1epoch:train:6701-6800batch: iter_time=1.774e-04, forward_time=0.104, loss_ctc=259.730, loss_att=253.738, acc=0.140, loss=255.535, backward_time=0.097, grad_norm=94.522, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.250e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 00:42:55,870 (trainer:737) INFO: 1epoch:train:6801-6900batch: iter_time=1.586e-04, forward_time=0.105, loss_ctc=281.242, loss_att=276.079, acc=0.144, loss=277.628, backward_time=0.098, grad_norm=92.883, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.030, optim0_lr0=2.284e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:43:37,132 (trainer:737) INFO: 1epoch:train:6901-7000batch: iter_time=1.551e-04, forward_time=0.106, loss_ctc=275.886, loss_att=273.169, acc=0.136, loss=273.984, backward_time=0.098, grad_norm=102.797, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.317e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:44:18,324 (trainer:737) INFO: 1epoch:train:7001-7100batch: iter_time=1.598e-04, forward_time=0.105, loss_ctc=272.623, loss_att=265.621, acc=0.141, loss=267.722, backward_time=0.098, grad_norm=96.272, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.350e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:44:59,515 (trainer:737) INFO: 1epoch:train:7101-7200batch: iter_time=2.307e-04, forward_time=0.105, loss_ctc=277.458, loss_att=267.807, acc=0.143, loss=270.702, backward_time=0.098, grad_norm=116.341, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.384e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:45:40,684 (trainer:737) INFO: 1epoch:train:7201-7300batch: iter_time=1.622e-04, forward_time=0.105, loss_ctc=264.623, loss_att=262.487, acc=0.141, loss=263.127, backward_time=0.098, grad_norm=100.119, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.417e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 00:46:22,016 (trainer:737) INFO: 1epoch:train:7301-7400batch: iter_time=1.548e-04, forward_time=0.106, loss_ctc=294.646, loss_att=278.253, acc=0.139, loss=283.171, backward_time=0.098, grad_norm=83.912, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.451e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:47:03,278 (trainer:737) INFO: 1epoch:train:7401-7500batch: iter_time=1.451e-04, forward_time=0.106, loss_ctc=287.432, loss_att=271.125, acc=0.142, loss=276.017, backward_time=0.098, grad_norm=102.301, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.484e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 00:47:08,327 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 00:47:27,175 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 00:47:30,834 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 00:47:30,834 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 00:47:30,837 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 00:51:56,767 (trainer:737) INFO: 1epoch:train:7501-7600batch: iter_time=2.438, forward_time=0.108, loss_ctc=278.482, loss_att=282.749, acc=0.147, loss=281.469, backward_time=0.098, grad_norm=92.389, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.517e-05, train_time=2.935 +[gpuc02:0/16] 2024-01-12 00:52:38,231 (trainer:737) INFO: 1epoch:train:7601-7700batch: iter_time=1.955e-04, forward_time=0.106, loss_ctc=278.398, loss_att=284.266, acc=0.135, loss=282.505, backward_time=0.098, grad_norm=112.606, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.550e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:53:19,717 (trainer:737) INFO: 1epoch:train:7701-7800batch: iter_time=1.605e-04, forward_time=0.106, loss_ctc=290.556, loss_att=291.752, acc=0.143, loss=291.393, backward_time=0.098, grad_norm=96.282, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.584e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 00:54:01,054 (trainer:737) INFO: 1epoch:train:7801-7900batch: iter_time=1.665e-04, forward_time=0.104, loss_ctc=258.037, loss_att=262.649, acc=0.151, loss=261.265, backward_time=0.097, grad_norm=88.896, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.617e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:54:42,401 (trainer:737) INFO: 1epoch:train:7901-8000batch: iter_time=2.752e-04, forward_time=0.105, loss_ctc=282.479, loss_att=284.821, acc=0.141, loss=284.118, backward_time=0.098, grad_norm=102.899, clip=100.000, loss_scale=5.243e+05, optim_step_time=0.029, optim0_lr0=2.650e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:55:23,839 (trainer:737) INFO: 1epoch:train:8001-8100batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=289.253, loss_att=289.260, acc=0.146, loss=289.258, backward_time=0.098, grad_norm=194.375, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=2.684e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:56:06,628 (trainer:737) INFO: 1epoch:train:8101-8200batch: iter_time=1.434e-04, forward_time=0.105, loss_ctc=277.331, loss_att=275.921, acc=0.147, loss=276.344, backward_time=0.098, grad_norm=113.865, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=2.717e-05, train_time=0.428 +[gpuc02:0/16] 2024-01-12 00:56:48,902 (trainer:737) INFO: 1epoch:train:8201-8300batch: iter_time=1.317e-04, forward_time=0.104, loss_ctc=244.266, loss_att=248.438, acc=0.153, loss=247.186, backward_time=0.096, grad_norm=93.856, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.028, optim0_lr0=2.751e-05, train_time=0.423 +[gpuc02:0/16] 2024-01-12 00:57:30,494 (trainer:737) INFO: 1epoch:train:8301-8400batch: iter_time=1.540e-04, forward_time=0.104, loss_ctc=288.237, loss_att=280.630, acc=0.148, loss=282.912, backward_time=0.097, grad_norm=104.556, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.028, optim0_lr0=2.784e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 00:58:11,780 (trainer:737) INFO: 1epoch:train:8401-8500batch: iter_time=1.509e-04, forward_time=0.104, loss_ctc=266.646, loss_att=263.170, acc=0.148, loss=264.213, backward_time=0.097, grad_norm=105.981, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.028, optim0_lr0=2.817e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:58:53,085 (trainer:737) INFO: 1epoch:train:8501-8600batch: iter_time=1.383e-04, forward_time=0.104, loss_ctc=273.472, loss_att=275.829, acc=0.146, loss=275.122, backward_time=0.097, grad_norm=109.310, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.028, optim0_lr0=2.851e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 00:59:34,482 (trainer:737) INFO: 1epoch:train:8601-8700batch: iter_time=1.319e-04, forward_time=0.104, loss_ctc=290.989, loss_att=279.092, acc=0.151, loss=282.661, backward_time=0.097, grad_norm=124.591, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.028, optim0_lr0=2.884e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 00:59:59,040 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 01:00:18,404 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 01:00:22,176 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 01:00:22,176 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 01:00:22,180 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 01:04:21,572 (trainer:737) INFO: 1epoch:train:8701-8800batch: iter_time=2.396, forward_time=0.104, loss_ctc=278.724, loss_att=259.799, acc=0.156, loss=265.476, backward_time=0.097, grad_norm=100.235, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=2.917e-05, train_time=2.871 +[gpuc02:0/16] 2024-01-12 01:05:03,032 (trainer:737) INFO: 1epoch:train:8801-8900batch: iter_time=1.145e-04, forward_time=0.106, loss_ctc=290.384, loss_att=287.665, acc=0.140, loss=288.481, backward_time=0.098, grad_norm=116.333, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=2.950e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:05:44,428 (trainer:737) INFO: 1epoch:train:8901-9000batch: iter_time=1.246e-04, forward_time=0.106, loss_ctc=281.651, loss_att=277.734, acc=0.148, loss=278.909, backward_time=0.098, grad_norm=108.921, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=2.984e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:06:25,678 (trainer:737) INFO: 1epoch:train:9001-9100batch: iter_time=1.191e-04, forward_time=0.106, loss_ctc=256.240, loss_att=251.545, acc=0.158, loss=252.953, backward_time=0.097, grad_norm=92.573, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.017e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:07:07,053 (trainer:737) INFO: 1epoch:train:9101-9200batch: iter_time=1.299e-04, forward_time=0.106, loss_ctc=287.928, loss_att=270.821, acc=0.154, loss=275.953, backward_time=0.098, grad_norm=152.747, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.051e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:07:48,608 (trainer:737) INFO: 1epoch:train:9201-9300batch: iter_time=1.327e-04, forward_time=0.108, loss_ctc=255.779, loss_att=247.448, acc=0.153, loss=249.947, backward_time=0.097, grad_norm=114.839, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.084e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 01:08:29,936 (trainer:737) INFO: 1epoch:train:9301-9400batch: iter_time=1.135e-04, forward_time=0.106, loss_ctc=277.974, loss_att=267.489, acc=0.160, loss=270.635, backward_time=0.097, grad_norm=122.519, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.117e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:09:11,222 (trainer:737) INFO: 1epoch:train:9401-9500batch: iter_time=1.112e-04, forward_time=0.105, loss_ctc=272.352, loss_att=266.974, acc=0.154, loss=268.587, backward_time=0.097, grad_norm=131.039, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.151e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:09:52,501 (trainer:737) INFO: 1epoch:train:9501-9600batch: iter_time=1.239e-04, forward_time=0.105, loss_ctc=268.647, loss_att=258.329, acc=0.159, loss=261.424, backward_time=0.097, grad_norm=107.509, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.184e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:10:33,703 (trainer:737) INFO: 1epoch:train:9601-9700batch: iter_time=1.166e-04, forward_time=0.105, loss_ctc=273.335, loss_att=256.685, acc=0.163, loss=261.680, backward_time=0.097, grad_norm=120.771, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.217e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:11:14,887 (trainer:737) INFO: 1epoch:train:9701-9800batch: iter_time=1.299e-04, forward_time=0.105, loss_ctc=258.752, loss_att=252.641, acc=0.160, loss=254.474, backward_time=0.097, grad_norm=105.743, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.250e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:11:56,325 (trainer:737) INFO: 1epoch:train:9801-9900batch: iter_time=1.201e-04, forward_time=0.106, loss_ctc=290.881, loss_att=278.692, acc=0.151, loss=282.349, backward_time=0.098, grad_norm=106.634, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.284e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:12:37,602 (trainer:737) INFO: 1epoch:train:9901-10000batch: iter_time=1.088e-04, forward_time=0.105, loss_ctc=285.279, loss_att=265.374, acc=0.162, loss=271.346, backward_time=0.098, grad_norm=132.964, clip=100.000, loss_scale=1.049e+06, optim_step_time=0.029, optim0_lr0=3.317e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:12:43,784 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 01:13:03,525 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 01:13:07,238 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 01:13:07,239 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 01:13:07,242 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 01:17:29,736 (trainer:737) INFO: 1epoch:train:10001-10100batch: iter_time=2.372, forward_time=0.105, loss_ctc=273.804, loss_att=253.971, acc=0.164, loss=259.921, backward_time=0.097, grad_norm=105.143, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.350e-05, train_time=2.921 +[gpuc02:0/16] 2024-01-12 01:18:10,930 (trainer:737) INFO: 1epoch:train:10101-10200batch: iter_time=1.451e-04, forward_time=0.104, loss_ctc=272.799, loss_att=255.753, acc=0.151, loss=260.867, backward_time=0.097, grad_norm=127.709, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.384e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:18:52,338 (trainer:737) INFO: 1epoch:train:10201-10300batch: iter_time=1.243e-04, forward_time=0.106, loss_ctc=287.815, loss_att=271.142, acc=0.159, loss=276.144, backward_time=0.098, grad_norm=122.303, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.417e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:19:33,430 (trainer:737) INFO: 1epoch:train:10301-10400batch: iter_time=1.160e-04, forward_time=0.104, loss_ctc=252.454, loss_att=230.798, acc=0.169, loss=237.295, backward_time=0.097, grad_norm=112.027, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.451e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 01:20:14,623 (trainer:737) INFO: 1epoch:train:10401-10500batch: iter_time=1.435e-04, forward_time=0.104, loss_ctc=280.403, loss_att=256.673, acc=0.156, loss=263.792, backward_time=0.097, grad_norm=121.603, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.484e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:20:55,902 (trainer:737) INFO: 1epoch:train:10501-10600batch: iter_time=1.275e-04, forward_time=0.105, loss_ctc=281.870, loss_att=253.941, acc=0.163, loss=262.320, backward_time=0.098, grad_norm=144.833, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.517e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:21:37,076 (trainer:737) INFO: 1epoch:train:10601-10700batch: iter_time=1.163e-04, forward_time=0.104, loss_ctc=275.149, loss_att=254.314, acc=0.160, loss=260.565, backward_time=0.097, grad_norm=193.166, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.550e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:22:18,049 (trainer:737) INFO: 1epoch:train:10701-10800batch: iter_time=1.259e-04, forward_time=0.104, loss_ctc=241.007, loss_att=222.290, acc=0.175, loss=227.905, backward_time=0.096, grad_norm=135.434, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.584e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 01:22:59,285 (trainer:737) INFO: 1epoch:train:10801-10900batch: iter_time=1.265e-04, forward_time=0.104, loss_ctc=285.427, loss_att=260.219, acc=0.163, loss=267.781, backward_time=0.097, grad_norm=120.085, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.028, optim0_lr0=3.617e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:23:40,308 (trainer:737) INFO: 1epoch:train:10901-11000batch: iter_time=1.170e-04, forward_time=0.105, loss_ctc=261.992, loss_att=237.907, acc=0.169, loss=245.133, backward_time=0.097, grad_norm=121.349, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.028, optim0_lr0=3.651e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 01:24:21,505 (trainer:737) INFO: 1epoch:train:11001-11100batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=267.636, loss_att=245.408, acc=0.166, loss=252.076, backward_time=0.097, grad_norm=117.824, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.684e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:25:02,755 (trainer:737) INFO: 1epoch:train:11101-11200batch: iter_time=1.191e-04, forward_time=0.105, loss_ctc=286.555, loss_att=251.192, acc=0.171, loss=261.801, backward_time=0.097, grad_norm=126.014, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.028, optim0_lr0=3.717e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:25:27,831 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 01:25:46,911 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 01:25:50,934 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 01:25:50,934 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 01:25:50,937 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 01:29:50,996 (trainer:737) INFO: 1epoch:train:11201-11300batch: iter_time=2.400, forward_time=0.105, loss_ctc=278.689, loss_att=241.380, acc=0.177, loss=252.573, backward_time=0.097, grad_norm=147.416, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.751e-05, train_time=2.882 +[gpuc02:0/16] 2024-01-12 01:30:32,287 (trainer:737) INFO: 1epoch:train:11301-11400batch: iter_time=1.296e-04, forward_time=0.106, loss_ctc=287.405, loss_att=259.399, acc=0.159, loss=267.801, backward_time=0.098, grad_norm=128.320, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.784e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:31:13,596 (trainer:737) INFO: 1epoch:train:11401-11500batch: iter_time=1.314e-04, forward_time=0.106, loss_ctc=278.419, loss_att=261.349, acc=0.168, loss=266.470, backward_time=0.098, grad_norm=112.418, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.817e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:31:55,580 (trainer:737) INFO: 1epoch:train:11501-11600batch: iter_time=1.342e-04, forward_time=0.104, loss_ctc=251.571, loss_att=227.059, acc=0.178, loss=234.413, backward_time=0.097, grad_norm=96.197, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.850e-05, train_time=0.420 +[gpuc02:0/16] 2024-01-12 01:32:37,382 (trainer:737) INFO: 1epoch:train:11601-11700batch: iter_time=1.397e-04, forward_time=0.105, loss_ctc=283.843, loss_att=252.022, acc=0.172, loss=261.569, backward_time=0.098, grad_norm=143.770, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.884e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 01:33:19,578 (trainer:737) INFO: 1epoch:train:11701-11800batch: iter_time=1.439e-04, forward_time=0.104, loss_ctc=252.125, loss_att=223.941, acc=0.173, loss=232.396, backward_time=0.097, grad_norm=127.852, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.917e-05, train_time=0.422 +[gpuc02:0/16] 2024-01-12 01:34:01,435 (trainer:737) INFO: 1epoch:train:11801-11900batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=274.163, loss_att=246.577, acc=0.184, loss=254.853, backward_time=0.097, grad_norm=175.772, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.951e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 01:34:42,616 (trainer:737) INFO: 1epoch:train:11901-12000batch: iter_time=1.339e-04, forward_time=0.105, loss_ctc=266.658, loss_att=243.244, acc=0.171, loss=250.268, backward_time=0.097, grad_norm=143.510, clip=100.000, loss_scale=2.097e+06, optim_step_time=0.029, optim0_lr0=3.984e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:35:24,052 (trainer:737) INFO: 1epoch:train:12001-12100batch: iter_time=1.399e-04, forward_time=0.104, loss_ctc=263.761, loss_att=237.348, acc=0.176, loss=245.272, backward_time=0.097, grad_norm=117.073, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.017e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:36:05,167 (trainer:737) INFO: 1epoch:train:12101-12200batch: iter_time=1.327e-04, forward_time=0.105, loss_ctc=269.521, loss_att=240.592, acc=0.179, loss=249.271, backward_time=0.097, grad_norm=111.057, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.050e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 01:36:46,362 (trainer:737) INFO: 1epoch:train:12201-12300batch: iter_time=1.382e-04, forward_time=0.105, loss_ctc=254.805, loss_att=234.866, acc=0.174, loss=240.847, backward_time=0.097, grad_norm=114.156, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.084e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:37:27,631 (trainer:737) INFO: 1epoch:train:12301-12400batch: iter_time=1.447e-04, forward_time=0.106, loss_ctc=287.884, loss_att=249.393, acc=0.171, loss=260.940, backward_time=0.097, grad_norm=114.230, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.030, optim0_lr0=4.117e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:38:08,777 (trainer:737) INFO: 1epoch:train:12401-12500batch: iter_time=1.338e-04, forward_time=0.105, loss_ctc=280.548, loss_att=243.627, acc=0.178, loss=254.703, backward_time=0.098, grad_norm=123.177, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.150e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 01:38:13,125 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 01:38:31,823 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 01:38:35,501 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 01:38:35,501 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 01:38:35,504 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 01:42:53,297 (trainer:737) INFO: 1epoch:train:12501-12600batch: iter_time=2.372, forward_time=0.106, loss_ctc=268.798, loss_att=251.049, acc=0.180, loss=256.374, backward_time=0.097, grad_norm=118.968, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.184e-05, train_time=2.845 +[gpuc02:0/16] 2024-01-12 01:43:34,495 (trainer:737) INFO: 1epoch:train:12601-12700batch: iter_time=1.392e-04, forward_time=0.106, loss_ctc=266.653, loss_att=251.082, acc=0.164, loss=255.753, backward_time=0.097, grad_norm=106.139, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.217e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:44:15,958 (trainer:737) INFO: 1epoch:train:12701-12800batch: iter_time=1.510e-04, forward_time=0.106, loss_ctc=280.727, loss_att=261.745, acc=0.175, loss=267.439, backward_time=0.098, grad_norm=101.009, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.250e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:44:57,162 (trainer:737) INFO: 1epoch:train:12801-12900batch: iter_time=1.606e-04, forward_time=0.106, loss_ctc=249.642, loss_att=234.480, acc=0.184, loss=239.028, backward_time=0.097, grad_norm=99.121, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.284e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:45:38,644 (trainer:737) INFO: 1epoch:train:12901-13000batch: iter_time=1.547e-04, forward_time=0.109, loss_ctc=274.359, loss_att=254.436, acc=0.172, loss=260.413, backward_time=0.097, grad_norm=124.095, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.317e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 01:46:19,985 (trainer:737) INFO: 1epoch:train:13001-13100batch: iter_time=1.423e-04, forward_time=0.107, loss_ctc=276.853, loss_att=256.287, acc=0.180, loss=262.457, backward_time=0.098, grad_norm=130.371, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.351e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:47:01,226 (trainer:737) INFO: 1epoch:train:13101-13200batch: iter_time=1.397e-04, forward_time=0.106, loss_ctc=266.622, loss_att=248.905, acc=0.181, loss=254.220, backward_time=0.097, grad_norm=146.955, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.384e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:47:42,283 (trainer:737) INFO: 1epoch:train:13201-13300batch: iter_time=1.437e-04, forward_time=0.105, loss_ctc=234.981, loss_att=221.447, acc=0.187, loss=225.507, backward_time=0.097, grad_norm=119.279, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.417e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 01:48:23,588 (trainer:737) INFO: 1epoch:train:13301-13400batch: iter_time=1.477e-04, forward_time=0.106, loss_ctc=281.273, loss_att=255.431, acc=0.174, loss=263.184, backward_time=0.098, grad_norm=120.574, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.451e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:49:04,757 (trainer:737) INFO: 1epoch:train:13401-13500batch: iter_time=1.415e-04, forward_time=0.105, loss_ctc=255.290, loss_att=236.452, acc=0.181, loss=242.104, backward_time=0.097, grad_norm=98.408, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.484e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 01:49:46,022 (trainer:737) INFO: 1epoch:train:13501-13600batch: iter_time=1.371e-04, forward_time=0.106, loss_ctc=263.210, loss_att=248.139, acc=0.175, loss=252.660, backward_time=0.098, grad_norm=120.050, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.517e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:50:27,368 (trainer:737) INFO: 1epoch:train:13601-13700batch: iter_time=1.415e-04, forward_time=0.106, loss_ctc=282.365, loss_att=253.896, acc=0.181, loss=262.437, backward_time=0.098, grad_norm=139.047, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.551e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:50:52,494 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 01:51:11,158 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 01:51:14,910 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 01:51:14,910 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 01:51:14,913 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 01:55:14,646 (trainer:737) INFO: 1epoch:train:13701-13800batch: iter_time=2.401, forward_time=0.103, loss_ctc=272.760, loss_att=239.701, acc=0.187, loss=249.619, backward_time=0.097, grad_norm=108.389, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.584e-05, train_time=2.873 +[gpuc02:0/16] 2024-01-12 01:55:55,993 (trainer:737) INFO: 1epoch:train:13801-13900batch: iter_time=1.001e-04, forward_time=0.105, loss_ctc=283.398, loss_att=264.233, acc=0.167, loss=269.982, backward_time=0.098, grad_norm=120.685, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.617e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 01:56:37,366 (trainer:737) INFO: 1epoch:train:13901-14000batch: iter_time=1.099e-04, forward_time=0.106, loss_ctc=273.264, loss_att=254.902, acc=0.175, loss=260.411, backward_time=0.098, grad_norm=118.746, clip=100.000, loss_scale=4.194e+06, optim_step_time=0.029, optim0_lr0=4.651e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 01:57:18,512 (trainer:737) INFO: 1epoch:train:14001-14100batch: iter_time=1.078e-04, forward_time=0.104, loss_ctc=247.414, loss_att=229.525, acc=0.187, loss=234.892, backward_time=0.097, grad_norm=79.669, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.029, optim0_lr0=4.684e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 01:57:59,768 (trainer:737) INFO: 1epoch:train:14101-14200batch: iter_time=1.197e-04, forward_time=0.104, loss_ctc=277.219, loss_att=250.240, acc=0.182, loss=258.334, backward_time=0.098, grad_norm=113.930, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.028, optim0_lr0=4.717e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 01:58:40,914 (trainer:737) INFO: 1epoch:train:14201-14300batch: iter_time=1.081e-04, forward_time=0.104, loss_ctc=247.099, loss_att=226.621, acc=0.178, loss=232.764, backward_time=0.097, grad_norm=121.978, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.028, optim0_lr0=4.750e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 01:59:22,122 (trainer:737) INFO: 1epoch:train:14301-14400batch: iter_time=1.120e-04, forward_time=0.106, loss_ctc=266.372, loss_att=245.450, acc=0.196, loss=251.727, backward_time=0.097, grad_norm=114.260, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.028, optim0_lr0=4.784e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:00:03,329 (trainer:737) INFO: 1epoch:train:14401-14500batch: iter_time=1.066e-04, forward_time=0.106, loss_ctc=261.948, loss_att=244.311, acc=0.178, loss=249.602, backward_time=0.097, grad_norm=138.047, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.028, optim0_lr0=4.817e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:00:44,529 (trainer:737) INFO: 1epoch:train:14501-14600batch: iter_time=1.165e-04, forward_time=0.106, loss_ctc=258.505, loss_att=237.270, acc=0.183, loss=243.641, backward_time=0.097, grad_norm=109.054, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.028, optim0_lr0=4.850e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:01:25,761 (trainer:737) INFO: 1epoch:train:14601-14700batch: iter_time=1.113e-04, forward_time=0.106, loss_ctc=264.960, loss_att=235.811, acc=0.187, loss=244.556, backward_time=0.097, grad_norm=105.365, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.029, optim0_lr0=4.884e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:02:06,952 (trainer:737) INFO: 1epoch:train:14701-14800batch: iter_time=1.184e-04, forward_time=0.106, loss_ctc=250.006, loss_att=233.304, acc=0.182, loss=238.315, backward_time=0.097, grad_norm=107.185, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.029, optim0_lr0=4.917e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:02:48,422 (trainer:737) INFO: 1epoch:train:14801-14900batch: iter_time=1.187e-04, forward_time=0.107, loss_ctc=282.505, loss_att=256.037, acc=0.177, loss=263.977, backward_time=0.098, grad_norm=113.226, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.029, optim0_lr0=4.951e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 02:03:29,656 (trainer:737) INFO: 1epoch:train:14901-15000batch: iter_time=1.043e-04, forward_time=0.106, loss_ctc=274.465, loss_att=245.459, acc=0.184, loss=254.161, backward_time=0.098, grad_norm=102.564, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.029, optim0_lr0=4.984e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:24:16,448 (trainer:343) INFO: 1epoch results: [train] iter_time=0.198, forward_time=0.106, loss_ctc=429.065, loss_att=287.419, acc=0.128, loss=329.913, backward_time=0.098, grad_norm=355.591, clip=100.000, loss_scale=1.669e+06, optim_step_time=0.029, optim0_lr0=2.500e-05, train_time=0.622, time=2 hours, 35 minutes and 39.82 seconds, total_count=15000, gpu_max_cached_mem_GB=24.039, [valid] loss_ctc=192.131, cer_ctc=0.982, loss_att=171.938, acc=0.155, cer=0.758, wer=1.000, loss=177.996, time=20 minutes and 35.94 seconds, total_count=4671, gpu_max_cached_mem_GB=24.039 +[gpuc02:0/16] 2024-01-12 02:24:25,633 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 02:24:25,634 (trainer:272) INFO: 2/45epoch started. Estimated time to finish: 5 days, 9 hours and 22 minutes +[gpuc02:0/16] 2024-01-12 02:24:25,643 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 02:24:45,007 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 02:24:48,514 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 02:24:48,514 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 02:24:48,518 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 02:29:48,757 (trainer:737) INFO: 2epoch:train:1-100batch: iter_time=2.295, forward_time=0.106, loss_ctc=278.871, loss_att=244.821, acc=0.180, loss=255.036, backward_time=0.102, grad_norm=110.288, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.017e-05, train_time=3.231 +[gpuc02:0/16] 2024-01-12 02:30:29,803 (trainer:737) INFO: 2epoch:train:101-200batch: iter_time=1.120e-04, forward_time=0.104, loss_ctc=255.677, loss_att=221.677, acc=0.193, loss=231.877, backward_time=0.098, grad_norm=89.377, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.051e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 02:31:10,684 (trainer:737) INFO: 2epoch:train:201-300batch: iter_time=1.142e-04, forward_time=0.104, loss_ctc=247.356, loss_att=216.844, acc=0.197, loss=225.998, backward_time=0.098, grad_norm=105.641, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.084e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 02:31:54,030 (trainer:737) INFO: 2epoch:train:301-400batch: iter_time=1.418e-04, forward_time=0.117, loss_ctc=260.134, loss_att=234.865, acc=0.180, loss=242.445, backward_time=0.099, grad_norm=76.449, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.032, optim0_lr0=5.117e-05, train_time=0.433 +[gpuc02:0/16] 2024-01-12 02:32:44,305 (trainer:737) INFO: 2epoch:train:401-500batch: iter_time=1.343e-04, forward_time=0.149, loss_ctc=281.364, loss_att=237.778, acc=0.175, loss=250.853, backward_time=0.130, grad_norm=134.113, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.034, optim0_lr0=5.151e-05, train_time=0.503 +[gpuc02:0/16] 2024-01-12 02:33:26,350 (trainer:737) INFO: 2epoch:train:501-600batch: iter_time=1.270e-04, forward_time=0.105, loss_ctc=244.210, loss_att=215.458, acc=0.188, loss=224.084, backward_time=0.098, grad_norm=114.747, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.184e-05, train_time=0.420 +[gpuc02:0/16] 2024-01-12 02:34:08,516 (trainer:737) INFO: 2epoch:train:601-700batch: iter_time=1.373e-04, forward_time=0.104, loss_ctc=238.223, loss_att=207.743, acc=0.192, loss=216.887, backward_time=0.098, grad_norm=78.840, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.217e-05, train_time=0.421 +[gpuc02:0/16] 2024-01-12 02:34:50,460 (trainer:737) INFO: 2epoch:train:701-800batch: iter_time=1.303e-04, forward_time=0.104, loss_ctc=230.742, loss_att=212.353, acc=0.195, loss=217.869, backward_time=0.098, grad_norm=87.378, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.251e-05, train_time=0.419 +[gpuc02:0/16] 2024-01-12 02:35:31,503 (trainer:737) INFO: 2epoch:train:801-900batch: iter_time=1.329e-04, forward_time=0.105, loss_ctc=267.108, loss_att=228.109, acc=0.194, loss=239.809, backward_time=0.098, grad_norm=87.226, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.284e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 02:36:13,208 (trainer:737) INFO: 2epoch:train:901-1000batch: iter_time=1.332e-04, forward_time=0.104, loss_ctc=224.122, loss_att=200.861, acc=0.196, loss=207.839, backward_time=0.097, grad_norm=80.298, clip=100.000, loss_scale=8.389e+06, optim_step_time=0.030, optim0_lr0=5.317e-05, train_time=0.417 +[gpuc02:0/16] 2024-01-12 02:36:54,643 (trainer:737) INFO: 2epoch:train:1001-1100batch: iter_time=1.349e-04, forward_time=0.104, loss_ctc=259.321, loss_att=232.450, acc=0.181, loss=240.512, backward_time=0.098, grad_norm=97.056, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.350e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 02:37:35,344 (trainer:737) INFO: 2epoch:train:1101-1200batch: iter_time=1.399e-04, forward_time=0.103, loss_ctc=203.257, loss_att=182.060, acc=0.203, loss=188.419, backward_time=0.097, grad_norm=72.341, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.384e-05, train_time=0.407 +[gpuc02:0/16] 2024-01-12 02:38:02,415 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 02:38:21,431 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 02:38:25,375 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 02:38:25,375 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 02:38:25,379 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 02:44:47,177 (trainer:737) INFO: 2epoch:train:1201-1300batch: iter_time=2.946, forward_time=0.110, loss_ctc=247.664, loss_att=213.068, acc=0.205, loss=223.447, backward_time=0.100, grad_norm=91.380, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.417e-05, train_time=4.318 +[gpuc02:0/16] 2024-01-12 02:45:28,495 (trainer:737) INFO: 2epoch:train:1301-1400batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=296.196, loss_att=254.722, acc=0.179, loss=267.164, backward_time=0.099, grad_norm=114.723, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.450e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 02:46:09,558 (trainer:737) INFO: 2epoch:train:1401-1500batch: iter_time=1.334e-04, forward_time=0.105, loss_ctc=238.577, loss_att=208.560, acc=0.203, loss=217.565, backward_time=0.098, grad_norm=92.473, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.484e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 02:46:50,703 (trainer:737) INFO: 2epoch:train:1501-1600batch: iter_time=1.264e-04, forward_time=0.105, loss_ctc=230.946, loss_att=207.195, acc=0.198, loss=214.320, backward_time=0.098, grad_norm=75.449, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.517e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 02:47:31,986 (trainer:737) INFO: 2epoch:train:1601-1700batch: iter_time=1.364e-04, forward_time=0.106, loss_ctc=287.728, loss_att=248.302, acc=0.173, loss=260.129, backward_time=0.098, grad_norm=120.557, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.550e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 02:48:13,359 (trainer:737) INFO: 2epoch:train:1701-1800batch: iter_time=2.956e-04, forward_time=0.106, loss_ctc=271.261, loss_att=233.331, acc=0.182, loss=244.710, backward_time=0.098, grad_norm=120.441, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.584e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 02:48:54,276 (trainer:737) INFO: 2epoch:train:1801-1900batch: iter_time=1.162e-04, forward_time=0.104, loss_ctc=199.795, loss_att=178.762, acc=0.210, loss=185.072, backward_time=0.097, grad_norm=69.003, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.617e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 02:49:35,733 (trainer:737) INFO: 2epoch:train:1901-2000batch: iter_time=1.363e-04, forward_time=0.106, loss_ctc=261.494, loss_att=231.555, acc=0.188, loss=240.537, backward_time=0.098, grad_norm=90.960, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.031, optim0_lr0=5.651e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 02:50:17,259 (trainer:737) INFO: 2epoch:train:2001-2100batch: iter_time=1.232e-04, forward_time=0.105, loss_ctc=241.580, loss_att=215.114, acc=0.197, loss=223.054, backward_time=0.098, grad_norm=61.652, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.684e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 02:50:58,885 (trainer:737) INFO: 2epoch:train:2101-2200batch: iter_time=1.204e-04, forward_time=0.105, loss_ctc=245.568, loss_att=214.232, acc=0.200, loss=223.633, backward_time=0.098, grad_norm=84.991, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.717e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 02:51:40,934 (trainer:737) INFO: 2epoch:train:2201-2300batch: iter_time=1.196e-04, forward_time=0.104, loss_ctc=223.517, loss_att=197.060, acc=0.196, loss=204.997, backward_time=0.097, grad_norm=74.752, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.751e-05, train_time=0.420 +[gpuc02:0/16] 2024-01-12 02:52:21,959 (trainer:737) INFO: 2epoch:train:2301-2400batch: iter_time=1.242e-04, forward_time=0.105, loss_ctc=235.510, loss_att=210.934, acc=0.196, loss=218.307, backward_time=0.097, grad_norm=77.062, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.784e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 02:53:03,117 (trainer:737) INFO: 2epoch:train:2401-2500batch: iter_time=1.171e-04, forward_time=0.104, loss_ctc=225.413, loss_att=197.532, acc=0.205, loss=205.896, backward_time=0.097, grad_norm=84.496, clip=98.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.817e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 02:53:13,820 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 02:53:32,702 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 02:53:36,345 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 02:53:36,345 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 02:53:36,349 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 02:58:18,492 (trainer:737) INFO: 2epoch:train:2501-2600batch: iter_time=2.723, forward_time=0.111, loss_ctc=268.521, loss_att=244.908, acc=0.189, loss=251.992, backward_time=0.099, grad_norm=89.690, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.031, optim0_lr0=5.851e-05, train_time=3.154 +[gpuc02:0/16] 2024-01-12 02:58:59,678 (trainer:737) INFO: 2epoch:train:2601-2700batch: iter_time=1.365e-04, forward_time=0.105, loss_ctc=247.734, loss_att=218.877, acc=0.199, loss=227.534, backward_time=0.098, grad_norm=87.318, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.884e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 02:59:40,787 (trainer:737) INFO: 2epoch:train:2701-2800batch: iter_time=1.507e-04, forward_time=0.105, loss_ctc=239.961, loss_att=211.370, acc=0.204, loss=219.947, backward_time=0.098, grad_norm=92.520, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.031, optim0_lr0=5.917e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:00:22,084 (trainer:737) INFO: 2epoch:train:2801-2900batch: iter_time=1.490e-04, forward_time=0.106, loss_ctc=251.788, loss_att=236.049, acc=0.187, loss=240.770, backward_time=0.099, grad_norm=70.593, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.951e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:01:03,363 (trainer:737) INFO: 2epoch:train:2901-3000batch: iter_time=1.333e-04, forward_time=0.106, loss_ctc=273.545, loss_att=238.918, acc=0.181, loss=249.306, backward_time=0.099, grad_norm=109.326, clip=100.000, loss_scale=1.678e+07, optim_step_time=0.030, optim0_lr0=5.984e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:01:44,497 (trainer:737) INFO: 2epoch:train:3001-3100batch: iter_time=1.562e-04, forward_time=0.105, loss_ctc=236.409, loss_att=213.914, acc=0.195, loss=220.662, backward_time=0.098, grad_norm=102.597, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.017e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:02:25,575 (trainer:737) INFO: 2epoch:train:3101-3200batch: iter_time=1.253e-04, forward_time=0.104, loss_ctc=232.588, loss_att=205.255, acc=0.199, loss=213.455, backward_time=0.098, grad_norm=74.570, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.050e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:03:06,709 (trainer:737) INFO: 2epoch:train:3201-3300batch: iter_time=1.271e-04, forward_time=0.105, loss_ctc=225.225, loss_att=210.889, acc=0.200, loss=215.190, backward_time=0.098, grad_norm=69.568, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.084e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:03:47,977 (trainer:737) INFO: 2epoch:train:3301-3400batch: iter_time=1.274e-04, forward_time=0.105, loss_ctc=258.428, loss_att=226.284, acc=0.200, loss=235.927, backward_time=0.098, grad_norm=72.606, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.117e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 03:04:28,985 (trainer:737) INFO: 2epoch:train:3401-3500batch: iter_time=1.192e-04, forward_time=0.104, loss_ctc=217.288, loss_att=198.031, acc=0.203, loss=203.808, backward_time=0.098, grad_norm=78.394, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.151e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:05:10,472 (trainer:737) INFO: 2epoch:train:3501-3600batch: iter_time=1.343e-04, forward_time=0.106, loss_ctc=251.572, loss_att=234.680, acc=0.188, loss=239.747, backward_time=0.099, grad_norm=81.193, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.184e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 03:05:51,346 (trainer:737) INFO: 2epoch:train:3601-3700batch: iter_time=1.333e-04, forward_time=0.102, loss_ctc=196.554, loss_att=177.683, acc=0.212, loss=183.345, backward_time=0.097, grad_norm=54.135, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.217e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 03:06:20,750 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 03:06:39,812 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 03:06:43,522 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 03:06:43,523 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 03:06:43,526 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 03:10:43,074 (trainer:737) INFO: 2epoch:train:3701-3800batch: iter_time=2.456, forward_time=0.105, loss_ctc=239.688, loss_att=208.661, acc=0.212, loss=217.969, backward_time=0.098, grad_norm=91.157, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.250e-05, train_time=2.917 +[gpuc02:0/16] 2024-01-12 03:11:24,528 (trainer:737) INFO: 2epoch:train:3801-3900batch: iter_time=1.289e-04, forward_time=0.106, loss_ctc=286.556, loss_att=250.881, acc=0.186, loss=261.584, backward_time=0.099, grad_norm=101.507, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.284e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 03:12:05,672 (trainer:737) INFO: 2epoch:train:3901-4000batch: iter_time=1.214e-04, forward_time=0.105, loss_ctc=229.961, loss_att=201.314, acc=0.210, loss=209.908, backward_time=0.097, grad_norm=84.017, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.317e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:12:46,843 (trainer:737) INFO: 2epoch:train:4001-4100batch: iter_time=1.099e-04, forward_time=0.105, loss_ctc=222.225, loss_att=200.065, acc=0.207, loss=206.713, backward_time=0.097, grad_norm=68.682, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.350e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:13:28,416 (trainer:737) INFO: 2epoch:train:4101-4200batch: iter_time=1.186e-04, forward_time=0.106, loss_ctc=274.698, loss_att=241.306, acc=0.181, loss=251.323, backward_time=0.098, grad_norm=109.707, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.384e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 03:14:09,752 (trainer:737) INFO: 2epoch:train:4201-4300batch: iter_time=1.153e-04, forward_time=0.106, loss_ctc=259.720, loss_att=226.969, acc=0.191, loss=236.795, backward_time=0.098, grad_norm=97.840, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.417e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:14:50,687 (trainer:737) INFO: 2epoch:train:4301-4400batch: iter_time=1.137e-04, forward_time=0.105, loss_ctc=193.724, loss_att=174.744, acc=0.215, loss=180.438, backward_time=0.096, grad_norm=67.004, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.451e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 03:15:32,263 (trainer:737) INFO: 2epoch:train:4401-4500batch: iter_time=1.128e-04, forward_time=0.109, loss_ctc=252.057, loss_att=225.959, acc=0.195, loss=233.789, backward_time=0.098, grad_norm=75.787, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.484e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 03:16:13,614 (trainer:737) INFO: 2epoch:train:4501-4600batch: iter_time=1.039e-04, forward_time=0.106, loss_ctc=230.522, loss_att=209.354, acc=0.204, loss=215.704, backward_time=0.098, grad_norm=54.010, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.517e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:16:54,880 (trainer:737) INFO: 2epoch:train:4601-4700batch: iter_time=1.007e-04, forward_time=0.105, loss_ctc=233.830, loss_att=208.707, acc=0.207, loss=216.244, backward_time=0.097, grad_norm=73.631, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.551e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 03:17:35,891 (trainer:737) INFO: 2epoch:train:4701-4800batch: iter_time=1.109e-04, forward_time=0.105, loss_ctc=212.468, loss_att=190.909, acc=0.205, loss=197.377, backward_time=0.097, grad_norm=72.078, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.584e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:18:16,921 (trainer:737) INFO: 2epoch:train:4801-4900batch: iter_time=1.098e-04, forward_time=0.105, loss_ctc=224.464, loss_att=205.908, acc=0.202, loss=211.475, backward_time=0.097, grad_norm=73.096, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.617e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:18:57,878 (trainer:737) INFO: 2epoch:train:4901-5000batch: iter_time=1.161e-04, forward_time=0.105, loss_ctc=211.946, loss_att=191.725, acc=0.213, loss=197.791, backward_time=0.097, grad_norm=82.393, clip=100.000, loss_scale=3.355e+07, optim_step_time=0.030, optim0_lr0=6.650e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 03:19:02,507 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 03:19:21,332 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 03:19:24,868 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 03:19:24,868 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 03:19:24,871 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 03:24:16,182 (trainer:737) INFO: 2epoch:train:5001-5100batch: iter_time=2.470, forward_time=0.106, loss_ctc=255.536, loss_att=239.672, acc=0.196, loss=244.431, backward_time=0.099, grad_norm=89.853, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.684e-05, train_time=3.183 +[gpuc02:0/16] 2024-01-12 03:24:57,309 (trainer:737) INFO: 2epoch:train:5101-5200batch: iter_time=1.523e-04, forward_time=0.104, loss_ctc=231.717, loss_att=212.324, acc=0.207, loss=218.142, backward_time=0.097, grad_norm=93.924, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.717e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:25:38,437 (trainer:737) INFO: 2epoch:train:5201-5300batch: iter_time=1.599e-04, forward_time=0.104, loss_ctc=226.432, loss_att=205.973, acc=0.212, loss=212.111, backward_time=0.097, grad_norm=76.163, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.750e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:26:20,431 (trainer:737) INFO: 2epoch:train:5301-5400batch: iter_time=1.686e-04, forward_time=0.105, loss_ctc=236.877, loss_att=231.574, acc=0.194, loss=233.165, backward_time=0.098, grad_norm=74.591, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.784e-05, train_time=0.420 +[gpuc02:0/16] 2024-01-12 03:27:01,730 (trainer:737) INFO: 2epoch:train:5401-5500batch: iter_time=1.395e-04, forward_time=0.105, loss_ctc=256.281, loss_att=233.674, acc=0.189, loss=240.456, backward_time=0.098, grad_norm=114.007, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.817e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:27:43,022 (trainer:737) INFO: 2epoch:train:5501-5600batch: iter_time=1.324e-04, forward_time=0.105, loss_ctc=220.285, loss_att=207.319, acc=0.204, loss=211.209, backward_time=0.097, grad_norm=93.559, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.850e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:28:24,080 (trainer:737) INFO: 2epoch:train:5601-5700batch: iter_time=1.273e-04, forward_time=0.105, loss_ctc=213.959, loss_att=198.905, acc=0.207, loss=203.421, backward_time=0.097, grad_norm=75.206, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.884e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:29:05,134 (trainer:737) INFO: 2epoch:train:5701-5800batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=209.602, loss_att=205.474, acc=0.207, loss=206.713, backward_time=0.097, grad_norm=67.770, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.917e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:29:46,294 (trainer:737) INFO: 2epoch:train:5801-5900batch: iter_time=1.346e-04, forward_time=0.105, loss_ctc=236.632, loss_att=219.622, acc=0.207, loss=224.725, backward_time=0.098, grad_norm=69.418, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.951e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:30:27,481 (trainer:737) INFO: 2epoch:train:5901-6000batch: iter_time=1.300e-04, forward_time=0.104, loss_ctc=199.987, loss_att=193.676, acc=0.209, loss=195.570, backward_time=0.097, grad_norm=78.798, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=6.984e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 03:31:08,644 (trainer:737) INFO: 2epoch:train:6001-6100batch: iter_time=1.317e-04, forward_time=0.105, loss_ctc=231.416, loss_att=229.287, acc=0.194, loss=229.926, backward_time=0.098, grad_norm=74.844, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.017e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:31:49,405 (trainer:737) INFO: 2epoch:train:6101-6200batch: iter_time=1.191e-04, forward_time=0.104, loss_ctc=179.906, loss_att=173.586, acc=0.218, loss=175.482, backward_time=0.096, grad_norm=59.823, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.051e-05, train_time=0.407 +[gpuc02:0/16] 2024-01-12 03:32:16,697 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 03:32:35,697 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 03:32:39,729 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 03:32:39,729 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 03:32:39,732 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 03:37:00,788 (trainer:737) INFO: 2epoch:train:6201-6300batch: iter_time=2.429, forward_time=0.109, loss_ctc=217.404, loss_att=206.185, acc=0.218, loss=209.551, backward_time=0.097, grad_norm=88.702, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.084e-05, train_time=3.114 +[gpuc02:0/16] 2024-01-12 03:37:42,510 (trainer:737) INFO: 2epoch:train:6301-6400batch: iter_time=2.110e-04, forward_time=0.106, loss_ctc=257.427, loss_att=250.343, acc=0.193, loss=252.468, backward_time=0.098, grad_norm=99.659, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.117e-05, train_time=0.417 +[gpuc02:0/16] 2024-01-12 03:38:23,590 (trainer:737) INFO: 2epoch:train:6401-6500batch: iter_time=2.750e-04, forward_time=0.105, loss_ctc=209.860, loss_att=197.456, acc=0.218, loss=201.177, backward_time=0.097, grad_norm=76.457, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.151e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:39:05,219 (trainer:737) INFO: 2epoch:train:6501-6600batch: iter_time=2.160e-04, forward_time=0.105, loss_ctc=198.760, loss_att=197.869, acc=0.215, loss=198.136, backward_time=0.097, grad_norm=60.298, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.184e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 03:39:46,525 (trainer:737) INFO: 2epoch:train:6601-6700batch: iter_time=2.095e-04, forward_time=0.106, loss_ctc=246.517, loss_att=243.379, acc=0.188, loss=244.321, backward_time=0.098, grad_norm=90.850, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.217e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:40:28,121 (trainer:737) INFO: 2epoch:train:6701-6800batch: iter_time=2.206e-04, forward_time=0.106, loss_ctc=234.254, loss_att=227.726, acc=0.196, loss=229.684, backward_time=0.097, grad_norm=101.772, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.251e-05, train_time=0.416 +[gpuc02:0/16] 2024-01-12 03:41:09,311 (trainer:737) INFO: 2epoch:train:6801-6900batch: iter_time=1.979e-04, forward_time=0.104, loss_ctc=173.358, loss_att=170.722, acc=0.224, loss=171.513, backward_time=0.096, grad_norm=60.973, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.284e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 03:41:51,728 (trainer:737) INFO: 2epoch:train:6901-7000batch: iter_time=2.075e-04, forward_time=0.106, loss_ctc=224.732, loss_att=224.609, acc=0.200, loss=224.646, backward_time=0.097, grad_norm=79.049, clip=100.000, loss_scale=6.711e+07, optim_step_time=0.030, optim0_lr0=7.317e-05, train_time=0.424 +[gpuc02:0/16] 2024-01-12 03:42:32,849 (trainer:737) INFO: 2epoch:train:7001-7100batch: iter_time=1.862e-04, forward_time=0.105, loss_ctc=203.188, loss_att=208.572, acc=0.210, loss=206.957, backward_time=0.097, grad_norm=58.317, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.350e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:43:13,898 (trainer:737) INFO: 2epoch:train:7101-7200batch: iter_time=2.090e-04, forward_time=0.104, loss_ctc=207.941, loss_att=206.806, acc=0.211, loss=207.146, backward_time=0.096, grad_norm=73.653, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.384e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:43:55,334 (trainer:737) INFO: 2epoch:train:7201-7300batch: iter_time=2.220e-04, forward_time=0.104, loss_ctc=190.399, loss_att=190.131, acc=0.212, loss=190.212, backward_time=0.096, grad_norm=64.974, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.417e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 03:44:36,303 (trainer:737) INFO: 2epoch:train:7301-7400batch: iter_time=2.107e-04, forward_time=0.104, loss_ctc=198.775, loss_att=203.956, acc=0.209, loss=202.401, backward_time=0.096, grad_norm=63.348, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.450e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 03:45:17,390 (trainer:737) INFO: 2epoch:train:7401-7500batch: iter_time=1.871e-04, forward_time=0.104, loss_ctc=186.567, loss_att=189.817, acc=0.219, loss=188.842, backward_time=0.096, grad_norm=78.815, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.484e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:45:23,446 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 03:45:42,559 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 03:45:46,253 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 03:45:46,253 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 03:45:46,256 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 03:50:12,863 (trainer:737) INFO: 2epoch:train:7501-7600batch: iter_time=2.463, forward_time=0.156, loss_ctc=223.817, loss_att=226.191, acc=0.203, loss=225.479, backward_time=0.107, grad_norm=75.482, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.032, optim0_lr0=7.517e-05, train_time=2.955 +[gpuc02:0/16] 2024-01-12 03:50:53,951 (trainer:737) INFO: 2epoch:train:7601-7700batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=206.346, loss_att=204.293, acc=0.216, loss=204.908, backward_time=0.098, grad_norm=77.726, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.551e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:51:35,138 (trainer:737) INFO: 2epoch:train:7701-7800batch: iter_time=1.254e-04, forward_time=0.105, loss_ctc=201.313, loss_att=198.969, acc=0.221, loss=199.672, backward_time=0.099, grad_norm=67.362, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.031, optim0_lr0=7.584e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 03:52:16,264 (trainer:737) INFO: 2epoch:train:7801-7900batch: iter_time=1.256e-04, forward_time=0.105, loss_ctc=206.853, loss_att=217.143, acc=0.202, loss=214.056, backward_time=0.098, grad_norm=67.187, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.617e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 03:52:57,691 (trainer:737) INFO: 2epoch:train:7901-8000batch: iter_time=1.075e-04, forward_time=0.108, loss_ctc=222.883, loss_att=220.859, acc=0.197, loss=221.466, backward_time=0.099, grad_norm=81.959, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.651e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 03:53:38,720 (trainer:737) INFO: 2epoch:train:8001-8100batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=195.658, loss_att=199.303, acc=0.211, loss=198.209, backward_time=0.098, grad_norm=76.765, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.684e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:54:19,694 (trainer:737) INFO: 2epoch:train:8101-8200batch: iter_time=1.366e-04, forward_time=0.105, loss_ctc=186.123, loss_att=192.041, acc=0.215, loss=190.266, backward_time=0.098, grad_norm=64.035, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.717e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:55:00,696 (trainer:737) INFO: 2epoch:train:8201-8300batch: iter_time=1.613e-04, forward_time=0.106, loss_ctc=186.022, loss_att=196.629, acc=0.215, loss=193.447, backward_time=0.097, grad_norm=57.439, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.751e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 03:55:42,030 (trainer:737) INFO: 2epoch:train:8301-8400batch: iter_time=1.391e-04, forward_time=0.106, loss_ctc=206.127, loss_att=210.498, acc=0.214, loss=209.187, backward_time=0.098, grad_norm=65.291, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.784e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 03:56:22,918 (trainer:737) INFO: 2epoch:train:8401-8500batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=174.586, loss_att=185.775, acc=0.219, loss=182.418, backward_time=0.097, grad_norm=63.540, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.817e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 03:57:04,711 (trainer:737) INFO: 2epoch:train:8501-8600batch: iter_time=1.398e-04, forward_time=0.106, loss_ctc=202.354, loss_att=216.253, acc=0.203, loss=212.083, backward_time=0.098, grad_norm=64.858, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.851e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 03:57:45,425 (trainer:737) INFO: 2epoch:train:8601-8700batch: iter_time=1.164e-04, forward_time=0.104, loss_ctc=158.379, loss_att=168.607, acc=0.222, loss=165.539, backward_time=0.096, grad_norm=49.759, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.884e-05, train_time=0.407 +[gpuc02:0/16] 2024-01-12 03:58:12,082 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 03:58:30,803 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 03:58:34,430 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 03:58:34,430 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 03:58:34,433 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 04:02:38,900 (trainer:737) INFO: 2epoch:train:8701-8800batch: iter_time=2.482, forward_time=0.105, loss_ctc=190.839, loss_att=202.837, acc=0.225, loss=199.238, backward_time=0.100, grad_norm=72.945, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.031, optim0_lr0=7.917e-05, train_time=2.935 +[gpuc02:0/16] 2024-01-12 04:03:20,274 (trainer:737) INFO: 2epoch:train:8801-8900batch: iter_time=1.109e-04, forward_time=0.106, loss_ctc=225.709, loss_att=247.275, acc=0.198, loss=240.805, backward_time=0.099, grad_norm=90.199, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.950e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:04:01,290 (trainer:737) INFO: 2epoch:train:8901-9000batch: iter_time=1.102e-04, forward_time=0.105, loss_ctc=189.101, loss_att=193.829, acc=0.224, loss=192.411, backward_time=0.098, grad_norm=72.749, clip=100.000, loss_scale=1.342e+08, optim_step_time=0.030, optim0_lr0=7.984e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 04:04:42,661 (trainer:737) INFO: 2epoch:train:9001-9100batch: iter_time=1.057e-04, forward_time=0.104, loss_ctc=172.166, loss_att=192.940, acc=0.223, loss=186.708, backward_time=0.098, grad_norm=51.413, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.017e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 04:05:24,029 (trainer:737) INFO: 2epoch:train:9101-9200batch: iter_time=1.225e-04, forward_time=0.106, loss_ctc=215.384, loss_att=239.123, acc=0.193, loss=232.001, backward_time=0.099, grad_norm=73.423, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.050e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 04:06:05,296 (trainer:737) INFO: 2epoch:train:9201-9300batch: iter_time=1.233e-04, forward_time=0.105, loss_ctc=202.961, loss_att=223.016, acc=0.203, loss=216.999, backward_time=0.099, grad_norm=79.951, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.084e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:06:46,135 (trainer:737) INFO: 2epoch:train:9301-9400batch: iter_time=1.158e-04, forward_time=0.103, loss_ctc=151.592, loss_att=165.618, acc=0.232, loss=161.410, backward_time=0.097, grad_norm=60.993, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.117e-05, train_time=0.408 +[gpuc02:0/16] 2024-01-12 04:07:27,327 (trainer:737) INFO: 2epoch:train:9401-9500batch: iter_time=1.109e-04, forward_time=0.105, loss_ctc=196.203, loss_att=219.190, acc=0.209, loss=212.294, backward_time=0.098, grad_norm=67.016, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.151e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:08:08,914 (trainer:737) INFO: 2epoch:train:9501-9600batch: iter_time=1.218e-04, forward_time=0.106, loss_ctc=175.460, loss_att=204.658, acc=0.216, loss=195.899, backward_time=0.097, grad_norm=47.636, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.184e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 04:08:50,065 (trainer:737) INFO: 2epoch:train:9601-9700batch: iter_time=1.365e-04, forward_time=0.106, loss_ctc=181.715, loss_att=201.869, acc=0.219, loss=195.823, backward_time=0.097, grad_norm=61.717, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.217e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:09:31,595 (trainer:737) INFO: 2epoch:train:9701-9800batch: iter_time=1.258e-04, forward_time=0.109, loss_ctc=165.608, loss_att=185.706, acc=0.219, loss=179.677, backward_time=0.098, grad_norm=53.279, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.251e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 04:10:12,543 (trainer:737) INFO: 2epoch:train:9801-9900batch: iter_time=1.148e-04, forward_time=0.105, loss_ctc=174.739, loss_att=200.046, acc=0.217, loss=192.454, backward_time=0.097, grad_norm=59.414, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.284e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 04:10:53,389 (trainer:737) INFO: 2epoch:train:9901-10000batch: iter_time=1.018e-04, forward_time=0.104, loss_ctc=163.763, loss_att=186.775, acc=0.227, loss=179.872, backward_time=0.097, grad_norm=64.857, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.317e-05, train_time=0.408 +[gpuc02:0/16] 2024-01-12 04:10:57,937 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 04:11:17,994 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 04:11:22,049 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 04:11:22,049 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 04:11:22,053 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 04:15:48,950 (trainer:737) INFO: 2epoch:train:10001-10100batch: iter_time=2.531, forward_time=0.106, loss_ctc=194.663, loss_att=227.141, acc=0.209, loss=217.398, backward_time=0.099, grad_norm=68.152, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.350e-05, train_time=2.955 +[gpuc02:0/16] 2024-01-12 04:16:31,023 (trainer:737) INFO: 2epoch:train:10101-10200batch: iter_time=1.690e-04, forward_time=0.105, loss_ctc=182.920, loss_att=203.765, acc=0.221, loss=197.512, backward_time=0.097, grad_norm=65.265, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.384e-05, train_time=0.421 +[gpuc02:0/16] 2024-01-12 04:17:12,385 (trainer:737) INFO: 2epoch:train:10201-10300batch: iter_time=1.856e-04, forward_time=0.104, loss_ctc=177.504, loss_att=195.298, acc=0.229, loss=189.960, backward_time=0.097, grad_norm=57.081, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.417e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 04:17:54,506 (trainer:737) INFO: 2epoch:train:10301-10400batch: iter_time=1.601e-04, forward_time=0.105, loss_ctc=180.036, loss_att=219.039, acc=0.208, loss=207.338, backward_time=0.099, grad_norm=58.278, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.451e-05, train_time=0.421 +[gpuc02:0/16] 2024-01-12 04:18:35,711 (trainer:737) INFO: 2epoch:train:10401-10500batch: iter_time=1.563e-04, forward_time=0.105, loss_ctc=195.362, loss_att=222.740, acc=0.202, loss=214.527, backward_time=0.098, grad_norm=71.659, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.484e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:19:16,953 (trainer:737) INFO: 2epoch:train:10501-10600batch: iter_time=1.628e-04, forward_time=0.104, loss_ctc=171.416, loss_att=198.165, acc=0.217, loss=190.140, backward_time=0.098, grad_norm=63.559, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.517e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:19:58,351 (trainer:737) INFO: 2epoch:train:10601-10700batch: iter_time=1.377e-04, forward_time=0.105, loss_ctc=161.884, loss_att=191.174, acc=0.222, loss=182.387, backward_time=0.098, grad_norm=52.742, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.550e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:20:39,653 (trainer:737) INFO: 2epoch:train:10701-10800batch: iter_time=1.211e-04, forward_time=0.105, loss_ctc=163.587, loss_att=195.337, acc=0.221, loss=185.812, backward_time=0.097, grad_norm=47.150, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.584e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 04:21:20,835 (trainer:737) INFO: 2epoch:train:10801-10900batch: iter_time=1.196e-04, forward_time=0.105, loss_ctc=179.422, loss_att=210.659, acc=0.219, loss=201.288, backward_time=0.098, grad_norm=55.070, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.617e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:22:01,777 (trainer:737) INFO: 2epoch:train:10901-11000batch: iter_time=1.176e-04, forward_time=0.104, loss_ctc=151.699, loss_att=183.931, acc=0.224, loss=174.261, backward_time=0.097, grad_norm=49.103, clip=100.000, loss_scale=2.684e+08, optim_step_time=0.030, optim0_lr0=8.651e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 04:22:43,300 (trainer:737) INFO: 2epoch:train:11001-11100batch: iter_time=1.238e-04, forward_time=0.105, loss_ctc=177.188, loss_att=219.109, acc=0.207, loss=206.532, backward_time=0.098, grad_norm=59.771, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.684e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 04:23:24,102 (trainer:737) INFO: 2epoch:train:11101-11200batch: iter_time=1.463e-04, forward_time=0.103, loss_ctc=139.366, loss_att=166.311, acc=0.232, loss=158.227, backward_time=0.096, grad_norm=47.988, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.717e-05, train_time=0.408 +[gpuc02:0/16] 2024-01-12 04:23:51,854 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 04:24:10,980 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 04:24:14,720 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 04:24:14,720 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 04:24:14,724 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 04:28:36,455 (trainer:737) INFO: 2epoch:train:11201-11300batch: iter_time=2.666, forward_time=0.112, loss_ctc=167.155, loss_att=196.666, acc=0.232, loss=187.812, backward_time=0.098, grad_norm=66.125, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.750e-05, train_time=3.123 +[gpuc02:0/16] 2024-01-12 04:29:17,869 (trainer:737) INFO: 2epoch:train:11301-11400batch: iter_time=1.335e-04, forward_time=0.106, loss_ctc=196.209, loss_att=236.456, acc=0.206, loss=224.382, backward_time=0.098, grad_norm=65.416, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.784e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:29:58,907 (trainer:737) INFO: 2epoch:train:11401-11500batch: iter_time=1.423e-04, forward_time=0.105, loss_ctc=168.831, loss_att=188.265, acc=0.231, loss=182.435, backward_time=0.098, grad_norm=61.994, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.817e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 04:30:40,018 (trainer:737) INFO: 2epoch:train:11501-11600batch: iter_time=1.661e-04, forward_time=0.104, loss_ctc=150.182, loss_att=187.780, acc=0.229, loss=176.501, backward_time=0.098, grad_norm=44.495, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.851e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 04:31:21,314 (trainer:737) INFO: 2epoch:train:11601-11700batch: iter_time=1.502e-04, forward_time=0.106, loss_ctc=190.264, loss_att=229.255, acc=0.198, loss=217.558, backward_time=0.099, grad_norm=61.108, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.884e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 04:32:02,492 (trainer:737) INFO: 2epoch:train:11701-11800batch: iter_time=1.436e-04, forward_time=0.105, loss_ctc=177.494, loss_att=214.512, acc=0.210, loss=203.407, backward_time=0.098, grad_norm=67.106, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.917e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:32:43,302 (trainer:737) INFO: 2epoch:train:11801-11900batch: iter_time=1.402e-04, forward_time=0.103, loss_ctc=132.769, loss_att=161.685, acc=0.238, loss=153.010, backward_time=0.097, grad_norm=47.172, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.951e-05, train_time=0.408 +[gpuc02:0/16] 2024-01-12 04:33:24,503 (trainer:737) INFO: 2epoch:train:11901-12000batch: iter_time=1.308e-04, forward_time=0.105, loss_ctc=172.856, loss_att=211.555, acc=0.217, loss=199.945, backward_time=0.098, grad_norm=57.701, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=8.984e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:34:05,902 (trainer:737) INFO: 2epoch:train:12001-12100batch: iter_time=1.311e-04, forward_time=0.108, loss_ctc=153.808, loss_att=196.727, acc=0.224, loss=183.851, backward_time=0.098, grad_norm=43.640, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.017e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:34:48,575 (trainer:737) INFO: 2epoch:train:12101-12200batch: iter_time=1.292e-04, forward_time=0.112, loss_ctc=159.499, loss_att=195.646, acc=0.226, loss=184.802, backward_time=0.098, grad_norm=54.066, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.031, optim0_lr0=9.050e-05, train_time=0.426 +[gpuc02:0/16] 2024-01-12 04:35:29,504 (trainer:737) INFO: 2epoch:train:12201-12300batch: iter_time=1.161e-04, forward_time=0.104, loss_ctc=146.271, loss_att=178.498, acc=0.225, loss=168.830, backward_time=0.097, grad_norm=49.195, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.084e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 04:36:10,806 (trainer:737) INFO: 2epoch:train:12301-12400batch: iter_time=1.285e-04, forward_time=0.104, loss_ctc=155.041, loss_att=193.072, acc=0.221, loss=181.662, backward_time=0.097, grad_norm=52.051, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.117e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 04:36:52,260 (trainer:737) INFO: 2epoch:train:12401-12500batch: iter_time=1.153e-04, forward_time=0.104, loss_ctc=143.139, loss_att=181.033, acc=0.234, loss=169.665, backward_time=0.096, grad_norm=53.951, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.151e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:37:03,438 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 04:37:22,580 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 04:37:26,181 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 04:37:26,181 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 04:37:26,185 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 04:42:13,383 (trainer:737) INFO: 2epoch:train:12501-12600batch: iter_time=2.744, forward_time=0.145, loss_ctc=172.151, loss_att=215.567, acc=0.217, loss=202.542, backward_time=0.105, grad_norm=62.385, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.032, optim0_lr0=9.184e-05, train_time=3.211 +[gpuc02:0/16] 2024-01-12 04:42:54,468 (trainer:737) INFO: 2epoch:train:12601-12700batch: iter_time=1.595e-04, forward_time=0.104, loss_ctc=161.287, loss_att=195.986, acc=0.229, loss=185.576, backward_time=0.097, grad_norm=58.219, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.217e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 04:43:35,592 (trainer:737) INFO: 2epoch:train:12701-12800batch: iter_time=1.298e-04, forward_time=0.105, loss_ctc=157.890, loss_att=190.904, acc=0.233, loss=181.000, backward_time=0.098, grad_norm=52.595, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.250e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 04:44:16,790 (trainer:737) INFO: 2epoch:train:12801-12900batch: iter_time=1.257e-04, forward_time=0.105, loss_ctc=157.886, loss_att=207.917, acc=0.216, loss=192.908, backward_time=0.098, grad_norm=51.387, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.284e-05, train_time=0.412 +[gpuc02:0/16] 2024-01-12 04:44:58,254 (trainer:737) INFO: 2epoch:train:12901-13000batch: iter_time=1.322e-04, forward_time=0.108, loss_ctc=173.981, loss_att=215.243, acc=0.209, loss=202.865, backward_time=0.098, grad_norm=61.927, clip=100.000, loss_scale=5.369e+08, optim_step_time=0.030, optim0_lr0=9.317e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:45:39,222 (trainer:737) INFO: 2epoch:train:13001-13100batch: iter_time=1.388e-04, forward_time=0.104, loss_ctc=150.142, loss_att=190.599, acc=0.225, loss=178.462, backward_time=0.097, grad_norm=52.016, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.351e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 04:46:20,203 (trainer:737) INFO: 2epoch:train:13101-13200batch: iter_time=1.233e-04, forward_time=0.104, loss_ctc=142.701, loss_att=185.623, acc=0.229, loss=172.747, backward_time=0.097, grad_norm=48.467, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.384e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 04:47:01,244 (trainer:737) INFO: 2epoch:train:13201-13300batch: iter_time=1.693e-04, forward_time=0.105, loss_ctc=144.940, loss_att=190.396, acc=0.228, loss=176.759, backward_time=0.097, grad_norm=43.237, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.417e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 04:47:43,293 (trainer:737) INFO: 2epoch:train:13301-13400batch: iter_time=1.539e-04, forward_time=0.112, loss_ctc=157.380, loss_att=202.763, acc=0.227, loss=189.148, backward_time=0.098, grad_norm=48.396, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.031, optim0_lr0=9.450e-05, train_time=0.420 +[gpuc02:0/16] 2024-01-12 04:48:24,219 (trainer:737) INFO: 2epoch:train:13401-13500batch: iter_time=1.411e-04, forward_time=0.105, loss_ctc=135.122, loss_att=179.205, acc=0.230, loss=165.981, backward_time=0.097, grad_norm=47.633, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.484e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 04:49:05,292 (trainer:737) INFO: 2epoch:train:13501-13600batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=157.013, loss_att=209.028, acc=0.214, loss=193.424, backward_time=0.098, grad_norm=53.652, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.517e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 04:49:46,042 (trainer:737) INFO: 2epoch:train:13601-13700batch: iter_time=1.274e-04, forward_time=0.103, loss_ctc=123.057, loss_att=161.821, acc=0.236, loss=150.192, backward_time=0.096, grad_norm=43.007, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.551e-05, train_time=0.407 +[gpuc02:0/16] 2024-01-12 04:50:14,433 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 04:50:34,297 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 04:50:38,187 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 04:50:38,187 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 04:50:38,190 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 04:54:57,933 (trainer:737) INFO: 2epoch:train:13701-13800batch: iter_time=2.672, forward_time=0.107, loss_ctc=147.038, loss_att=195.656, acc=0.238, loss=181.071, backward_time=0.098, grad_norm=57.089, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.584e-05, train_time=3.119 +[gpuc02:0/16] 2024-01-12 04:55:40,023 (trainer:737) INFO: 2epoch:train:13801-13900batch: iter_time=1.464e-04, forward_time=0.106, loss_ctc=172.180, loss_att=238.385, acc=0.210, loss=218.523, backward_time=0.099, grad_norm=61.480, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.617e-05, train_time=0.421 +[gpuc02:0/16] 2024-01-12 04:56:21,435 (trainer:737) INFO: 2epoch:train:13901-14000batch: iter_time=1.828e-04, forward_time=0.104, loss_ctc=151.560, loss_att=186.445, acc=0.237, loss=175.979, backward_time=0.097, grad_norm=59.645, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.029, optim0_lr0=9.651e-05, train_time=0.414 +[gpuc02:0/16] 2024-01-12 04:57:02,515 (trainer:737) INFO: 2epoch:train:14001-14100batch: iter_time=1.441e-04, forward_time=0.104, loss_ctc=130.967, loss_att=185.468, acc=0.237, loss=169.117, backward_time=0.097, grad_norm=40.888, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.029, optim0_lr0=9.684e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 04:57:44,324 (trainer:737) INFO: 2epoch:train:14101-14200batch: iter_time=1.357e-04, forward_time=0.106, loss_ctc=168.196, loss_att=232.136, acc=0.204, loss=212.954, backward_time=0.099, grad_norm=55.134, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.717e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 04:58:26,158 (trainer:737) INFO: 2epoch:train:14201-14300batch: iter_time=1.261e-04, forward_time=0.105, loss_ctc=157.494, loss_att=216.181, acc=0.216, loss=198.575, backward_time=0.098, grad_norm=59.007, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.029, optim0_lr0=9.750e-05, train_time=0.418 +[gpuc02:0/16] 2024-01-12 04:59:07,671 (trainer:737) INFO: 2epoch:train:14301-14400batch: iter_time=1.348e-04, forward_time=0.103, loss_ctc=116.808, loss_att=158.429, acc=0.246, loss=145.943, backward_time=0.097, grad_norm=41.084, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.784e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 04:59:48,957 (trainer:737) INFO: 2epoch:train:14401-14500batch: iter_time=1.259e-04, forward_time=0.105, loss_ctc=153.929, loss_att=212.920, acc=0.223, loss=195.223, backward_time=0.098, grad_norm=53.532, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.029, optim0_lr0=9.817e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 05:00:30,258 (trainer:737) INFO: 2epoch:train:14501-14600batch: iter_time=1.341e-04, forward_time=0.105, loss_ctc=135.083, loss_att=198.123, acc=0.229, loss=179.211, backward_time=0.098, grad_norm=40.608, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.851e-05, train_time=0.413 +[gpuc02:0/16] 2024-01-12 05:01:11,407 (trainer:737) INFO: 2epoch:train:14601-14700batch: iter_time=1.566e-04, forward_time=0.105, loss_ctc=140.407, loss_att=193.841, acc=0.232, loss=177.811, backward_time=0.098, grad_norm=46.698, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.884e-05, train_time=0.411 +[gpuc02:0/16] 2024-01-12 05:01:52,955 (trainer:737) INFO: 2epoch:train:14701-14800batch: iter_time=1.666e-04, forward_time=0.103, loss_ctc=128.918, loss_att=178.879, acc=0.232, loss=163.891, backward_time=0.097, grad_norm=45.277, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.917e-05, train_time=0.415 +[gpuc02:0/16] 2024-01-12 05:02:34,025 (trainer:737) INFO: 2epoch:train:14801-14900batch: iter_time=1.790e-04, forward_time=0.104, loss_ctc=137.545, loss_att=191.993, acc=0.228, loss=175.659, backward_time=0.098, grad_norm=48.607, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.950e-05, train_time=0.410 +[gpuc02:0/16] 2024-01-12 05:03:14,937 (trainer:737) INFO: 2epoch:train:14901-15000batch: iter_time=1.461e-04, forward_time=0.103, loss_ctc=126.697, loss_att=178.899, acc=0.242, loss=163.238, backward_time=0.097, grad_norm=48.331, clip=100.000, loss_scale=1.074e+09, optim_step_time=0.030, optim0_lr0=9.984e-05, train_time=0.409 +[gpuc02:0/16] 2024-01-12 05:23:15,301 (trainer:343) INFO: 2epoch results: [train] iter_time=0.206, forward_time=0.106, loss_ctc=201.864, loss_att=207.221, acc=0.210, loss=205.613, backward_time=0.098, grad_norm=71.047, clip=99.987, loss_scale=2.847e+08, optim_step_time=0.030, optim0_lr0=7.501e-05, train_time=0.635, time=2 hours, 38 minutes and 58.85 seconds, total_count=30000, gpu_max_cached_mem_GB=24.980, [valid] loss_ctc=142.471, cer_ctc=0.700, loss_att=149.777, acc=0.187, cer=0.701, wer=1.000, loss=147.585, time=19 minutes and 50.58 seconds, total_count=9342, gpu_max_cached_mem_GB=24.980 +[gpuc02:0/16] 2024-01-12 05:23:19,950 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 05:23:19,951 (trainer:272) INFO: 3/45epoch started. Estimated time to finish: 5 days, 7 hours and 19 minutes +[gpuc02:0/16] 2024-01-12 05:23:19,960 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 05:23:38,811 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 05:23:42,371 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 05:23:42,372 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 05:23:42,375 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 05:28:20,407 (trainer:737) INFO: 3epoch:train:1-100batch: iter_time=2.380, forward_time=0.104, loss_ctc=146.079, loss_att=199.333, acc=0.225, loss=183.357, backward_time=0.099, grad_norm=58.384, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.015e-04, train_time=3.004 +[gpuc02:0/16] 2024-01-12 05:29:02,284 (trainer:737) INFO: 3epoch:train:101-200batch: iter_time=1.176e-04, forward_time=0.104, loss_ctc=131.489, loss_att=197.503, acc=0.230, loss=177.699, backward_time=0.099, grad_norm=50.723, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.045e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-12 05:29:45,665 (trainer:737) INFO: 3epoch:train:201-300batch: iter_time=1.258e-04, forward_time=0.115, loss_ctc=138.027, loss_att=202.089, acc=0.223, loss=182.870, backward_time=0.108, grad_norm=51.651, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.031, optim0_lr0=1.075e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-12 05:30:26,722 (trainer:737) INFO: 3epoch:train:301-400batch: iter_time=1.213e-04, forward_time=0.105, loss_ctc=141.824, loss_att=206.352, acc=0.222, loss=186.994, backward_time=0.100, grad_norm=51.509, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.105e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 05:31:07,611 (trainer:737) INFO: 3epoch:train:401-500batch: iter_time=1.146e-04, forward_time=0.104, loss_ctc=148.557, loss_att=204.473, acc=0.227, loss=187.698, backward_time=0.098, grad_norm=59.582, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.135e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 05:31:49,004 (trainer:737) INFO: 3epoch:train:501-600batch: iter_time=1.226e-04, forward_time=0.103, loss_ctc=134.427, loss_att=194.175, acc=0.222, loss=176.251, backward_time=0.098, grad_norm=60.512, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.029, optim0_lr0=1.165e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 05:32:29,943 (trainer:737) INFO: 3epoch:train:601-700batch: iter_time=1.081e-04, forward_time=0.104, loss_ctc=133.011, loss_att=195.570, acc=0.230, loss=176.802, backward_time=0.098, grad_norm=48.451, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.195e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 05:33:10,922 (trainer:737) INFO: 3epoch:train:701-800batch: iter_time=1.118e-04, forward_time=0.105, loss_ctc=167.908, loss_att=215.800, acc=0.219, loss=201.433, backward_time=0.099, grad_norm=70.883, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.029, optim0_lr0=1.225e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 05:33:52,075 (trainer:737) INFO: 3epoch:train:801-900batch: iter_time=1.238e-04, forward_time=0.106, loss_ctc=135.789, loss_att=213.049, acc=0.221, loss=189.871, backward_time=0.099, grad_norm=50.706, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.255e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 05:34:35,838 (trainer:737) INFO: 3epoch:train:901-1000batch: iter_time=1.120e-04, forward_time=0.105, loss_ctc=133.913, loss_att=211.086, acc=0.223, loss=187.934, backward_time=0.099, grad_norm=57.621, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.029, optim0_lr0=1.285e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-12 05:35:19,589 (trainer:737) INFO: 3epoch:train:1001-1100batch: iter_time=1.000e-04, forward_time=0.105, loss_ctc=131.792, loss_att=178.688, acc=0.237, loss=164.619, backward_time=0.101, grad_norm=54.468, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.315e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-12 05:36:02,164 (trainer:737) INFO: 3epoch:train:1101-1200batch: iter_time=1.052e-04, forward_time=0.106, loss_ctc=142.462, loss_att=209.561, acc=0.221, loss=189.432, backward_time=0.100, grad_norm=51.818, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.345e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-12 05:36:42,809 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 05:37:01,507 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 05:37:05,001 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 05:37:05,001 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 05:37:05,005 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 05:42:41,221 (trainer:737) INFO: 3epoch:train:1201-1300batch: iter_time=3.409, forward_time=0.117, loss_ctc=128.485, loss_att=177.947, acc=0.244, loss=163.108, backward_time=0.099, grad_norm=56.369, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.031, optim0_lr0=1.375e-04, train_time=3.990 +[gpuc02:0/16] 2024-01-12 05:43:22,661 (trainer:737) INFO: 3epoch:train:1301-1400batch: iter_time=1.070e-04, forward_time=0.104, loss_ctc=148.957, loss_att=211.115, acc=0.218, loss=192.468, backward_time=0.099, grad_norm=61.788, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.405e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 05:44:03,766 (trainer:737) INFO: 3epoch:train:1401-1500batch: iter_time=1.085e-04, forward_time=0.104, loss_ctc=133.364, loss_att=207.820, acc=0.230, loss=185.484, backward_time=0.099, grad_norm=49.225, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.435e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 05:44:45,109 (trainer:737) INFO: 3epoch:train:1501-1600batch: iter_time=1.108e-04, forward_time=0.106, loss_ctc=122.835, loss_att=176.515, acc=0.229, loss=160.411, backward_time=0.098, grad_norm=50.127, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.465e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 05:45:26,849 (trainer:737) INFO: 3epoch:train:1601-1700batch: iter_time=1.057e-04, forward_time=0.105, loss_ctc=151.656, loss_att=232.152, acc=0.224, loss=208.003, backward_time=0.099, grad_norm=63.327, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.495e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 05:46:07,725 (trainer:737) INFO: 3epoch:train:1701-1800batch: iter_time=1.135e-04, forward_time=0.104, loss_ctc=127.292, loss_att=188.369, acc=0.225, loss=170.046, backward_time=0.098, grad_norm=53.347, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.525e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 05:46:48,615 (trainer:737) INFO: 3epoch:train:1801-1900batch: iter_time=1.147e-04, forward_time=0.104, loss_ctc=124.740, loss_att=185.585, acc=0.233, loss=167.331, backward_time=0.098, grad_norm=55.322, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.555e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 05:47:29,664 (trainer:737) INFO: 3epoch:train:1901-2000batch: iter_time=1.149e-04, forward_time=0.105, loss_ctc=142.255, loss_att=205.126, acc=0.222, loss=186.265, backward_time=0.098, grad_norm=57.104, clip=100.000, loss_scale=2.147e+09, optim_step_time=0.030, optim0_lr0=1.585e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 05:48:10,812 (trainer:737) INFO: 3epoch:train:2001-2100batch: iter_time=1.069e-04, forward_time=0.105, loss_ctc=157.645, loss_att=228.754, acc=0.222, loss=207.422, backward_time=0.098, grad_norm=66.856, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.615e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 05:48:51,853 (trainer:737) INFO: 3epoch:train:2101-2200batch: iter_time=1.060e-04, forward_time=0.104, loss_ctc=112.766, loss_att=189.890, acc=0.231, loss=166.753, backward_time=0.097, grad_norm=45.313, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.645e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 05:49:32,969 (trainer:737) INFO: 3epoch:train:2201-2300batch: iter_time=1.038e-04, forward_time=0.105, loss_ctc=143.908, loss_att=211.423, acc=0.231, loss=191.168, backward_time=0.098, grad_norm=58.972, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.675e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 05:50:13,768 (trainer:737) INFO: 3epoch:train:2301-2400batch: iter_time=1.125e-04, forward_time=0.103, loss_ctc=119.313, loss_att=177.872, acc=0.232, loss=160.305, backward_time=0.097, grad_norm=52.982, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.705e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 05:50:54,722 (trainer:737) INFO: 3epoch:train:2401-2500batch: iter_time=9.853e-05, forward_time=0.104, loss_ctc=139.777, loss_att=205.541, acc=0.232, loss=185.812, backward_time=0.098, grad_norm=52.528, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.735e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 05:51:01,370 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 05:51:21,613 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 05:51:25,226 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 05:51:25,226 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 05:51:25,230 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 05:56:05,351 (trainer:737) INFO: 3epoch:train:2501-2600batch: iter_time=2.571, forward_time=0.111, loss_ctc=136.085, loss_att=196.208, acc=0.229, loss=178.171, backward_time=0.099, grad_norm=63.910, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.765e-04, train_time=3.106 +[gpuc02:0/16] 2024-01-12 05:56:46,619 (trainer:737) INFO: 3epoch:train:2601-2700batch: iter_time=1.155e-04, forward_time=0.104, loss_ctc=122.961, loss_att=196.640, acc=0.232, loss=174.536, backward_time=0.097, grad_norm=56.309, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.795e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 05:57:27,904 (trainer:737) INFO: 3epoch:train:2701-2800batch: iter_time=1.185e-04, forward_time=0.105, loss_ctc=126.259, loss_att=197.607, acc=0.226, loss=176.202, backward_time=0.097, grad_norm=54.174, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.029, optim0_lr0=1.825e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 05:58:09,233 (trainer:737) INFO: 3epoch:train:2801-2900batch: iter_time=1.097e-04, forward_time=0.105, loss_ctc=129.212, loss_att=202.502, acc=0.227, loss=180.515, backward_time=0.098, grad_norm=50.286, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.855e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 05:58:50,429 (trainer:737) INFO: 3epoch:train:2901-3000batch: iter_time=1.041e-04, forward_time=0.105, loss_ctc=136.793, loss_att=200.761, acc=0.230, loss=181.571, backward_time=0.097, grad_norm=62.323, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.029, optim0_lr0=1.885e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 05:59:31,543 (trainer:737) INFO: 3epoch:train:3001-3100batch: iter_time=1.023e-04, forward_time=0.104, loss_ctc=122.629, loss_att=191.452, acc=0.228, loss=170.805, backward_time=0.097, grad_norm=55.787, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.915e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:00:12,536 (trainer:737) INFO: 3epoch:train:3101-3200batch: iter_time=1.162e-04, forward_time=0.104, loss_ctc=120.141, loss_att=192.288, acc=0.235, loss=170.644, backward_time=0.097, grad_norm=45.634, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.945e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:00:53,641 (trainer:737) INFO: 3epoch:train:3201-3300batch: iter_time=1.029e-04, forward_time=0.105, loss_ctc=151.828, loss_att=210.041, acc=0.225, loss=192.577, backward_time=0.097, grad_norm=64.624, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=1.975e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:01:34,930 (trainer:737) INFO: 3epoch:train:3301-3400batch: iter_time=9.692e-05, forward_time=0.107, loss_ctc=123.053, loss_att=208.336, acc=0.227, loss=182.751, backward_time=0.097, grad_norm=48.213, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=2.005e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:02:16,073 (trainer:737) INFO: 3epoch:train:3401-3500batch: iter_time=9.071e-05, forward_time=0.105, loss_ctc=120.791, loss_att=206.531, acc=0.231, loss=180.809, backward_time=0.098, grad_norm=51.919, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=2.035e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:02:56,903 (trainer:737) INFO: 3epoch:train:3501-3600batch: iter_time=1.013e-04, forward_time=0.104, loss_ctc=120.227, loss_att=176.373, acc=0.241, loss=159.529, backward_time=0.097, grad_norm=54.018, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=2.065e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 06:03:38,034 (trainer:737) INFO: 3epoch:train:3601-3700batch: iter_time=1.007e-04, forward_time=0.105, loss_ctc=130.958, loss_att=205.191, acc=0.228, loss=182.921, backward_time=0.098, grad_norm=50.877, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=2.095e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:04:01,186 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 06:04:21,628 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 06:04:25,275 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 06:04:25,275 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 06:04:25,278 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 06:08:59,603 (trainer:737) INFO: 3epoch:train:3701-3800batch: iter_time=2.719, forward_time=0.133, loss_ctc=117.907, loss_att=172.581, acc=0.251, loss=156.179, backward_time=0.100, grad_norm=58.228, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.031, optim0_lr0=2.125e-04, train_time=3.215 +[gpuc02:0/16] 2024-01-12 06:09:40,926 (trainer:737) INFO: 3epoch:train:3801-3900batch: iter_time=1.369e-04, forward_time=0.105, loss_ctc=137.669, loss_att=202.979, acc=0.222, loss=183.386, backward_time=0.098, grad_norm=64.227, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=2.155e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:10:22,429 (trainer:737) INFO: 3epoch:train:3901-4000batch: iter_time=1.055e-04, forward_time=0.104, loss_ctc=121.468, loss_att=202.108, acc=0.236, loss=177.916, backward_time=0.098, grad_norm=53.508, clip=100.000, loss_scale=4.295e+09, optim_step_time=0.030, optim0_lr0=2.185e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 06:11:03,392 (trainer:737) INFO: 3epoch:train:4001-4100batch: iter_time=1.050e-04, forward_time=0.103, loss_ctc=112.849, loss_att=169.449, acc=0.233, loss=152.469, backward_time=0.097, grad_norm=51.045, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.215e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:11:44,845 (trainer:737) INFO: 3epoch:train:4101-4200batch: iter_time=1.020e-04, forward_time=0.106, loss_ctc=137.690, loss_att=221.579, acc=0.231, loss=196.412, backward_time=0.099, grad_norm=61.006, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.245e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 06:12:26,173 (trainer:737) INFO: 3epoch:train:4201-4300batch: iter_time=1.051e-04, forward_time=0.103, loss_ctc=116.518, loss_att=181.867, acc=0.235, loss=162.262, backward_time=0.097, grad_norm=54.034, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.275e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:13:07,278 (trainer:737) INFO: 3epoch:train:4301-4400batch: iter_time=1.056e-04, forward_time=0.103, loss_ctc=112.774, loss_att=179.214, acc=0.242, loss=159.282, backward_time=0.097, grad_norm=48.274, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.305e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:13:48,601 (trainer:737) INFO: 3epoch:train:4401-4500batch: iter_time=1.146e-04, forward_time=0.104, loss_ctc=129.653, loss_att=198.023, acc=0.231, loss=177.512, backward_time=0.098, grad_norm=54.567, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.335e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:14:29,993 (trainer:737) INFO: 3epoch:train:4501-4600batch: iter_time=9.911e-05, forward_time=0.106, loss_ctc=141.644, loss_att=221.001, acc=0.231, loss=197.194, backward_time=0.098, grad_norm=60.983, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.365e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 06:15:10,893 (trainer:737) INFO: 3epoch:train:4601-4700batch: iter_time=1.028e-04, forward_time=0.105, loss_ctc=103.062, loss_att=183.003, acc=0.245, loss=159.021, backward_time=0.097, grad_norm=43.619, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.395e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:15:52,270 (trainer:737) INFO: 3epoch:train:4701-4800batch: iter_time=1.020e-04, forward_time=0.105, loss_ctc=132.164, loss_att=203.577, acc=0.246, loss=182.153, backward_time=0.098, grad_norm=61.612, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.425e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 06:16:33,177 (trainer:737) INFO: 3epoch:train:4801-4900batch: iter_time=1.091e-04, forward_time=0.104, loss_ctc=107.977, loss_att=171.703, acc=0.241, loss=152.585, backward_time=0.097, grad_norm=44.203, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.455e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:17:14,196 (trainer:737) INFO: 3epoch:train:4901-5000batch: iter_time=9.852e-05, forward_time=0.105, loss_ctc=128.962, loss_att=196.843, acc=0.245, loss=176.479, backward_time=0.098, grad_norm=59.833, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.485e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:17:18,157 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 06:17:38,575 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 06:17:42,722 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 06:17:42,722 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 06:17:42,725 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 06:22:06,427 (trainer:737) INFO: 3epoch:train:5001-5100batch: iter_time=2.441, forward_time=0.104, loss_ctc=123.827, loss_att=185.975, acc=0.241, loss=167.331, backward_time=0.097, grad_norm=61.380, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.029, optim0_lr0=2.515e-04, train_time=2.922 +[gpuc02:0/16] 2024-01-12 06:22:47,357 (trainer:737) INFO: 3epoch:train:5101-5200batch: iter_time=1.019e-04, forward_time=0.104, loss_ctc=112.269, loss_att=185.073, acc=0.248, loss=163.232, backward_time=0.097, grad_norm=52.631, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.029, optim0_lr0=2.545e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:23:28,250 (trainer:737) INFO: 3epoch:train:5201-5300batch: iter_time=1.016e-04, forward_time=0.104, loss_ctc=115.523, loss_att=188.646, acc=0.243, loss=166.709, backward_time=0.097, grad_norm=55.017, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.575e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:24:09,150 (trainer:737) INFO: 3epoch:train:5301-5400batch: iter_time=1.062e-04, forward_time=0.104, loss_ctc=117.449, loss_att=188.287, acc=0.247, loss=167.035, backward_time=0.097, grad_norm=50.422, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.605e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:24:50,591 (trainer:737) INFO: 3epoch:train:5401-5500batch: iter_time=1.016e-04, forward_time=0.103, loss_ctc=124.760, loss_att=188.979, acc=0.251, loss=169.713, backward_time=0.097, grad_norm=56.253, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.029, optim0_lr0=2.635e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 06:25:31,650 (trainer:737) INFO: 3epoch:train:5501-5600batch: iter_time=1.082e-04, forward_time=0.103, loss_ctc=111.072, loss_att=179.316, acc=0.249, loss=158.843, backward_time=0.096, grad_norm=55.142, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.665e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:26:13,214 (trainer:737) INFO: 3epoch:train:5601-5700batch: iter_time=9.565e-05, forward_time=0.103, loss_ctc=110.308, loss_att=182.749, acc=0.257, loss=161.017, backward_time=0.097, grad_norm=47.631, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.029, optim0_lr0=2.695e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 06:26:54,764 (trainer:737) INFO: 3epoch:train:5701-5800batch: iter_time=9.756e-05, forward_time=0.104, loss_ctc=140.470, loss_att=201.139, acc=0.242, loss=182.939, backward_time=0.097, grad_norm=60.628, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.725e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 06:27:35,698 (trainer:737) INFO: 3epoch:train:5801-5900batch: iter_time=9.915e-05, forward_time=0.104, loss_ctc=112.575, loss_att=195.099, acc=0.258, loss=170.342, backward_time=0.097, grad_norm=48.444, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.030, optim0_lr0=2.755e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:28:16,994 (trainer:737) INFO: 3epoch:train:5901-6000batch: iter_time=9.728e-05, forward_time=0.104, loss_ctc=110.445, loss_att=190.467, acc=0.263, loss=166.461, backward_time=0.097, grad_norm=54.437, clip=100.000, loss_scale=8.590e+09, optim_step_time=0.029, optim0_lr0=2.785e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:28:58,019 (trainer:737) INFO: 3epoch:train:6001-6100batch: iter_time=9.835e-05, forward_time=0.103, loss_ctc=111.935, loss_att=166.860, acc=0.269, loss=150.382, backward_time=0.096, grad_norm=52.455, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.815e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:29:39,244 (trainer:737) INFO: 3epoch:train:6101-6200batch: iter_time=1.077e-04, forward_time=0.103, loss_ctc=121.218, loss_att=190.988, acc=0.258, loss=170.057, backward_time=0.097, grad_norm=53.428, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.845e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 06:30:03,615 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 06:30:23,089 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 06:30:26,796 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 06:30:26,796 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 06:30:26,799 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 06:34:32,651 (trainer:737) INFO: 3epoch:train:6201-6300batch: iter_time=2.322, forward_time=0.124, loss_ctc=105.706, loss_att=160.726, acc=0.278, loss=144.220, backward_time=0.103, grad_norm=51.898, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.875e-04, train_time=2.934 +[gpuc02:0/16] 2024-01-12 06:35:13,884 (trainer:737) INFO: 3epoch:train:6301-6400batch: iter_time=1.061e-04, forward_time=0.104, loss_ctc=127.160, loss_att=189.607, acc=0.254, loss=170.873, backward_time=0.099, grad_norm=63.074, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.905e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 06:35:54,911 (trainer:737) INFO: 3epoch:train:6401-6500batch: iter_time=1.028e-04, forward_time=0.104, loss_ctc=112.487, loss_att=187.610, acc=0.273, loss=165.073, backward_time=0.099, grad_norm=52.726, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.935e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:36:35,703 (trainer:737) INFO: 3epoch:train:6501-6600batch: iter_time=9.869e-05, forward_time=0.103, loss_ctc=103.806, loss_att=156.646, acc=0.269, loss=140.794, backward_time=0.098, grad_norm=51.494, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.965e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 06:37:17,135 (trainer:737) INFO: 3epoch:train:6601-6700batch: iter_time=1.131e-04, forward_time=0.107, loss_ctc=126.793, loss_att=203.542, acc=0.273, loss=180.518, backward_time=0.099, grad_norm=60.639, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=2.995e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 06:37:58,013 (trainer:737) INFO: 3epoch:train:6701-6800batch: iter_time=1.226e-04, forward_time=0.103, loss_ctc=109.383, loss_att=167.986, acc=0.274, loss=150.405, backward_time=0.098, grad_norm=54.654, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.025e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:38:38,857 (trainer:737) INFO: 3epoch:train:6801-6900batch: iter_time=1.418e-04, forward_time=0.104, loss_ctc=102.948, loss_att=164.849, acc=0.281, loss=146.279, backward_time=0.097, grad_norm=49.026, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.055e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 06:39:19,842 (trainer:737) INFO: 3epoch:train:6901-7000batch: iter_time=1.586e-04, forward_time=0.104, loss_ctc=119.073, loss_att=183.801, acc=0.266, loss=164.383, backward_time=0.098, grad_norm=56.559, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.085e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:40:01,003 (trainer:737) INFO: 3epoch:train:7001-7100batch: iter_time=1.330e-04, forward_time=0.104, loss_ctc=129.786, loss_att=201.224, acc=0.273, loss=179.792, backward_time=0.099, grad_norm=64.719, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.115e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:40:41,875 (trainer:737) INFO: 3epoch:train:7101-7200batch: iter_time=1.332e-04, forward_time=0.103, loss_ctc=94.161, loss_att=160.903, acc=0.300, loss=140.881, backward_time=0.097, grad_norm=49.421, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.145e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 06:41:23,245 (trainer:737) INFO: 3epoch:train:7201-7300batch: iter_time=1.179e-04, forward_time=0.104, loss_ctc=122.641, loss_att=181.354, acc=0.303, loss=163.740, backward_time=0.098, grad_norm=64.260, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.175e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:42:04,264 (trainer:737) INFO: 3epoch:train:7301-7400batch: iter_time=1.092e-04, forward_time=0.103, loss_ctc=100.578, loss_att=154.449, acc=0.285, loss=138.287, backward_time=0.097, grad_norm=54.113, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.205e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:42:45,792 (trainer:737) INFO: 3epoch:train:7401-7500batch: iter_time=9.830e-05, forward_time=0.104, loss_ctc=119.820, loss_att=174.878, acc=0.302, loss=158.361, backward_time=0.098, grad_norm=67.412, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.235e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 06:42:48,185 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 06:43:08,042 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 06:43:11,659 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 06:43:11,660 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 06:43:11,663 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 06:47:32,012 (trainer:737) INFO: 3epoch:train:7501-7600batch: iter_time=2.258, forward_time=0.104, loss_ctc=116.726, loss_att=176.145, acc=0.288, loss=158.319, backward_time=0.098, grad_norm=63.590, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.265e-04, train_time=2.862 +[gpuc02:0/16] 2024-01-12 06:48:13,356 (trainer:737) INFO: 3epoch:train:7601-7700batch: iter_time=1.520e-04, forward_time=0.104, loss_ctc=102.907, loss_att=174.628, acc=0.296, loss=153.112, backward_time=0.098, grad_norm=58.222, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.295e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 06:48:54,757 (trainer:737) INFO: 3epoch:train:7701-7800batch: iter_time=1.437e-04, forward_time=0.104, loss_ctc=106.687, loss_att=171.588, acc=0.300, loss=152.118, backward_time=0.098, grad_norm=59.285, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.029, optim0_lr0=3.325e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 06:49:35,930 (trainer:737) INFO: 3epoch:train:7801-7900batch: iter_time=1.517e-04, forward_time=0.104, loss_ctc=109.405, loss_att=176.977, acc=0.295, loss=156.705, backward_time=0.098, grad_norm=57.304, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.030, optim0_lr0=3.355e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 06:50:16,883 (trainer:737) INFO: 3epoch:train:7901-8000batch: iter_time=1.359e-04, forward_time=0.104, loss_ctc=115.635, loss_att=175.772, acc=0.300, loss=157.731, backward_time=0.097, grad_norm=67.405, clip=100.000, loss_scale=1.718e+10, optim_step_time=0.029, optim0_lr0=3.385e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:50:57,719 (trainer:737) INFO: 3epoch:train:8001-8100batch: iter_time=1.709e-04, forward_time=0.104, loss_ctc=104.241, loss_att=164.736, acc=0.295, loss=146.588, backward_time=0.097, grad_norm=56.683, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.029, optim0_lr0=3.415e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 06:51:38,661 (trainer:737) INFO: 3epoch:train:8101-8200batch: iter_time=1.542e-04, forward_time=0.104, loss_ctc=101.489, loss_att=161.658, acc=0.322, loss=143.607, backward_time=0.097, grad_norm=54.513, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.029, optim0_lr0=3.445e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 06:52:19,751 (trainer:737) INFO: 3epoch:train:8201-8300batch: iter_time=1.563e-04, forward_time=0.105, loss_ctc=128.242, loss_att=183.074, acc=0.290, loss=166.624, backward_time=0.097, grad_norm=68.570, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.029, optim0_lr0=3.475e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 06:53:00,786 (trainer:737) INFO: 3epoch:train:8301-8400batch: iter_time=1.571e-04, forward_time=0.105, loss_ctc=105.233, loss_att=170.217, acc=0.324, loss=150.722, backward_time=0.098, grad_norm=58.832, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.505e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:53:41,965 (trainer:737) INFO: 3epoch:train:8401-8500batch: iter_time=1.659e-04, forward_time=0.106, loss_ctc=102.429, loss_att=166.954, acc=0.334, loss=147.597, backward_time=0.099, grad_norm=60.810, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.535e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 06:54:22,803 (trainer:737) INFO: 3epoch:train:8501-8600batch: iter_time=1.826e-04, forward_time=0.104, loss_ctc=103.724, loss_att=146.815, acc=0.328, loss=133.888, backward_time=0.098, grad_norm=61.602, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.565e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 06:55:03,823 (trainer:737) INFO: 3epoch:train:8601-8700batch: iter_time=1.320e-04, forward_time=0.104, loss_ctc=112.655, loss_att=172.003, acc=0.317, loss=154.199, backward_time=0.098, grad_norm=61.163, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.029, optim0_lr0=3.595e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 06:55:26,832 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 06:55:46,462 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 06:55:50,445 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 06:55:50,445 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 06:55:50,448 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 07:00:08,783 (trainer:737) INFO: 3epoch:train:8701-8800batch: iter_time=2.335, forward_time=0.104, loss_ctc=101.359, loss_att=146.177, acc=0.335, loss=132.731, backward_time=0.097, grad_norm=60.985, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.625e-04, train_time=3.049 +[gpuc02:0/16] 2024-01-12 07:00:50,510 (trainer:737) INFO: 3epoch:train:8801-8900batch: iter_time=1.310e-04, forward_time=0.106, loss_ctc=121.453, loss_att=175.381, acc=0.309, loss=159.203, backward_time=0.098, grad_norm=74.893, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.655e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 07:01:31,583 (trainer:737) INFO: 3epoch:train:8901-9000batch: iter_time=1.334e-04, forward_time=0.106, loss_ctc=103.919, loss_att=168.262, acc=0.340, loss=148.959, backward_time=0.098, grad_norm=58.798, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.685e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:02:12,362 (trainer:737) INFO: 3epoch:train:9001-9100batch: iter_time=1.271e-04, forward_time=0.104, loss_ctc=96.973, loss_att=139.583, acc=0.330, loss=126.800, backward_time=0.096, grad_norm=56.309, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.715e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:02:53,567 (trainer:737) INFO: 3epoch:train:9101-9200batch: iter_time=1.397e-04, forward_time=0.106, loss_ctc=119.388, loss_att=187.031, acc=0.342, loss=166.738, backward_time=0.098, grad_norm=71.017, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.745e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:03:34,980 (trainer:737) INFO: 3epoch:train:9201-9300batch: iter_time=1.291e-04, forward_time=0.105, loss_ctc=100.682, loss_att=150.445, acc=0.332, loss=135.516, backward_time=0.097, grad_norm=63.435, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.029, optim0_lr0=3.775e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 07:04:16,148 (trainer:737) INFO: 3epoch:train:9301-9400batch: iter_time=1.362e-04, forward_time=0.105, loss_ctc=95.962, loss_att=147.252, acc=0.340, loss=131.865, backward_time=0.097, grad_norm=54.916, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.805e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:04:57,374 (trainer:737) INFO: 3epoch:train:9401-9500batch: iter_time=1.295e-04, forward_time=0.105, loss_ctc=112.322, loss_att=166.600, acc=0.325, loss=150.317, backward_time=0.098, grad_norm=61.226, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.835e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:05:39,413 (trainer:737) INFO: 3epoch:train:9501-9600batch: iter_time=1.316e-04, forward_time=0.106, loss_ctc=123.685, loss_att=181.869, acc=0.338, loss=164.414, backward_time=0.098, grad_norm=71.975, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.865e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-12 07:06:20,344 (trainer:737) INFO: 3epoch:train:9601-9700batch: iter_time=1.339e-04, forward_time=0.105, loss_ctc=88.600, loss_att=139.757, acc=0.372, loss=124.410, backward_time=0.097, grad_norm=60.744, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.895e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:07:01,692 (trainer:737) INFO: 3epoch:train:9701-9800batch: iter_time=1.177e-04, forward_time=0.106, loss_ctc=113.485, loss_att=158.800, acc=0.378, loss=145.205, backward_time=0.098, grad_norm=68.042, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.029, optim0_lr0=3.925e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 07:07:42,467 (trainer:737) INFO: 3epoch:train:9801-9900batch: iter_time=1.019e-04, forward_time=0.105, loss_ctc=93.497, loss_att=135.978, acc=0.352, loss=123.234, backward_time=0.096, grad_norm=54.550, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.955e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:08:23,434 (trainer:737) INFO: 3epoch:train:9901-10000batch: iter_time=8.921e-05, forward_time=0.105, loss_ctc=110.555, loss_att=154.248, acc=0.375, loss=141.140, backward_time=0.098, grad_norm=63.811, clip=100.000, loss_scale=3.436e+10, optim_step_time=0.030, optim0_lr0=3.985e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:08:26,024 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 07:08:45,698 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 07:08:49,328 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 07:08:49,328 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 07:08:49,331 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 07:13:21,920 (trainer:737) INFO: 3epoch:train:10001-10100batch: iter_time=2.293, forward_time=0.104, loss_ctc=111.044, loss_att=151.163, acc=0.344, loss=139.127, backward_time=0.097, grad_norm=74.227, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.015e-04, train_time=2.985 +[gpuc02:0/16] 2024-01-12 07:14:02,834 (trainer:737) INFO: 3epoch:train:10101-10200batch: iter_time=1.012e-04, forward_time=0.104, loss_ctc=96.000, loss_att=145.888, acc=0.368, loss=130.922, backward_time=0.097, grad_norm=59.941, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.045e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:14:43,741 (trainer:737) INFO: 3epoch:train:10201-10300batch: iter_time=1.062e-04, forward_time=0.105, loss_ctc=101.824, loss_att=144.474, acc=0.372, loss=131.679, backward_time=0.097, grad_norm=64.368, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.029, optim0_lr0=4.075e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:15:24,665 (trainer:737) INFO: 3epoch:train:10301-10400batch: iter_time=1.061e-04, forward_time=0.105, loss_ctc=102.593, loss_att=149.938, acc=0.359, loss=135.734, backward_time=0.097, grad_norm=62.177, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.029, optim0_lr0=4.105e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:16:05,834 (trainer:737) INFO: 3epoch:train:10401-10500batch: iter_time=1.193e-04, forward_time=0.107, loss_ctc=108.156, loss_att=149.972, acc=0.368, loss=137.427, backward_time=0.097, grad_norm=64.460, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.029, optim0_lr0=4.135e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:16:46,642 (trainer:737) INFO: 3epoch:train:10501-10600batch: iter_time=9.797e-05, forward_time=0.104, loss_ctc=96.474, loss_att=140.665, acc=0.359, loss=127.408, backward_time=0.097, grad_norm=55.311, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.029, optim0_lr0=4.165e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:17:27,770 (trainer:737) INFO: 3epoch:train:10601-10700batch: iter_time=9.897e-05, forward_time=0.105, loss_ctc=95.447, loss_att=138.755, acc=0.394, loss=125.763, backward_time=0.097, grad_norm=54.906, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.029, optim0_lr0=4.195e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:18:09,108 (trainer:737) INFO: 3epoch:train:10701-10800batch: iter_time=1.062e-04, forward_time=0.106, loss_ctc=119.731, loss_att=158.218, acc=0.357, loss=146.672, backward_time=0.097, grad_norm=66.517, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.225e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 07:18:50,501 (trainer:737) INFO: 3epoch:train:10801-10900batch: iter_time=1.143e-04, forward_time=0.106, loss_ctc=97.603, loss_att=139.271, acc=0.410, loss=126.770, backward_time=0.098, grad_norm=56.811, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.255e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 07:19:32,315 (trainer:737) INFO: 3epoch:train:10901-11000batch: iter_time=1.037e-04, forward_time=0.106, loss_ctc=95.416, loss_att=134.503, acc=0.418, loss=122.777, backward_time=0.098, grad_norm=65.673, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.285e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-12 07:20:13,642 (trainer:737) INFO: 3epoch:train:11001-11100batch: iter_time=1.025e-04, forward_time=0.105, loss_ctc=95.766, loss_att=124.607, acc=0.403, loss=115.955, backward_time=0.097, grad_norm=54.587, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.315e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 07:20:54,587 (trainer:737) INFO: 3epoch:train:11101-11200batch: iter_time=1.022e-04, forward_time=0.106, loss_ctc=106.333, loss_att=145.927, acc=0.385, loss=134.049, backward_time=0.097, grad_norm=62.103, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.345e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:21:17,360 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 07:21:37,355 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 07:21:40,982 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 07:21:40,982 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 07:21:40,985 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 07:25:48,700 (trainer:737) INFO: 3epoch:train:11201-11300batch: iter_time=2.293, forward_time=0.124, loss_ctc=93.829, loss_att=130.462, acc=0.400, loss=119.472, backward_time=0.101, grad_norm=61.023, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.031, optim0_lr0=4.375e-04, train_time=2.941 +[gpuc02:0/16] 2024-01-12 07:26:29,861 (trainer:737) INFO: 3epoch:train:11301-11400batch: iter_time=1.188e-04, forward_time=0.105, loss_ctc=113.794, loss_att=151.138, acc=0.384, loss=139.934, backward_time=0.098, grad_norm=70.410, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.405e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:27:11,077 (trainer:737) INFO: 3epoch:train:11401-11500batch: iter_time=1.190e-04, forward_time=0.105, loss_ctc=98.793, loss_att=148.900, acc=0.406, loss=133.868, backward_time=0.098, grad_norm=60.773, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.435e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:27:51,957 (trainer:737) INFO: 3epoch:train:11501-11600batch: iter_time=1.552e-04, forward_time=0.103, loss_ctc=90.690, loss_att=122.661, acc=0.387, loss=113.069, backward_time=0.097, grad_norm=57.887, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.465e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:28:33,199 (trainer:737) INFO: 3epoch:train:11601-11700batch: iter_time=1.434e-04, forward_time=0.106, loss_ctc=111.924, loss_att=165.992, acc=0.407, loss=149.772, backward_time=0.099, grad_norm=61.768, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.495e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:29:14,108 (trainer:737) INFO: 3epoch:train:11701-11800batch: iter_time=1.610e-04, forward_time=0.104, loss_ctc=93.580, loss_att=130.513, acc=0.399, loss=119.433, backward_time=0.097, grad_norm=56.823, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.525e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:29:55,024 (trainer:737) INFO: 3epoch:train:11801-11900batch: iter_time=1.488e-04, forward_time=0.104, loss_ctc=88.953, loss_att=126.761, acc=0.414, loss=115.419, backward_time=0.097, grad_norm=51.141, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.555e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:30:35,981 (trainer:737) INFO: 3epoch:train:11901-12000batch: iter_time=1.300e-04, forward_time=0.105, loss_ctc=105.751, loss_att=149.596, acc=0.385, loss=136.443, backward_time=0.098, grad_norm=60.117, clip=100.000, loss_scale=6.872e+10, optim_step_time=0.030, optim0_lr0=4.585e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:31:17,099 (trainer:737) INFO: 3epoch:train:12001-12100batch: iter_time=1.463e-04, forward_time=0.105, loss_ctc=115.378, loss_att=157.407, acc=0.410, loss=144.798, backward_time=0.099, grad_norm=69.149, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.615e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:31:57,977 (trainer:737) INFO: 3epoch:train:12101-12200batch: iter_time=1.532e-04, forward_time=0.104, loss_ctc=82.249, loss_att=114.997, acc=0.452, loss=105.172, backward_time=0.097, grad_norm=58.420, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.645e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:32:39,278 (trainer:737) INFO: 3epoch:train:12201-12300batch: iter_time=1.317e-04, forward_time=0.105, loss_ctc=108.134, loss_att=136.275, acc=0.448, loss=127.833, backward_time=0.098, grad_norm=62.442, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.675e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 07:33:20,132 (trainer:737) INFO: 3epoch:train:12301-12400batch: iter_time=1.371e-04, forward_time=0.104, loss_ctc=89.236, loss_att=120.194, acc=0.412, loss=110.907, backward_time=0.096, grad_norm=55.364, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.705e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:34:01,153 (trainer:737) INFO: 3epoch:train:12401-12500batch: iter_time=1.327e-04, forward_time=0.105, loss_ctc=104.449, loss_att=135.700, acc=0.436, loss=126.325, backward_time=0.098, grad_norm=59.813, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.735e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 07:34:03,650 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 07:34:23,827 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 07:34:27,469 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 07:34:27,469 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 07:34:27,473 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 07:38:57,037 (trainer:737) INFO: 3epoch:train:12501-12600batch: iter_time=2.287, forward_time=0.104, loss_ctc=103.070, loss_att=129.843, acc=0.413, loss=121.811, backward_time=0.097, grad_norm=63.278, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.765e-04, train_time=2.959 +[gpuc02:0/16] 2024-01-12 07:39:37,903 (trainer:737) INFO: 3epoch:train:12601-12700batch: iter_time=1.384e-04, forward_time=0.105, loss_ctc=90.771, loss_att=126.652, acc=0.434, loss=115.888, backward_time=0.097, grad_norm=56.357, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.795e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:40:18,781 (trainer:737) INFO: 3epoch:train:12701-12800batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=95.379, loss_att=128.460, acc=0.428, loss=118.536, backward_time=0.097, grad_norm=64.108, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.825e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:41:00,042 (trainer:737) INFO: 3epoch:train:12801-12900batch: iter_time=1.665e-04, forward_time=0.104, loss_ctc=95.823, loss_att=130.261, acc=0.419, loss=119.929, backward_time=0.097, grad_norm=55.416, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.855e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:41:41,248 (trainer:737) INFO: 3epoch:train:12901-13000batch: iter_time=1.563e-04, forward_time=0.104, loss_ctc=103.440, loss_att=133.062, acc=0.426, loss=124.176, backward_time=0.097, grad_norm=61.866, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.885e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:42:22,112 (trainer:737) INFO: 3epoch:train:13001-13100batch: iter_time=1.076e-04, forward_time=0.105, loss_ctc=90.924, loss_att=125.681, acc=0.414, loss=115.254, backward_time=0.097, grad_norm=51.077, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.915e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:43:03,300 (trainer:737) INFO: 3epoch:train:13101-13200batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=88.514, loss_att=121.507, acc=0.455, loss=111.609, backward_time=0.097, grad_norm=52.105, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.945e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:43:44,998 (trainer:737) INFO: 3epoch:train:13201-13300batch: iter_time=9.858e-05, forward_time=0.106, loss_ctc=115.380, loss_att=141.632, acc=0.412, loss=133.756, backward_time=0.097, grad_norm=64.474, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=4.975e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 07:44:26,261 (trainer:737) INFO: 3epoch:train:13301-13400batch: iter_time=1.091e-04, forward_time=0.105, loss_ctc=91.328, loss_att=121.145, acc=0.469, loss=112.200, backward_time=0.097, grad_norm=51.113, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=5.005e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:45:07,281 (trainer:737) INFO: 3epoch:train:13401-13500batch: iter_time=1.147e-04, forward_time=0.105, loss_ctc=89.287, loss_att=115.721, acc=0.481, loss=107.791, backward_time=0.097, grad_norm=54.581, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=5.035e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 07:45:48,310 (trainer:737) INFO: 3epoch:train:13501-13600batch: iter_time=1.004e-04, forward_time=0.104, loss_ctc=90.652, loss_att=111.297, acc=0.455, loss=105.103, backward_time=0.096, grad_norm=57.436, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.029, optim0_lr0=5.065e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 07:46:29,256 (trainer:737) INFO: 3epoch:train:13601-13700batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=101.676, loss_att=130.564, acc=0.436, loss=121.897, backward_time=0.097, grad_norm=65.100, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.029, optim0_lr0=5.095e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 07:46:52,211 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 07:47:12,128 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 07:47:15,806 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 07:47:15,806 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 07:47:15,810 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 07:51:22,718 (trainer:737) INFO: 3epoch:train:13701-13800batch: iter_time=2.251, forward_time=0.104, loss_ctc=92.114, loss_att=109.528, acc=0.459, loss=104.303, backward_time=0.097, grad_norm=60.031, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=5.125e-04, train_time=2.934 +[gpuc02:0/16] 2024-01-12 07:52:03,815 (trainer:737) INFO: 3epoch:train:13801-13900batch: iter_time=1.462e-04, forward_time=0.104, loss_ctc=107.134, loss_att=129.609, acc=0.429, loss=122.867, backward_time=0.098, grad_norm=66.204, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=5.155e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:52:44,788 (trainer:737) INFO: 3epoch:train:13901-14000batch: iter_time=1.651e-04, forward_time=0.105, loss_ctc=92.124, loss_att=127.859, acc=0.460, loss=117.138, backward_time=0.098, grad_norm=52.450, clip=100.000, loss_scale=1.374e+11, optim_step_time=0.030, optim0_lr0=5.185e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 07:53:25,501 (trainer:737) INFO: 3epoch:train:14001-14100batch: iter_time=1.688e-04, forward_time=0.104, loss_ctc=85.437, loss_att=105.096, acc=0.435, loss=99.198, backward_time=0.096, grad_norm=51.020, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.215e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 07:54:06,608 (trainer:737) INFO: 3epoch:train:14101-14200batch: iter_time=1.479e-04, forward_time=0.105, loss_ctc=107.317, loss_att=142.721, acc=0.454, loss=132.100, backward_time=0.098, grad_norm=63.134, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.245e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:54:47,345 (trainer:737) INFO: 3epoch:train:14201-14300batch: iter_time=1.562e-04, forward_time=0.103, loss_ctc=87.943, loss_att=111.043, acc=0.458, loss=104.113, backward_time=0.096, grad_norm=51.088, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.029, optim0_lr0=5.275e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 07:55:28,123 (trainer:737) INFO: 3epoch:train:14301-14400batch: iter_time=1.404e-04, forward_time=0.104, loss_ctc=85.169, loss_att=113.806, acc=0.454, loss=105.215, backward_time=0.096, grad_norm=52.446, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.305e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:56:09,374 (trainer:737) INFO: 3epoch:train:14401-14500batch: iter_time=1.205e-04, forward_time=0.105, loss_ctc=100.044, loss_att=132.685, acc=0.431, loss=122.892, backward_time=0.097, grad_norm=55.807, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.335e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 07:56:50,486 (trainer:737) INFO: 3epoch:train:14501-14600batch: iter_time=1.087e-04, forward_time=0.105, loss_ctc=112.228, loss_att=140.006, acc=0.452, loss=131.672, backward_time=0.098, grad_norm=63.643, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.365e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:57:31,336 (trainer:737) INFO: 3epoch:train:14601-14700batch: iter_time=1.070e-04, forward_time=0.104, loss_ctc=78.056, loss_att=97.334, acc=0.508, loss=91.550, backward_time=0.097, grad_norm=45.633, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.029, optim0_lr0=5.395e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 07:58:12,368 (trainer:737) INFO: 3epoch:train:14701-14800batch: iter_time=1.062e-04, forward_time=0.105, loss_ctc=100.927, loss_att=118.398, acc=0.497, loss=113.156, backward_time=0.098, grad_norm=60.267, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.425e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 07:58:53,503 (trainer:737) INFO: 3epoch:train:14801-14900batch: iter_time=1.125e-04, forward_time=0.104, loss_ctc=84.130, loss_att=106.983, acc=0.452, loss=100.127, backward_time=0.096, grad_norm=49.271, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.455e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 07:59:35,037 (trainer:737) INFO: 3epoch:train:14901-15000batch: iter_time=1.040e-04, forward_time=0.105, loss_ctc=101.977, loss_att=120.473, acc=0.478, loss=114.924, backward_time=0.098, grad_norm=64.482, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.485e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 08:19:37,989 (trainer:343) INFO: 3epoch results: [train] iter_time=0.197, forward_time=0.105, loss_ctc=113.807, loss_att=167.481, acc=0.316, loss=151.378, backward_time=0.098, grad_norm=57.719, clip=100.000, loss_scale=5.469e+10, optim_step_time=0.030, optim0_lr0=3.250e-04, train_time=0.625, time=2 hours, 36 minutes and 24.53 seconds, total_count=45000, gpu_max_cached_mem_GB=25.176, [valid] loss_ctc=104.739, cer_ctc=0.508, loss_att=106.919, acc=0.317, cer=0.556, wer=1.000, loss=106.265, time=19 minutes and 53.24 seconds, total_count=14013, gpu_max_cached_mem_GB=25.176 +[gpuc02:0/16] 2024-01-12 08:19:42,244 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 08:19:42,247 (trainer:272) INFO: 4/45epoch started. Estimated time to finish: 5 days, 4 hours and 3 minutes +[gpuc02:0/16] 2024-01-12 08:19:42,256 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 08:20:02,004 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 08:20:05,632 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 08:20:05,632 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 08:20:05,635 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 08:24:30,717 (trainer:737) INFO: 4epoch:train:1-100batch: iter_time=2.247, forward_time=0.105, loss_ctc=88.816, loss_att=127.793, acc=0.468, loss=116.100, backward_time=0.098, grad_norm=50.065, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.515e-04, train_time=2.884 +[gpuc02:0/16] 2024-01-12 08:25:12,278 (trainer:737) INFO: 4epoch:train:101-200batch: iter_time=9.988e-05, forward_time=0.104, loss_ctc=95.703, loss_att=109.353, acc=0.485, loss=105.258, backward_time=0.098, grad_norm=55.984, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.545e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 08:25:53,018 (trainer:737) INFO: 4epoch:train:201-300batch: iter_time=1.044e-04, forward_time=0.104, loss_ctc=94.204, loss_att=125.592, acc=0.433, loss=116.176, backward_time=0.097, grad_norm=55.926, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.575e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 08:26:34,640 (trainer:737) INFO: 4epoch:train:301-400batch: iter_time=1.147e-04, forward_time=0.104, loss_ctc=92.255, loss_att=111.930, acc=0.490, loss=106.027, backward_time=0.098, grad_norm=60.487, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.605e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 08:27:15,477 (trainer:737) INFO: 4epoch:train:401-500batch: iter_time=1.222e-04, forward_time=0.103, loss_ctc=83.419, loss_att=101.538, acc=0.467, loss=96.102, backward_time=0.098, grad_norm=47.121, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.635e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 08:27:56,597 (trainer:737) INFO: 4epoch:train:501-600batch: iter_time=1.138e-04, forward_time=0.105, loss_ctc=109.418, loss_att=133.993, acc=0.455, loss=126.620, backward_time=0.099, grad_norm=70.259, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.665e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 08:28:37,796 (trainer:737) INFO: 4epoch:train:601-700batch: iter_time=1.085e-04, forward_time=0.104, loss_ctc=94.537, loss_att=107.059, acc=0.462, loss=103.303, backward_time=0.098, grad_norm=50.748, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.695e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 08:29:18,544 (trainer:737) INFO: 4epoch:train:701-800batch: iter_time=1.111e-04, forward_time=0.104, loss_ctc=91.484, loss_att=117.888, acc=0.461, loss=109.967, backward_time=0.098, grad_norm=51.839, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.725e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 08:29:59,894 (trainer:737) INFO: 4epoch:train:801-900batch: iter_time=1.127e-04, forward_time=0.104, loss_ctc=106.429, loss_att=136.538, acc=0.455, loss=127.505, backward_time=0.098, grad_norm=57.441, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.755e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 08:30:41,742 (trainer:737) INFO: 4epoch:train:901-1000batch: iter_time=1.115e-04, forward_time=0.104, loss_ctc=82.145, loss_att=107.769, acc=0.502, loss=100.082, backward_time=0.098, grad_norm=44.517, clip=100.000, loss_scale=2.749e+11, optim_step_time=0.030, optim0_lr0=5.785e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-12 08:31:22,451 (trainer:737) INFO: 4epoch:train:1001-1100batch: iter_time=1.140e-04, forward_time=0.103, loss_ctc=85.017, loss_att=92.300, acc=0.507, loss=90.115, backward_time=0.098, grad_norm=49.494, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.815e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 08:32:05,947 (trainer:737) INFO: 4epoch:train:1101-1200batch: iter_time=1.054e-04, forward_time=0.106, loss_ctc=99.996, loss_att=110.129, acc=0.478, loss=107.089, backward_time=0.098, grad_norm=57.099, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.845e-04, train_time=0.435 +[gpuc02:0/16] 2024-01-12 08:32:28,868 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 08:32:48,962 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 08:32:52,666 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 08:32:52,667 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 08:32:52,670 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 08:39:36,775 (trainer:737) INFO: 4epoch:train:1201-1300batch: iter_time=2.575, forward_time=0.113, loss_ctc=83.232, loss_att=111.019, acc=0.485, loss=102.683, backward_time=0.099, grad_norm=45.257, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.875e-04, train_time=4.508 +[gpuc02:0/16] 2024-01-12 08:40:17,672 (trainer:737) INFO: 4epoch:train:1301-1400batch: iter_time=1.039e-04, forward_time=0.104, loss_ctc=92.487, loss_att=111.904, acc=0.511, loss=106.079, backward_time=0.097, grad_norm=51.382, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.905e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 08:40:58,934 (trainer:737) INFO: 4epoch:train:1401-1500batch: iter_time=1.097e-04, forward_time=0.103, loss_ctc=90.881, loss_att=125.322, acc=0.463, loss=114.990, backward_time=0.096, grad_norm=52.629, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.935e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 08:41:40,062 (trainer:737) INFO: 4epoch:train:1501-1600batch: iter_time=1.049e-04, forward_time=0.103, loss_ctc=83.407, loss_att=104.615, acc=0.475, loss=98.253, backward_time=0.096, grad_norm=49.547, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.965e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 08:42:20,916 (trainer:737) INFO: 4epoch:train:1601-1700batch: iter_time=1.107e-04, forward_time=0.104, loss_ctc=91.852, loss_att=100.601, acc=0.512, loss=97.976, backward_time=0.097, grad_norm=51.695, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=5.995e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 08:43:01,636 (trainer:737) INFO: 4epoch:train:1701-1800batch: iter_time=1.057e-04, forward_time=0.103, loss_ctc=87.592, loss_att=101.321, acc=0.477, loss=97.202, backward_time=0.096, grad_norm=54.870, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.025e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 08:43:43,087 (trainer:737) INFO: 4epoch:train:1801-1900batch: iter_time=1.025e-04, forward_time=0.104, loss_ctc=104.612, loss_att=124.963, acc=0.462, loss=118.857, backward_time=0.098, grad_norm=51.596, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.055e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 08:44:23,799 (trainer:737) INFO: 4epoch:train:1901-2000batch: iter_time=1.023e-04, forward_time=0.103, loss_ctc=95.413, loss_att=105.400, acc=0.487, loss=102.404, backward_time=0.096, grad_norm=52.713, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.085e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 08:45:04,739 (trainer:737) INFO: 4epoch:train:2001-2100batch: iter_time=1.022e-04, forward_time=0.104, loss_ctc=102.257, loss_att=134.636, acc=0.467, loss=124.923, backward_time=0.098, grad_norm=52.630, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.029, optim0_lr0=6.115e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 08:45:45,745 (trainer:737) INFO: 4epoch:train:2101-2200batch: iter_time=1.068e-04, forward_time=0.103, loss_ctc=79.953, loss_att=98.817, acc=0.492, loss=93.158, backward_time=0.096, grad_norm=45.342, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.145e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 08:46:26,571 (trainer:737) INFO: 4epoch:train:2201-2300batch: iter_time=1.033e-04, forward_time=0.103, loss_ctc=79.555, loss_att=101.361, acc=0.509, loss=94.819, backward_time=0.097, grad_norm=47.344, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.175e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 08:47:07,567 (trainer:737) INFO: 4epoch:train:2301-2400batch: iter_time=9.666e-05, forward_time=0.103, loss_ctc=96.917, loss_att=97.292, acc=0.516, loss=97.180, backward_time=0.097, grad_norm=55.470, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.205e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 08:47:49,034 (trainer:737) INFO: 4epoch:train:2401-2500batch: iter_time=1.013e-04, forward_time=0.103, loss_ctc=83.764, loss_att=97.494, acc=0.526, loss=93.375, backward_time=0.097, grad_norm=45.343, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.235e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 08:47:53,383 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 08:48:13,241 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 08:48:16,951 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 08:48:16,951 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 08:48:16,954 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 08:52:58,739 (trainer:737) INFO: 4epoch:train:2501-2600batch: iter_time=2.570, forward_time=0.105, loss_ctc=84.833, loss_att=128.861, acc=0.488, loss=115.653, backward_time=0.098, grad_norm=52.860, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.265e-04, train_time=3.097 +[gpuc02:0/16] 2024-01-12 08:53:39,709 (trainer:737) INFO: 4epoch:train:2601-2700batch: iter_time=8.911e-05, forward_time=0.103, loss_ctc=91.847, loss_att=114.663, acc=0.506, loss=107.818, backward_time=0.098, grad_norm=58.372, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.295e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 08:54:20,573 (trainer:737) INFO: 4epoch:train:2701-2800batch: iter_time=9.563e-05, forward_time=0.103, loss_ctc=89.850, loss_att=121.237, acc=0.460, loss=111.821, backward_time=0.098, grad_norm=53.543, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.325e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 08:55:01,544 (trainer:737) INFO: 4epoch:train:2801-2900batch: iter_time=1.005e-04, forward_time=0.104, loss_ctc=87.414, loss_att=107.292, acc=0.524, loss=101.328, backward_time=0.098, grad_norm=49.948, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.355e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 08:55:42,697 (trainer:737) INFO: 4epoch:train:2901-3000batch: iter_time=1.009e-04, forward_time=0.103, loss_ctc=80.048, loss_att=97.575, acc=0.508, loss=92.317, backward_time=0.097, grad_norm=45.530, clip=100.000, loss_scale=5.498e+11, optim_step_time=0.030, optim0_lr0=6.385e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 08:56:24,632 (trainer:737) INFO: 4epoch:train:3001-3100batch: iter_time=1.022e-04, forward_time=0.104, loss_ctc=107.358, loss_att=134.768, acc=0.474, loss=126.545, backward_time=0.098, grad_norm=63.866, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.415e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-12 08:57:05,763 (trainer:737) INFO: 4epoch:train:3101-3200batch: iter_time=1.042e-04, forward_time=0.104, loss_ctc=89.378, loss_att=102.253, acc=0.496, loss=98.391, backward_time=0.097, grad_norm=51.813, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.445e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 08:57:46,689 (trainer:737) INFO: 4epoch:train:3201-3300batch: iter_time=1.094e-04, forward_time=0.105, loss_ctc=86.944, loss_att=117.240, acc=0.486, loss=108.151, backward_time=0.098, grad_norm=51.781, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.475e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 08:58:27,814 (trainer:737) INFO: 4epoch:train:3301-3400batch: iter_time=1.272e-04, forward_time=0.105, loss_ctc=101.911, loss_att=131.182, acc=0.495, loss=122.401, backward_time=0.099, grad_norm=55.441, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.031, optim0_lr0=6.505e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 08:59:09,350 (trainer:737) INFO: 4epoch:train:3401-3500batch: iter_time=1.191e-04, forward_time=0.105, loss_ctc=78.159, loss_att=105.199, acc=0.532, loss=97.087, backward_time=0.098, grad_norm=45.619, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.535e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 08:59:50,229 (trainer:737) INFO: 4epoch:train:3501-3600batch: iter_time=1.182e-04, forward_time=0.103, loss_ctc=81.547, loss_att=85.572, acc=0.535, loss=84.364, backward_time=0.097, grad_norm=49.302, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.565e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:00:31,143 (trainer:737) INFO: 4epoch:train:3601-3700batch: iter_time=1.137e-04, forward_time=0.104, loss_ctc=94.130, loss_att=103.301, acc=0.510, loss=100.550, backward_time=0.098, grad_norm=53.286, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.595e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:00:57,329 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 09:01:17,290 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 09:01:20,950 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 09:01:20,951 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 09:01:20,954 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 09:05:38,884 (trainer:737) INFO: 4epoch:train:3701-3800batch: iter_time=2.458, forward_time=0.108, loss_ctc=79.696, loss_att=108.948, acc=0.512, loss=100.172, backward_time=0.099, grad_norm=45.753, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.625e-04, train_time=3.077 +[gpuc02:0/16] 2024-01-12 09:06:20,577 (trainer:737) INFO: 4epoch:train:3801-3900batch: iter_time=1.039e-04, forward_time=0.106, loss_ctc=88.954, loss_att=111.400, acc=0.531, loss=104.666, backward_time=0.098, grad_norm=51.537, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.655e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 09:07:01,796 (trainer:737) INFO: 4epoch:train:3901-4000batch: iter_time=1.044e-04, forward_time=0.105, loss_ctc=87.840, loss_att=123.155, acc=0.484, loss=112.560, backward_time=0.098, grad_norm=54.813, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.685e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 09:07:42,714 (trainer:737) INFO: 4epoch:train:4001-4100batch: iter_time=1.101e-04, forward_time=0.104, loss_ctc=79.897, loss_att=98.636, acc=0.506, loss=93.015, backward_time=0.097, grad_norm=47.082, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.715e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:08:23,903 (trainer:737) INFO: 4epoch:train:4101-4200batch: iter_time=1.082e-04, forward_time=0.107, loss_ctc=86.890, loss_att=94.434, acc=0.549, loss=92.171, backward_time=0.097, grad_norm=45.673, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.745e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 09:09:04,808 (trainer:737) INFO: 4epoch:train:4201-4300batch: iter_time=1.002e-04, forward_time=0.103, loss_ctc=84.021, loss_att=95.776, acc=0.509, loss=92.250, backward_time=0.097, grad_norm=52.551, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.775e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:09:45,938 (trainer:737) INFO: 4epoch:train:4301-4400batch: iter_time=9.812e-05, forward_time=0.105, loss_ctc=101.558, loss_att=125.186, acc=0.479, loss=118.097, backward_time=0.098, grad_norm=55.076, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.805e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:10:26,793 (trainer:737) INFO: 4epoch:train:4401-4500batch: iter_time=1.013e-04, forward_time=0.103, loss_ctc=92.321, loss_att=103.472, acc=0.513, loss=100.126, backward_time=0.096, grad_norm=50.668, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.835e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:11:08,030 (trainer:737) INFO: 4epoch:train:4501-4600batch: iter_time=1.062e-04, forward_time=0.105, loss_ctc=97.957, loss_att=130.207, acc=0.500, loss=120.532, backward_time=0.098, grad_norm=49.637, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.865e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 09:11:49,181 (trainer:737) INFO: 4epoch:train:4601-4700batch: iter_time=9.721e-05, forward_time=0.103, loss_ctc=78.088, loss_att=95.772, acc=0.523, loss=90.467, backward_time=0.097, grad_norm=46.004, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.895e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:12:30,385 (trainer:737) INFO: 4epoch:train:4701-4800batch: iter_time=1.060e-04, forward_time=0.104, loss_ctc=75.810, loss_att=96.254, acc=0.535, loss=90.121, backward_time=0.097, grad_norm=45.668, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.925e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 09:13:11,511 (trainer:737) INFO: 4epoch:train:4801-4900batch: iter_time=1.028e-04, forward_time=0.103, loss_ctc=92.700, loss_att=92.496, acc=0.537, loss=92.557, backward_time=0.097, grad_norm=55.404, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.955e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:13:52,350 (trainer:737) INFO: 4epoch:train:4901-5000batch: iter_time=9.323e-05, forward_time=0.103, loss_ctc=80.630, loss_att=91.997, acc=0.553, loss=88.587, backward_time=0.097, grad_norm=43.815, clip=100.000, loss_scale=1.100e+12, optim_step_time=0.030, optim0_lr0=6.985e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:13:55,061 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 09:14:15,512 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 09:14:19,324 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 09:14:19,324 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 09:14:19,327 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 09:19:40,585 (trainer:737) INFO: 4epoch:train:5001-5100batch: iter_time=2.990, forward_time=0.107, loss_ctc=80.873, loss_att=113.585, acc=0.515, loss=103.771, backward_time=0.098, grad_norm=45.334, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.015e-04, train_time=3.482 +[gpuc02:0/16] 2024-01-12 09:20:21,699 (trainer:737) INFO: 4epoch:train:5101-5200batch: iter_time=1.035e-04, forward_time=0.104, loss_ctc=89.703, loss_att=100.140, acc=0.530, loss=97.009, backward_time=0.098, grad_norm=68.101, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.045e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:21:02,514 (trainer:737) INFO: 4epoch:train:5201-5300batch: iter_time=1.047e-04, forward_time=0.105, loss_ctc=84.776, loss_att=107.470, acc=0.483, loss=100.662, backward_time=0.097, grad_norm=50.977, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.075e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:21:43,424 (trainer:737) INFO: 4epoch:train:5301-5400batch: iter_time=1.054e-04, forward_time=0.105, loss_ctc=83.449, loss_att=98.545, acc=0.542, loss=94.016, backward_time=0.098, grad_norm=45.618, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.105e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:22:24,140 (trainer:737) INFO: 4epoch:train:5401-5500batch: iter_time=1.310e-04, forward_time=0.104, loss_ctc=79.093, loss_att=90.287, acc=0.513, loss=86.929, backward_time=0.097, grad_norm=49.110, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.135e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 09:23:05,204 (trainer:737) INFO: 4epoch:train:5501-5600batch: iter_time=1.152e-04, forward_time=0.105, loss_ctc=105.213, loss_att=122.689, acc=0.492, loss=117.446, backward_time=0.098, grad_norm=58.191, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.165e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 09:23:46,767 (trainer:737) INFO: 4epoch:train:5601-5700batch: iter_time=1.098e-04, forward_time=0.104, loss_ctc=86.996, loss_att=90.959, acc=0.515, loss=89.770, backward_time=0.097, grad_norm=47.055, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.195e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 09:24:27,822 (trainer:737) INFO: 4epoch:train:5701-5800batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=84.787, loss_att=103.784, acc=0.509, loss=98.085, backward_time=0.097, grad_norm=49.995, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.225e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 09:25:08,833 (trainer:737) INFO: 4epoch:train:5801-5900batch: iter_time=1.108e-04, forward_time=0.106, loss_ctc=99.169, loss_att=122.815, acc=0.501, loss=115.721, backward_time=0.099, grad_norm=51.808, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.255e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 09:25:49,745 (trainer:737) INFO: 4epoch:train:5901-6000batch: iter_time=1.130e-04, forward_time=0.105, loss_ctc=75.895, loss_att=96.071, acc=0.543, loss=90.018, backward_time=0.098, grad_norm=44.186, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.285e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:26:30,568 (trainer:737) INFO: 4epoch:train:6001-6100batch: iter_time=1.094e-04, forward_time=0.104, loss_ctc=79.047, loss_att=79.676, acc=0.550, loss=79.487, backward_time=0.097, grad_norm=48.001, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.315e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:27:11,418 (trainer:737) INFO: 4epoch:train:6101-6200batch: iter_time=1.096e-04, forward_time=0.105, loss_ctc=91.630, loss_att=95.277, acc=0.528, loss=94.183, backward_time=0.098, grad_norm=50.002, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.345e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:27:37,132 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 09:27:56,889 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 09:28:00,559 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 09:28:00,559 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 09:28:00,577 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 09:32:11,277 (trainer:737) INFO: 4epoch:train:6201-6300batch: iter_time=2.299, forward_time=0.108, loss_ctc=77.963, loss_att=98.261, acc=0.528, loss=92.172, backward_time=0.097, grad_norm=44.226, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.375e-04, train_time=2.998 +[gpuc02:0/16] 2024-01-12 09:32:52,368 (trainer:737) INFO: 4epoch:train:6301-6400batch: iter_time=1.131e-04, forward_time=0.106, loss_ctc=85.854, loss_att=98.521, acc=0.552, loss=94.721, backward_time=0.098, grad_norm=47.329, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.405e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:33:33,312 (trainer:737) INFO: 4epoch:train:6401-6500batch: iter_time=1.189e-04, forward_time=0.105, loss_ctc=83.855, loss_att=110.653, acc=0.505, loss=102.614, backward_time=0.098, grad_norm=48.878, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.435e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:34:14,114 (trainer:737) INFO: 4epoch:train:6501-6600batch: iter_time=1.193e-04, forward_time=0.104, loss_ctc=76.911, loss_att=93.122, acc=0.518, loss=88.259, backward_time=0.097, grad_norm=44.355, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.465e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:34:55,021 (trainer:737) INFO: 4epoch:train:6601-6700batch: iter_time=1.155e-04, forward_time=0.105, loss_ctc=85.192, loss_att=87.659, acc=0.558, loss=86.919, backward_time=0.098, grad_norm=48.734, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.495e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:35:36,087 (trainer:737) INFO: 4epoch:train:6701-6800batch: iter_time=1.135e-04, forward_time=0.104, loss_ctc=80.680, loss_att=89.032, acc=0.515, loss=86.527, backward_time=0.097, grad_norm=47.260, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.525e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 09:36:17,686 (trainer:737) INFO: 4epoch:train:6801-6900batch: iter_time=1.086e-04, forward_time=0.106, loss_ctc=98.545, loss_att=114.429, acc=0.501, loss=109.663, backward_time=0.098, grad_norm=52.183, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.555e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 09:36:58,815 (trainer:737) INFO: 4epoch:train:6901-7000batch: iter_time=1.110e-04, forward_time=0.105, loss_ctc=90.341, loss_att=94.062, acc=0.526, loss=92.946, backward_time=0.098, grad_norm=50.330, clip=100.000, loss_scale=2.199e+12, optim_step_time=0.030, optim0_lr0=7.585e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:37:40,183 (trainer:737) INFO: 4epoch:train:7001-7100batch: iter_time=1.116e-04, forward_time=0.106, loss_ctc=94.831, loss_att=121.136, acc=0.507, loss=113.245, backward_time=0.098, grad_norm=46.958, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.615e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 09:38:21,016 (trainer:737) INFO: 4epoch:train:7101-7200batch: iter_time=1.079e-04, forward_time=0.105, loss_ctc=75.211, loss_att=87.572, acc=0.533, loss=83.864, backward_time=0.097, grad_norm=41.907, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.645e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:39:01,966 (trainer:737) INFO: 4epoch:train:7201-7300batch: iter_time=1.043e-04, forward_time=0.105, loss_ctc=73.667, loss_att=90.463, acc=0.549, loss=85.424, backward_time=0.098, grad_norm=42.063, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.675e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:39:42,947 (trainer:737) INFO: 4epoch:train:7301-7400batch: iter_time=1.111e-04, forward_time=0.105, loss_ctc=90.604, loss_att=85.037, acc=0.553, loss=86.707, backward_time=0.098, grad_norm=50.005, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.705e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 09:40:23,851 (trainer:737) INFO: 4epoch:train:7401-7500batch: iter_time=1.060e-04, forward_time=0.105, loss_ctc=78.216, loss_att=84.720, acc=0.565, loss=82.769, backward_time=0.097, grad_norm=41.813, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.735e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:40:26,273 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 09:40:46,169 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 09:40:49,835 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 09:40:49,835 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 09:40:49,839 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 09:45:18,715 (trainer:737) INFO: 4epoch:train:7501-7600batch: iter_time=2.390, forward_time=0.109, loss_ctc=79.749, loss_att=115.571, acc=0.526, loss=104.824, backward_time=0.099, grad_norm=48.079, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.765e-04, train_time=2.948 +[gpuc02:0/16] 2024-01-12 09:45:59,903 (trainer:737) INFO: 4epoch:train:7601-7700batch: iter_time=1.595e-04, forward_time=0.106, loss_ctc=86.362, loss_att=102.932, acc=0.541, loss=97.961, backward_time=0.098, grad_norm=55.090, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.795e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 09:46:41,055 (trainer:737) INFO: 4epoch:train:7701-7800batch: iter_time=1.661e-04, forward_time=0.106, loss_ctc=81.738, loss_att=105.141, acc=0.503, loss=98.120, backward_time=0.098, grad_norm=45.586, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.825e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:47:21,933 (trainer:737) INFO: 4epoch:train:7801-7900batch: iter_time=1.664e-04, forward_time=0.106, loss_ctc=80.827, loss_att=96.854, acc=0.559, loss=92.046, backward_time=0.098, grad_norm=45.032, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.855e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:48:02,669 (trainer:737) INFO: 4epoch:train:7901-8000batch: iter_time=1.853e-04, forward_time=0.105, loss_ctc=73.855, loss_att=84.872, acc=0.548, loss=81.567, backward_time=0.098, grad_norm=41.532, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.885e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 09:48:43,765 (trainer:737) INFO: 4epoch:train:8001-8100batch: iter_time=1.745e-04, forward_time=0.106, loss_ctc=102.132, loss_att=122.392, acc=0.508, loss=116.314, backward_time=0.099, grad_norm=59.919, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.915e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:49:25,395 (trainer:737) INFO: 4epoch:train:8101-8200batch: iter_time=1.854e-04, forward_time=0.106, loss_ctc=84.566, loss_att=89.575, acc=0.534, loss=88.072, backward_time=0.098, grad_norm=45.270, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.945e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 09:50:06,294 (trainer:737) INFO: 4epoch:train:8201-8300batch: iter_time=1.885e-04, forward_time=0.106, loss_ctc=82.248, loss_att=104.382, acc=0.524, loss=97.742, backward_time=0.098, grad_norm=46.202, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=7.975e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:50:47,442 (trainer:737) INFO: 4epoch:train:8301-8400batch: iter_time=1.859e-04, forward_time=0.107, loss_ctc=95.343, loss_att=117.784, acc=0.533, loss=111.051, backward_time=0.099, grad_norm=48.787, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.005e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 09:51:28,402 (trainer:737) INFO: 4epoch:train:8401-8500batch: iter_time=1.735e-04, forward_time=0.106, loss_ctc=73.679, loss_att=95.173, acc=0.564, loss=88.725, backward_time=0.099, grad_norm=41.004, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.035e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 09:52:09,249 (trainer:737) INFO: 4epoch:train:8501-8600batch: iter_time=1.704e-04, forward_time=0.105, loss_ctc=75.749, loss_att=75.637, acc=0.568, loss=75.671, backward_time=0.098, grad_norm=44.394, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.065e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:52:50,119 (trainer:737) INFO: 4epoch:train:8601-8700batch: iter_time=1.534e-04, forward_time=0.105, loss_ctc=88.873, loss_att=90.956, acc=0.547, loss=90.331, backward_time=0.098, grad_norm=49.285, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.095e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 09:53:14,771 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 09:53:34,392 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 09:53:38,114 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 09:53:38,115 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 09:53:38,118 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 09:57:50,729 (trainer:737) INFO: 4epoch:train:8701-8800batch: iter_time=2.294, forward_time=0.105, loss_ctc=75.493, loss_att=97.795, acc=0.547, loss=91.105, backward_time=0.098, grad_norm=40.490, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.125e-04, train_time=3.006 +[gpuc02:0/16] 2024-01-12 09:58:32,174 (trainer:737) INFO: 4epoch:train:8801-8900batch: iter_time=1.104e-04, forward_time=0.105, loss_ctc=83.324, loss_att=99.892, acc=0.567, loss=94.922, backward_time=0.099, grad_norm=47.446, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.155e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 09:59:13,430 (trainer:737) INFO: 4epoch:train:8901-9000batch: iter_time=1.232e-04, forward_time=0.104, loss_ctc=82.184, loss_att=111.630, acc=0.519, loss=102.796, backward_time=0.098, grad_norm=48.727, clip=100.000, loss_scale=4.398e+12, optim_step_time=0.030, optim0_lr0=8.185e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 09:59:54,266 (trainer:737) INFO: 4epoch:train:9001-9100batch: iter_time=1.086e-04, forward_time=0.104, loss_ctc=74.416, loss_att=88.170, acc=0.541, loss=84.044, backward_time=0.098, grad_norm=43.431, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.215e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:00:35,242 (trainer:737) INFO: 4epoch:train:9101-9200batch: iter_time=1.046e-04, forward_time=0.104, loss_ctc=81.765, loss_att=85.117, acc=0.581, loss=84.111, backward_time=0.098, grad_norm=44.572, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.245e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:01:16,112 (trainer:737) INFO: 4epoch:train:9201-9300batch: iter_time=1.098e-04, forward_time=0.104, loss_ctc=78.758, loss_att=85.048, acc=0.545, loss=83.161, backward_time=0.097, grad_norm=44.943, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.275e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:01:57,182 (trainer:737) INFO: 4epoch:train:9301-9400batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=95.262, loss_att=115.642, acc=0.509, loss=109.528, backward_time=0.098, grad_norm=59.720, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.305e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:02:38,061 (trainer:737) INFO: 4epoch:train:9401-9500batch: iter_time=1.151e-04, forward_time=0.104, loss_ctc=88.295, loss_att=94.144, acc=0.542, loss=92.389, backward_time=0.097, grad_norm=44.327, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.335e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:03:19,272 (trainer:737) INFO: 4epoch:train:9501-9600batch: iter_time=1.134e-04, forward_time=0.106, loss_ctc=92.473, loss_att=119.117, acc=0.532, loss=111.124, backward_time=0.099, grad_norm=45.914, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.365e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:04:00,847 (trainer:737) INFO: 4epoch:train:9601-9700batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=72.790, loss_att=86.317, acc=0.555, loss=82.259, backward_time=0.098, grad_norm=41.004, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.395e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 10:04:41,887 (trainer:737) INFO: 4epoch:train:9701-9800batch: iter_time=1.074e-04, forward_time=0.105, loss_ctc=71.457, loss_att=88.676, acc=0.563, loss=83.510, backward_time=0.098, grad_norm=42.889, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.425e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:05:23,128 (trainer:737) INFO: 4epoch:train:9801-9900batch: iter_time=1.089e-04, forward_time=0.107, loss_ctc=88.516, loss_att=82.030, acc=0.570, loss=83.976, backward_time=0.098, grad_norm=50.583, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.455e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:06:04,036 (trainer:737) INFO: 4epoch:train:9901-10000batch: iter_time=9.179e-05, forward_time=0.104, loss_ctc=76.538, loss_att=82.022, acc=0.585, loss=80.377, backward_time=0.098, grad_norm=39.774, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.485e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:06:06,637 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 10:06:27,240 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 10:06:30,987 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 10:06:30,987 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 10:06:30,990 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 10:11:08,128 (trainer:737) INFO: 4epoch:train:10001-10100batch: iter_time=2.315, forward_time=0.105, loss_ctc=76.983, loss_att=106.419, acc=0.540, loss=97.588, backward_time=0.098, grad_norm=42.844, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.515e-04, train_time=3.041 +[gpuc02:0/16] 2024-01-12 10:11:49,634 (trainer:737) INFO: 4epoch:train:10101-10200batch: iter_time=1.141e-04, forward_time=0.105, loss_ctc=83.217, loss_att=92.478, acc=0.555, loss=89.700, backward_time=0.097, grad_norm=50.907, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.545e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 10:12:30,780 (trainer:737) INFO: 4epoch:train:10201-10300batch: iter_time=1.386e-04, forward_time=0.105, loss_ctc=80.941, loss_att=98.647, acc=0.512, loss=93.335, backward_time=0.097, grad_norm=43.988, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.575e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:13:11,671 (trainer:737) INFO: 4epoch:train:10301-10400batch: iter_time=1.349e-04, forward_time=0.105, loss_ctc=80.132, loss_att=92.055, acc=0.568, loss=88.478, backward_time=0.097, grad_norm=43.071, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.605e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:13:52,734 (trainer:737) INFO: 4epoch:train:10401-10500batch: iter_time=1.500e-04, forward_time=0.104, loss_ctc=72.950, loss_att=82.710, acc=0.541, loss=79.782, backward_time=0.097, grad_norm=38.513, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.635e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:14:33,869 (trainer:737) INFO: 4epoch:train:10501-10600batch: iter_time=1.397e-04, forward_time=0.107, loss_ctc=101.365, loss_att=114.093, acc=0.521, loss=110.274, backward_time=0.098, grad_norm=54.783, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.665e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:15:14,735 (trainer:737) INFO: 4epoch:train:10601-10700batch: iter_time=1.501e-04, forward_time=0.105, loss_ctc=82.437, loss_att=83.857, acc=0.544, loss=83.431, backward_time=0.097, grad_norm=41.891, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.695e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:15:55,613 (trainer:737) INFO: 4epoch:train:10701-10800batch: iter_time=1.383e-04, forward_time=0.105, loss_ctc=79.589, loss_att=97.318, acc=0.532, loss=91.999, backward_time=0.097, grad_norm=45.077, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.725e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:16:36,978 (trainer:737) INFO: 4epoch:train:10801-10900batch: iter_time=1.097e-04, forward_time=0.105, loss_ctc=94.094, loss_att=113.864, acc=0.528, loss=107.933, backward_time=0.098, grad_norm=47.020, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.755e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 10:17:18,566 (trainer:737) INFO: 4epoch:train:10901-11000batch: iter_time=9.902e-05, forward_time=0.105, loss_ctc=71.778, loss_att=89.104, acc=0.572, loss=83.906, backward_time=0.097, grad_norm=37.765, clip=100.000, loss_scale=8.796e+12, optim_step_time=0.030, optim0_lr0=8.785e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 10:17:59,698 (trainer:737) INFO: 4epoch:train:11001-11100batch: iter_time=1.026e-04, forward_time=0.104, loss_ctc=73.536, loss_att=70.650, acc=0.584, loss=71.516, backward_time=0.097, grad_norm=41.599, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.815e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:18:40,648 (trainer:737) INFO: 4epoch:train:11101-11200batch: iter_time=1.121e-04, forward_time=0.105, loss_ctc=86.923, loss_att=87.573, acc=0.549, loss=87.378, backward_time=0.097, grad_norm=47.965, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.845e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:19:03,397 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 10:19:23,438 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 10:19:27,132 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 10:19:27,132 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 10:19:27,135 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 10:23:50,776 (trainer:737) INFO: 4epoch:train:11201-11300batch: iter_time=2.246, forward_time=0.141, loss_ctc=73.348, loss_att=94.492, acc=0.555, loss=88.149, backward_time=0.106, grad_norm=39.815, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.875e-04, train_time=3.101 +[gpuc02:0/16] 2024-01-12 10:24:31,896 (trainer:737) INFO: 4epoch:train:11301-11400batch: iter_time=9.824e-05, forward_time=0.105, loss_ctc=82.820, loss_att=99.140, acc=0.572, loss=94.244, backward_time=0.099, grad_norm=68.371, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.905e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:25:13,103 (trainer:737) INFO: 4epoch:train:11401-11500batch: iter_time=9.009e-05, forward_time=0.108, loss_ctc=79.601, loss_att=109.544, acc=0.529, loss=100.561, backward_time=0.098, grad_norm=46.666, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.935e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:25:53,915 (trainer:737) INFO: 4epoch:train:11501-11600batch: iter_time=9.164e-05, forward_time=0.105, loss_ctc=72.846, loss_att=85.571, acc=0.552, loss=81.753, backward_time=0.098, grad_norm=40.202, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.965e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:26:35,123 (trainer:737) INFO: 4epoch:train:11601-11700batch: iter_time=1.007e-04, forward_time=0.106, loss_ctc=81.498, loss_att=82.855, acc=0.592, loss=82.448, backward_time=0.098, grad_norm=40.938, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=8.995e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:27:16,338 (trainer:737) INFO: 4epoch:train:11701-11800batch: iter_time=1.085e-04, forward_time=0.105, loss_ctc=78.139, loss_att=84.058, acc=0.551, loss=82.282, backward_time=0.098, grad_norm=44.989, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.025e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:27:57,719 (trainer:737) INFO: 4epoch:train:11801-11900batch: iter_time=1.170e-04, forward_time=0.107, loss_ctc=92.138, loss_att=111.211, acc=0.523, loss=105.489, backward_time=0.099, grad_norm=49.392, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.055e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 10:28:38,608 (trainer:737) INFO: 4epoch:train:11901-12000batch: iter_time=1.432e-04, forward_time=0.105, loss_ctc=85.924, loss_att=91.883, acc=0.552, loss=90.096, backward_time=0.098, grad_norm=45.860, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.085e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:29:19,829 (trainer:737) INFO: 4epoch:train:12001-12100batch: iter_time=1.088e-04, forward_time=0.108, loss_ctc=91.552, loss_att=117.567, acc=0.539, loss=109.762, backward_time=0.099, grad_norm=45.014, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.115e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:30:00,714 (trainer:737) INFO: 4epoch:train:12101-12200batch: iter_time=1.066e-04, forward_time=0.106, loss_ctc=71.464, loss_att=82.167, acc=0.572, loss=78.956, backward_time=0.098, grad_norm=39.766, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.145e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:30:41,687 (trainer:737) INFO: 4epoch:train:12201-12300batch: iter_time=1.042e-04, forward_time=0.106, loss_ctc=70.242, loss_att=85.401, acc=0.575, loss=80.854, backward_time=0.098, grad_norm=39.805, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.175e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:31:22,905 (trainer:737) INFO: 4epoch:train:12301-12400batch: iter_time=1.077e-04, forward_time=0.106, loss_ctc=86.671, loss_att=80.069, acc=0.579, loss=82.050, backward_time=0.098, grad_norm=47.135, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.205e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:32:04,391 (trainer:737) INFO: 4epoch:train:12401-12500batch: iter_time=9.962e-05, forward_time=0.105, loss_ctc=74.259, loss_att=78.527, acc=0.595, loss=77.247, backward_time=0.098, grad_norm=37.047, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.235e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 10:32:07,988 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 10:32:27,680 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 10:32:31,338 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 10:32:31,338 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 10:32:31,341 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 10:37:02,909 (trainer:737) INFO: 4epoch:train:12501-12600batch: iter_time=2.311, forward_time=0.105, loss_ctc=75.584, loss_att=100.883, acc=0.562, loss=93.293, backward_time=0.099, grad_norm=40.398, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.265e-04, train_time=2.985 +[gpuc02:0/16] 2024-01-12 10:37:43,823 (trainer:737) INFO: 4epoch:train:12601-12700batch: iter_time=1.528e-04, forward_time=0.104, loss_ctc=82.268, loss_att=91.316, acc=0.573, loss=88.601, backward_time=0.098, grad_norm=48.156, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.295e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:38:24,707 (trainer:737) INFO: 4epoch:train:12701-12800batch: iter_time=1.454e-04, forward_time=0.104, loss_ctc=78.029, loss_att=95.965, acc=0.528, loss=90.584, backward_time=0.098, grad_norm=42.429, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.325e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:39:05,669 (trainer:737) INFO: 4epoch:train:12801-12900batch: iter_time=1.628e-04, forward_time=0.105, loss_ctc=77.987, loss_att=88.261, acc=0.585, loss=85.179, backward_time=0.098, grad_norm=41.764, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.355e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:39:46,443 (trainer:737) INFO: 4epoch:train:12901-13000batch: iter_time=1.056e-04, forward_time=0.105, loss_ctc=71.414, loss_att=76.982, acc=0.578, loss=75.311, backward_time=0.098, grad_norm=36.516, clip=100.000, loss_scale=1.759e+13, optim_step_time=0.030, optim0_lr0=9.385e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:40:27,574 (trainer:737) INFO: 4epoch:train:13001-13100batch: iter_time=1.113e-04, forward_time=0.106, loss_ctc=96.641, loss_att=114.566, acc=0.530, loss=109.189, backward_time=0.099, grad_norm=53.006, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.415e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:41:08,373 (trainer:737) INFO: 4epoch:train:13101-13200batch: iter_time=1.066e-04, forward_time=0.105, loss_ctc=81.276, loss_att=81.459, acc=0.561, loss=81.404, backward_time=0.097, grad_norm=41.829, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.445e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:41:49,300 (trainer:737) INFO: 4epoch:train:13201-13300batch: iter_time=1.121e-04, forward_time=0.105, loss_ctc=77.642, loss_att=96.172, acc=0.547, loss=90.613, backward_time=0.097, grad_norm=41.312, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.475e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:42:30,448 (trainer:737) INFO: 4epoch:train:13301-13400batch: iter_time=1.118e-04, forward_time=0.106, loss_ctc=91.120, loss_att=108.640, acc=0.560, loss=103.384, backward_time=0.098, grad_norm=42.505, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.505e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:43:11,839 (trainer:737) INFO: 4epoch:train:13401-13500batch: iter_time=1.195e-04, forward_time=0.105, loss_ctc=69.891, loss_att=85.008, acc=0.594, loss=80.473, backward_time=0.098, grad_norm=67.277, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.535e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 10:43:52,968 (trainer:737) INFO: 4epoch:train:13501-13600batch: iter_time=1.173e-04, forward_time=0.105, loss_ctc=73.407, loss_att=70.686, acc=0.593, loss=71.503, backward_time=0.097, grad_norm=40.862, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.565e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:44:34,204 (trainer:737) INFO: 4epoch:train:13601-13700batch: iter_time=1.282e-04, forward_time=0.105, loss_ctc=85.921, loss_att=84.659, acc=0.570, loss=85.038, backward_time=0.097, grad_norm=70.679, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.595e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:44:57,099 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 10:45:16,893 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 10:45:20,851 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 10:45:20,852 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 10:45:20,855 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 10:49:38,424 (trainer:737) INFO: 4epoch:train:13701-13800batch: iter_time=2.318, forward_time=0.104, loss_ctc=71.160, loss_att=90.318, acc=0.569, loss=84.571, backward_time=0.097, grad_norm=37.904, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.625e-04, train_time=3.042 +[gpuc02:0/16] 2024-01-12 10:50:20,111 (trainer:737) INFO: 4epoch:train:13801-13900batch: iter_time=9.777e-05, forward_time=0.105, loss_ctc=80.530, loss_att=91.923, acc=0.582, loss=88.505, backward_time=0.097, grad_norm=43.587, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.655e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 10:51:00,958 (trainer:737) INFO: 4epoch:train:13901-14000batch: iter_time=1.118e-04, forward_time=0.104, loss_ctc=78.491, loss_att=102.800, acc=0.537, loss=95.507, backward_time=0.097, grad_norm=46.905, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.685e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:51:42,023 (trainer:737) INFO: 4epoch:train:14001-14100batch: iter_time=1.089e-04, forward_time=0.104, loss_ctc=71.162, loss_att=84.360, acc=0.552, loss=80.401, backward_time=0.096, grad_norm=37.111, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.715e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:52:22,813 (trainer:737) INFO: 4epoch:train:14101-14200batch: iter_time=1.136e-04, forward_time=0.104, loss_ctc=78.408, loss_att=79.675, acc=0.591, loss=79.295, backward_time=0.097, grad_norm=37.535, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.745e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 10:53:03,540 (trainer:737) INFO: 4epoch:train:14201-14300batch: iter_time=1.463e-04, forward_time=0.104, loss_ctc=76.373, loss_att=81.854, acc=0.548, loss=80.210, backward_time=0.096, grad_norm=44.022, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.775e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 10:53:44,525 (trainer:737) INFO: 4epoch:train:14301-14400batch: iter_time=1.706e-04, forward_time=0.105, loss_ctc=90.763, loss_att=105.744, acc=0.529, loss=101.250, backward_time=0.098, grad_norm=45.225, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.805e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 10:54:25,277 (trainer:737) INFO: 4epoch:train:14401-14500batch: iter_time=1.158e-04, forward_time=0.104, loss_ctc=84.572, loss_att=84.049, acc=0.563, loss=84.206, backward_time=0.097, grad_norm=42.052, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.835e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 10:55:06,537 (trainer:737) INFO: 4epoch:train:14501-14600batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=89.678, loss_att=113.119, acc=0.538, loss=106.086, backward_time=0.097, grad_norm=40.678, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.030, optim0_lr0=9.865e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 10:55:47,245 (trainer:737) INFO: 4epoch:train:14601-14700batch: iter_time=9.938e-05, forward_time=0.104, loss_ctc=69.142, loss_att=80.100, acc=0.564, loss=76.813, backward_time=0.096, grad_norm=37.386, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.895e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 10:56:28,122 (trainer:737) INFO: 4epoch:train:14701-14800batch: iter_time=9.695e-05, forward_time=0.104, loss_ctc=67.956, loss_att=82.718, acc=0.579, loss=78.290, backward_time=0.097, grad_norm=37.387, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.925e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 10:57:09,209 (trainer:737) INFO: 4epoch:train:14801-14900batch: iter_time=1.013e-04, forward_time=0.104, loss_ctc=84.745, loss_att=76.025, acc=0.587, loss=78.641, backward_time=0.097, grad_norm=43.654, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.955e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 10:57:50,230 (trainer:737) INFO: 4epoch:train:14901-15000batch: iter_time=9.064e-05, forward_time=0.104, loss_ctc=72.406, loss_att=75.382, acc=0.601, loss=74.489, backward_time=0.097, grad_norm=37.161, clip=100.000, loss_scale=3.518e+13, optim_step_time=0.029, optim0_lr0=9.985e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 11:17:58,030 (trainer:343) INFO: 4epoch results: [train] iter_time=0.194, forward_time=0.105, loss_ctc=84.633, loss_att=100.002, acc=0.530, loss=95.391, backward_time=0.098, grad_norm=47.853, clip=100.000, loss_scale=9.328e+12, optim_step_time=0.030, optim0_lr0=7.750e-04, train_time=0.632, time=2 hours, 38 minutes and 17.51 seconds, total_count=60000, gpu_max_cached_mem_GB=25.176, [valid] loss_ctc=96.606, cer_ctc=0.469, loss_att=87.819, acc=0.409, cer=0.473, wer=1.000, loss=90.455, time=19 minutes and 57.97 seconds, total_count=18684, gpu_max_cached_mem_GB=25.176 +[gpuc02:0/16] 2024-01-12 11:18:02,505 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 11:18:02,506 (trainer:272) INFO: 5/45epoch started. Estimated time to finish: 5 days, 1 hour and 17 minutes +[gpuc02:0/16] 2024-01-12 11:18:02,516 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 11:18:21,999 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 11:18:25,547 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 11:18:25,547 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 11:18:25,550 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 11:22:47,941 (trainer:737) INFO: 5epoch:train:1-100batch: iter_time=2.250, forward_time=0.105, loss_ctc=97.260, loss_att=106.313, acc=0.540, loss=103.597, backward_time=0.098, grad_norm=52.600, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.996e-04, train_time=2.854 +[gpuc02:0/16] 2024-01-12 11:23:29,215 (trainer:737) INFO: 5epoch:train:101-200batch: iter_time=1.016e-04, forward_time=0.104, loss_ctc=90.211, loss_att=103.673, acc=0.545, loss=99.634, backward_time=0.098, grad_norm=48.283, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.987e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 11:24:09,890 (trainer:737) INFO: 5epoch:train:201-300batch: iter_time=1.059e-04, forward_time=0.103, loss_ctc=76.641, loss_att=77.594, acc=0.573, loss=77.308, backward_time=0.098, grad_norm=44.745, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.979e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 11:24:51,280 (trainer:737) INFO: 5epoch:train:301-400batch: iter_time=1.038e-04, forward_time=0.106, loss_ctc=86.274, loss_att=97.198, acc=0.571, loss=93.921, backward_time=0.099, grad_norm=41.945, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.971e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 11:25:32,560 (trainer:737) INFO: 5epoch:train:401-500batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=78.496, loss_att=84.619, acc=0.579, loss=82.782, backward_time=0.100, grad_norm=37.963, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.963e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 11:26:15,947 (trainer:737) INFO: 5epoch:train:501-600batch: iter_time=1.049e-04, forward_time=0.121, loss_ctc=67.370, loss_att=78.669, acc=0.570, loss=75.280, backward_time=0.099, grad_norm=36.160, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.954e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-12 11:26:58,250 (trainer:737) INFO: 5epoch:train:601-700batch: iter_time=1.067e-04, forward_time=0.110, loss_ctc=81.041, loss_att=100.824, acc=0.564, loss=94.889, backward_time=0.102, grad_norm=39.780, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.946e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-12 11:27:39,113 (trainer:737) INFO: 5epoch:train:701-800batch: iter_time=1.058e-04, forward_time=0.103, loss_ctc=91.768, loss_att=91.593, acc=0.551, loss=91.645, backward_time=0.098, grad_norm=46.389, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.029, optim0_lr0=9.938e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 11:28:21,274 (trainer:737) INFO: 5epoch:train:801-900batch: iter_time=1.113e-04, forward_time=0.104, loss_ctc=77.757, loss_att=83.860, acc=0.598, loss=82.029, backward_time=0.099, grad_norm=35.345, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.930e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-12 11:29:02,183 (trainer:737) INFO: 5epoch:train:901-1000batch: iter_time=1.114e-04, forward_time=0.103, loss_ctc=75.408, loss_att=90.377, acc=0.537, loss=85.886, backward_time=0.099, grad_norm=198.387, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.922e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 11:29:43,583 (trainer:737) INFO: 5epoch:train:1001-1100batch: iter_time=1.138e-04, forward_time=0.104, loss_ctc=79.287, loss_att=95.226, acc=0.555, loss=90.445, backward_time=0.098, grad_norm=38.031, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.914e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 11:30:24,492 (trainer:737) INFO: 5epoch:train:1101-1200batch: iter_time=1.099e-04, forward_time=0.104, loss_ctc=86.600, loss_att=102.925, acc=0.566, loss=98.027, backward_time=0.098, grad_norm=47.490, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.905e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 11:30:53,602 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 11:31:12,336 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 11:31:15,960 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 11:31:15,960 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 11:31:15,964 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 11:36:59,566 (trainer:737) INFO: 5epoch:train:1201-1300batch: iter_time=2.699, forward_time=0.104, loss_ctc=94.848, loss_att=92.497, acc=0.572, loss=93.202, backward_time=0.098, grad_norm=49.980, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.030, optim0_lr0=9.897e-04, train_time=3.951 +[gpuc02:0/16] 2024-01-12 11:37:40,786 (trainer:737) INFO: 5epoch:train:1301-1400batch: iter_time=1.448e-04, forward_time=0.105, loss_ctc=90.313, loss_att=98.066, acc=0.562, loss=95.740, backward_time=0.099, grad_norm=43.245, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.889e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 11:38:22,049 (trainer:737) INFO: 5epoch:train:1401-1500batch: iter_time=1.477e-04, forward_time=0.103, loss_ctc=64.832, loss_att=72.174, acc=0.585, loss=69.971, backward_time=0.097, grad_norm=35.329, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.881e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 11:39:03,774 (trainer:737) INFO: 5epoch:train:1501-1600batch: iter_time=1.524e-04, forward_time=0.104, loss_ctc=87.135, loss_att=90.055, acc=0.577, loss=89.179, backward_time=0.098, grad_norm=43.071, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.873e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 11:39:44,779 (trainer:737) INFO: 5epoch:train:1601-1700batch: iter_time=1.731e-04, forward_time=0.104, loss_ctc=77.181, loss_att=89.106, acc=0.599, loss=85.528, backward_time=0.098, grad_norm=37.464, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.865e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 11:40:25,509 (trainer:737) INFO: 5epoch:train:1701-1800batch: iter_time=1.982e-04, forward_time=0.103, loss_ctc=66.550, loss_att=77.192, acc=0.574, loss=73.999, backward_time=0.098, grad_norm=32.157, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.857e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 11:41:06,546 (trainer:737) INFO: 5epoch:train:1801-1900batch: iter_time=1.448e-04, forward_time=0.103, loss_ctc=70.672, loss_att=75.460, acc=0.598, loss=74.023, backward_time=0.098, grad_norm=36.239, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.849e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 11:41:47,649 (trainer:737) INFO: 5epoch:train:1901-2000batch: iter_time=1.673e-04, forward_time=0.104, loss_ctc=93.631, loss_att=106.004, acc=0.541, loss=102.292, backward_time=0.099, grad_norm=111.861, clip=100.000, loss_scale=7.037e+13, optim_step_time=0.031, optim0_lr0=9.841e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 11:42:28,816 (trainer:737) INFO: 5epoch:train:2001-2100batch: iter_time=1.348e-04, forward_time=0.107, loss_ctc=73.261, loss_att=84.613, acc=0.597, loss=81.207, backward_time=0.098, grad_norm=34.046, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.833e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 11:43:10,024 (trainer:737) INFO: 5epoch:train:2101-2200batch: iter_time=1.148e-04, forward_time=0.104, loss_ctc=74.947, loss_att=76.482, acc=0.609, loss=76.022, backward_time=0.098, grad_norm=35.854, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.031, optim0_lr0=9.825e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 11:43:50,780 (trainer:737) INFO: 5epoch:train:2201-2300batch: iter_time=1.141e-04, forward_time=0.103, loss_ctc=68.626, loss_att=85.645, acc=0.535, loss=80.539, backward_time=0.097, grad_norm=37.026, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.817e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 11:44:32,139 (trainer:737) INFO: 5epoch:train:2301-2400batch: iter_time=1.333e-04, forward_time=0.105, loss_ctc=76.754, loss_att=101.504, acc=0.583, loss=94.079, backward_time=0.099, grad_norm=35.086, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.810e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 11:45:13,058 (trainer:737) INFO: 5epoch:train:2401-2500batch: iter_time=1.134e-04, forward_time=0.104, loss_ctc=92.461, loss_att=88.841, acc=0.582, loss=89.927, backward_time=0.098, grad_norm=46.485, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.802e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 11:45:15,487 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 11:45:36,491 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 11:45:40,287 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 11:45:40,287 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 11:45:40,290 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 11:50:34,428 (trainer:737) INFO: 5epoch:train:2501-2600batch: iter_time=2.485, forward_time=0.104, loss_ctc=89.112, loss_att=93.926, acc=0.566, loss=92.482, backward_time=0.098, grad_norm=43.517, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.794e-04, train_time=3.213 +[gpuc02:0/16] 2024-01-12 11:51:15,380 (trainer:737) INFO: 5epoch:train:2601-2700batch: iter_time=1.754e-04, forward_time=0.104, loss_ctc=82.372, loss_att=95.304, acc=0.563, loss=91.424, backward_time=0.098, grad_norm=40.973, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.786e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 11:51:56,395 (trainer:737) INFO: 5epoch:train:2701-2800batch: iter_time=1.558e-04, forward_time=0.103, loss_ctc=70.528, loss_att=70.951, acc=0.601, loss=70.824, backward_time=0.097, grad_norm=88.216, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.778e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 11:52:37,613 (trainer:737) INFO: 5epoch:train:2801-2900batch: iter_time=1.553e-04, forward_time=0.104, loss_ctc=79.216, loss_att=89.130, acc=0.590, loss=86.156, backward_time=0.098, grad_norm=36.450, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.771e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 11:53:18,956 (trainer:737) INFO: 5epoch:train:2901-3000batch: iter_time=1.647e-04, forward_time=0.104, loss_ctc=72.962, loss_att=77.504, acc=0.601, loss=76.142, backward_time=0.098, grad_norm=35.479, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.763e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 11:54:00,321 (trainer:737) INFO: 5epoch:train:3001-3100batch: iter_time=1.776e-04, forward_time=0.103, loss_ctc=63.523, loss_att=75.212, acc=0.580, loss=71.705, backward_time=0.097, grad_norm=33.802, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.755e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 11:54:41,537 (trainer:737) INFO: 5epoch:train:3101-3200batch: iter_time=1.498e-04, forward_time=0.104, loss_ctc=74.930, loss_att=94.477, acc=0.577, loss=88.613, backward_time=0.098, grad_norm=35.504, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.747e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 11:55:22,368 (trainer:737) INFO: 5epoch:train:3201-3300batch: iter_time=1.806e-04, forward_time=0.103, loss_ctc=83.665, loss_att=83.211, acc=0.564, loss=83.347, backward_time=0.097, grad_norm=40.621, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.740e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 11:56:03,302 (trainer:737) INFO: 5epoch:train:3301-3400batch: iter_time=1.555e-04, forward_time=0.104, loss_ctc=73.375, loss_att=79.261, acc=0.610, loss=77.495, backward_time=0.098, grad_norm=32.666, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.732e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 11:56:44,359 (trainer:737) INFO: 5epoch:train:3401-3500batch: iter_time=1.663e-04, forward_time=0.103, loss_ctc=69.636, loss_att=84.747, acc=0.550, loss=80.214, backward_time=0.098, grad_norm=38.036, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.724e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 11:57:25,167 (trainer:737) INFO: 5epoch:train:3501-3600batch: iter_time=1.744e-04, forward_time=0.103, loss_ctc=73.892, loss_att=91.447, acc=0.564, loss=86.180, backward_time=0.097, grad_norm=35.227, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.031, optim0_lr0=9.717e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 11:58:06,163 (trainer:737) INFO: 5epoch:train:3601-3700batch: iter_time=1.774e-04, forward_time=0.104, loss_ctc=81.322, loss_att=96.945, acc=0.574, loss=92.258, backward_time=0.098, grad_norm=41.170, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.709e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 11:58:31,011 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 11:58:50,344 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 11:58:54,340 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 11:58:54,340 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 11:58:54,344 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 12:03:27,056 (trainer:737) INFO: 5epoch:train:3701-3800batch: iter_time=2.606, forward_time=0.121, loss_ctc=88.456, loss_att=83.307, acc=0.587, loss=84.852, backward_time=0.102, grad_norm=43.090, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.701e-04, train_time=3.209 +[gpuc02:0/16] 2024-01-12 12:04:08,073 (trainer:737) INFO: 5epoch:train:3801-3900batch: iter_time=1.682e-04, forward_time=0.104, loss_ctc=86.303, loss_att=92.889, acc=0.571, loss=90.913, backward_time=0.098, grad_norm=40.784, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.694e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:04:49,177 (trainer:737) INFO: 5epoch:train:3901-4000batch: iter_time=1.824e-04, forward_time=0.103, loss_ctc=62.201, loss_att=68.520, acc=0.597, loss=66.624, backward_time=0.097, grad_norm=33.612, clip=100.000, loss_scale=1.407e+14, optim_step_time=0.030, optim0_lr0=9.686e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 12:05:30,026 (trainer:737) INFO: 5epoch:train:4001-4100batch: iter_time=1.892e-04, forward_time=0.104, loss_ctc=82.974, loss_att=84.936, acc=0.595, loss=84.347, backward_time=0.098, grad_norm=40.330, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.679e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 12:06:10,872 (trainer:737) INFO: 5epoch:train:4101-4200batch: iter_time=2.224e-04, forward_time=0.104, loss_ctc=73.241, loss_att=85.484, acc=0.606, loss=81.811, backward_time=0.098, grad_norm=34.322, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.671e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 12:06:51,514 (trainer:737) INFO: 5epoch:train:4201-4300batch: iter_time=2.159e-04, forward_time=0.102, loss_ctc=63.208, loss_att=73.316, acc=0.589, loss=70.283, backward_time=0.097, grad_norm=29.862, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.663e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 12:07:32,108 (trainer:737) INFO: 5epoch:train:4301-4400batch: iter_time=1.808e-04, forward_time=0.103, loss_ctc=67.467, loss_att=72.212, acc=0.605, loss=70.789, backward_time=0.097, grad_norm=34.267, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.656e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 12:08:13,617 (trainer:737) INFO: 5epoch:train:4401-4500batch: iter_time=1.982e-04, forward_time=0.104, loss_ctc=89.375, loss_att=101.259, acc=0.544, loss=97.694, backward_time=0.098, grad_norm=41.304, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.648e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 12:08:54,627 (trainer:737) INFO: 5epoch:train:4501-4600batch: iter_time=1.641e-04, forward_time=0.103, loss_ctc=70.139, loss_att=79.956, acc=0.609, loss=77.011, backward_time=0.097, grad_norm=31.298, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.029, optim0_lr0=9.641e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:09:36,132 (trainer:737) INFO: 5epoch:train:4601-4700batch: iter_time=1.889e-04, forward_time=0.103, loss_ctc=71.876, loss_att=73.064, acc=0.615, loss=72.708, backward_time=0.097, grad_norm=86.056, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.029, optim0_lr0=9.634e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 12:10:16,964 (trainer:737) INFO: 5epoch:train:4701-4800batch: iter_time=1.996e-04, forward_time=0.103, loss_ctc=65.711, loss_att=83.351, acc=0.537, loss=78.059, backward_time=0.096, grad_norm=35.493, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.626e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 12:10:58,149 (trainer:737) INFO: 5epoch:train:4801-4900batch: iter_time=1.723e-04, forward_time=0.105, loss_ctc=73.355, loss_att=96.284, acc=0.594, loss=89.405, backward_time=0.099, grad_norm=32.514, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.029, optim0_lr0=9.619e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:11:38,892 (trainer:737) INFO: 5epoch:train:4901-5000batch: iter_time=1.755e-04, forward_time=0.104, loss_ctc=89.081, loss_att=85.783, acc=0.580, loss=86.773, backward_time=0.097, grad_norm=44.611, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.611e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 12:11:47,676 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 12:12:07,117 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 12:12:11,408 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 12:12:11,409 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 12:12:11,412 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 12:17:20,909 (trainer:737) INFO: 5epoch:train:5001-5100batch: iter_time=2.951, forward_time=0.108, loss_ctc=84.714, loss_att=91.866, acc=0.583, loss=89.721, backward_time=0.097, grad_norm=40.069, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.604e-04, train_time=3.420 +[gpuc02:0/16] 2024-01-12 12:18:01,921 (trainer:737) INFO: 5epoch:train:5101-5200batch: iter_time=1.516e-04, forward_time=0.105, loss_ctc=77.757, loss_att=89.960, acc=0.591, loss=86.299, backward_time=0.098, grad_norm=36.866, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.597e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:18:43,189 (trainer:737) INFO: 5epoch:train:5201-5300batch: iter_time=1.719e-04, forward_time=0.106, loss_ctc=66.588, loss_att=67.700, acc=0.616, loss=67.366, backward_time=0.096, grad_norm=55.474, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.589e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:19:24,396 (trainer:737) INFO: 5epoch:train:5301-5400batch: iter_time=1.520e-04, forward_time=0.105, loss_ctc=76.521, loss_att=85.490, acc=0.609, loss=82.799, backward_time=0.098, grad_norm=34.890, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.582e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:20:05,314 (trainer:737) INFO: 5epoch:train:5401-5500batch: iter_time=1.924e-04, forward_time=0.105, loss_ctc=70.527, loss_att=76.238, acc=0.613, loss=74.525, backward_time=0.097, grad_norm=68.696, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.574e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:20:46,370 (trainer:737) INFO: 5epoch:train:5501-5600batch: iter_time=2.038e-04, forward_time=0.105, loss_ctc=60.729, loss_att=71.277, acc=0.603, loss=68.113, backward_time=0.097, grad_norm=32.036, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.567e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:21:27,357 (trainer:737) INFO: 5epoch:train:5601-5700batch: iter_time=1.874e-04, forward_time=0.105, loss_ctc=71.959, loss_att=91.608, acc=0.599, loss=85.713, backward_time=0.098, grad_norm=34.060, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.560e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:22:08,710 (trainer:737) INFO: 5epoch:train:5701-5800batch: iter_time=1.830e-04, forward_time=0.105, loss_ctc=81.228, loss_att=81.350, acc=0.586, loss=81.314, backward_time=0.098, grad_norm=37.005, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.553e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 12:22:49,718 (trainer:737) INFO: 5epoch:train:5801-5900batch: iter_time=1.782e-04, forward_time=0.105, loss_ctc=69.898, loss_att=76.247, acc=0.629, loss=74.342, backward_time=0.098, grad_norm=48.142, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.545e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:23:30,648 (trainer:737) INFO: 5epoch:train:5901-6000batch: iter_time=1.817e-04, forward_time=0.105, loss_ctc=67.050, loss_att=81.713, acc=0.574, loss=77.314, backward_time=0.098, grad_norm=66.483, clip=100.000, loss_scale=2.815e+14, optim_step_time=0.030, optim0_lr0=9.538e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:24:11,545 (trainer:737) INFO: 5epoch:train:6001-6100batch: iter_time=1.776e-04, forward_time=0.104, loss_ctc=71.579, loss_att=88.559, acc=0.583, loss=83.465, backward_time=0.098, grad_norm=32.986, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.531e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:24:52,594 (trainer:737) INFO: 5epoch:train:6101-6200batch: iter_time=1.940e-04, forward_time=0.105, loss_ctc=77.303, loss_att=92.896, acc=0.596, loss=88.218, backward_time=0.098, grad_norm=36.210, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.524e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:25:18,600 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 12:25:38,213 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 12:25:41,916 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 12:25:41,917 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 12:25:41,920 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 12:30:07,150 (trainer:737) INFO: 5epoch:train:6201-6300batch: iter_time=2.700, forward_time=0.111, loss_ctc=84.175, loss_att=78.952, acc=0.608, loss=80.519, backward_time=0.098, grad_norm=40.242, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.517e-04, train_time=3.145 +[gpuc02:0/16] 2024-01-12 12:30:48,149 (trainer:737) INFO: 5epoch:train:6301-6400batch: iter_time=1.244e-04, forward_time=0.105, loss_ctc=83.441, loss_att=90.677, acc=0.584, loss=88.507, backward_time=0.098, grad_norm=38.887, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.509e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:31:28,771 (trainer:737) INFO: 5epoch:train:6401-6500batch: iter_time=1.239e-04, forward_time=0.102, loss_ctc=60.124, loss_att=66.736, acc=0.611, loss=64.752, backward_time=0.096, grad_norm=32.619, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.502e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 12:32:09,659 (trainer:737) INFO: 5epoch:train:6501-6600batch: iter_time=1.252e-04, forward_time=0.104, loss_ctc=79.399, loss_att=81.428, acc=0.609, loss=80.820, backward_time=0.097, grad_norm=36.881, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.029, optim0_lr0=9.495e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:32:50,856 (trainer:737) INFO: 5epoch:train:6601-6700batch: iter_time=1.291e-04, forward_time=0.103, loss_ctc=72.230, loss_att=83.368, acc=0.619, loss=80.027, backward_time=0.097, grad_norm=33.378, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.488e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:33:31,443 (trainer:737) INFO: 5epoch:train:6701-6800batch: iter_time=1.528e-04, forward_time=0.103, loss_ctc=61.014, loss_att=71.464, acc=0.600, loss=68.329, backward_time=0.096, grad_norm=29.239, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.481e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 12:34:12,138 (trainer:737) INFO: 5epoch:train:6801-6900batch: iter_time=1.523e-04, forward_time=0.103, loss_ctc=64.916, loss_att=69.625, acc=0.619, loss=68.212, backward_time=0.096, grad_norm=31.369, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.474e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 12:34:53,518 (trainer:737) INFO: 5epoch:train:6901-7000batch: iter_time=1.460e-04, forward_time=0.104, loss_ctc=86.224, loss_att=97.752, acc=0.555, loss=94.294, backward_time=0.097, grad_norm=71.899, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.467e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 12:35:34,314 (trainer:737) INFO: 5epoch:train:7001-7100batch: iter_time=1.419e-04, forward_time=0.104, loss_ctc=67.341, loss_att=77.589, acc=0.620, loss=74.515, backward_time=0.097, grad_norm=30.979, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.460e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 12:36:15,419 (trainer:737) INFO: 5epoch:train:7101-7200batch: iter_time=1.486e-04, forward_time=0.103, loss_ctc=68.488, loss_att=69.607, acc=0.627, loss=69.271, backward_time=0.097, grad_norm=34.146, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.453e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 12:36:56,048 (trainer:737) INFO: 5epoch:train:7201-7300batch: iter_time=1.467e-04, forward_time=0.102, loss_ctc=63.131, loss_att=80.717, acc=0.550, loss=75.441, backward_time=0.096, grad_norm=34.193, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.445e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 12:37:37,035 (trainer:737) INFO: 5epoch:train:7301-7400batch: iter_time=1.446e-04, forward_time=0.104, loss_ctc=70.753, loss_att=94.213, acc=0.604, loss=87.175, backward_time=0.097, grad_norm=30.546, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.438e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:38:18,427 (trainer:737) INFO: 5epoch:train:7401-7500batch: iter_time=1.504e-04, forward_time=0.106, loss_ctc=84.280, loss_att=82.699, acc=0.593, loss=83.173, backward_time=0.097, grad_norm=39.764, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.431e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 12:38:27,632 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 12:38:47,174 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 12:38:50,916 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 12:38:50,916 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 12:38:50,920 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 12:43:26,074 (trainer:737) INFO: 5epoch:train:7501-7600batch: iter_time=2.553, forward_time=0.105, loss_ctc=82.568, loss_att=83.149, acc=0.602, loss=82.975, backward_time=0.098, grad_norm=39.198, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.424e-04, train_time=3.076 +[gpuc02:0/16] 2024-01-12 12:44:07,516 (trainer:737) INFO: 5epoch:train:7601-7700batch: iter_time=1.402e-04, forward_time=0.104, loss_ctc=75.240, loss_att=84.911, acc=0.596, loss=82.009, backward_time=0.097, grad_norm=35.283, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.418e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 12:44:48,773 (trainer:737) INFO: 5epoch:train:7701-7800batch: iter_time=1.591e-04, forward_time=0.103, loss_ctc=63.865, loss_att=63.798, acc=0.632, loss=63.818, backward_time=0.096, grad_norm=32.692, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.029, optim0_lr0=9.411e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:45:29,769 (trainer:737) INFO: 5epoch:train:7801-7900batch: iter_time=1.575e-04, forward_time=0.105, loss_ctc=73.655, loss_att=81.294, acc=0.615, loss=79.002, backward_time=0.097, grad_norm=34.692, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.029, optim0_lr0=9.404e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:46:10,957 (trainer:737) INFO: 5epoch:train:7901-8000batch: iter_time=1.566e-04, forward_time=0.105, loss_ctc=67.886, loss_att=72.367, acc=0.625, loss=71.023, backward_time=0.097, grad_norm=31.061, clip=100.000, loss_scale=5.629e+14, optim_step_time=0.030, optim0_lr0=9.397e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:46:51,725 (trainer:737) INFO: 5epoch:train:8001-8100batch: iter_time=1.623e-04, forward_time=0.105, loss_ctc=58.680, loss_att=68.654, acc=0.609, loss=65.662, backward_time=0.097, grad_norm=28.993, clip=99.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.390e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 12:47:32,748 (trainer:737) INFO: 5epoch:train:8101-8200batch: iter_time=1.410e-04, forward_time=0.106, loss_ctc=69.821, loss_att=88.293, acc=0.603, loss=82.752, backward_time=0.097, grad_norm=40.088, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.383e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:48:13,866 (trainer:737) INFO: 5epoch:train:8201-8300batch: iter_time=1.650e-04, forward_time=0.105, loss_ctc=78.089, loss_att=76.168, acc=0.588, loss=76.744, backward_time=0.097, grad_norm=37.583, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.376e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 12:48:54,816 (trainer:737) INFO: 5epoch:train:8301-8400batch: iter_time=1.573e-04, forward_time=0.105, loss_ctc=68.157, loss_att=72.453, acc=0.639, loss=71.164, backward_time=0.097, grad_norm=30.597, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.369e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:49:35,715 (trainer:737) INFO: 5epoch:train:8401-8500batch: iter_time=1.690e-04, forward_time=0.105, loss_ctc=65.483, loss_att=78.944, acc=0.572, loss=74.905, backward_time=0.097, grad_norm=36.087, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.362e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:50:16,584 (trainer:737) INFO: 5epoch:train:8501-8600batch: iter_time=1.576e-04, forward_time=0.105, loss_ctc=69.135, loss_att=84.550, acc=0.589, loss=79.925, backward_time=0.097, grad_norm=33.919, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.356e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 12:50:57,854 (trainer:737) INFO: 5epoch:train:8601-8700batch: iter_time=1.446e-04, forward_time=0.105, loss_ctc=74.243, loss_att=89.877, acc=0.603, loss=85.187, backward_time=0.098, grad_norm=36.541, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.349e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 12:51:24,506 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 12:51:43,857 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 12:51:47,592 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 12:51:47,592 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 12:51:47,595 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 12:56:10,127 (trainer:737) INFO: 5epoch:train:8701-8800batch: iter_time=2.564, forward_time=0.107, loss_ctc=82.951, loss_att=81.177, acc=0.607, loss=81.710, backward_time=0.098, grad_norm=41.302, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.342e-04, train_time=3.123 +[gpuc02:0/16] 2024-01-12 12:56:51,175 (trainer:737) INFO: 5epoch:train:8801-8900batch: iter_time=1.500e-04, forward_time=0.104, loss_ctc=79.810, loss_att=89.428, acc=0.601, loss=86.543, backward_time=0.098, grad_norm=37.315, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.029, optim0_lr0=9.335e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:57:32,306 (trainer:737) INFO: 5epoch:train:8901-9000batch: iter_time=1.577e-04, forward_time=0.102, loss_ctc=57.443, loss_att=65.187, acc=0.627, loss=62.864, backward_time=0.097, grad_norm=30.427, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.328e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 12:58:13,215 (trainer:737) INFO: 5epoch:train:9001-9100batch: iter_time=1.835e-04, forward_time=0.103, loss_ctc=77.276, loss_att=79.415, acc=0.618, loss=78.773, backward_time=0.097, grad_norm=35.414, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.322e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 12:58:54,190 (trainer:737) INFO: 5epoch:train:9101-9200batch: iter_time=1.745e-04, forward_time=0.104, loss_ctc=68.933, loss_att=82.208, acc=0.632, loss=78.225, backward_time=0.098, grad_norm=31.376, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.029, optim0_lr0=9.315e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 12:59:34,956 (trainer:737) INFO: 5epoch:train:9201-9300batch: iter_time=1.524e-04, forward_time=0.103, loss_ctc=59.447, loss_att=70.436, acc=0.609, loss=67.139, backward_time=0.097, grad_norm=28.695, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.308e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 13:00:16,015 (trainer:737) INFO: 5epoch:train:9301-9400batch: iter_time=1.457e-04, forward_time=0.103, loss_ctc=62.985, loss_att=68.311, acc=0.634, loss=66.713, backward_time=0.097, grad_norm=39.351, clip=99.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.301e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:00:57,058 (trainer:737) INFO: 5epoch:train:9401-9500batch: iter_time=1.449e-04, forward_time=0.105, loss_ctc=82.974, loss_att=94.509, acc=0.579, loss=91.048, backward_time=0.099, grad_norm=37.132, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.295e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:01:38,649 (trainer:737) INFO: 5epoch:train:9501-9600batch: iter_time=1.344e-04, forward_time=0.104, loss_ctc=65.441, loss_att=76.717, acc=0.634, loss=73.334, backward_time=0.098, grad_norm=165.488, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.288e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 13:02:19,916 (trainer:737) INFO: 5epoch:train:9601-9700batch: iter_time=1.795e-04, forward_time=0.104, loss_ctc=66.375, loss_att=68.001, acc=0.647, loss=67.513, backward_time=0.098, grad_norm=31.030, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.281e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 13:03:01,218 (trainer:737) INFO: 5epoch:train:9701-9800batch: iter_time=1.636e-04, forward_time=0.103, loss_ctc=60.575, loss_att=77.488, acc=0.571, loss=72.414, backward_time=0.096, grad_norm=31.324, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.275e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 13:03:42,592 (trainer:737) INFO: 5epoch:train:9801-9900batch: iter_time=1.448e-04, forward_time=0.105, loss_ctc=68.934, loss_att=91.791, acc=0.619, loss=84.934, backward_time=0.098, grad_norm=31.261, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.268e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 13:04:23,507 (trainer:737) INFO: 5epoch:train:9901-10000batch: iter_time=1.392e-04, forward_time=0.104, loss_ctc=81.724, loss_att=77.871, acc=0.622, loss=79.027, backward_time=0.097, grad_norm=41.192, clip=100.000, loss_scale=1.126e+15, optim_step_time=0.030, optim0_lr0=9.261e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:04:28,958 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 13:04:48,292 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 13:04:52,022 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 13:04:52,022 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 13:04:52,025 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 13:09:35,131 (trainer:737) INFO: 5epoch:train:10001-10100batch: iter_time=2.532, forward_time=0.104, loss_ctc=78.364, loss_att=84.504, acc=0.609, loss=82.662, backward_time=0.097, grad_norm=37.351, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.255e-04, train_time=3.116 +[gpuc02:0/16] 2024-01-12 13:10:16,129 (trainer:737) INFO: 5epoch:train:10101-10200batch: iter_time=1.377e-04, forward_time=0.103, loss_ctc=73.230, loss_att=83.358, acc=0.613, loss=80.319, backward_time=0.097, grad_norm=34.046, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.248e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:10:57,191 (trainer:737) INFO: 5epoch:train:10201-10300batch: iter_time=1.518e-04, forward_time=0.102, loss_ctc=62.330, loss_att=63.268, acc=0.638, loss=62.987, backward_time=0.096, grad_norm=31.194, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.242e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:11:38,135 (trainer:737) INFO: 5epoch:train:10301-10400batch: iter_time=1.343e-04, forward_time=0.103, loss_ctc=71.744, loss_att=79.577, acc=0.630, loss=77.227, backward_time=0.097, grad_norm=45.514, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.235e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:12:18,945 (trainer:737) INFO: 5epoch:train:10401-10500batch: iter_time=1.678e-04, forward_time=0.104, loss_ctc=66.242, loss_att=70.972, acc=0.637, loss=69.553, backward_time=0.097, grad_norm=29.856, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.228e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 13:12:59,912 (trainer:737) INFO: 5epoch:train:10501-10600batch: iter_time=1.505e-04, forward_time=0.103, loss_ctc=56.792, loss_att=66.993, acc=0.621, loss=63.933, backward_time=0.097, grad_norm=28.421, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.222e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:13:40,859 (trainer:737) INFO: 5epoch:train:10601-10700batch: iter_time=1.438e-04, forward_time=0.104, loss_ctc=67.286, loss_att=85.396, acc=0.621, loss=79.963, backward_time=0.098, grad_norm=31.574, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.215e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:14:21,653 (trainer:737) INFO: 5epoch:train:10701-10800batch: iter_time=1.510e-04, forward_time=0.103, loss_ctc=76.173, loss_att=74.712, acc=0.608, loss=75.150, backward_time=0.097, grad_norm=34.602, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.209e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 13:15:02,668 (trainer:737) INFO: 5epoch:train:10801-10900batch: iter_time=1.412e-04, forward_time=0.104, loss_ctc=65.759, loss_att=71.597, acc=0.649, loss=69.846, backward_time=0.098, grad_norm=26.629, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.202e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:15:43,564 (trainer:737) INFO: 5epoch:train:10901-11000batch: iter_time=1.553e-04, forward_time=0.103, loss_ctc=63.068, loss_att=77.386, acc=0.590, loss=73.090, backward_time=0.097, grad_norm=33.584, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.196e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:16:24,698 (trainer:737) INFO: 5epoch:train:11001-11100batch: iter_time=1.720e-04, forward_time=0.103, loss_ctc=67.256, loss_att=82.220, acc=0.606, loss=77.731, backward_time=0.097, grad_norm=32.454, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.189e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 13:17:06,558 (trainer:737) INFO: 5epoch:train:11101-11200batch: iter_time=1.801e-04, forward_time=0.107, loss_ctc=71.422, loss_att=85.482, acc=0.624, loss=81.264, backward_time=0.098, grad_norm=33.392, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.183e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-12 13:17:32,275 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 13:17:51,694 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 13:17:55,473 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 13:17:55,473 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 13:17:55,476 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 13:22:20,576 (trainer:737) INFO: 5epoch:train:11201-11300batch: iter_time=2.585, forward_time=0.105, loss_ctc=77.727, loss_att=73.593, acc=0.630, loss=74.833, backward_time=0.098, grad_norm=39.810, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.177e-04, train_time=3.140 +[gpuc02:0/16] 2024-01-12 13:23:01,580 (trainer:737) INFO: 5epoch:train:11301-11400batch: iter_time=1.971e-04, forward_time=0.105, loss_ctc=77.576, loss_att=85.385, acc=0.607, loss=83.042, backward_time=0.098, grad_norm=34.247, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.170e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:23:42,226 (trainer:737) INFO: 5epoch:train:11401-11500batch: iter_time=2.119e-04, forward_time=0.103, loss_ctc=55.502, loss_att=63.525, acc=0.630, loss=61.118, backward_time=0.096, grad_norm=27.782, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.164e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 13:24:23,661 (trainer:737) INFO: 5epoch:train:11501-11600batch: iter_time=1.894e-04, forward_time=0.105, loss_ctc=75.237, loss_att=77.231, acc=0.629, loss=76.633, backward_time=0.098, grad_norm=34.953, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.157e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 13:25:04,610 (trainer:737) INFO: 5epoch:train:11601-11700batch: iter_time=2.198e-04, forward_time=0.105, loss_ctc=66.671, loss_att=79.142, acc=0.637, loss=75.401, backward_time=0.097, grad_norm=31.386, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.151e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:25:45,273 (trainer:737) INFO: 5epoch:train:11701-11800batch: iter_time=2.227e-04, forward_time=0.104, loss_ctc=57.374, loss_att=68.217, acc=0.617, loss=64.964, backward_time=0.097, grad_norm=26.620, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.145e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 13:26:26,267 (trainer:737) INFO: 5epoch:train:11801-11900batch: iter_time=1.989e-04, forward_time=0.104, loss_ctc=60.950, loss_att=66.012, acc=0.637, loss=64.493, backward_time=0.097, grad_norm=29.876, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.138e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:27:07,231 (trainer:737) INFO: 5epoch:train:11901-12000batch: iter_time=1.996e-04, forward_time=0.106, loss_ctc=81.013, loss_att=91.652, acc=0.575, loss=88.460, backward_time=0.098, grad_norm=37.105, clip=100.000, loss_scale=2.252e+15, optim_step_time=0.030, optim0_lr0=9.132e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:27:48,076 (trainer:737) INFO: 5epoch:train:12001-12100batch: iter_time=1.846e-04, forward_time=0.104, loss_ctc=63.743, loss_att=73.499, acc=0.638, loss=70.572, backward_time=0.097, grad_norm=29.195, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.125e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 13:28:28,966 (trainer:737) INFO: 5epoch:train:12101-12200batch: iter_time=2.119e-04, forward_time=0.105, loss_ctc=63.932, loss_att=66.273, acc=0.644, loss=65.571, backward_time=0.098, grad_norm=28.945, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.119e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:29:09,671 (trainer:737) INFO: 5epoch:train:12201-12300batch: iter_time=2.068e-04, forward_time=0.104, loss_ctc=59.111, loss_att=75.244, acc=0.571, loss=70.404, backward_time=0.097, grad_norm=30.617, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.113e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 13:29:50,768 (trainer:737) INFO: 5epoch:train:12301-12400batch: iter_time=2.003e-04, forward_time=0.106, loss_ctc=67.064, loss_att=89.987, acc=0.622, loss=83.110, backward_time=0.098, grad_norm=30.779, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.107e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 13:30:32,265 (trainer:737) INFO: 5epoch:train:12401-12500batch: iter_time=1.494e-04, forward_time=0.104, loss_ctc=79.956, loss_att=77.692, acc=0.611, loss=78.371, backward_time=0.097, grad_norm=40.177, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.100e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 13:30:38,867 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 13:30:57,915 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 13:31:01,626 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 13:31:01,626 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 13:31:01,630 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 13:35:48,238 (trainer:737) INFO: 5epoch:train:12501-12600batch: iter_time=2.562, forward_time=0.105, loss_ctc=76.916, loss_att=82.902, acc=0.617, loss=81.106, backward_time=0.098, grad_norm=36.380, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.094e-04, train_time=3.160 +[gpuc02:0/16] 2024-01-12 13:36:29,218 (trainer:737) INFO: 5epoch:train:12601-12700batch: iter_time=1.889e-04, forward_time=0.105, loss_ctc=71.525, loss_att=81.997, acc=0.623, loss=78.856, backward_time=0.098, grad_norm=33.778, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.088e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:37:10,202 (trainer:737) INFO: 5epoch:train:12701-12800batch: iter_time=1.280e-04, forward_time=0.107, loss_ctc=60.358, loss_att=61.473, acc=0.648, loss=61.139, backward_time=0.097, grad_norm=29.683, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.081e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:37:51,167 (trainer:737) INFO: 5epoch:train:12801-12900batch: iter_time=1.549e-04, forward_time=0.104, loss_ctc=69.206, loss_att=77.229, acc=0.638, loss=74.822, backward_time=0.098, grad_norm=32.344, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.031, optim0_lr0=9.075e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:38:32,188 (trainer:737) INFO: 5epoch:train:12901-13000batch: iter_time=1.526e-04, forward_time=0.104, loss_ctc=65.144, loss_att=69.958, acc=0.645, loss=68.514, backward_time=0.098, grad_norm=29.579, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.031, optim0_lr0=9.069e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:39:12,957 (trainer:737) INFO: 5epoch:train:13001-13100batch: iter_time=1.404e-04, forward_time=0.103, loss_ctc=55.924, loss_att=66.102, acc=0.632, loss=63.049, backward_time=0.097, grad_norm=28.302, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.063e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 13:39:53,974 (trainer:737) INFO: 5epoch:train:13101-13200batch: iter_time=1.160e-04, forward_time=0.104, loss_ctc=65.959, loss_att=83.707, acc=0.628, loss=78.382, backward_time=0.098, grad_norm=30.394, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.031, optim0_lr0=9.057e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:40:35,410 (trainer:737) INFO: 5epoch:train:13201-13300batch: iter_time=1.337e-04, forward_time=0.104, loss_ctc=74.515, loss_att=73.169, acc=0.617, loss=73.573, backward_time=0.097, grad_norm=51.539, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.050e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 13:41:16,745 (trainer:737) INFO: 5epoch:train:13301-13400batch: iter_time=1.548e-04, forward_time=0.105, loss_ctc=64.598, loss_att=69.906, acc=0.658, loss=68.314, backward_time=0.098, grad_norm=30.435, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.044e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 13:41:58,233 (trainer:737) INFO: 5epoch:train:13401-13500batch: iter_time=1.464e-04, forward_time=0.104, loss_ctc=61.372, loss_att=74.215, acc=0.604, loss=70.362, backward_time=0.098, grad_norm=51.309, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.038e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 13:42:39,131 (trainer:737) INFO: 5epoch:train:13501-13600batch: iter_time=1.320e-04, forward_time=0.104, loss_ctc=65.539, loss_att=81.102, acc=0.612, loss=76.433, backward_time=0.098, grad_norm=31.249, clip=99.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.032e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:43:20,759 (trainer:737) INFO: 5epoch:train:13601-13700batch: iter_time=1.567e-04, forward_time=0.105, loss_ctc=70.130, loss_att=86.093, acc=0.624, loss=81.304, backward_time=0.098, grad_norm=33.951, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.026e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 13:43:45,461 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 13:44:05,039 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 13:44:08,721 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 13:44:08,721 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 13:44:08,724 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 13:48:27,790 (trainer:737) INFO: 5epoch:train:13701-13800batch: iter_time=2.589, forward_time=0.104, loss_ctc=78.224, loss_att=73.550, acc=0.637, loss=74.952, backward_time=0.098, grad_norm=37.249, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.020e-04, train_time=3.070 +[gpuc02:0/16] 2024-01-12 13:49:08,821 (trainer:737) INFO: 5epoch:train:13801-13900batch: iter_time=1.836e-04, forward_time=0.103, loss_ctc=75.049, loss_att=82.245, acc=0.617, loss=80.086, backward_time=0.098, grad_norm=34.749, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.014e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:49:49,792 (trainer:737) INFO: 5epoch:train:13901-14000batch: iter_time=1.731e-04, forward_time=0.103, loss_ctc=54.141, loss_att=61.191, acc=0.639, loss=59.076, backward_time=0.096, grad_norm=28.518, clip=100.000, loss_scale=4.504e+15, optim_step_time=0.030, optim0_lr0=9.007e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:50:30,769 (trainer:737) INFO: 5epoch:train:14001-14100batch: iter_time=1.874e-04, forward_time=0.104, loss_ctc=73.659, loss_att=75.077, acc=0.636, loss=74.652, backward_time=0.097, grad_norm=33.945, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=9.001e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:51:11,679 (trainer:737) INFO: 5epoch:train:14101-14200batch: iter_time=2.192e-04, forward_time=0.103, loss_ctc=64.893, loss_att=76.683, acc=0.645, loss=73.146, backward_time=0.098, grad_norm=31.547, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.995e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:51:52,370 (trainer:737) INFO: 5epoch:train:14201-14300batch: iter_time=2.124e-04, forward_time=0.102, loss_ctc=56.329, loss_att=67.357, acc=0.623, loss=64.049, backward_time=0.096, grad_norm=28.160, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.989e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 13:52:33,134 (trainer:737) INFO: 5epoch:train:14301-14400batch: iter_time=1.871e-04, forward_time=0.101, loss_ctc=59.849, loss_att=65.238, acc=0.643, loss=63.621, backward_time=0.096, grad_norm=29.644, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.983e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 13:53:14,395 (trainer:737) INFO: 5epoch:train:14401-14500batch: iter_time=1.835e-04, forward_time=0.104, loss_ctc=79.206, loss_att=89.510, acc=0.584, loss=86.419, backward_time=0.097, grad_norm=38.484, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.977e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 13:53:55,256 (trainer:737) INFO: 5epoch:train:14501-14600batch: iter_time=1.882e-04, forward_time=0.103, loss_ctc=62.558, loss_att=71.415, acc=0.647, loss=68.758, backward_time=0.097, grad_norm=28.552, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.971e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 13:54:36,137 (trainer:737) INFO: 5epoch:train:14601-14700batch: iter_time=1.880e-04, forward_time=0.103, loss_ctc=63.743, loss_att=64.617, acc=0.651, loss=64.355, backward_time=0.097, grad_norm=32.454, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.965e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 13:55:16,759 (trainer:737) INFO: 5epoch:train:14701-14800batch: iter_time=2.000e-04, forward_time=0.102, loss_ctc=57.723, loss_att=74.408, acc=0.578, loss=69.402, backward_time=0.096, grad_norm=30.737, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.959e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 13:55:57,771 (trainer:737) INFO: 5epoch:train:14801-14900batch: iter_time=1.979e-04, forward_time=0.103, loss_ctc=65.163, loss_att=87.373, acc=0.630, loss=80.710, backward_time=0.097, grad_norm=28.646, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.953e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 13:56:38,587 (trainer:737) INFO: 5epoch:train:14901-15000batch: iter_time=1.618e-04, forward_time=0.102, loss_ctc=78.018, loss_att=75.299, acc=0.619, loss=76.115, backward_time=0.097, grad_norm=39.584, clip=99.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.947e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 14:16:43,810 (trainer:343) INFO: 5epoch results: [train] iter_time=0.207, forward_time=0.104, loss_ctc=72.504, loss_att=81.030, acc=0.602, loss=78.472, backward_time=0.098, grad_norm=39.604, clip=99.973, loss_scale=1.792e+15, optim_step_time=0.030, optim0_lr0=9.443e-04, train_time=0.634, time=2 hours, 38 minutes and 45.64 seconds, total_count=75000, gpu_max_cached_mem_GB=25.619, [valid] loss_ctc=77.008, cer_ctc=0.396, loss_att=72.614, acc=0.471, cer=0.407, wer=1.000, loss=73.932, time=19 minutes and 55.49 seconds, total_count=23355, gpu_max_cached_mem_GB=25.619 +[gpuc02:0/16] 2024-01-12 14:16:48,519 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 14:16:48,546 (trainer:272) INFO: 6/45epoch started. Estimated time to finish: 4 days, 22 hours and 30 minutes +[gpuc02:0/16] 2024-01-12 14:16:48,555 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 14:17:07,519 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 14:17:11,098 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 14:17:11,098 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 14:17:11,101 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 14:21:54,806 (trainer:737) INFO: 6epoch:train:1-100batch: iter_time=2.444, forward_time=0.129, loss_ctc=82.485, loss_att=74.006, acc=0.597, loss=76.550, backward_time=0.106, grad_norm=35.089, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.031, optim0_lr0=8.941e-04, train_time=3.062 +[gpuc02:0/16] 2024-01-12 14:22:37,108 (trainer:737) INFO: 6epoch:train:101-200batch: iter_time=1.111e-04, forward_time=0.112, loss_ctc=69.285, loss_att=77.237, acc=0.614, loss=74.851, backward_time=0.099, grad_norm=34.610, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.031, optim0_lr0=8.935e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-12 14:23:18,299 (trainer:737) INFO: 6epoch:train:201-300batch: iter_time=1.199e-04, forward_time=0.104, loss_ctc=73.823, loss_att=83.114, acc=0.624, loss=80.326, backward_time=0.099, grad_norm=34.501, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.929e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 14:24:03,673 (trainer:737) INFO: 6epoch:train:301-400batch: iter_time=1.426e-04, forward_time=0.104, loss_ctc=66.202, loss_att=77.353, acc=0.631, loss=74.007, backward_time=0.098, grad_norm=34.487, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.030, optim0_lr0=8.923e-04, train_time=0.454 +[gpuc02:0/16] 2024-01-12 14:24:46,595 (trainer:737) INFO: 6epoch:train:401-500batch: iter_time=1.448e-04, forward_time=0.104, loss_ctc=63.548, loss_att=79.925, acc=0.597, loss=75.012, backward_time=0.097, grad_norm=32.095, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.917e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-12 14:25:31,500 (trainer:737) INFO: 6epoch:train:501-600batch: iter_time=1.365e-04, forward_time=0.131, loss_ctc=64.546, loss_att=62.600, acc=0.645, loss=63.184, backward_time=0.101, grad_norm=29.843, clip=99.000, loss_scale=9.007e+15, optim_step_time=0.032, optim0_lr0=8.912e-04, train_time=0.449 +[gpuc02:0/16] 2024-01-12 14:26:14,824 (trainer:737) INFO: 6epoch:train:601-700batch: iter_time=1.284e-04, forward_time=0.118, loss_ctc=74.661, loss_att=72.250, acc=0.643, loss=72.973, backward_time=0.099, grad_norm=60.229, clip=99.000, loss_scale=9.007e+15, optim_step_time=0.031, optim0_lr0=8.906e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-12 14:26:55,603 (trainer:737) INFO: 6epoch:train:701-800batch: iter_time=1.240e-04, forward_time=0.104, loss_ctc=76.680, loss_att=90.170, acc=0.594, loss=86.123, backward_time=0.098, grad_norm=35.960, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.900e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 14:27:37,008 (trainer:737) INFO: 6epoch:train:801-900batch: iter_time=1.281e-04, forward_time=0.105, loss_ctc=62.851, loss_att=71.056, acc=0.642, loss=68.595, backward_time=0.098, grad_norm=28.009, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.894e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 14:28:18,304 (trainer:737) INFO: 6epoch:train:901-1000batch: iter_time=1.225e-04, forward_time=0.109, loss_ctc=74.953, loss_att=94.246, acc=0.589, loss=88.458, backward_time=0.099, grad_norm=35.583, clip=100.000, loss_scale=9.007e+15, optim_step_time=0.029, optim0_lr0=8.888e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 14:29:00,912 (trainer:737) INFO: 6epoch:train:1001-1100batch: iter_time=1.373e-04, forward_time=0.106, loss_ctc=61.141, loss_att=68.014, acc=0.630, loss=65.952, backward_time=0.098, grad_norm=31.142, clip=99.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.882e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-12 14:29:43,141 (trainer:737) INFO: 6epoch:train:1101-1200batch: iter_time=1.315e-04, forward_time=0.112, loss_ctc=60.932, loss_att=69.945, acc=0.651, loss=67.241, backward_time=0.101, grad_norm=29.025, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.031, optim0_lr0=8.876e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-12 14:30:25,323 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 14:30:45,242 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 14:30:49,062 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 14:30:49,062 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 14:30:49,066 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 14:36:21,879 (trainer:737) INFO: 6epoch:train:1201-1300batch: iter_time=3.574, forward_time=0.104, loss_ctc=81.839, loss_att=76.574, acc=0.612, loss=78.153, backward_time=0.098, grad_norm=36.473, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.871e-04, train_time=3.987 +[gpuc02:0/16] 2024-01-12 14:37:04,100 (trainer:737) INFO: 6epoch:train:1301-1400batch: iter_time=1.618e-04, forward_time=0.104, loss_ctc=67.321, loss_att=74.261, acc=0.636, loss=72.179, backward_time=0.098, grad_norm=31.416, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.865e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-12 14:37:45,453 (trainer:737) INFO: 6epoch:train:1401-1500batch: iter_time=1.944e-04, forward_time=0.104, loss_ctc=65.921, loss_att=83.989, acc=0.629, loss=78.569, backward_time=0.099, grad_norm=30.729, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.859e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 14:38:26,601 (trainer:737) INFO: 6epoch:train:1501-1600batch: iter_time=1.737e-04, forward_time=0.104, loss_ctc=74.884, loss_att=83.448, acc=0.617, loss=80.879, backward_time=0.098, grad_norm=34.369, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.853e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 14:39:08,119 (trainer:737) INFO: 6epoch:train:1601-1700batch: iter_time=1.793e-04, forward_time=0.105, loss_ctc=66.515, loss_att=86.889, acc=0.618, loss=80.777, backward_time=0.099, grad_norm=29.944, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.847e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 14:39:48,925 (trainer:737) INFO: 6epoch:train:1701-1800batch: iter_time=1.896e-04, forward_time=0.103, loss_ctc=62.729, loss_att=63.070, acc=0.640, loss=62.968, backward_time=0.098, grad_norm=29.392, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.842e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 14:40:29,971 (trainer:737) INFO: 6epoch:train:1801-1900batch: iter_time=2.183e-04, forward_time=0.104, loss_ctc=57.968, loss_att=71.163, acc=0.645, loss=67.204, backward_time=0.098, grad_norm=26.185, clip=99.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.836e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 14:41:11,497 (trainer:737) INFO: 6epoch:train:1901-2000batch: iter_time=1.834e-04, forward_time=0.104, loss_ctc=73.914, loss_att=86.138, acc=0.611, loss=82.471, backward_time=0.098, grad_norm=33.054, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.830e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 14:41:52,448 (trainer:737) INFO: 6epoch:train:2001-2100batch: iter_time=2.175e-04, forward_time=0.104, loss_ctc=69.335, loss_att=78.117, acc=0.636, loss=75.482, backward_time=0.099, grad_norm=32.327, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.824e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:42:33,630 (trainer:737) INFO: 6epoch:train:2101-2200batch: iter_time=1.802e-04, forward_time=0.104, loss_ctc=69.970, loss_att=71.244, acc=0.647, loss=70.862, backward_time=0.098, grad_norm=31.885, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.819e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 14:43:14,726 (trainer:737) INFO: 6epoch:train:2201-2300batch: iter_time=1.895e-04, forward_time=0.105, loss_ctc=63.796, loss_att=88.356, acc=0.629, loss=80.988, backward_time=0.099, grad_norm=32.271, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.813e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 14:43:55,617 (trainer:737) INFO: 6epoch:train:2301-2400batch: iter_time=1.793e-04, forward_time=0.104, loss_ctc=62.402, loss_att=73.066, acc=0.639, loss=69.867, backward_time=0.098, grad_norm=30.227, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.807e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:44:36,533 (trainer:737) INFO: 6epoch:train:2401-2500batch: iter_time=1.697e-04, forward_time=0.104, loss_ctc=64.277, loss_att=70.234, acc=0.647, loss=68.447, backward_time=0.098, grad_norm=31.398, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.802e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:44:44,088 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 14:45:03,256 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 14:45:07,446 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 14:45:07,447 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 14:45:07,450 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 14:49:49,279 (trainer:737) INFO: 6epoch:train:2501-2600batch: iter_time=2.618, forward_time=0.103, loss_ctc=79.194, loss_att=74.503, acc=0.601, loss=75.910, backward_time=0.097, grad_norm=33.169, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.796e-04, train_time=3.127 +[gpuc02:0/16] 2024-01-12 14:50:30,379 (trainer:737) INFO: 6epoch:train:2601-2700batch: iter_time=1.948e-04, forward_time=0.103, loss_ctc=65.980, loss_att=76.494, acc=0.624, loss=73.340, backward_time=0.097, grad_norm=31.603, clip=100.000, loss_scale=1.801e+16, optim_step_time=0.029, optim0_lr0=8.790e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 14:51:11,801 (trainer:737) INFO: 6epoch:train:2701-2800batch: iter_time=1.897e-04, forward_time=0.104, loss_ctc=69.407, loss_att=79.671, acc=0.635, loss=76.592, backward_time=0.097, grad_norm=34.756, clip=99.000, loss_scale=1.801e+16, optim_step_time=0.029, optim0_lr0=8.785e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 14:51:52,667 (trainer:737) INFO: 6epoch:train:2801-2900batch: iter_time=1.731e-04, forward_time=0.103, loss_ctc=62.898, loss_att=75.603, acc=0.641, loss=71.791, backward_time=0.097, grad_norm=30.714, clip=99.000, loss_scale=1.801e+16, optim_step_time=0.029, optim0_lr0=8.779e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 14:52:33,966 (trainer:737) INFO: 6epoch:train:2901-3000batch: iter_time=1.793e-04, forward_time=0.103, loss_ctc=59.966, loss_att=76.707, acc=0.610, loss=71.685, backward_time=0.097, grad_norm=29.860, clip=99.000, loss_scale=1.801e+16, optim_step_time=0.030, optim0_lr0=8.773e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 14:53:14,922 (trainer:737) INFO: 6epoch:train:3001-3100batch: iter_time=1.881e-04, forward_time=0.103, loss_ctc=61.741, loss_att=61.055, acc=0.654, loss=61.261, backward_time=0.096, grad_norm=28.269, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.029, optim0_lr0=8.768e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:53:56,300 (trainer:737) INFO: 6epoch:train:3101-3200batch: iter_time=1.658e-04, forward_time=0.104, loss_ctc=71.687, loss_att=69.692, acc=0.653, loss=70.291, backward_time=0.097, grad_norm=30.705, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.029, optim0_lr0=8.762e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 14:54:37,181 (trainer:737) INFO: 6epoch:train:3201-3300batch: iter_time=1.758e-04, forward_time=0.104, loss_ctc=72.994, loss_att=88.526, acc=0.601, loss=83.866, backward_time=0.097, grad_norm=34.049, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.756e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:55:18,117 (trainer:737) INFO: 6epoch:train:3301-3400batch: iter_time=1.678e-04, forward_time=0.104, loss_ctc=60.423, loss_att=69.016, acc=0.649, loss=66.438, backward_time=0.097, grad_norm=26.676, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.029, optim0_lr0=8.751e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:55:59,605 (trainer:737) INFO: 6epoch:train:3401-3500batch: iter_time=1.772e-04, forward_time=0.104, loss_ctc=70.247, loss_att=90.666, acc=0.601, loss=84.540, backward_time=0.097, grad_norm=33.387, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.745e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 14:56:40,527 (trainer:737) INFO: 6epoch:train:3501-3600batch: iter_time=2.060e-04, forward_time=0.103, loss_ctc=58.001, loss_att=66.028, acc=0.640, loss=63.620, backward_time=0.097, grad_norm=64.464, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.029, optim0_lr0=8.740e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 14:57:21,333 (trainer:737) INFO: 6epoch:train:3601-3700batch: iter_time=1.576e-04, forward_time=0.103, loss_ctc=58.382, loss_att=67.608, acc=0.663, loss=64.840, backward_time=0.097, grad_norm=29.986, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.734e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 14:57:50,123 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 14:58:09,657 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 14:58:13,431 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 14:58:13,431 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 14:58:13,434 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 15:03:06,147 (trainer:737) INFO: 6epoch:train:3701-3800batch: iter_time=2.836, forward_time=0.104, loss_ctc=78.614, loss_att=71.631, acc=0.623, loss=73.726, backward_time=0.098, grad_norm=34.713, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.729e-04, train_time=3.448 +[gpuc02:0/16] 2024-01-12 15:03:46,937 (trainer:737) INFO: 6epoch:train:3801-3900batch: iter_time=1.945e-04, forward_time=0.104, loss_ctc=65.853, loss_att=66.458, acc=0.640, loss=66.276, backward_time=0.097, grad_norm=31.558, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.029, optim0_lr0=8.723e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:04:28,189 (trainer:737) INFO: 6epoch:train:3901-4000batch: iter_time=1.951e-04, forward_time=0.107, loss_ctc=63.277, loss_att=76.066, acc=0.633, loss=72.230, backward_time=0.098, grad_norm=29.280, clip=99.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.718e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 15:05:09,175 (trainer:737) INFO: 6epoch:train:4001-4100batch: iter_time=2.182e-04, forward_time=0.104, loss_ctc=71.402, loss_att=80.600, acc=0.614, loss=77.840, backward_time=0.098, grad_norm=33.326, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.712e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:05:50,715 (trainer:737) INFO: 6epoch:train:4101-4200batch: iter_time=1.906e-04, forward_time=0.105, loss_ctc=65.822, loss_att=82.422, acc=0.627, loss=77.442, backward_time=0.098, grad_norm=30.801, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.707e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 15:06:31,793 (trainer:737) INFO: 6epoch:train:4201-4300batch: iter_time=1.815e-04, forward_time=0.104, loss_ctc=61.793, loss_att=61.457, acc=0.646, loss=61.558, backward_time=0.097, grad_norm=30.525, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.701e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:07:12,651 (trainer:737) INFO: 6epoch:train:4301-4400batch: iter_time=1.859e-04, forward_time=0.104, loss_ctc=57.388, loss_att=62.969, acc=0.658, loss=61.295, backward_time=0.098, grad_norm=25.932, clip=97.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.696e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:07:53,778 (trainer:737) INFO: 6epoch:train:4401-4500batch: iter_time=1.749e-04, forward_time=0.105, loss_ctc=72.087, loss_att=82.871, acc=0.611, loss=79.636, backward_time=0.098, grad_norm=32.572, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.690e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:08:34,650 (trainer:737) INFO: 6epoch:train:4501-4600batch: iter_time=2.115e-04, forward_time=0.104, loss_ctc=65.706, loss_att=71.208, acc=0.643, loss=69.557, backward_time=0.098, grad_norm=29.616, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.685e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:09:15,961 (trainer:737) INFO: 6epoch:train:4601-4700batch: iter_time=1.958e-04, forward_time=0.104, loss_ctc=67.745, loss_att=68.377, acc=0.649, loss=68.187, backward_time=0.098, grad_norm=29.814, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.679e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 15:09:56,862 (trainer:737) INFO: 6epoch:train:4701-4800batch: iter_time=1.901e-04, forward_time=0.104, loss_ctc=61.554, loss_att=84.602, acc=0.625, loss=77.688, backward_time=0.098, grad_norm=30.754, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.674e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:10:38,375 (trainer:737) INFO: 6epoch:train:4801-4900batch: iter_time=1.844e-04, forward_time=0.104, loss_ctc=59.938, loss_att=70.506, acc=0.637, loss=67.336, backward_time=0.098, grad_norm=29.598, clip=100.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.668e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 15:11:19,152 (trainer:737) INFO: 6epoch:train:4901-5000batch: iter_time=1.832e-04, forward_time=0.104, loss_ctc=63.081, loss_att=67.216, acc=0.650, loss=65.976, backward_time=0.098, grad_norm=32.865, clip=99.000, loss_scale=3.603e+16, optim_step_time=0.030, optim0_lr0=8.663e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:11:27,364 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 15:11:46,428 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 15:11:50,154 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 15:11:50,154 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 15:11:50,157 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 15:17:02,716 (trainer:737) INFO: 6epoch:train:5001-5100batch: iter_time=2.770, forward_time=0.127, loss_ctc=76.314, loss_att=75.031, acc=0.613, loss=75.416, backward_time=0.103, grad_norm=31.699, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.657e-04, train_time=3.435 +[gpuc02:0/16] 2024-01-12 15:17:43,959 (trainer:737) INFO: 6epoch:train:5101-5200batch: iter_time=1.697e-04, forward_time=0.104, loss_ctc=64.277, loss_att=79.759, acc=0.634, loss=75.114, backward_time=0.098, grad_norm=30.156, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.652e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 15:18:25,017 (trainer:737) INFO: 6epoch:train:5201-5300batch: iter_time=1.776e-04, forward_time=0.104, loss_ctc=66.358, loss_att=77.960, acc=0.651, loss=74.479, backward_time=0.098, grad_norm=31.364, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.647e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:19:05,974 (trainer:737) INFO: 6epoch:train:5301-5400batch: iter_time=1.980e-04, forward_time=0.104, loss_ctc=61.818, loss_att=75.331, acc=0.652, loss=71.277, backward_time=0.098, grad_norm=30.003, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.641e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:19:46,828 (trainer:737) INFO: 6epoch:train:5401-5500batch: iter_time=1.729e-04, forward_time=0.103, loss_ctc=58.695, loss_att=77.487, acc=0.612, loss=71.850, backward_time=0.098, grad_norm=29.714, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.636e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:20:27,712 (trainer:737) INFO: 6epoch:train:5501-5600batch: iter_time=2.014e-04, forward_time=0.104, loss_ctc=59.670, loss_att=61.891, acc=0.657, loss=61.225, backward_time=0.098, grad_norm=26.937, clip=99.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.631e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:21:08,666 (trainer:737) INFO: 6epoch:train:5601-5700batch: iter_time=1.946e-04, forward_time=0.104, loss_ctc=69.804, loss_att=73.365, acc=0.655, loss=72.296, backward_time=0.097, grad_norm=31.796, clip=98.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.625e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:21:49,664 (trainer:737) INFO: 6epoch:train:5701-5800batch: iter_time=1.746e-04, forward_time=0.104, loss_ctc=71.231, loss_att=88.237, acc=0.612, loss=83.135, backward_time=0.098, grad_norm=34.192, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.620e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:22:30,958 (trainer:737) INFO: 6epoch:train:5801-5900batch: iter_time=1.618e-04, forward_time=0.104, loss_ctc=59.018, loss_att=69.573, acc=0.667, loss=66.407, backward_time=0.098, grad_norm=27.270, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.615e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 15:23:12,480 (trainer:737) INFO: 6epoch:train:5901-6000batch: iter_time=1.754e-04, forward_time=0.107, loss_ctc=68.329, loss_att=90.562, acc=0.617, loss=83.892, backward_time=0.097, grad_norm=32.612, clip=99.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.609e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 15:23:53,555 (trainer:737) INFO: 6epoch:train:6001-6100batch: iter_time=1.836e-04, forward_time=0.103, loss_ctc=58.699, loss_att=66.806, acc=0.651, loss=64.373, backward_time=0.096, grad_norm=31.884, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.604e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:24:34,641 (trainer:737) INFO: 6epoch:train:6101-6200batch: iter_time=1.669e-04, forward_time=0.103, loss_ctc=56.261, loss_att=66.742, acc=0.673, loss=63.598, backward_time=0.097, grad_norm=28.054, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.599e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:25:02,604 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 15:25:21,990 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 15:25:25,754 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 15:25:25,754 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 15:25:25,757 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 15:29:50,640 (trainer:737) INFO: 6epoch:train:6201-6300batch: iter_time=2.705, forward_time=0.104, loss_ctc=76.209, loss_att=71.950, acc=0.628, loss=73.228, backward_time=0.097, grad_norm=35.688, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.593e-04, train_time=3.160 +[gpuc02:0/16] 2024-01-12 15:30:31,829 (trainer:737) INFO: 6epoch:train:6301-6400batch: iter_time=1.616e-04, forward_time=0.103, loss_ctc=64.189, loss_att=67.808, acc=0.653, loss=66.722, backward_time=0.097, grad_norm=35.691, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.588e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 15:31:13,211 (trainer:737) INFO: 6epoch:train:6401-6500batch: iter_time=1.619e-04, forward_time=0.104, loss_ctc=61.935, loss_att=78.837, acc=0.646, loss=73.767, backward_time=0.098, grad_norm=27.625, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.583e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 15:31:54,148 (trainer:737) INFO: 6epoch:train:6501-6600batch: iter_time=1.699e-04, forward_time=0.104, loss_ctc=70.096, loss_att=78.760, acc=0.632, loss=76.161, backward_time=0.097, grad_norm=32.629, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.577e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:32:35,201 (trainer:737) INFO: 6epoch:train:6601-6700batch: iter_time=1.454e-04, forward_time=0.105, loss_ctc=63.259, loss_att=82.547, acc=0.634, loss=76.760, backward_time=0.098, grad_norm=30.838, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.572e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:33:16,022 (trainer:737) INFO: 6epoch:train:6701-6800batch: iter_time=1.534e-04, forward_time=0.104, loss_ctc=59.771, loss_att=60.524, acc=0.651, loss=60.298, backward_time=0.097, grad_norm=30.065, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.567e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:33:56,889 (trainer:737) INFO: 6epoch:train:6801-6900batch: iter_time=2.030e-04, forward_time=0.104, loss_ctc=56.037, loss_att=68.259, acc=0.657, loss=64.592, backward_time=0.097, grad_norm=26.615, clip=99.000, loss_scale=7.206e+16, optim_step_time=0.029, optim0_lr0=8.562e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:34:38,045 (trainer:737) INFO: 6epoch:train:6901-7000batch: iter_time=2.017e-04, forward_time=0.104, loss_ctc=70.213, loss_att=82.571, acc=0.624, loss=78.863, backward_time=0.098, grad_norm=32.546, clip=100.000, loss_scale=7.206e+16, optim_step_time=0.030, optim0_lr0=8.557e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:35:19,322 (trainer:737) INFO: 6epoch:train:7001-7100batch: iter_time=1.935e-04, forward_time=0.104, loss_ctc=64.912, loss_att=73.098, acc=0.652, loss=70.642, backward_time=0.097, grad_norm=30.631, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.030, optim0_lr0=8.551e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 15:36:00,229 (trainer:737) INFO: 6epoch:train:7101-7200batch: iter_time=1.709e-04, forward_time=0.104, loss_ctc=65.775, loss_att=66.732, acc=0.666, loss=66.445, backward_time=0.097, grad_norm=30.628, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.546e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:36:41,310 (trainer:737) INFO: 6epoch:train:7201-7300batch: iter_time=1.856e-04, forward_time=0.105, loss_ctc=59.848, loss_att=83.065, acc=0.644, loss=76.100, backward_time=0.098, grad_norm=30.582, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.541e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:37:22,213 (trainer:737) INFO: 6epoch:train:7301-7400batch: iter_time=1.680e-04, forward_time=0.104, loss_ctc=58.732, loss_att=70.279, acc=0.650, loss=66.815, backward_time=0.097, grad_norm=29.181, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.536e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:38:03,086 (trainer:737) INFO: 6epoch:train:7401-7500batch: iter_time=1.708e-04, forward_time=0.103, loss_ctc=61.362, loss_att=66.490, acc=0.663, loss=64.951, backward_time=0.097, grad_norm=32.113, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.531e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:38:09,243 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 15:38:29,387 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 15:38:33,061 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 15:38:33,061 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 15:38:33,064 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 15:43:14,723 (trainer:737) INFO: 6epoch:train:7501-7600batch: iter_time=2.616, forward_time=0.104, loss_ctc=76.110, loss_att=71.972, acc=0.613, loss=73.213, backward_time=0.097, grad_norm=34.551, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.525e-04, train_time=3.116 +[gpuc02:0/16] 2024-01-12 15:43:55,610 (trainer:737) INFO: 6epoch:train:7601-7700batch: iter_time=2.010e-04, forward_time=0.104, loss_ctc=62.975, loss_att=74.631, acc=0.633, loss=71.135, backward_time=0.097, grad_norm=30.746, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.520e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:44:36,660 (trainer:737) INFO: 6epoch:train:7701-7800batch: iter_time=2.032e-04, forward_time=0.104, loss_ctc=65.179, loss_att=76.551, acc=0.646, loss=73.139, backward_time=0.097, grad_norm=30.487, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.515e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:45:17,840 (trainer:737) INFO: 6epoch:train:7801-7900batch: iter_time=1.780e-04, forward_time=0.104, loss_ctc=60.687, loss_att=73.946, acc=0.650, loss=69.968, backward_time=0.097, grad_norm=32.172, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.510e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 15:45:58,967 (trainer:737) INFO: 6epoch:train:7901-8000batch: iter_time=1.855e-04, forward_time=0.104, loss_ctc=57.778, loss_att=75.189, acc=0.619, loss=69.966, backward_time=0.097, grad_norm=31.337, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.505e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:46:40,096 (trainer:737) INFO: 6epoch:train:8001-8100batch: iter_time=1.696e-04, forward_time=0.104, loss_ctc=58.400, loss_att=58.576, acc=0.665, loss=58.523, backward_time=0.097, grad_norm=26.948, clip=99.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.500e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:47:21,242 (trainer:737) INFO: 6epoch:train:8101-8200batch: iter_time=1.867e-04, forward_time=0.105, loss_ctc=68.973, loss_att=67.524, acc=0.664, loss=67.958, backward_time=0.097, grad_norm=30.351, clip=99.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.495e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 15:48:02,737 (trainer:737) INFO: 6epoch:train:8201-8300batch: iter_time=1.961e-04, forward_time=0.105, loss_ctc=70.515, loss_att=86.691, acc=0.608, loss=81.838, backward_time=0.097, grad_norm=33.920, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.489e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 15:48:43,991 (trainer:737) INFO: 6epoch:train:8301-8400batch: iter_time=1.890e-04, forward_time=0.105, loss_ctc=57.462, loss_att=67.180, acc=0.659, loss=64.265, backward_time=0.097, grad_norm=26.760, clip=99.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.484e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 15:49:24,975 (trainer:737) INFO: 6epoch:train:8401-8500batch: iter_time=1.905e-04, forward_time=0.105, loss_ctc=67.558, loss_att=88.199, acc=0.612, loss=82.007, backward_time=0.097, grad_norm=31.273, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.479e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:50:05,767 (trainer:737) INFO: 6epoch:train:8501-8600batch: iter_time=2.051e-04, forward_time=0.104, loss_ctc=56.744, loss_att=64.321, acc=0.650, loss=62.048, backward_time=0.096, grad_norm=29.377, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.474e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 15:50:46,751 (trainer:737) INFO: 6epoch:train:8601-8700batch: iter_time=1.737e-04, forward_time=0.104, loss_ctc=55.513, loss_att=65.829, acc=0.672, loss=62.734, backward_time=0.097, grad_norm=27.589, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.469e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:51:13,179 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 15:51:32,450 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 15:51:36,070 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 15:51:36,070 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 15:51:36,073 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 15:55:59,816 (trainer:737) INFO: 6epoch:train:8701-8800batch: iter_time=2.598, forward_time=0.105, loss_ctc=74.004, loss_att=70.638, acc=0.633, loss=71.648, backward_time=0.098, grad_norm=33.451, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.464e-04, train_time=3.130 +[gpuc02:0/16] 2024-01-12 15:56:40,742 (trainer:737) INFO: 6epoch:train:8801-8900batch: iter_time=2.492e-04, forward_time=0.105, loss_ctc=63.404, loss_att=69.040, acc=0.653, loss=67.349, backward_time=0.098, grad_norm=30.759, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.459e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 15:57:22,096 (trainer:737) INFO: 6epoch:train:8901-9000batch: iter_time=2.511e-04, forward_time=0.106, loss_ctc=60.504, loss_att=77.966, acc=0.650, loss=72.727, backward_time=0.098, grad_norm=28.504, clip=100.000, loss_scale=1.441e+17, optim_step_time=0.029, optim0_lr0=8.454e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 15:58:03,119 (trainer:737) INFO: 6epoch:train:9001-9100batch: iter_time=3.003e-04, forward_time=0.106, loss_ctc=68.850, loss_att=77.861, acc=0.637, loss=75.158, backward_time=0.098, grad_norm=33.630, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.029, optim0_lr0=8.449e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:58:44,168 (trainer:737) INFO: 6epoch:train:9101-9200batch: iter_time=2.844e-04, forward_time=0.106, loss_ctc=62.453, loss_att=82.125, acc=0.637, loss=76.224, backward_time=0.098, grad_norm=30.597, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.029, optim0_lr0=8.444e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 15:59:25,537 (trainer:737) INFO: 6epoch:train:9201-9300batch: iter_time=2.412e-04, forward_time=0.105, loss_ctc=58.464, loss_att=59.912, acc=0.656, loss=59.478, backward_time=0.097, grad_norm=30.441, clip=99.000, loss_scale=2.882e+17, optim_step_time=0.029, optim0_lr0=8.439e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 16:00:06,453 (trainer:737) INFO: 6epoch:train:9301-9400batch: iter_time=2.545e-04, forward_time=0.105, loss_ctc=54.328, loss_att=66.782, acc=0.663, loss=63.046, backward_time=0.097, grad_norm=27.809, clip=99.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.434e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:00:47,507 (trainer:737) INFO: 6epoch:train:9401-9500batch: iter_time=2.538e-04, forward_time=0.106, loss_ctc=69.408, loss_att=82.177, acc=0.628, loss=78.346, backward_time=0.098, grad_norm=30.074, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.429e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:01:29,699 (trainer:737) INFO: 6epoch:train:9501-9600batch: iter_time=2.328e-04, forward_time=0.107, loss_ctc=63.283, loss_att=72.250, acc=0.658, loss=69.560, backward_time=0.098, grad_norm=29.148, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.424e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-12 16:02:10,668 (trainer:737) INFO: 6epoch:train:9601-9700batch: iter_time=2.486e-04, forward_time=0.106, loss_ctc=64.928, loss_att=66.616, acc=0.670, loss=66.109, backward_time=0.098, grad_norm=30.503, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.419e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:02:51,742 (trainer:737) INFO: 6epoch:train:9701-9800batch: iter_time=2.614e-04, forward_time=0.106, loss_ctc=58.910, loss_att=82.949, acc=0.646, loss=75.737, backward_time=0.099, grad_norm=29.875, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.414e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:03:32,899 (trainer:737) INFO: 6epoch:train:9801-9900batch: iter_time=2.416e-04, forward_time=0.105, loss_ctc=57.109, loss_att=69.013, acc=0.656, loss=65.442, backward_time=0.098, grad_norm=29.912, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.409e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:04:14,094 (trainer:737) INFO: 6epoch:train:9901-10000batch: iter_time=2.423e-04, forward_time=0.108, loss_ctc=59.599, loss_att=64.609, acc=0.668, loss=63.106, backward_time=0.098, grad_norm=31.510, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.404e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 16:04:21,791 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 16:04:41,463 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 16:04:45,184 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 16:04:45,184 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 16:04:45,188 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 16:09:25,650 (trainer:737) INFO: 6epoch:train:10001-10100batch: iter_time=2.651, forward_time=0.105, loss_ctc=74.834, loss_att=68.100, acc=0.631, loss=70.120, backward_time=0.098, grad_norm=32.831, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.399e-04, train_time=3.115 +[gpuc02:0/16] 2024-01-12 16:10:06,684 (trainer:737) INFO: 6epoch:train:10101-10200batch: iter_time=1.765e-04, forward_time=0.105, loss_ctc=61.517, loss_att=72.680, acc=0.652, loss=69.331, backward_time=0.098, grad_norm=29.112, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.394e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:10:47,806 (trainer:737) INFO: 6epoch:train:10201-10300batch: iter_time=2.081e-04, forward_time=0.105, loss_ctc=64.072, loss_att=74.347, acc=0.659, loss=71.264, backward_time=0.098, grad_norm=30.804, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.389e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:11:29,111 (trainer:737) INFO: 6epoch:train:10301-10400batch: iter_time=2.210e-04, forward_time=0.105, loss_ctc=60.032, loss_att=71.947, acc=0.661, loss=68.372, backward_time=0.098, grad_norm=30.073, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.384e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 16:12:09,993 (trainer:737) INFO: 6epoch:train:10401-10500batch: iter_time=2.115e-04, forward_time=0.105, loss_ctc=56.834, loss_att=73.033, acc=0.628, loss=68.173, backward_time=0.098, grad_norm=30.906, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.379e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:13:14,390 (trainer:737) INFO: 6epoch:train:10501-10600batch: iter_time=2.125e-04, forward_time=0.105, loss_ctc=56.925, loss_att=57.473, acc=0.673, loss=57.308, backward_time=0.098, grad_norm=26.143, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.375e-04, train_time=0.644 +[gpuc02:0/16] 2024-01-12 16:13:55,359 (trainer:737) INFO: 6epoch:train:10601-10700batch: iter_time=1.877e-04, forward_time=0.105, loss_ctc=67.532, loss_att=70.337, acc=0.666, loss=69.495, backward_time=0.098, grad_norm=30.684, clip=99.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.370e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:14:36,359 (trainer:737) INFO: 6epoch:train:10701-10800batch: iter_time=1.922e-04, forward_time=0.106, loss_ctc=68.578, loss_att=84.720, acc=0.625, loss=79.877, backward_time=0.098, grad_norm=32.327, clip=99.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.365e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:15:17,403 (trainer:737) INFO: 6epoch:train:10801-10900batch: iter_time=2.065e-04, forward_time=0.106, loss_ctc=56.990, loss_att=67.203, acc=0.676, loss=64.139, backward_time=0.099, grad_norm=26.732, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.360e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:15:58,538 (trainer:737) INFO: 6epoch:train:10901-11000batch: iter_time=2.228e-04, forward_time=0.106, loss_ctc=65.549, loss_att=86.788, acc=0.629, loss=80.417, backward_time=0.099, grad_norm=32.338, clip=100.000, loss_scale=2.882e+17, optim_step_time=0.030, optim0_lr0=8.355e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:16:39,380 (trainer:737) INFO: 6epoch:train:11001-11100batch: iter_time=1.814e-04, forward_time=0.104, loss_ctc=55.398, loss_att=63.668, acc=0.664, loss=61.187, backward_time=0.097, grad_norm=28.088, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.030, optim0_lr0=8.350e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:17:20,534 (trainer:737) INFO: 6epoch:train:11101-11200batch: iter_time=1.862e-04, forward_time=0.103, loss_ctc=54.388, loss_att=64.163, acc=0.681, loss=61.231, backward_time=0.097, grad_norm=26.951, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.030, optim0_lr0=8.345e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:17:46,804 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 16:18:06,702 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 16:18:10,573 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 16:18:10,573 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 16:18:10,577 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 16:22:35,655 (trainer:737) INFO: 6epoch:train:11201-11300batch: iter_time=2.620, forward_time=0.106, loss_ctc=73.037, loss_att=69.922, acc=0.638, loss=70.857, backward_time=0.098, grad_norm=34.461, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.030, optim0_lr0=8.341e-04, train_time=3.151 +[gpuc02:0/16] 2024-01-12 16:23:16,749 (trainer:737) INFO: 6epoch:train:11301-11400batch: iter_time=1.514e-04, forward_time=0.104, loss_ctc=61.823, loss_att=68.673, acc=0.647, loss=66.618, backward_time=0.097, grad_norm=32.464, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.030, optim0_lr0=8.336e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:23:57,999 (trainer:737) INFO: 6epoch:train:11401-11500batch: iter_time=1.277e-04, forward_time=0.107, loss_ctc=59.760, loss_att=75.857, acc=0.642, loss=71.028, backward_time=0.098, grad_norm=28.005, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.331e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 16:24:39,500 (trainer:737) INFO: 6epoch:train:11501-11600batch: iter_time=1.292e-04, forward_time=0.104, loss_ctc=67.927, loss_att=78.628, acc=0.626, loss=75.417, backward_time=0.097, grad_norm=34.101, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.326e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 16:25:20,954 (trainer:737) INFO: 6epoch:train:11601-11700batch: iter_time=1.468e-04, forward_time=0.105, loss_ctc=61.555, loss_att=80.157, acc=0.639, loss=74.576, backward_time=0.098, grad_norm=68.316, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.030, optim0_lr0=8.321e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 16:26:01,799 (trainer:737) INFO: 6epoch:train:11701-11800batch: iter_time=1.562e-04, forward_time=0.104, loss_ctc=58.005, loss_att=59.182, acc=0.660, loss=58.829, backward_time=0.097, grad_norm=29.360, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.316e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:26:42,906 (trainer:737) INFO: 6epoch:train:11801-11900batch: iter_time=1.380e-04, forward_time=0.103, loss_ctc=53.537, loss_att=60.540, acc=0.668, loss=58.439, backward_time=0.098, grad_norm=27.245, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.312e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:27:24,073 (trainer:737) INFO: 6epoch:train:11901-12000batch: iter_time=1.789e-04, forward_time=0.104, loss_ctc=68.202, loss_att=80.072, acc=0.623, loss=76.511, backward_time=0.097, grad_norm=31.743, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.307e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:28:04,999 (trainer:737) INFO: 6epoch:train:12001-12100batch: iter_time=1.862e-04, forward_time=0.104, loss_ctc=62.916, loss_att=69.769, acc=0.655, loss=67.713, backward_time=0.097, grad_norm=30.050, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.302e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:28:45,883 (trainer:737) INFO: 6epoch:train:12101-12200batch: iter_time=2.009e-04, forward_time=0.104, loss_ctc=63.404, loss_att=65.794, acc=0.663, loss=65.077, backward_time=0.097, grad_norm=29.790, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.297e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:29:26,871 (trainer:737) INFO: 6epoch:train:12201-12300batch: iter_time=1.863e-04, forward_time=0.105, loss_ctc=58.374, loss_att=82.092, acc=0.638, loss=74.977, backward_time=0.097, grad_norm=31.113, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.293e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:30:07,625 (trainer:737) INFO: 6epoch:train:12301-12400batch: iter_time=1.897e-04, forward_time=0.104, loss_ctc=56.761, loss_att=67.751, acc=0.649, loss=64.454, backward_time=0.096, grad_norm=39.457, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.288e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 16:30:48,414 (trainer:737) INFO: 6epoch:train:12401-12500batch: iter_time=1.699e-04, forward_time=0.104, loss_ctc=59.019, loss_att=64.381, acc=0.665, loss=62.772, backward_time=0.097, grad_norm=30.489, clip=99.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.283e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:30:55,569 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 16:31:15,087 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 16:31:18,766 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 16:31:18,766 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 16:31:18,769 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 16:36:05,674 (trainer:737) INFO: 6epoch:train:12501-12600batch: iter_time=2.680, forward_time=0.104, loss_ctc=74.033, loss_att=67.795, acc=0.626, loss=69.666, backward_time=0.097, grad_norm=42.011, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.030, optim0_lr0=8.278e-04, train_time=3.172 +[gpuc02:0/16] 2024-01-12 16:36:46,491 (trainer:737) INFO: 6epoch:train:12601-12700batch: iter_time=2.008e-04, forward_time=0.104, loss_ctc=61.271, loss_att=69.545, acc=0.646, loss=67.063, backward_time=0.097, grad_norm=29.077, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.274e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:37:27,386 (trainer:737) INFO: 6epoch:train:12701-12800batch: iter_time=2.007e-04, forward_time=0.104, loss_ctc=62.476, loss_att=72.518, acc=0.658, loss=69.505, backward_time=0.097, grad_norm=29.306, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.269e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:38:08,454 (trainer:737) INFO: 6epoch:train:12801-12900batch: iter_time=2.341e-04, forward_time=0.104, loss_ctc=58.906, loss_att=70.154, acc=0.660, loss=66.779, backward_time=0.097, grad_norm=33.180, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.264e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:38:49,224 (trainer:737) INFO: 6epoch:train:12901-13000batch: iter_time=2.453e-04, forward_time=0.103, loss_ctc=55.880, loss_att=72.999, acc=0.629, loss=67.864, backward_time=0.097, grad_norm=28.425, clip=100.000, loss_scale=5.765e+17, optim_step_time=0.029, optim0_lr0=8.260e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 16:39:30,286 (trainer:737) INFO: 6epoch:train:13001-13100batch: iter_time=2.023e-04, forward_time=0.104, loss_ctc=55.890, loss_att=55.896, acc=0.675, loss=55.894, backward_time=0.097, grad_norm=27.266, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.255e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:40:11,130 (trainer:737) INFO: 6epoch:train:13101-13200batch: iter_time=2.073e-04, forward_time=0.103, loss_ctc=67.112, loss_att=65.954, acc=0.670, loss=66.302, backward_time=0.097, grad_norm=60.127, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.250e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:40:52,270 (trainer:737) INFO: 6epoch:train:13201-13300batch: iter_time=2.104e-04, forward_time=0.104, loss_ctc=67.239, loss_att=82.981, acc=0.619, loss=78.259, backward_time=0.097, grad_norm=32.720, clip=99.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.245e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:41:34,060 (trainer:737) INFO: 6epoch:train:13301-13400batch: iter_time=1.914e-04, forward_time=0.104, loss_ctc=55.758, loss_att=65.123, acc=0.667, loss=62.314, backward_time=0.097, grad_norm=31.033, clip=99.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.241e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-12 16:42:15,044 (trainer:737) INFO: 6epoch:train:13401-13500batch: iter_time=2.047e-04, forward_time=0.104, loss_ctc=65.153, loss_att=84.958, acc=0.621, loss=79.016, backward_time=0.097, grad_norm=34.359, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.236e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:42:55,695 (trainer:737) INFO: 6epoch:train:13501-13600batch: iter_time=2.208e-04, forward_time=0.103, loss_ctc=54.601, loss_att=62.321, acc=0.657, loss=60.005, backward_time=0.096, grad_norm=29.849, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.231e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 16:43:38,210 (trainer:737) INFO: 6epoch:train:13601-13700batch: iter_time=1.866e-04, forward_time=0.103, loss_ctc=53.586, loss_att=63.261, acc=0.682, loss=60.358, backward_time=0.097, grad_norm=26.913, clip=99.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.227e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-12 16:44:06,934 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 16:44:26,531 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 16:44:30,259 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 16:44:30,259 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 16:44:30,262 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 16:49:00,111 (trainer:737) INFO: 6epoch:train:13701-13800batch: iter_time=2.674, forward_time=0.103, loss_ctc=71.496, loss_att=68.961, acc=0.642, loss=69.721, backward_time=0.097, grad_norm=32.754, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.222e-04, train_time=3.219 +[gpuc02:0/16] 2024-01-12 16:49:40,941 (trainer:737) INFO: 6epoch:train:13801-13900batch: iter_time=1.381e-04, forward_time=0.104, loss_ctc=60.862, loss_att=67.491, acc=0.662, loss=65.503, backward_time=0.098, grad_norm=29.059, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.218e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:50:21,920 (trainer:737) INFO: 6epoch:train:13901-14000batch: iter_time=1.246e-04, forward_time=0.105, loss_ctc=58.191, loss_att=76.268, acc=0.657, loss=70.845, backward_time=0.098, grad_norm=27.346, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.213e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:51:02,810 (trainer:737) INFO: 6epoch:train:14001-14100batch: iter_time=1.445e-04, forward_time=0.104, loss_ctc=66.232, loss_att=75.866, acc=0.644, loss=72.975, backward_time=0.098, grad_norm=32.004, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.208e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:51:44,107 (trainer:737) INFO: 6epoch:train:14101-14200batch: iter_time=1.332e-04, forward_time=0.104, loss_ctc=60.140, loss_att=79.363, acc=0.647, loss=73.596, backward_time=0.098, grad_norm=29.768, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.204e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 16:52:24,898 (trainer:737) INFO: 6epoch:train:14201-14300batch: iter_time=1.455e-04, forward_time=0.104, loss_ctc=56.920, loss_att=57.743, acc=0.669, loss=57.496, backward_time=0.097, grad_norm=29.123, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.199e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:53:05,749 (trainer:737) INFO: 6epoch:train:14301-14400batch: iter_time=1.488e-04, forward_time=0.104, loss_ctc=52.495, loss_att=65.182, acc=0.670, loss=61.376, backward_time=0.098, grad_norm=26.284, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.195e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 16:53:46,639 (trainer:737) INFO: 6epoch:train:14401-14500batch: iter_time=1.479e-04, forward_time=0.104, loss_ctc=66.875, loss_att=78.722, acc=0.637, loss=75.168, backward_time=0.098, grad_norm=32.174, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.190e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:54:27,704 (trainer:737) INFO: 6epoch:train:14501-14600batch: iter_time=1.464e-04, forward_time=0.105, loss_ctc=62.268, loss_att=71.114, acc=0.662, loss=68.460, backward_time=0.099, grad_norm=29.557, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.185e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 16:55:08,668 (trainer:737) INFO: 6epoch:train:14601-14700batch: iter_time=1.736e-04, forward_time=0.104, loss_ctc=62.713, loss_att=65.467, acc=0.673, loss=64.641, backward_time=0.097, grad_norm=28.872, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.181e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 16:55:49,829 (trainer:737) INFO: 6epoch:train:14701-14800batch: iter_time=1.688e-04, forward_time=0.105, loss_ctc=56.907, loss_att=80.837, acc=0.655, loss=73.658, backward_time=0.098, grad_norm=28.777, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.176e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 16:56:31,026 (trainer:737) INFO: 6epoch:train:14801-14900batch: iter_time=1.565e-04, forward_time=0.104, loss_ctc=55.629, loss_att=66.838, acc=0.662, loss=63.475, backward_time=0.097, grad_norm=28.855, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.172e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 16:57:11,920 (trainer:737) INFO: 6epoch:train:14901-15000batch: iter_time=1.708e-04, forward_time=0.104, loss_ctc=57.893, loss_att=63.969, acc=0.671, loss=62.147, backward_time=0.097, grad_norm=30.948, clip=100.000, loss_scale=1.153e+18, optim_step_time=0.029, optim0_lr0=8.167e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 17:17:17,827 (trainer:343) INFO: 6epoch results: [train] iter_time=0.219, forward_time=0.105, loss_ctc=64.004, loss_att=73.088, acc=0.642, loss=70.363, backward_time=0.098, grad_norm=31.766, clip=99.813, loss_scale=3.056e+17, optim_step_time=0.030, optim0_lr0=8.537e-04, train_time=0.641, time=2 hours, 40 minutes and 34.93 seconds, total_count=90000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=76.714, cer_ctc=0.387, loss_att=70.530, acc=0.492, cer=0.421, wer=1.000, loss=72.385, time=19 minutes and 54.1 seconds, total_count=28026, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-12 17:17:22,812 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 17:17:22,839 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/1epoch.pth +[gpuc02:0/16] 2024-01-12 17:17:22,839 (trainer:272) INFO: 7/45epoch started. Estimated time to finish: 4 days, 19 hours and 50 minutes +[gpuc02:0/16] 2024-01-12 17:17:22,849 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 17:17:41,924 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 17:17:45,491 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 17:17:45,491 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 17:17:45,494 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 17:22:20,836 (trainer:737) INFO: 7epoch:train:1-100batch: iter_time=2.547, forward_time=0.106, loss_ctc=61.274, loss_att=63.083, acc=0.664, loss=62.540, backward_time=0.097, grad_norm=31.191, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.163e-04, train_time=2.980 +[gpuc02:0/16] 2024-01-12 17:23:01,827 (trainer:737) INFO: 7epoch:train:101-200batch: iter_time=1.054e-04, forward_time=0.104, loss_ctc=74.624, loss_att=77.651, acc=0.639, loss=76.743, backward_time=0.098, grad_norm=36.702, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.158e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 17:23:44,586 (trainer:737) INFO: 7epoch:train:201-300batch: iter_time=1.169e-04, forward_time=0.112, loss_ctc=59.040, loss_att=73.748, acc=0.658, loss=69.335, backward_time=0.100, grad_norm=30.425, clip=99.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.154e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-12 17:24:26,937 (trainer:737) INFO: 7epoch:train:301-400batch: iter_time=1.170e-04, forward_time=0.109, loss_ctc=64.732, loss_att=72.244, acc=0.663, loss=69.990, backward_time=0.098, grad_norm=34.160, clip=99.000, loss_scale=2.306e+18, optim_step_time=0.031, optim0_lr0=8.149e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-12 17:25:07,583 (trainer:737) INFO: 7epoch:train:401-500batch: iter_time=1.238e-04, forward_time=0.102, loss_ctc=60.154, loss_att=64.587, acc=0.620, loss=63.257, backward_time=0.096, grad_norm=34.787, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.145e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 17:25:49,173 (trainer:737) INFO: 7epoch:train:501-600batch: iter_time=1.270e-04, forward_time=0.103, loss_ctc=58.231, loss_att=63.478, acc=0.645, loss=61.904, backward_time=0.097, grad_norm=29.845, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.140e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 17:26:32,451 (trainer:737) INFO: 7epoch:train:601-700batch: iter_time=1.186e-04, forward_time=0.103, loss_ctc=54.561, loss_att=55.691, acc=0.674, loss=55.352, backward_time=0.097, grad_norm=27.430, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.136e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-12 17:27:13,790 (trainer:737) INFO: 7epoch:train:701-800batch: iter_time=1.165e-04, forward_time=0.106, loss_ctc=66.676, loss_att=63.606, acc=0.657, loss=64.527, backward_time=0.097, grad_norm=32.335, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.131e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 17:27:57,963 (trainer:737) INFO: 7epoch:train:801-900batch: iter_time=1.100e-04, forward_time=0.122, loss_ctc=49.931, loss_att=52.570, acc=0.629, loss=51.778, backward_time=0.100, grad_norm=27.330, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.031, optim0_lr0=8.127e-04, train_time=0.442 +[gpuc02:0/16] 2024-01-12 17:28:39,956 (trainer:737) INFO: 7epoch:train:901-1000batch: iter_time=1.131e-04, forward_time=0.109, loss_ctc=48.708, loss_att=59.054, acc=0.664, loss=55.950, backward_time=0.096, grad_norm=26.571, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.122e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-12 17:29:27,717 (trainer:737) INFO: 7epoch:train:1001-1100batch: iter_time=1.207e-04, forward_time=0.114, loss_ctc=57.175, loss_att=63.435, acc=0.642, loss=61.557, backward_time=0.100, grad_norm=31.731, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.118e-04, train_time=0.477 +[gpuc02:0/16] 2024-01-12 17:30:09,477 (trainer:737) INFO: 7epoch:train:1101-1200batch: iter_time=1.152e-04, forward_time=0.103, loss_ctc=57.431, loss_att=68.730, acc=0.644, loss=65.340, backward_time=0.100, grad_norm=29.344, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.113e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 17:30:42,787 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 17:31:01,832 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 17:31:05,441 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 17:31:05,441 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 17:31:05,444 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 17:36:39,997 (trainer:737) INFO: 7epoch:train:1201-1300batch: iter_time=3.476, forward_time=0.103, loss_ctc=58.123, loss_att=57.767, acc=0.693, loss=57.874, backward_time=0.098, grad_norm=30.781, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.109e-04, train_time=3.905 +[gpuc02:0/16] 2024-01-12 17:37:21,257 (trainer:737) INFO: 7epoch:train:1301-1400batch: iter_time=1.691e-04, forward_time=0.104, loss_ctc=58.995, loss_att=72.404, acc=0.652, loss=68.381, backward_time=0.098, grad_norm=29.233, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.104e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 17:38:02,470 (trainer:737) INFO: 7epoch:train:1401-1500batch: iter_time=1.900e-04, forward_time=0.104, loss_ctc=68.118, loss_att=73.427, acc=0.675, loss=71.834, backward_time=0.098, grad_norm=33.021, clip=99.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.100e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 17:38:43,550 (trainer:737) INFO: 7epoch:train:1501-1600batch: iter_time=1.695e-04, forward_time=0.104, loss_ctc=67.359, loss_att=73.558, acc=0.666, loss=71.698, backward_time=0.098, grad_norm=31.393, clip=99.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.095e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 17:39:26,190 (trainer:737) INFO: 7epoch:train:1601-1700batch: iter_time=1.762e-04, forward_time=0.113, loss_ctc=59.802, loss_att=69.605, acc=0.650, loss=66.664, backward_time=0.099, grad_norm=34.574, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.091e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-12 17:40:07,838 (trainer:737) INFO: 7epoch:train:1701-1800batch: iter_time=1.795e-04, forward_time=0.109, loss_ctc=52.290, loss_att=61.819, acc=0.646, loss=58.960, backward_time=0.097, grad_norm=28.683, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.087e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 17:40:48,553 (trainer:737) INFO: 7epoch:train:1801-1900batch: iter_time=1.587e-04, forward_time=0.103, loss_ctc=54.593, loss_att=56.573, acc=0.686, loss=55.979, backward_time=0.097, grad_norm=24.918, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.029, optim0_lr0=8.082e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 17:41:29,865 (trainer:737) INFO: 7epoch:train:1901-2000batch: iter_time=1.942e-04, forward_time=0.103, loss_ctc=60.870, loss_att=67.242, acc=0.640, loss=65.331, backward_time=0.097, grad_norm=30.102, clip=100.000, loss_scale=2.306e+18, optim_step_time=0.030, optim0_lr0=8.078e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 17:42:10,433 (trainer:737) INFO: 7epoch:train:2001-2100batch: iter_time=2.115e-04, forward_time=0.102, loss_ctc=52.818, loss_att=48.013, acc=0.666, loss=49.454, backward_time=0.096, grad_norm=28.685, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.073e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-12 17:42:51,166 (trainer:737) INFO: 7epoch:train:2101-2200batch: iter_time=1.911e-04, forward_time=0.103, loss_ctc=53.465, loss_att=62.222, acc=0.645, loss=59.595, backward_time=0.097, grad_norm=26.754, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.069e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 17:43:32,932 (trainer:737) INFO: 7epoch:train:2201-2300batch: iter_time=1.858e-04, forward_time=0.108, loss_ctc=50.982, loss_att=60.754, acc=0.667, loss=57.822, backward_time=0.098, grad_norm=26.477, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.065e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 17:44:16,250 (trainer:737) INFO: 7epoch:train:2301-2400batch: iter_time=1.823e-04, forward_time=0.112, loss_ctc=55.490, loss_att=62.342, acc=0.660, loss=60.286, backward_time=0.109, grad_norm=31.221, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.031, optim0_lr0=8.060e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-12 17:44:57,253 (trainer:737) INFO: 7epoch:train:2401-2500batch: iter_time=1.824e-04, forward_time=0.104, loss_ctc=51.922, loss_att=60.921, acc=0.675, loss=58.221, backward_time=0.097, grad_norm=27.925, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.056e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 17:45:04,751 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 17:45:24,113 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 17:45:27,762 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 17:45:27,762 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 17:45:27,765 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 17:50:17,053 (trainer:737) INFO: 7epoch:train:2501-2600batch: iter_time=2.729, forward_time=0.112, loss_ctc=58.256, loss_att=61.582, acc=0.670, loss=60.584, backward_time=0.100, grad_norm=28.400, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.052e-04, train_time=3.198 +[gpuc02:0/16] 2024-01-12 17:50:58,085 (trainer:737) INFO: 7epoch:train:2601-2700batch: iter_time=1.704e-04, forward_time=0.105, loss_ctc=72.333, loss_att=77.078, acc=0.646, loss=75.655, backward_time=0.099, grad_norm=34.381, clip=98.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.047e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 17:51:39,185 (trainer:737) INFO: 7epoch:train:2701-2800batch: iter_time=1.529e-04, forward_time=0.105, loss_ctc=56.943, loss_att=71.675, acc=0.666, loss=67.255, backward_time=0.099, grad_norm=28.892, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.043e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 17:52:22,076 (trainer:737) INFO: 7epoch:train:2801-2900batch: iter_time=1.830e-04, forward_time=0.114, loss_ctc=61.532, loss_att=71.109, acc=0.671, loss=68.236, backward_time=0.100, grad_norm=32.083, clip=99.000, loss_scale=4.612e+18, optim_step_time=0.032, optim0_lr0=8.039e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-12 17:53:03,208 (trainer:737) INFO: 7epoch:train:2901-3000batch: iter_time=1.693e-04, forward_time=0.103, loss_ctc=55.662, loss_att=62.126, acc=0.627, loss=60.187, backward_time=0.097, grad_norm=33.827, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.034e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 17:53:44,189 (trainer:737) INFO: 7epoch:train:3001-3100batch: iter_time=2.048e-04, forward_time=0.103, loss_ctc=55.860, loss_att=61.398, acc=0.654, loss=59.737, backward_time=0.097, grad_norm=30.257, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.030e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 17:54:24,983 (trainer:737) INFO: 7epoch:train:3101-3200batch: iter_time=1.713e-04, forward_time=0.104, loss_ctc=52.582, loss_att=53.719, acc=0.679, loss=53.378, backward_time=0.097, grad_norm=25.827, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.026e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 17:55:06,070 (trainer:737) INFO: 7epoch:train:3201-3300batch: iter_time=1.664e-04, forward_time=0.104, loss_ctc=64.364, loss_att=62.127, acc=0.662, loss=62.798, backward_time=0.098, grad_norm=31.762, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.021e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 17:55:47,034 (trainer:737) INFO: 7epoch:train:3301-3400batch: iter_time=1.967e-04, forward_time=0.102, loss_ctc=48.348, loss_att=51.665, acc=0.634, loss=50.670, backward_time=0.096, grad_norm=26.420, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.017e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 17:56:27,680 (trainer:737) INFO: 7epoch:train:3401-3500batch: iter_time=1.617e-04, forward_time=0.103, loss_ctc=46.857, loss_att=58.903, acc=0.668, loss=55.289, backward_time=0.097, grad_norm=25.856, clip=99.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.013e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 17:57:08,896 (trainer:737) INFO: 7epoch:train:3501-3600batch: iter_time=1.816e-04, forward_time=0.106, loss_ctc=54.471, loss_att=61.483, acc=0.650, loss=59.380, backward_time=0.098, grad_norm=30.009, clip=99.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.008e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 17:57:49,822 (trainer:737) INFO: 7epoch:train:3601-3700batch: iter_time=1.621e-04, forward_time=0.104, loss_ctc=55.088, loss_att=67.660, acc=0.650, loss=63.888, backward_time=0.098, grad_norm=28.069, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.004e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 17:58:16,010 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 17:58:35,306 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 17:58:39,072 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 17:58:39,072 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 17:58:39,075 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 18:04:02,944 (trainer:737) INFO: 7epoch:train:3701-3800batch: iter_time=2.691, forward_time=0.104, loss_ctc=55.788, loss_att=53.368, acc=0.700, loss=54.094, backward_time=0.097, grad_norm=50.538, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=8.000e-04, train_time=3.731 +[gpuc02:0/16] 2024-01-12 18:04:43,904 (trainer:737) INFO: 7epoch:train:3801-3900batch: iter_time=1.619e-04, forward_time=0.105, loss_ctc=57.853, loss_att=66.747, acc=0.649, loss=64.079, backward_time=0.098, grad_norm=28.815, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.029, optim0_lr0=7.996e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:05:24,815 (trainer:737) INFO: 7epoch:train:3901-4000batch: iter_time=1.859e-04, forward_time=0.105, loss_ctc=65.228, loss_att=70.179, acc=0.670, loss=68.694, backward_time=0.097, grad_norm=30.584, clip=100.000, loss_scale=4.612e+18, optim_step_time=0.030, optim0_lr0=7.991e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:06:05,896 (trainer:737) INFO: 7epoch:train:4001-4100batch: iter_time=1.647e-04, forward_time=0.106, loss_ctc=65.961, loss_att=70.775, acc=0.664, loss=69.330, backward_time=0.098, grad_norm=34.275, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.987e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 18:06:46,869 (trainer:737) INFO: 7epoch:train:4101-4200batch: iter_time=2.246e-04, forward_time=0.104, loss_ctc=58.158, loss_att=66.101, acc=0.653, loss=63.718, backward_time=0.097, grad_norm=33.384, clip=99.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.983e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:07:27,816 (trainer:737) INFO: 7epoch:train:4201-4300batch: iter_time=2.135e-04, forward_time=0.104, loss_ctc=51.102, loss_att=60.356, acc=0.643, loss=57.580, backward_time=0.096, grad_norm=69.630, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.979e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:08:08,588 (trainer:737) INFO: 7epoch:train:4301-4400batch: iter_time=1.959e-04, forward_time=0.104, loss_ctc=53.146, loss_att=53.080, acc=0.685, loss=53.100, backward_time=0.096, grad_norm=26.421, clip=99.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.974e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:08:49,394 (trainer:737) INFO: 7epoch:train:4401-4500batch: iter_time=1.874e-04, forward_time=0.105, loss_ctc=59.594, loss_att=65.043, acc=0.646, loss=63.408, backward_time=0.097, grad_norm=31.591, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.970e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:09:29,975 (trainer:737) INFO: 7epoch:train:4501-4600batch: iter_time=2.038e-04, forward_time=0.103, loss_ctc=51.237, loss_att=46.441, acc=0.670, loss=47.880, backward_time=0.095, grad_norm=26.814, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.966e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 18:10:11,443 (trainer:737) INFO: 7epoch:train:4601-4700batch: iter_time=2.094e-04, forward_time=0.104, loss_ctc=51.595, loss_att=60.214, acc=0.645, loss=57.628, backward_time=0.096, grad_norm=26.694, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.029, optim0_lr0=7.962e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 18:10:52,373 (trainer:737) INFO: 7epoch:train:4701-4800batch: iter_time=2.129e-04, forward_time=0.105, loss_ctc=49.579, loss_att=60.876, acc=0.658, loss=57.487, backward_time=0.097, grad_norm=33.306, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.958e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:11:33,437 (trainer:737) INFO: 7epoch:train:4801-4900batch: iter_time=2.081e-04, forward_time=0.104, loss_ctc=54.154, loss_att=60.493, acc=0.661, loss=58.592, backward_time=0.097, grad_norm=29.011, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.953e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:12:14,305 (trainer:737) INFO: 7epoch:train:4901-5000batch: iter_time=1.844e-04, forward_time=0.104, loss_ctc=50.968, loss_att=59.571, acc=0.670, loss=56.990, backward_time=0.097, grad_norm=26.433, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.949e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:12:21,826 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 18:12:41,080 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 18:12:44,615 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 18:12:44,615 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 18:12:44,618 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 18:17:38,356 (trainer:737) INFO: 7epoch:train:5001-5100batch: iter_time=2.659, forward_time=0.104, loss_ctc=57.750, loss_att=57.643, acc=0.679, loss=57.675, backward_time=0.098, grad_norm=31.269, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.945e-04, train_time=3.240 +[gpuc02:0/16] 2024-01-12 18:18:19,387 (trainer:737) INFO: 7epoch:train:5101-5200batch: iter_time=1.454e-04, forward_time=0.105, loss_ctc=70.182, loss_att=71.298, acc=0.658, loss=70.963, backward_time=0.098, grad_norm=32.290, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.941e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:19:00,956 (trainer:737) INFO: 7epoch:train:5201-5300batch: iter_time=1.523e-04, forward_time=0.105, loss_ctc=55.539, loss_att=69.382, acc=0.675, loss=65.229, backward_time=0.098, grad_norm=28.138, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.937e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 18:19:41,882 (trainer:737) INFO: 7epoch:train:5301-5400batch: iter_time=1.581e-04, forward_time=0.105, loss_ctc=61.119, loss_att=69.396, acc=0.677, loss=66.913, backward_time=0.098, grad_norm=31.361, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.933e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:20:22,457 (trainer:737) INFO: 7epoch:train:5401-5500batch: iter_time=1.557e-04, forward_time=0.104, loss_ctc=53.686, loss_att=58.484, acc=0.638, loss=57.045, backward_time=0.097, grad_norm=33.032, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.928e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 18:21:03,371 (trainer:737) INFO: 7epoch:train:5501-5600batch: iter_time=1.809e-04, forward_time=0.104, loss_ctc=55.009, loss_att=60.249, acc=0.659, loss=58.677, backward_time=0.097, grad_norm=28.117, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.924e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:21:44,153 (trainer:737) INFO: 7epoch:train:5601-5700batch: iter_time=1.650e-04, forward_time=0.104, loss_ctc=52.040, loss_att=53.362, acc=0.684, loss=52.965, backward_time=0.097, grad_norm=25.651, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.920e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:22:25,027 (trainer:737) INFO: 7epoch:train:5701-5800batch: iter_time=1.689e-04, forward_time=0.105, loss_ctc=63.158, loss_att=60.691, acc=0.666, loss=61.431, backward_time=0.098, grad_norm=31.411, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.916e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:23:05,512 (trainer:737) INFO: 7epoch:train:5801-5900batch: iter_time=1.494e-04, forward_time=0.103, loss_ctc=47.398, loss_att=50.671, acc=0.640, loss=49.689, backward_time=0.096, grad_norm=27.490, clip=100.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.912e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-12 18:23:46,389 (trainer:737) INFO: 7epoch:train:5901-6000batch: iter_time=1.873e-04, forward_time=0.104, loss_ctc=46.661, loss_att=57.037, acc=0.674, loss=53.924, backward_time=0.097, grad_norm=27.260, clip=99.000, loss_scale=9.223e+18, optim_step_time=0.030, optim0_lr0=7.908e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:24:27,401 (trainer:737) INFO: 7epoch:train:6001-6100batch: iter_time=1.513e-04, forward_time=0.104, loss_ctc=53.558, loss_att=60.444, acc=0.654, loss=58.378, backward_time=0.097, grad_norm=28.390, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.904e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:25:08,187 (trainer:737) INFO: 7epoch:train:6101-6200batch: iter_time=1.591e-04, forward_time=0.105, loss_ctc=53.827, loss_att=66.219, acc=0.654, loss=62.501, backward_time=0.097, grad_norm=27.082, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.899e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:25:38,788 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 18:25:58,918 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 18:26:02,531 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 18:26:02,531 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 18:26:02,534 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 18:30:23,084 (trainer:737) INFO: 7epoch:train:6201-6300batch: iter_time=2.734, forward_time=0.105, loss_ctc=55.130, loss_att=52.201, acc=0.703, loss=53.079, backward_time=0.097, grad_norm=27.963, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.895e-04, train_time=3.149 +[gpuc02:0/16] 2024-01-12 18:31:04,242 (trainer:737) INFO: 7epoch:train:6301-6400batch: iter_time=1.919e-04, forward_time=0.105, loss_ctc=56.281, loss_att=64.862, acc=0.655, loss=62.288, backward_time=0.097, grad_norm=29.385, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.891e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 18:31:45,470 (trainer:737) INFO: 7epoch:train:6401-6500batch: iter_time=2.079e-04, forward_time=0.105, loss_ctc=65.248, loss_att=68.485, acc=0.675, loss=67.514, backward_time=0.097, grad_norm=33.509, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.887e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 18:32:26,512 (trainer:737) INFO: 7epoch:train:6501-6600batch: iter_time=1.907e-04, forward_time=0.106, loss_ctc=65.303, loss_att=71.402, acc=0.666, loss=69.572, backward_time=0.099, grad_norm=31.381, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.883e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:33:07,187 (trainer:737) INFO: 7epoch:train:6601-6700batch: iter_time=2.240e-04, forward_time=0.103, loss_ctc=57.445, loss_att=65.438, acc=0.657, loss=63.040, backward_time=0.097, grad_norm=33.819, clip=99.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.879e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:33:47,770 (trainer:737) INFO: 7epoch:train:6701-6800batch: iter_time=2.254e-04, forward_time=0.104, loss_ctc=49.912, loss_att=59.550, acc=0.648, loss=56.658, backward_time=0.096, grad_norm=27.904, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.875e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 18:34:28,407 (trainer:737) INFO: 7epoch:train:6801-6900batch: iter_time=2.118e-04, forward_time=0.104, loss_ctc=52.243, loss_att=51.842, acc=0.692, loss=51.962, backward_time=0.096, grad_norm=25.271, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.029, optim0_lr0=7.871e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 18:35:09,132 (trainer:737) INFO: 7epoch:train:6901-7000batch: iter_time=2.103e-04, forward_time=0.104, loss_ctc=58.113, loss_att=63.933, acc=0.651, loss=62.187, backward_time=0.097, grad_norm=29.425, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.867e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:35:50,130 (trainer:737) INFO: 7epoch:train:7001-7100batch: iter_time=2.117e-04, forward_time=0.106, loss_ctc=50.292, loss_att=46.478, acc=0.672, loss=47.622, backward_time=0.096, grad_norm=27.109, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.029, optim0_lr0=7.863e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:36:31,295 (trainer:737) INFO: 7epoch:train:7101-7200batch: iter_time=2.201e-04, forward_time=0.104, loss_ctc=51.627, loss_att=59.311, acc=0.650, loss=57.006, backward_time=0.096, grad_norm=27.860, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.859e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 18:37:12,023 (trainer:737) INFO: 7epoch:train:7201-7300batch: iter_time=2.126e-04, forward_time=0.104, loss_ctc=48.602, loss_att=59.122, acc=0.664, loss=55.966, backward_time=0.096, grad_norm=25.255, clip=99.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.855e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:37:52,719 (trainer:737) INFO: 7epoch:train:7301-7400batch: iter_time=1.848e-04, forward_time=0.104, loss_ctc=52.932, loss_att=58.589, acc=0.667, loss=56.892, backward_time=0.096, grad_norm=29.292, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.851e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:38:33,390 (trainer:737) INFO: 7epoch:train:7401-7500batch: iter_time=1.690e-04, forward_time=0.104, loss_ctc=50.338, loss_att=58.646, acc=0.675, loss=56.153, backward_time=0.096, grad_norm=27.961, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.847e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 18:38:41,249 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 18:39:00,660 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 18:39:04,335 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 18:39:04,335 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 18:39:04,339 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 18:43:47,817 (trainer:737) INFO: 7epoch:train:7501-7600batch: iter_time=2.683, forward_time=0.105, loss_ctc=55.875, loss_att=64.427, acc=0.681, loss=61.861, backward_time=0.099, grad_norm=28.921, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.843e-04, train_time=3.144 +[gpuc02:0/16] 2024-01-12 18:44:29,362 (trainer:737) INFO: 7epoch:train:7601-7700batch: iter_time=1.167e-04, forward_time=0.106, loss_ctc=69.397, loss_att=75.769, acc=0.671, loss=73.858, backward_time=0.099, grad_norm=31.825, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.839e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 18:45:10,803 (trainer:737) INFO: 7epoch:train:7701-7800batch: iter_time=1.433e-04, forward_time=0.105, loss_ctc=54.889, loss_att=72.413, acc=0.680, loss=67.156, backward_time=0.099, grad_norm=28.244, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.835e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 18:45:51,825 (trainer:737) INFO: 7epoch:train:7801-7900batch: iter_time=1.500e-04, forward_time=0.104, loss_ctc=60.043, loss_att=71.025, acc=0.682, loss=67.730, backward_time=0.098, grad_norm=30.262, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.831e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:46:32,512 (trainer:737) INFO: 7epoch:train:7901-8000batch: iter_time=1.669e-04, forward_time=0.103, loss_ctc=53.095, loss_att=60.660, acc=0.644, loss=58.390, backward_time=0.097, grad_norm=33.651, clip=100.000, loss_scale=1.845e+19, optim_step_time=0.030, optim0_lr0=7.827e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:47:13,520 (trainer:737) INFO: 7epoch:train:8001-8100batch: iter_time=1.882e-04, forward_time=0.104, loss_ctc=53.961, loss_att=61.019, acc=0.667, loss=58.902, backward_time=0.097, grad_norm=30.347, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.823e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:47:54,363 (trainer:737) INFO: 7epoch:train:8101-8200batch: iter_time=2.197e-04, forward_time=0.104, loss_ctc=51.324, loss_att=56.431, acc=0.685, loss=54.899, backward_time=0.097, grad_norm=25.015, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.819e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:48:35,821 (trainer:737) INFO: 7epoch:train:8201-8300batch: iter_time=2.103e-04, forward_time=0.105, loss_ctc=61.763, loss_att=60.992, acc=0.669, loss=61.223, backward_time=0.097, grad_norm=65.184, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.815e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 18:49:16,852 (trainer:737) INFO: 7epoch:train:8301-8400batch: iter_time=2.299e-04, forward_time=0.103, loss_ctc=46.677, loss_att=51.675, acc=0.641, loss=50.175, backward_time=0.095, grad_norm=26.419, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.811e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:49:58,040 (trainer:737) INFO: 7epoch:train:8401-8500batch: iter_time=1.989e-04, forward_time=0.104, loss_ctc=45.356, loss_att=58.744, acc=0.683, loss=54.728, backward_time=0.097, grad_norm=24.510, clip=99.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.807e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 18:50:38,846 (trainer:737) INFO: 7epoch:train:8501-8600batch: iter_time=1.875e-04, forward_time=0.105, loss_ctc=52.657, loss_att=60.646, acc=0.662, loss=58.249, backward_time=0.097, grad_norm=29.101, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.803e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:51:19,668 (trainer:737) INFO: 7epoch:train:8601-8700batch: iter_time=1.968e-04, forward_time=0.104, loss_ctc=53.191, loss_att=65.326, acc=0.673, loss=61.686, backward_time=0.097, grad_norm=28.003, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.799e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 18:51:45,076 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 18:52:04,407 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 18:52:08,037 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 18:52:08,037 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 18:52:08,041 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 18:56:26,434 (trainer:737) INFO: 7epoch:train:8701-8800batch: iter_time=2.644, forward_time=0.104, loss_ctc=53.680, loss_att=56.642, acc=0.705, loss=55.754, backward_time=0.097, grad_norm=27.877, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.795e-04, train_time=3.067 +[gpuc02:0/16] 2024-01-12 18:57:07,451 (trainer:737) INFO: 7epoch:train:8801-8900batch: iter_time=1.794e-04, forward_time=0.105, loss_ctc=55.523, loss_att=66.623, acc=0.670, loss=63.293, backward_time=0.098, grad_norm=28.236, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.791e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:57:48,408 (trainer:737) INFO: 7epoch:train:8901-9000batch: iter_time=1.774e-04, forward_time=0.105, loss_ctc=63.377, loss_att=68.725, acc=0.690, loss=67.121, backward_time=0.098, grad_norm=30.196, clip=99.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.787e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 18:58:29,435 (trainer:737) INFO: 7epoch:train:9001-9100batch: iter_time=1.771e-04, forward_time=0.105, loss_ctc=64.054, loss_att=70.991, acc=0.679, loss=68.910, backward_time=0.099, grad_norm=31.080, clip=99.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.783e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 18:59:10,202 (trainer:737) INFO: 7epoch:train:9101-9200batch: iter_time=2.100e-04, forward_time=0.104, loss_ctc=55.718, loss_att=66.928, acc=0.663, loss=63.565, backward_time=0.097, grad_norm=33.397, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.779e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 18:59:51,455 (trainer:737) INFO: 7epoch:train:9201-9300batch: iter_time=1.991e-04, forward_time=0.104, loss_ctc=49.402, loss_att=59.909, acc=0.656, loss=56.757, backward_time=0.097, grad_norm=29.664, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.775e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 19:00:32,177 (trainer:737) INFO: 7epoch:train:9301-9400batch: iter_time=1.686e-04, forward_time=0.104, loss_ctc=51.859, loss_att=54.032, acc=0.697, loss=53.380, backward_time=0.097, grad_norm=24.254, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.771e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:01:12,988 (trainer:737) INFO: 7epoch:train:9401-9500batch: iter_time=1.959e-04, forward_time=0.104, loss_ctc=57.929, loss_att=64.480, acc=0.653, loss=62.515, backward_time=0.097, grad_norm=28.376, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.767e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 19:01:53,537 (trainer:737) INFO: 7epoch:train:9501-9600batch: iter_time=2.330e-04, forward_time=0.103, loss_ctc=49.738, loss_att=46.265, acc=0.679, loss=47.307, backward_time=0.096, grad_norm=27.493, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.763e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-12 19:02:34,576 (trainer:737) INFO: 7epoch:train:9601-9700batch: iter_time=2.294e-04, forward_time=0.104, loss_ctc=50.137, loss_att=59.688, acc=0.657, loss=56.823, backward_time=0.096, grad_norm=26.181, clip=99.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.759e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:03:15,620 (trainer:737) INFO: 7epoch:train:9701-9800batch: iter_time=2.351e-04, forward_time=0.104, loss_ctc=48.351, loss_att=59.595, acc=0.676, loss=56.221, backward_time=0.097, grad_norm=26.326, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.756e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:03:56,608 (trainer:737) INFO: 7epoch:train:9801-9900batch: iter_time=2.261e-04, forward_time=0.104, loss_ctc=52.471, loss_att=59.898, acc=0.672, loss=57.670, backward_time=0.097, grad_norm=29.002, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.752e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:04:37,341 (trainer:737) INFO: 7epoch:train:9901-10000batch: iter_time=1.803e-04, forward_time=0.104, loss_ctc=49.376, loss_att=59.677, acc=0.685, loss=56.587, backward_time=0.097, grad_norm=27.584, clip=100.000, loss_scale=3.689e+19, optim_step_time=0.029, optim0_lr0=7.748e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:04:43,390 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 19:05:03,035 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 19:05:06,843 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 19:05:06,844 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 19:05:06,847 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 19:09:48,569 (trainer:737) INFO: 7epoch:train:10001-10100batch: iter_time=2.639, forward_time=0.105, loss_ctc=54.955, loss_att=58.265, acc=0.693, loss=57.272, backward_time=0.097, grad_norm=28.111, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.744e-04, train_time=3.112 +[gpuc02:0/16] 2024-01-12 19:10:29,657 (trainer:737) INFO: 7epoch:train:10101-10200batch: iter_time=1.730e-04, forward_time=0.106, loss_ctc=68.160, loss_att=69.738, acc=0.683, loss=69.265, backward_time=0.098, grad_norm=32.426, clip=99.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.740e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:11:10,785 (trainer:737) INFO: 7epoch:train:10201-10300batch: iter_time=1.708e-04, forward_time=0.106, loss_ctc=54.793, loss_att=69.509, acc=0.687, loss=65.094, backward_time=0.098, grad_norm=27.763, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.736e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:11:51,821 (trainer:737) INFO: 7epoch:train:10301-10400batch: iter_time=1.884e-04, forward_time=0.105, loss_ctc=60.181, loss_att=69.279, acc=0.687, loss=66.549, backward_time=0.098, grad_norm=31.041, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.732e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:12:32,494 (trainer:737) INFO: 7epoch:train:10401-10500batch: iter_time=2.013e-04, forward_time=0.103, loss_ctc=52.113, loss_att=59.051, acc=0.651, loss=56.969, backward_time=0.096, grad_norm=33.807, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.729e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:13:13,869 (trainer:737) INFO: 7epoch:train:10501-10600batch: iter_time=2.010e-04, forward_time=0.104, loss_ctc=53.234, loss_att=59.907, acc=0.671, loss=57.905, backward_time=0.097, grad_norm=27.439, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.725e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 19:13:55,012 (trainer:737) INFO: 7epoch:train:10601-10700batch: iter_time=1.905e-04, forward_time=0.104, loss_ctc=50.909, loss_att=55.056, acc=0.689, loss=53.812, backward_time=0.097, grad_norm=25.601, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.721e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:14:35,917 (trainer:737) INFO: 7epoch:train:10701-10800batch: iter_time=2.014e-04, forward_time=0.105, loss_ctc=61.222, loss_att=59.594, acc=0.674, loss=60.082, backward_time=0.097, grad_norm=32.860, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.717e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:15:16,432 (trainer:737) INFO: 7epoch:train:10801-10900batch: iter_time=2.304e-04, forward_time=0.103, loss_ctc=46.570, loss_att=51.210, acc=0.644, loss=49.818, backward_time=0.096, grad_norm=27.468, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.713e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-12 19:15:57,171 (trainer:737) INFO: 7epoch:train:10901-11000batch: iter_time=1.586e-04, forward_time=0.103, loss_ctc=44.678, loss_att=56.221, acc=0.691, loss=52.758, backward_time=0.096, grad_norm=24.864, clip=99.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.709e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:16:38,258 (trainer:737) INFO: 7epoch:train:11001-11100batch: iter_time=1.548e-04, forward_time=0.104, loss_ctc=52.013, loss_att=59.761, acc=0.667, loss=57.437, backward_time=0.097, grad_norm=29.308, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.706e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:17:19,285 (trainer:737) INFO: 7epoch:train:11101-11200batch: iter_time=1.793e-04, forward_time=0.107, loss_ctc=53.565, loss_att=64.583, acc=0.676, loss=61.278, backward_time=0.097, grad_norm=29.113, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.702e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:17:47,018 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 19:18:06,851 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 19:18:10,507 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 19:18:10,508 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 19:18:10,511 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 19:22:40,258 (trainer:737) INFO: 7epoch:train:11201-11300batch: iter_time=2.714, forward_time=0.105, loss_ctc=52.759, loss_att=54.999, acc=0.708, loss=54.327, backward_time=0.097, grad_norm=27.421, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.698e-04, train_time=3.209 +[gpuc02:0/16] 2024-01-12 19:23:21,146 (trainer:737) INFO: 7epoch:train:11301-11400batch: iter_time=1.800e-04, forward_time=0.105, loss_ctc=54.935, loss_att=70.698, acc=0.650, loss=65.969, backward_time=0.098, grad_norm=30.708, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.694e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:24:02,062 (trainer:737) INFO: 7epoch:train:11401-11500batch: iter_time=1.726e-04, forward_time=0.106, loss_ctc=61.517, loss_att=69.636, acc=0.676, loss=67.200, backward_time=0.098, grad_norm=32.352, clip=99.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.690e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:24:43,097 (trainer:737) INFO: 7epoch:train:11501-11600batch: iter_time=1.699e-04, forward_time=0.106, loss_ctc=62.996, loss_att=70.224, acc=0.672, loss=68.056, backward_time=0.098, grad_norm=31.538, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.687e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:25:24,331 (trainer:737) INFO: 7epoch:train:11601-11700batch: iter_time=1.747e-04, forward_time=0.104, loss_ctc=55.201, loss_att=65.620, acc=0.661, loss=62.494, backward_time=0.096, grad_norm=39.774, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.030, optim0_lr0=7.683e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 19:26:04,984 (trainer:737) INFO: 7epoch:train:11701-11800batch: iter_time=1.830e-04, forward_time=0.105, loss_ctc=49.111, loss_att=59.412, acc=0.650, loss=56.321, backward_time=0.096, grad_norm=29.186, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.679e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 19:26:45,656 (trainer:737) INFO: 7epoch:train:11801-11900batch: iter_time=1.807e-04, forward_time=0.104, loss_ctc=51.173, loss_att=52.171, acc=0.692, loss=51.871, backward_time=0.096, grad_norm=26.355, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.675e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 19:27:27,308 (trainer:737) INFO: 7epoch:train:11901-12000batch: iter_time=1.906e-04, forward_time=0.105, loss_ctc=56.512, loss_att=63.394, acc=0.655, loss=61.329, backward_time=0.097, grad_norm=30.193, clip=100.000, loss_scale=7.379e+19, optim_step_time=0.029, optim0_lr0=7.671e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 19:28:07,830 (trainer:737) INFO: 7epoch:train:12001-12100batch: iter_time=2.076e-04, forward_time=0.104, loss_ctc=48.830, loss_att=45.094, acc=0.679, loss=46.215, backward_time=0.095, grad_norm=27.383, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.668e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-12 19:28:48,789 (trainer:737) INFO: 7epoch:train:12101-12200batch: iter_time=1.704e-04, forward_time=0.104, loss_ctc=49.912, loss_att=59.217, acc=0.653, loss=56.425, backward_time=0.096, grad_norm=27.111, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.664e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:29:29,498 (trainer:737) INFO: 7epoch:train:12201-12300batch: iter_time=1.765e-04, forward_time=0.104, loss_ctc=47.512, loss_att=59.518, acc=0.667, loss=55.916, backward_time=0.096, grad_norm=26.632, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.660e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:30:10,228 (trainer:737) INFO: 7epoch:train:12301-12400batch: iter_time=1.798e-04, forward_time=0.105, loss_ctc=51.693, loss_att=59.162, acc=0.670, loss=56.921, backward_time=0.096, grad_norm=28.572, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.656e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:30:50,882 (trainer:737) INFO: 7epoch:train:12401-12500batch: iter_time=1.658e-04, forward_time=0.104, loss_ctc=49.653, loss_att=58.719, acc=0.676, loss=55.999, backward_time=0.096, grad_norm=30.387, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.653e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 19:30:57,740 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 19:31:16,769 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 19:31:20,482 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 19:31:20,482 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 19:31:20,485 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 19:35:56,882 (trainer:737) INFO: 7epoch:train:12501-12600batch: iter_time=2.605, forward_time=0.105, loss_ctc=54.631, loss_att=60.911, acc=0.690, loss=59.027, backward_time=0.098, grad_norm=29.354, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.649e-04, train_time=3.060 +[gpuc02:0/16] 2024-01-12 19:36:38,021 (trainer:737) INFO: 7epoch:train:12601-12700batch: iter_time=1.808e-04, forward_time=0.106, loss_ctc=67.285, loss_att=71.101, acc=0.683, loss=69.957, backward_time=0.099, grad_norm=32.398, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.645e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:37:19,484 (trainer:737) INFO: 7epoch:train:12701-12800batch: iter_time=1.870e-04, forward_time=0.108, loss_ctc=54.080, loss_att=69.977, acc=0.687, loss=65.208, backward_time=0.099, grad_norm=28.989, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.642e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 19:38:00,480 (trainer:737) INFO: 7epoch:train:12801-12900batch: iter_time=2.270e-04, forward_time=0.106, loss_ctc=58.722, loss_att=69.168, acc=0.689, loss=66.034, backward_time=0.098, grad_norm=31.651, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.638e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:38:41,207 (trainer:737) INFO: 7epoch:train:12901-13000batch: iter_time=2.538e-04, forward_time=0.104, loss_ctc=51.788, loss_att=58.441, acc=0.654, loss=56.445, backward_time=0.097, grad_norm=32.459, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.634e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 19:39:22,730 (trainer:737) INFO: 7epoch:train:13001-13100batch: iter_time=2.079e-04, forward_time=0.105, loss_ctc=52.889, loss_att=59.129, acc=0.676, loss=57.257, backward_time=0.098, grad_norm=27.068, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.630e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 19:40:03,563 (trainer:737) INFO: 7epoch:train:13101-13200batch: iter_time=1.941e-04, forward_time=0.105, loss_ctc=50.716, loss_att=55.291, acc=0.691, loss=53.918, backward_time=0.098, grad_norm=26.887, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.627e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 19:40:44,478 (trainer:737) INFO: 7epoch:train:13201-13300batch: iter_time=1.852e-04, forward_time=0.105, loss_ctc=60.553, loss_att=59.159, acc=0.676, loss=59.577, backward_time=0.098, grad_norm=32.347, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.623e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:41:24,984 (trainer:737) INFO: 7epoch:train:13301-13400batch: iter_time=1.957e-04, forward_time=0.103, loss_ctc=45.090, loss_att=50.020, acc=0.651, loss=48.541, backward_time=0.097, grad_norm=24.422, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.619e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-12 19:42:05,967 (trainer:737) INFO: 7epoch:train:13401-13500batch: iter_time=2.118e-04, forward_time=0.104, loss_ctc=44.423, loss_att=56.617, acc=0.688, loss=52.959, backward_time=0.097, grad_norm=25.703, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.616e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:42:47,073 (trainer:737) INFO: 7epoch:train:13501-13600batch: iter_time=1.953e-04, forward_time=0.105, loss_ctc=51.148, loss_att=59.196, acc=0.670, loss=56.781, backward_time=0.098, grad_norm=28.553, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.612e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:43:28,344 (trainer:737) INFO: 7epoch:train:13601-13700batch: iter_time=2.135e-04, forward_time=0.104, loss_ctc=52.240, loss_att=65.132, acc=0.673, loss=61.264, backward_time=0.097, grad_norm=27.256, clip=99.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.608e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 19:43:54,921 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 19:44:14,299 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 19:44:17,976 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 19:44:17,976 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 19:44:17,979 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 19:48:34,792 (trainer:737) INFO: 7epoch:train:13701-13800batch: iter_time=2.649, forward_time=0.105, loss_ctc=52.565, loss_att=54.092, acc=0.715, loss=53.634, backward_time=0.098, grad_norm=26.733, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.030, optim0_lr0=7.605e-04, train_time=3.064 +[gpuc02:0/16] 2024-01-12 19:49:15,813 (trainer:737) INFO: 7epoch:train:13801-13900batch: iter_time=1.840e-04, forward_time=0.105, loss_ctc=54.291, loss_att=63.880, acc=0.679, loss=61.003, backward_time=0.097, grad_norm=27.054, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.601e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 19:49:56,895 (trainer:737) INFO: 7epoch:train:13901-14000batch: iter_time=1.824e-04, forward_time=0.105, loss_ctc=63.098, loss_att=67.513, acc=0.696, loss=66.189, backward_time=0.098, grad_norm=31.242, clip=100.000, loss_scale=1.476e+20, optim_step_time=0.029, optim0_lr0=7.597e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:50:38,015 (trainer:737) INFO: 7epoch:train:14001-14100batch: iter_time=2.008e-04, forward_time=0.106, loss_ctc=62.821, loss_att=68.891, acc=0.688, loss=67.070, backward_time=0.098, grad_norm=32.130, clip=99.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.594e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:51:18,792 (trainer:737) INFO: 7epoch:train:14101-14200batch: iter_time=1.984e-04, forward_time=0.104, loss_ctc=53.943, loss_att=65.014, acc=0.670, loss=61.693, backward_time=0.096, grad_norm=31.682, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.590e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 19:51:59,626 (trainer:737) INFO: 7epoch:train:14201-14300batch: iter_time=2.432e-04, forward_time=0.104, loss_ctc=48.589, loss_att=58.804, acc=0.662, loss=55.740, backward_time=0.096, grad_norm=90.691, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.586e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 19:52:40,431 (trainer:737) INFO: 7epoch:train:14301-14400batch: iter_time=1.976e-04, forward_time=0.104, loss_ctc=50.524, loss_att=53.104, acc=0.703, loss=52.330, backward_time=0.096, grad_norm=25.164, clip=99.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.583e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 19:53:21,306 (trainer:737) INFO: 7epoch:train:14401-14500batch: iter_time=2.259e-04, forward_time=0.104, loss_ctc=56.326, loss_att=62.810, acc=0.660, loss=60.865, backward_time=0.096, grad_norm=29.739, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.579e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:54:02,277 (trainer:737) INFO: 7epoch:train:14501-14600batch: iter_time=2.281e-04, forward_time=0.103, loss_ctc=48.126, loss_att=45.327, acc=0.684, loss=46.167, backward_time=0.096, grad_norm=27.158, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.575e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 19:54:43,373 (trainer:737) INFO: 7epoch:train:14601-14700batch: iter_time=2.346e-04, forward_time=0.104, loss_ctc=50.123, loss_att=59.320, acc=0.659, loss=56.561, backward_time=0.096, grad_norm=27.756, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.572e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:55:24,493 (trainer:737) INFO: 7epoch:train:14701-14800batch: iter_time=2.325e-04, forward_time=0.104, loss_ctc=47.322, loss_att=57.702, acc=0.682, loss=54.588, backward_time=0.096, grad_norm=25.712, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.568e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 19:56:05,289 (trainer:737) INFO: 7epoch:train:14801-14900batch: iter_time=2.192e-04, forward_time=0.104, loss_ctc=51.455, loss_att=58.214, acc=0.680, loss=56.186, backward_time=0.096, grad_norm=29.812, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.565e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 19:56:46,114 (trainer:737) INFO: 7epoch:train:14901-15000batch: iter_time=1.983e-04, forward_time=0.104, loss_ctc=48.305, loss_att=58.360, acc=0.692, loss=55.344, backward_time=0.096, grad_norm=25.789, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.029, optim0_lr0=7.561e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 20:16:48,408 (trainer:343) INFO: 7epoch results: [train] iter_time=0.219, forward_time=0.105, loss_ctc=55.217, loss_att=61.686, acc=0.668, loss=59.745, backward_time=0.097, grad_norm=30.352, clip=99.840, loss_scale=5.872e+19, optim_step_time=0.030, optim0_lr0=7.850e-04, train_time=0.637, time=2 hours, 39 minutes and 33.83 seconds, total_count=105000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=73.078, cer_ctc=0.358, loss_att=66.020, acc=0.514, cer=0.424, wer=1.000, loss=68.138, time=19 minutes and 51.53 seconds, total_count=32697, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-12 20:16:53,087 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 20:16:53,090 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/2epoch.pth +[gpuc02:0/16] 2024-01-12 20:16:53,090 (trainer:272) INFO: 8/45epoch started. Estimated time to finish: 4 days, 16 hours and 59 minutes +[gpuc02:0/16] 2024-01-12 20:16:53,099 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 20:17:11,900 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 20:17:15,414 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 20:17:15,414 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-12 20:17:15,417 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 20:21:51,462 (trainer:737) INFO: 8epoch:train:1-100batch: iter_time=2.568, forward_time=0.105, loss_ctc=61.791, loss_att=69.377, acc=0.665, loss=67.101, backward_time=0.099, grad_norm=35.994, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.557e-04, train_time=2.983 +[gpuc02:0/16] 2024-01-12 20:22:32,209 (trainer:737) INFO: 8epoch:train:101-200batch: iter_time=1.276e-04, forward_time=0.104, loss_ctc=49.363, loss_att=51.184, acc=0.713, loss=50.637, backward_time=0.099, grad_norm=26.001, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.554e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 20:23:13,573 (trainer:737) INFO: 8epoch:train:201-300batch: iter_time=1.452e-04, forward_time=0.105, loss_ctc=59.069, loss_att=80.179, acc=0.641, loss=73.846, backward_time=0.100, grad_norm=30.775, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.550e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 20:23:54,271 (trainer:737) INFO: 8epoch:train:301-400batch: iter_time=1.319e-04, forward_time=0.104, loss_ctc=54.135, loss_att=62.385, acc=0.666, loss=59.910, backward_time=0.098, grad_norm=28.109, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.547e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 20:24:35,690 (trainer:737) INFO: 8epoch:train:401-500batch: iter_time=1.328e-04, forward_time=0.105, loss_ctc=59.608, loss_att=60.594, acc=0.692, loss=60.298, backward_time=0.099, grad_norm=30.458, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.543e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 20:25:17,928 (trainer:737) INFO: 8epoch:train:501-600batch: iter_time=1.267e-04, forward_time=0.104, loss_ctc=51.627, loss_att=58.471, acc=0.691, loss=56.418, backward_time=0.098, grad_norm=29.361, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.540e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-12 20:26:00,037 (trainer:737) INFO: 8epoch:train:601-700batch: iter_time=1.316e-04, forward_time=0.109, loss_ctc=61.677, loss_att=69.373, acc=0.651, loss=67.064, backward_time=0.099, grad_norm=32.077, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.032, optim0_lr0=7.536e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-12 20:26:43,683 (trainer:737) INFO: 8epoch:train:701-800batch: iter_time=1.211e-04, forward_time=0.119, loss_ctc=75.047, loss_att=83.572, acc=0.657, loss=81.015, backward_time=0.101, grad_norm=63.891, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.032, optim0_lr0=7.532e-04, train_time=0.436 +[gpuc02:0/16] 2024-01-12 20:27:24,749 (trainer:737) INFO: 8epoch:train:801-900batch: iter_time=1.213e-04, forward_time=0.106, loss_ctc=62.062, loss_att=78.837, acc=0.682, loss=73.804, backward_time=0.100, grad_norm=31.657, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.529e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 20:28:09,159 (trainer:737) INFO: 8epoch:train:901-1000batch: iter_time=1.288e-04, forward_time=0.115, loss_ctc=66.682, loss_att=70.774, acc=0.656, loss=69.546, backward_time=0.102, grad_norm=36.852, clip=100.000, loss_scale=2.951e+20, optim_step_time=0.030, optim0_lr0=7.525e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-12 20:28:50,495 (trainer:737) INFO: 8epoch:train:1001-1100batch: iter_time=1.295e-04, forward_time=0.108, loss_ctc=55.365, loss_att=57.000, acc=0.690, loss=56.510, backward_time=0.098, grad_norm=26.905, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.029, optim0_lr0=7.522e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 20:29:34,882 (trainer:737) INFO: 8epoch:train:1101-1200batch: iter_time=1.215e-04, forward_time=0.111, loss_ctc=62.534, loss_att=61.931, acc=0.682, loss=62.112, backward_time=0.101, grad_norm=33.315, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.029, optim0_lr0=7.518e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-12 20:30:11,098 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 20:30:30,646 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 20:30:34,340 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 20:30:34,340 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-12 20:30:34,343 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 20:35:53,342 (trainer:737) INFO: 8epoch:train:1201-1300batch: iter_time=3.211, forward_time=0.113, loss_ctc=58.451, loss_att=79.349, acc=0.638, loss=73.080, backward_time=0.099, grad_norm=35.043, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.515e-04, train_time=3.784 +[gpuc02:0/16] 2024-01-12 20:36:34,254 (trainer:737) INFO: 8epoch:train:1301-1400batch: iter_time=1.904e-04, forward_time=0.104, loss_ctc=53.066, loss_att=55.106, acc=0.691, loss=54.494, backward_time=0.098, grad_norm=29.372, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.511e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 20:37:15,653 (trainer:737) INFO: 8epoch:train:1401-1500batch: iter_time=1.807e-04, forward_time=0.104, loss_ctc=56.884, loss_att=73.370, acc=0.655, loss=68.424, backward_time=0.098, grad_norm=28.403, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.508e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 20:37:56,408 (trainer:737) INFO: 8epoch:train:1501-1600batch: iter_time=1.739e-04, forward_time=0.103, loss_ctc=51.254, loss_att=60.613, acc=0.674, loss=57.805, backward_time=0.097, grad_norm=27.493, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.504e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 20:38:37,445 (trainer:737) INFO: 8epoch:train:1601-1700batch: iter_time=1.800e-04, forward_time=0.104, loss_ctc=52.974, loss_att=60.563, acc=0.669, loss=58.286, backward_time=0.098, grad_norm=29.698, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.501e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 20:39:18,670 (trainer:737) INFO: 8epoch:train:1701-1800batch: iter_time=1.919e-04, forward_time=0.104, loss_ctc=61.800, loss_att=65.417, acc=0.684, loss=64.332, backward_time=0.099, grad_norm=30.956, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.497e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 20:39:59,398 (trainer:737) INFO: 8epoch:train:1801-1900batch: iter_time=1.723e-04, forward_time=0.103, loss_ctc=48.648, loss_att=56.887, acc=0.667, loss=54.415, backward_time=0.098, grad_norm=28.384, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.494e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 20:40:40,906 (trainer:737) INFO: 8epoch:train:1901-2000batch: iter_time=1.827e-04, forward_time=0.105, loss_ctc=67.915, loss_att=75.885, acc=0.650, loss=73.494, backward_time=0.099, grad_norm=34.804, clip=99.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.490e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 20:41:23,033 (trainer:737) INFO: 8epoch:train:2001-2100batch: iter_time=1.616e-04, forward_time=0.111, loss_ctc=65.745, loss_att=89.762, acc=0.640, loss=82.557, backward_time=0.101, grad_norm=35.196, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.487e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-12 20:42:06,207 (trainer:737) INFO: 8epoch:train:2101-2200batch: iter_time=1.600e-04, forward_time=0.120, loss_ctc=62.104, loss_att=71.916, acc=0.663, loss=68.973, backward_time=0.102, grad_norm=31.919, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.031, optim0_lr0=7.483e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-12 20:42:47,037 (trainer:737) INFO: 8epoch:train:2201-2300batch: iter_time=1.605e-04, forward_time=0.103, loss_ctc=60.475, loss_att=62.819, acc=0.664, loss=62.116, backward_time=0.098, grad_norm=31.159, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.480e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 20:43:27,808 (trainer:737) INFO: 8epoch:train:2301-2400batch: iter_time=1.790e-04, forward_time=0.103, loss_ctc=58.415, loss_att=55.341, acc=0.673, loss=56.263, backward_time=0.097, grad_norm=31.569, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.476e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 20:44:08,639 (trainer:737) INFO: 8epoch:train:2401-2500batch: iter_time=1.628e-04, forward_time=0.104, loss_ctc=58.563, loss_att=66.736, acc=0.672, loss=64.284, backward_time=0.098, grad_norm=30.689, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.473e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 20:44:20,504 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 20:44:40,209 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 20:44:43,993 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 20:44:43,993 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-12 20:44:43,996 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 20:49:41,232 (trainer:737) INFO: 8epoch:train:2501-2600batch: iter_time=2.892, forward_time=0.105, loss_ctc=59.007, loss_att=69.497, acc=0.667, loss=66.350, backward_time=0.098, grad_norm=33.444, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.469e-04, train_time=3.326 +[gpuc02:0/16] 2024-01-12 20:50:22,061 (trainer:737) INFO: 8epoch:train:2601-2700batch: iter_time=1.812e-04, forward_time=0.104, loss_ctc=47.395, loss_att=51.243, acc=0.717, loss=50.089, backward_time=0.097, grad_norm=25.216, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.466e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 20:51:03,013 (trainer:737) INFO: 8epoch:train:2701-2800batch: iter_time=1.918e-04, forward_time=0.104, loss_ctc=56.270, loss_att=77.537, acc=0.649, loss=71.157, backward_time=0.098, grad_norm=29.467, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.462e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 20:51:43,746 (trainer:737) INFO: 8epoch:train:2801-2900batch: iter_time=2.018e-04, forward_time=0.103, loss_ctc=51.984, loss_att=61.834, acc=0.670, loss=58.879, backward_time=0.097, grad_norm=29.545, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.459e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 20:52:24,909 (trainer:737) INFO: 8epoch:train:2901-3000batch: iter_time=1.913e-04, forward_time=0.105, loss_ctc=58.227, loss_att=59.669, acc=0.697, loss=59.237, backward_time=0.098, grad_norm=29.554, clip=100.000, loss_scale=5.903e+20, optim_step_time=0.030, optim0_lr0=7.455e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 20:53:06,026 (trainer:737) INFO: 8epoch:train:3001-3100batch: iter_time=1.885e-04, forward_time=0.103, loss_ctc=50.573, loss_att=57.126, acc=0.697, loss=55.160, backward_time=0.097, grad_norm=27.787, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.452e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 20:53:47,030 (trainer:737) INFO: 8epoch:train:3101-3200batch: iter_time=1.716e-04, forward_time=0.105, loss_ctc=58.413, loss_att=67.982, acc=0.660, loss=65.112, backward_time=0.098, grad_norm=29.939, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.448e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 20:54:28,405 (trainer:737) INFO: 8epoch:train:3201-3300batch: iter_time=1.602e-04, forward_time=0.105, loss_ctc=72.159, loss_att=82.727, acc=0.663, loss=79.557, backward_time=0.099, grad_norm=38.199, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.445e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 20:55:09,834 (trainer:737) INFO: 8epoch:train:3301-3400batch: iter_time=1.521e-04, forward_time=0.105, loss_ctc=59.274, loss_att=77.097, acc=0.691, loss=71.750, backward_time=0.099, grad_norm=29.967, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.031, optim0_lr0=7.441e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 20:55:50,679 (trainer:737) INFO: 8epoch:train:3401-3500batch: iter_time=1.794e-04, forward_time=0.104, loss_ctc=63.117, loss_att=68.718, acc=0.665, loss=67.038, backward_time=0.098, grad_norm=33.827, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.031, optim0_lr0=7.438e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 20:56:32,289 (trainer:737) INFO: 8epoch:train:3501-3600batch: iter_time=1.880e-04, forward_time=0.104, loss_ctc=53.651, loss_att=55.782, acc=0.699, loss=55.143, backward_time=0.097, grad_norm=27.655, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.435e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 20:57:13,443 (trainer:737) INFO: 8epoch:train:3601-3700batch: iter_time=1.557e-04, forward_time=0.104, loss_ctc=59.954, loss_att=59.912, acc=0.689, loss=59.925, backward_time=0.098, grad_norm=31.401, clip=99.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.431e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 20:57:40,358 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 20:57:59,459 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 20:58:03,046 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 20:58:03,046 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 20:58:03,049 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 21:02:55,094 (trainer:737) INFO: 8epoch:train:3701-3800batch: iter_time=2.960, forward_time=0.109, loss_ctc=56.587, loss_att=75.553, acc=0.644, loss=69.863, backward_time=0.099, grad_norm=33.670, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.428e-04, train_time=3.416 +[gpuc02:0/16] 2024-01-12 21:03:36,169 (trainer:737) INFO: 8epoch:train:3801-3900batch: iter_time=1.692e-04, forward_time=0.104, loss_ctc=51.052, loss_att=53.006, acc=0.693, loss=52.420, backward_time=0.097, grad_norm=29.854, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.424e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 21:04:17,070 (trainer:737) INFO: 8epoch:train:3901-4000batch: iter_time=1.938e-04, forward_time=0.104, loss_ctc=55.978, loss_att=71.079, acc=0.661, loss=66.549, backward_time=0.098, grad_norm=29.932, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.421e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:04:57,979 (trainer:737) INFO: 8epoch:train:4001-4100batch: iter_time=1.744e-04, forward_time=0.103, loss_ctc=50.433, loss_att=59.604, acc=0.677, loss=56.852, backward_time=0.096, grad_norm=27.319, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.418e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:05:39,481 (trainer:737) INFO: 8epoch:train:4101-4200batch: iter_time=1.630e-04, forward_time=0.106, loss_ctc=52.612, loss_att=59.190, acc=0.671, loss=57.217, backward_time=0.097, grad_norm=29.339, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.414e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 21:06:20,861 (trainer:737) INFO: 8epoch:train:4201-4300batch: iter_time=2.027e-04, forward_time=0.105, loss_ctc=60.759, loss_att=64.595, acc=0.687, loss=63.444, backward_time=0.098, grad_norm=30.736, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.411e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 21:07:01,543 (trainer:737) INFO: 8epoch:train:4301-4400batch: iter_time=1.787e-04, forward_time=0.104, loss_ctc=47.463, loss_att=54.939, acc=0.674, loss=52.696, backward_time=0.096, grad_norm=26.916, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.407e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:07:42,432 (trainer:737) INFO: 8epoch:train:4401-4500batch: iter_time=2.146e-04, forward_time=0.105, loss_ctc=66.517, loss_att=75.093, acc=0.654, loss=72.521, backward_time=0.098, grad_norm=35.070, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.404e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:08:23,494 (trainer:737) INFO: 8epoch:train:4501-4600batch: iter_time=1.868e-04, forward_time=0.105, loss_ctc=64.017, loss_att=87.381, acc=0.646, loss=80.372, backward_time=0.098, grad_norm=33.405, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.401e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:09:04,608 (trainer:737) INFO: 8epoch:train:4601-4700batch: iter_time=1.927e-04, forward_time=0.104, loss_ctc=61.200, loss_att=70.710, acc=0.667, loss=67.857, backward_time=0.098, grad_norm=31.480, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.397e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 21:09:45,667 (trainer:737) INFO: 8epoch:train:4701-4800batch: iter_time=1.835e-04, forward_time=0.104, loss_ctc=58.831, loss_att=62.298, acc=0.665, loss=61.258, backward_time=0.097, grad_norm=31.758, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.394e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:10:26,399 (trainer:737) INFO: 8epoch:train:4801-4900batch: iter_time=2.041e-04, forward_time=0.103, loss_ctc=56.473, loss_att=54.252, acc=0.680, loss=54.918, backward_time=0.097, grad_norm=31.250, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.390e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:11:07,471 (trainer:737) INFO: 8epoch:train:4901-5000batch: iter_time=1.879e-04, forward_time=0.104, loss_ctc=57.184, loss_att=65.808, acc=0.677, loss=63.221, backward_time=0.098, grad_norm=30.420, clip=100.000, loss_scale=1.181e+21, optim_step_time=0.030, optim0_lr0=7.387e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:11:17,192 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-12 21:11:36,367 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 21:11:40,028 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 21:11:40,028 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 21:11:40,032 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 21:16:55,514 (trainer:737) INFO: 8epoch:train:5001-5100batch: iter_time=3.035, forward_time=0.104, loss_ctc=57.604, loss_att=68.555, acc=0.670, loss=65.270, backward_time=0.100, grad_norm=33.609, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.384e-04, train_time=3.480 +[gpuc02:0/16] 2024-01-12 21:17:36,320 (trainer:737) INFO: 8epoch:train:5101-5200batch: iter_time=1.885e-04, forward_time=0.103, loss_ctc=46.863, loss_att=50.232, acc=0.721, loss=49.221, backward_time=0.098, grad_norm=25.325, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.380e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 21:18:17,296 (trainer:737) INFO: 8epoch:train:5201-5300batch: iter_time=1.757e-04, forward_time=0.104, loss_ctc=55.769, loss_att=78.076, acc=0.651, loss=71.384, backward_time=0.098, grad_norm=29.245, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.377e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:18:58,075 (trainer:737) INFO: 8epoch:train:5301-5400batch: iter_time=2.002e-04, forward_time=0.103, loss_ctc=50.724, loss_att=59.963, acc=0.676, loss=57.191, backward_time=0.097, grad_norm=26.774, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.031, optim0_lr0=7.374e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 21:19:39,074 (trainer:737) INFO: 8epoch:train:5401-5500batch: iter_time=1.906e-04, forward_time=0.104, loss_ctc=56.872, loss_att=58.753, acc=0.702, loss=58.189, backward_time=0.098, grad_norm=28.156, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.370e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:20:20,412 (trainer:737) INFO: 8epoch:train:5501-5600batch: iter_time=2.263e-04, forward_time=0.103, loss_ctc=48.176, loss_att=56.455, acc=0.699, loss=53.971, backward_time=0.097, grad_norm=26.366, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.367e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 21:21:01,338 (trainer:737) INFO: 8epoch:train:5601-5700batch: iter_time=2.051e-04, forward_time=0.104, loss_ctc=58.007, loss_att=66.762, acc=0.663, loss=64.136, backward_time=0.097, grad_norm=31.975, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.364e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:21:42,455 (trainer:737) INFO: 8epoch:train:5701-5800batch: iter_time=1.819e-04, forward_time=0.105, loss_ctc=70.180, loss_att=81.578, acc=0.668, loss=78.159, backward_time=0.098, grad_norm=35.872, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.360e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 21:22:23,870 (trainer:737) INFO: 8epoch:train:5801-5900batch: iter_time=1.797e-04, forward_time=0.106, loss_ctc=58.409, loss_att=76.637, acc=0.691, loss=71.168, backward_time=0.098, grad_norm=30.545, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.357e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 21:23:05,283 (trainer:737) INFO: 8epoch:train:5901-6000batch: iter_time=2.004e-04, forward_time=0.103, loss_ctc=61.971, loss_att=69.013, acc=0.664, loss=66.901, backward_time=0.097, grad_norm=35.179, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.354e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 21:23:46,645 (trainer:737) INFO: 8epoch:train:6001-6100batch: iter_time=1.872e-04, forward_time=0.104, loss_ctc=53.156, loss_att=55.957, acc=0.697, loss=55.117, backward_time=0.097, grad_norm=28.093, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.350e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 21:24:27,854 (trainer:737) INFO: 8epoch:train:6101-6200batch: iter_time=2.089e-04, forward_time=0.107, loss_ctc=58.639, loss_att=59.068, acc=0.693, loss=58.939, backward_time=0.097, grad_norm=29.788, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.347e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 21:24:56,780 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-12 21:25:16,852 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 21:25:20,704 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 21:25:20,704 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 21:25:20,708 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 21:29:41,650 (trainer:737) INFO: 8epoch:train:6201-6300batch: iter_time=2.726, forward_time=0.105, loss_ctc=55.884, loss_att=74.425, acc=0.649, loss=68.862, backward_time=0.098, grad_norm=33.149, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.031, optim0_lr0=7.344e-04, train_time=3.138 +[gpuc02:0/16] 2024-01-12 21:30:22,381 (trainer:737) INFO: 8epoch:train:6301-6400batch: iter_time=2.014e-04, forward_time=0.103, loss_ctc=50.145, loss_att=52.352, acc=0.696, loss=51.690, backward_time=0.097, grad_norm=28.260, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.341e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:31:04,079 (trainer:737) INFO: 8epoch:train:6401-6500batch: iter_time=1.655e-04, forward_time=0.105, loss_ctc=54.797, loss_att=69.718, acc=0.666, loss=65.241, backward_time=0.098, grad_norm=29.029, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.337e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-12 21:31:44,773 (trainer:737) INFO: 8epoch:train:6501-6600batch: iter_time=1.727e-04, forward_time=0.103, loss_ctc=48.965, loss_att=58.238, acc=0.683, loss=55.456, backward_time=0.097, grad_norm=26.634, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.334e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:32:25,829 (trainer:737) INFO: 8epoch:train:6601-6700batch: iter_time=2.078e-04, forward_time=0.104, loss_ctc=51.818, loss_att=58.551, acc=0.675, loss=56.531, backward_time=0.097, grad_norm=29.049, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.331e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:33:06,816 (trainer:737) INFO: 8epoch:train:6701-6800batch: iter_time=1.717e-04, forward_time=0.105, loss_ctc=58.906, loss_att=63.964, acc=0.690, loss=62.447, backward_time=0.098, grad_norm=31.101, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.327e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:33:47,526 (trainer:737) INFO: 8epoch:train:6801-6900batch: iter_time=1.873e-04, forward_time=0.103, loss_ctc=47.129, loss_att=54.492, acc=0.677, loss=52.283, backward_time=0.097, grad_norm=27.527, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.324e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:34:28,528 (trainer:737) INFO: 8epoch:train:6901-7000batch: iter_time=1.881e-04, forward_time=0.104, loss_ctc=65.446, loss_att=73.741, acc=0.658, loss=71.253, backward_time=0.098, grad_norm=34.256, clip=100.000, loss_scale=2.361e+21, optim_step_time=0.030, optim0_lr0=7.321e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:35:09,573 (trainer:737) INFO: 8epoch:train:7001-7100batch: iter_time=1.816e-04, forward_time=0.105, loss_ctc=63.782, loss_att=87.019, acc=0.649, loss=80.048, backward_time=0.098, grad_norm=36.510, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.318e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:35:50,452 (trainer:737) INFO: 8epoch:train:7101-7200batch: iter_time=1.865e-04, forward_time=0.104, loss_ctc=59.864, loss_att=69.821, acc=0.670, loss=66.834, backward_time=0.098, grad_norm=31.256, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.314e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:36:31,300 (trainer:737) INFO: 8epoch:train:7201-7300batch: iter_time=1.892e-04, forward_time=0.104, loss_ctc=58.203, loss_att=61.625, acc=0.668, loss=60.598, backward_time=0.097, grad_norm=29.720, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.311e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 21:37:12,372 (trainer:737) INFO: 8epoch:train:7301-7400batch: iter_time=2.046e-04, forward_time=0.103, loss_ctc=54.849, loss_att=53.188, acc=0.682, loss=53.686, backward_time=0.097, grad_norm=30.471, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.308e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:37:53,552 (trainer:737) INFO: 8epoch:train:7401-7500batch: iter_time=1.655e-04, forward_time=0.104, loss_ctc=56.675, loss_att=65.035, acc=0.678, loss=62.527, backward_time=0.098, grad_norm=30.387, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.305e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 21:38:01,916 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-12 21:38:21,445 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 21:38:25,128 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 21:38:25,128 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-12 21:38:25,131 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 21:43:08,785 (trainer:737) INFO: 8epoch:train:7501-7600batch: iter_time=2.674, forward_time=0.128, loss_ctc=57.412, loss_att=63.407, acc=0.669, loss=61.608, backward_time=0.104, grad_norm=33.404, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.301e-04, train_time=3.152 +[gpuc02:0/16] 2024-01-12 21:43:49,830 (trainer:737) INFO: 8epoch:train:7601-7700batch: iter_time=1.769e-04, forward_time=0.104, loss_ctc=46.332, loss_att=48.261, acc=0.717, loss=47.682, backward_time=0.097, grad_norm=26.421, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.298e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:44:30,703 (trainer:737) INFO: 8epoch:train:7701-7800batch: iter_time=2.134e-04, forward_time=0.105, loss_ctc=55.660, loss_att=75.389, acc=0.647, loss=69.470, backward_time=0.097, grad_norm=30.350, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.295e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:45:11,334 (trainer:737) INFO: 8epoch:train:7801-7900batch: iter_time=2.162e-04, forward_time=0.103, loss_ctc=50.284, loss_att=57.191, acc=0.676, loss=55.119, backward_time=0.097, grad_norm=28.031, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.292e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 21:45:52,184 (trainer:737) INFO: 8epoch:train:7901-8000batch: iter_time=2.108e-04, forward_time=0.105, loss_ctc=56.435, loss_att=57.187, acc=0.696, loss=56.961, backward_time=0.098, grad_norm=29.751, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.288e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 21:46:33,155 (trainer:737) INFO: 8epoch:train:8001-8100batch: iter_time=2.071e-04, forward_time=0.104, loss_ctc=49.919, loss_att=56.640, acc=0.687, loss=54.624, backward_time=0.097, grad_norm=29.342, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.285e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:47:14,270 (trainer:737) INFO: 8epoch:train:8101-8200batch: iter_time=1.891e-04, forward_time=0.104, loss_ctc=57.410, loss_att=66.234, acc=0.663, loss=63.587, backward_time=0.097, grad_norm=30.263, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.282e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 21:47:55,202 (trainer:737) INFO: 8epoch:train:8201-8300batch: iter_time=2.189e-04, forward_time=0.105, loss_ctc=69.806, loss_att=79.810, acc=0.658, loss=76.809, backward_time=0.098, grad_norm=37.116, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.279e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 21:48:37,220 (trainer:737) INFO: 8epoch:train:8301-8400batch: iter_time=1.881e-04, forward_time=0.106, loss_ctc=58.193, loss_att=75.839, acc=0.678, loss=70.545, backward_time=0.098, grad_norm=31.456, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.275e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-12 21:49:17,963 (trainer:737) INFO: 8epoch:train:8401-8500batch: iter_time=2.181e-04, forward_time=0.105, loss_ctc=61.662, loss_att=67.407, acc=0.658, loss=65.683, backward_time=0.097, grad_norm=34.116, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.029, optim0_lr0=7.272e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:49:58,664 (trainer:737) INFO: 8epoch:train:8501-8600batch: iter_time=1.993e-04, forward_time=0.104, loss_ctc=52.235, loss_att=54.287, acc=0.696, loss=53.672, backward_time=0.097, grad_norm=27.894, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.269e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 21:50:39,734 (trainer:737) INFO: 8epoch:train:8601-8700batch: iter_time=2.242e-04, forward_time=0.105, loss_ctc=58.223, loss_att=59.085, acc=0.686, loss=58.827, backward_time=0.097, grad_norm=30.464, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.266e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:51:07,217 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-12 21:51:26,505 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 21:51:30,203 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 21:51:30,204 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 21:51:30,207 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 21:56:16,246 (trainer:737) INFO: 8epoch:train:8701-8800batch: iter_time=2.630, forward_time=0.105, loss_ctc=55.193, loss_att=74.435, acc=0.654, loss=68.663, backward_time=0.098, grad_norm=34.067, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.263e-04, train_time=3.365 +[gpuc02:0/16] 2024-01-12 21:56:57,111 (trainer:737) INFO: 8epoch:train:8801-8900batch: iter_time=1.966e-04, forward_time=0.104, loss_ctc=49.597, loss_att=52.487, acc=0.710, loss=51.620, backward_time=0.097, grad_norm=29.435, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.259e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 21:57:38,111 (trainer:737) INFO: 8epoch:train:8901-9000batch: iter_time=1.835e-04, forward_time=0.104, loss_ctc=54.160, loss_att=70.814, acc=0.672, loss=65.818, backward_time=0.098, grad_norm=28.584, clip=100.000, loss_scale=4.722e+21, optim_step_time=0.030, optim0_lr0=7.256e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:58:19,089 (trainer:737) INFO: 8epoch:train:9001-9100batch: iter_time=2.048e-04, forward_time=0.102, loss_ctc=48.732, loss_att=58.869, acc=0.687, loss=55.828, backward_time=0.097, grad_norm=26.362, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.253e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 21:59:00,220 (trainer:737) INFO: 8epoch:train:9101-9200batch: iter_time=2.005e-04, forward_time=0.104, loss_ctc=50.553, loss_att=60.767, acc=0.681, loss=57.703, backward_time=0.097, grad_norm=28.373, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.250e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 21:59:41,820 (trainer:737) INFO: 8epoch:train:9201-9300batch: iter_time=1.618e-04, forward_time=0.105, loss_ctc=57.865, loss_att=63.305, acc=0.704, loss=61.673, backward_time=0.098, grad_norm=30.427, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.247e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 22:00:22,976 (trainer:737) INFO: 8epoch:train:9301-9400batch: iter_time=1.834e-04, forward_time=0.104, loss_ctc=45.996, loss_att=53.975, acc=0.686, loss=51.581, backward_time=0.097, grad_norm=25.494, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.244e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:01:04,159 (trainer:737) INFO: 8epoch:train:9401-9500batch: iter_time=1.804e-04, forward_time=0.105, loss_ctc=63.796, loss_att=73.953, acc=0.670, loss=70.906, backward_time=0.099, grad_norm=33.110, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.240e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:01:45,685 (trainer:737) INFO: 8epoch:train:9501-9600batch: iter_time=1.704e-04, forward_time=0.106, loss_ctc=62.281, loss_att=85.246, acc=0.674, loss=78.357, backward_time=0.099, grad_norm=34.490, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.237e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-12 22:02:26,762 (trainer:737) INFO: 8epoch:train:9601-9700batch: iter_time=1.908e-04, forward_time=0.105, loss_ctc=59.400, loss_att=70.316, acc=0.679, loss=67.042, backward_time=0.098, grad_norm=32.879, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.234e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:03:08,016 (trainer:737) INFO: 8epoch:train:9701-9800batch: iter_time=1.754e-04, forward_time=0.104, loss_ctc=59.530, loss_att=61.577, acc=0.680, loss=60.963, backward_time=0.097, grad_norm=37.124, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.231e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:03:48,943 (trainer:737) INFO: 8epoch:train:9801-9900batch: iter_time=1.927e-04, forward_time=0.104, loss_ctc=54.620, loss_att=53.695, acc=0.688, loss=53.973, backward_time=0.098, grad_norm=29.643, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.228e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:04:30,215 (trainer:737) INFO: 8epoch:train:9901-10000batch: iter_time=1.755e-04, forward_time=0.107, loss_ctc=56.137, loss_att=64.689, acc=0.693, loss=62.123, backward_time=0.098, grad_norm=95.614, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.225e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:04:36,287 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-12 22:04:56,151 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 22:04:59,997 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 22:04:59,997 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-12 22:05:00,000 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 22:09:59,335 (trainer:737) INFO: 8epoch:train:10001-10100batch: iter_time=2.623, forward_time=0.106, loss_ctc=56.859, loss_att=64.430, acc=0.682, loss=62.159, backward_time=0.099, grad_norm=33.005, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.222e-04, train_time=3.291 +[gpuc02:0/16] 2024-01-12 22:10:40,208 (trainer:737) INFO: 8epoch:train:10101-10200batch: iter_time=1.768e-04, forward_time=0.105, loss_ctc=46.010, loss_att=48.751, acc=0.725, loss=47.929, backward_time=0.098, grad_norm=26.469, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.218e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:11:21,174 (trainer:737) INFO: 8epoch:train:10201-10300batch: iter_time=1.750e-04, forward_time=0.105, loss_ctc=55.024, loss_att=75.988, acc=0.657, loss=69.699, backward_time=0.098, grad_norm=30.906, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.215e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:12:01,849 (trainer:737) INFO: 8epoch:train:10301-10400batch: iter_time=2.037e-04, forward_time=0.104, loss_ctc=50.146, loss_att=59.863, acc=0.678, loss=56.948, backward_time=0.097, grad_norm=27.565, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.212e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:12:42,781 (trainer:737) INFO: 8epoch:train:10401-10500batch: iter_time=1.872e-04, forward_time=0.105, loss_ctc=55.319, loss_att=57.172, acc=0.706, loss=56.616, backward_time=0.098, grad_norm=28.418, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.209e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:13:23,635 (trainer:737) INFO: 8epoch:train:10501-10600batch: iter_time=2.234e-04, forward_time=0.104, loss_ctc=48.159, loss_att=55.927, acc=0.705, loss=53.597, backward_time=0.097, grad_norm=28.518, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.206e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:14:04,648 (trainer:737) INFO: 8epoch:train:10601-10700batch: iter_time=2.071e-04, forward_time=0.105, loss_ctc=56.482, loss_att=66.365, acc=0.668, loss=63.400, backward_time=0.097, grad_norm=30.833, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.203e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:14:45,792 (trainer:737) INFO: 8epoch:train:10701-10800batch: iter_time=2.175e-04, forward_time=0.106, loss_ctc=68.666, loss_att=79.755, acc=0.673, loss=76.429, backward_time=0.098, grad_norm=35.100, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.200e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:15:27,196 (trainer:737) INFO: 8epoch:train:10801-10900batch: iter_time=2.160e-04, forward_time=0.106, loss_ctc=56.919, loss_att=74.894, acc=0.699, loss=69.501, backward_time=0.098, grad_norm=30.070, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.197e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 22:16:08,356 (trainer:737) INFO: 8epoch:train:10901-11000batch: iter_time=1.961e-04, forward_time=0.104, loss_ctc=61.508, loss_att=67.861, acc=0.671, loss=65.955, backward_time=0.097, grad_norm=34.519, clip=100.000, loss_scale=9.445e+21, optim_step_time=0.030, optim0_lr0=7.193e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:16:49,226 (trainer:737) INFO: 8epoch:train:11001-11100batch: iter_time=2.211e-04, forward_time=0.104, loss_ctc=52.309, loss_att=54.772, acc=0.704, loss=54.033, backward_time=0.097, grad_norm=27.899, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.190e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:17:30,408 (trainer:737) INFO: 8epoch:train:11101-11200batch: iter_time=2.250e-04, forward_time=0.105, loss_ctc=57.011, loss_att=58.211, acc=0.696, loss=57.851, backward_time=0.098, grad_norm=29.959, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.187e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:17:57,737 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-12 22:18:17,243 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 22:18:20,862 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 22:18:20,862 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-12 22:18:20,865 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 22:22:43,360 (trainer:737) INFO: 8epoch:train:11201-11300batch: iter_time=2.719, forward_time=0.105, loss_ctc=54.252, loss_att=73.493, acc=0.655, loss=67.721, backward_time=0.098, grad_norm=33.194, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.184e-04, train_time=3.129 +[gpuc02:0/16] 2024-01-12 22:23:24,146 (trainer:737) INFO: 8epoch:train:11301-11400batch: iter_time=1.791e-04, forward_time=0.104, loss_ctc=48.951, loss_att=51.341, acc=0.704, loss=50.624, backward_time=0.097, grad_norm=29.152, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.181e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:24:05,320 (trainer:737) INFO: 8epoch:train:11401-11500batch: iter_time=1.714e-04, forward_time=0.107, loss_ctc=53.465, loss_att=69.313, acc=0.669, loss=64.558, backward_time=0.097, grad_norm=30.014, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.178e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:24:46,043 (trainer:737) INFO: 8epoch:train:11501-11600batch: iter_time=1.933e-04, forward_time=0.104, loss_ctc=48.446, loss_att=58.065, acc=0.685, loss=55.179, backward_time=0.096, grad_norm=36.040, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.175e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:25:27,347 (trainer:737) INFO: 8epoch:train:11601-11700batch: iter_time=1.821e-04, forward_time=0.104, loss_ctc=50.540, loss_att=57.489, acc=0.679, loss=55.405, backward_time=0.097, grad_norm=29.162, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.172e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 22:26:08,268 (trainer:737) INFO: 8epoch:train:11701-11800batch: iter_time=1.793e-04, forward_time=0.105, loss_ctc=60.107, loss_att=62.428, acc=0.696, loss=61.731, backward_time=0.098, grad_norm=31.288, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.169e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:26:48,949 (trainer:737) INFO: 8epoch:train:11801-11900batch: iter_time=1.749e-04, forward_time=0.104, loss_ctc=46.147, loss_att=54.466, acc=0.678, loss=51.970, backward_time=0.096, grad_norm=27.655, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.166e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:27:30,553 (trainer:737) INFO: 8epoch:train:11901-12000batch: iter_time=1.690e-04, forward_time=0.105, loss_ctc=63.710, loss_att=72.564, acc=0.663, loss=69.908, backward_time=0.098, grad_norm=33.613, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.163e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-12 22:28:11,936 (trainer:737) INFO: 8epoch:train:12001-12100batch: iter_time=1.792e-04, forward_time=0.106, loss_ctc=62.119, loss_att=85.187, acc=0.654, loss=78.267, backward_time=0.098, grad_norm=34.169, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.160e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 22:28:52,826 (trainer:737) INFO: 8epoch:train:12101-12200batch: iter_time=1.935e-04, forward_time=0.104, loss_ctc=59.341, loss_att=68.641, acc=0.676, loss=65.851, backward_time=0.097, grad_norm=32.004, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.157e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:29:33,571 (trainer:737) INFO: 8epoch:train:12201-12300batch: iter_time=1.674e-04, forward_time=0.104, loss_ctc=57.217, loss_att=59.976, acc=0.673, loss=59.148, backward_time=0.097, grad_norm=31.448, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.153e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:30:14,575 (trainer:737) INFO: 8epoch:train:12301-12400batch: iter_time=1.787e-04, forward_time=0.104, loss_ctc=54.906, loss_att=53.027, acc=0.687, loss=53.590, backward_time=0.097, grad_norm=32.205, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.150e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:30:55,441 (trainer:737) INFO: 8epoch:train:12401-12500batch: iter_time=1.596e-04, forward_time=0.104, loss_ctc=55.667, loss_att=64.079, acc=0.683, loss=61.555, backward_time=0.097, grad_norm=32.512, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.147e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:31:01,713 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-12 22:31:21,190 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 22:31:24,970 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 22:31:24,971 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-12 22:31:24,974 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 22:36:16,694 (trainer:737) INFO: 8epoch:train:12501-12600batch: iter_time=2.799, forward_time=0.106, loss_ctc=55.577, loss_att=62.962, acc=0.669, loss=60.747, backward_time=0.099, grad_norm=32.787, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.144e-04, train_time=3.212 +[gpuc02:0/16] 2024-01-12 22:36:57,778 (trainer:737) INFO: 8epoch:train:12601-12700batch: iter_time=2.035e-04, forward_time=0.104, loss_ctc=45.438, loss_att=47.504, acc=0.720, loss=46.884, backward_time=0.097, grad_norm=25.577, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.141e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:37:38,715 (trainer:737) INFO: 8epoch:train:12701-12800batch: iter_time=2.329e-04, forward_time=0.104, loss_ctc=54.682, loss_att=74.906, acc=0.650, loss=68.839, backward_time=0.098, grad_norm=29.958, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.138e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:38:19,664 (trainer:737) INFO: 8epoch:train:12801-12900batch: iter_time=2.698e-04, forward_time=0.103, loss_ctc=49.944, loss_att=56.786, acc=0.680, loss=54.733, backward_time=0.097, grad_norm=27.696, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.135e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:39:00,848 (trainer:737) INFO: 8epoch:train:12901-13000batch: iter_time=2.475e-04, forward_time=0.104, loss_ctc=55.470, loss_att=56.140, acc=0.701, loss=55.939, backward_time=0.098, grad_norm=28.501, clip=100.000, loss_scale=1.889e+22, optim_step_time=0.030, optim0_lr0=7.132e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:39:41,524 (trainer:737) INFO: 8epoch:train:13001-13100batch: iter_time=2.169e-04, forward_time=0.103, loss_ctc=47.571, loss_att=55.676, acc=0.692, loss=53.244, backward_time=0.097, grad_norm=27.447, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.129e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:40:22,689 (trainer:737) INFO: 8epoch:train:13101-13200batch: iter_time=2.408e-04, forward_time=0.104, loss_ctc=55.673, loss_att=65.216, acc=0.667, loss=62.353, backward_time=0.098, grad_norm=30.303, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.126e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:41:03,683 (trainer:737) INFO: 8epoch:train:13201-13300batch: iter_time=2.373e-04, forward_time=0.105, loss_ctc=67.924, loss_att=79.171, acc=0.662, loss=75.797, backward_time=0.098, grad_norm=37.065, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.123e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:41:44,931 (trainer:737) INFO: 8epoch:train:13301-13400batch: iter_time=2.199e-04, forward_time=0.104, loss_ctc=56.395, loss_att=73.963, acc=0.684, loss=68.692, backward_time=0.098, grad_norm=30.182, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.120e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:42:25,696 (trainer:737) INFO: 8epoch:train:13401-13500batch: iter_time=1.862e-04, forward_time=0.103, loss_ctc=61.927, loss_att=66.689, acc=0.661, loss=65.260, backward_time=0.097, grad_norm=38.179, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.117e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:43:06,821 (trainer:737) INFO: 8epoch:train:13501-13600batch: iter_time=2.421e-04, forward_time=0.104, loss_ctc=51.136, loss_att=53.986, acc=0.699, loss=53.131, backward_time=0.097, grad_norm=27.839, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.114e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:43:47,624 (trainer:737) INFO: 8epoch:train:13601-13700batch: iter_time=2.434e-04, forward_time=0.105, loss_ctc=56.910, loss_att=58.352, acc=0.690, loss=57.919, backward_time=0.098, grad_norm=31.404, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.111e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:44:15,135 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-12 22:44:34,621 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 22:44:38,296 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 22:44:38,296 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-12 22:44:38,300 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 22:49:06,151 (trainer:737) INFO: 8epoch:train:13701-13800batch: iter_time=2.651, forward_time=0.105, loss_ctc=54.189, loss_att=73.486, acc=0.658, loss=67.697, backward_time=0.098, grad_norm=32.799, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.108e-04, train_time=3.185 +[gpuc02:0/16] 2024-01-12 22:49:47,083 (trainer:737) INFO: 8epoch:train:13801-13900batch: iter_time=1.857e-04, forward_time=0.104, loss_ctc=48.374, loss_att=51.373, acc=0.712, loss=50.473, backward_time=0.097, grad_norm=28.554, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.105e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 22:50:28,176 (trainer:737) INFO: 8epoch:train:13901-14000batch: iter_time=1.867e-04, forward_time=0.104, loss_ctc=53.233, loss_att=69.344, acc=0.677, loss=64.511, backward_time=0.098, grad_norm=29.533, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.102e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:51:08,964 (trainer:737) INFO: 8epoch:train:14001-14100batch: iter_time=2.164e-04, forward_time=0.104, loss_ctc=47.205, loss_att=57.378, acc=0.694, loss=54.326, backward_time=0.096, grad_norm=26.902, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.099e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:51:49,994 (trainer:737) INFO: 8epoch:train:14101-14200batch: iter_time=2.057e-04, forward_time=0.104, loss_ctc=50.037, loss_att=60.389, acc=0.680, loss=57.283, backward_time=0.097, grad_norm=28.506, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.096e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:52:30,978 (trainer:737) INFO: 8epoch:train:14201-14300batch: iter_time=1.951e-04, forward_time=0.104, loss_ctc=57.898, loss_att=63.170, acc=0.707, loss=61.589, backward_time=0.097, grad_norm=29.834, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.093e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:53:11,723 (trainer:737) INFO: 8epoch:train:14301-14400batch: iter_time=1.948e-04, forward_time=0.103, loss_ctc=45.529, loss_att=53.909, acc=0.691, loss=51.395, backward_time=0.096, grad_norm=26.540, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.090e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 22:53:52,777 (trainer:737) INFO: 8epoch:train:14401-14500batch: iter_time=1.994e-04, forward_time=0.105, loss_ctc=63.213, loss_att=73.242, acc=0.674, loss=70.233, backward_time=0.097, grad_norm=34.757, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.087e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:54:33,974 (trainer:737) INFO: 8epoch:train:14501-14600batch: iter_time=1.972e-04, forward_time=0.106, loss_ctc=62.079, loss_att=85.603, acc=0.677, loss=78.545, backward_time=0.099, grad_norm=39.923, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.084e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 22:55:14,950 (trainer:737) INFO: 8epoch:train:14601-14700batch: iter_time=1.901e-04, forward_time=0.104, loss_ctc=57.919, loss_att=68.489, acc=0.688, loss=65.318, backward_time=0.098, grad_norm=30.470, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.081e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 22:55:55,759 (trainer:737) INFO: 8epoch:train:14701-14800batch: iter_time=2.063e-04, forward_time=0.103, loss_ctc=56.866, loss_att=59.925, acc=0.686, loss=59.007, backward_time=0.096, grad_norm=34.224, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.078e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 22:56:36,834 (trainer:737) INFO: 8epoch:train:14801-14900batch: iter_time=2.016e-04, forward_time=0.103, loss_ctc=53.531, loss_att=52.895, acc=0.694, loss=53.086, backward_time=0.096, grad_norm=29.037, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.075e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 22:57:18,050 (trainer:737) INFO: 8epoch:train:14901-15000batch: iter_time=1.835e-04, forward_time=0.104, loss_ctc=54.828, loss_att=63.560, acc=0.697, loss=60.940, backward_time=0.097, grad_norm=29.323, clip=100.000, loss_scale=3.778e+22, optim_step_time=0.030, optim0_lr0=7.072e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 23:17:26,401 (trainer:343) INFO: 8epoch results: [train] iter_time=0.223, forward_time=0.105, loss_ctc=56.276, loss_att=64.842, acc=0.678, loss=62.272, backward_time=0.098, grad_norm=31.418, clip=99.987, loss_scale=1.002e+22, optim_step_time=0.030, optim0_lr0=7.307e-04, train_time=0.641, time=2 hours, 40 minutes and 35.52 seconds, total_count=120000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=68.041, cer_ctc=0.347, loss_att=64.001, acc=0.523, cer=0.410, wer=1.000, loss=65.213, time=19 minutes and 57.62 seconds, total_count=37368, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-12 23:17:31,149 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-12 23:17:31,155 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/3epoch.pth +[gpuc02:0/16] 2024-01-12 23:17:31,155 (trainer:272) INFO: 9/45epoch started. Estimated time to finish: 4 days, 14 hours and 11 minutes +[gpuc02:0/16] 2024-01-12 23:17:31,166 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-12 23:17:50,157 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 23:17:53,686 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 23:17:53,686 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-12 23:17:53,689 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 23:22:26,791 (trainer:737) INFO: 9epoch:train:1-100batch: iter_time=2.533, forward_time=0.116, loss_ctc=53.825, loss_att=57.739, acc=0.679, loss=56.565, backward_time=0.099, grad_norm=32.796, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.031, optim0_lr0=7.070e-04, train_time=2.956 +[gpuc02:0/16] 2024-01-12 23:23:07,648 (trainer:737) INFO: 9epoch:train:101-200batch: iter_time=1.320e-04, forward_time=0.103, loss_ctc=53.887, loss_att=56.934, acc=0.668, loss=56.020, backward_time=0.097, grad_norm=33.153, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.067e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 23:23:48,421 (trainer:737) INFO: 9epoch:train:201-300batch: iter_time=1.243e-04, forward_time=0.102, loss_ctc=50.487, loss_att=56.667, acc=0.654, loss=54.813, backward_time=0.096, grad_norm=32.581, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.064e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 23:24:29,206 (trainer:737) INFO: 9epoch:train:301-400batch: iter_time=1.278e-04, forward_time=0.104, loss_ctc=57.676, loss_att=65.512, acc=0.670, loss=63.161, backward_time=0.097, grad_norm=34.227, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.061e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 23:25:10,084 (trainer:737) INFO: 9epoch:train:401-500batch: iter_time=1.368e-04, forward_time=0.103, loss_ctc=50.520, loss_att=51.054, acc=0.704, loss=50.894, backward_time=0.097, grad_norm=31.583, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.058e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 23:25:51,286 (trainer:737) INFO: 9epoch:train:501-600batch: iter_time=1.479e-04, forward_time=0.104, loss_ctc=58.901, loss_att=62.637, acc=0.671, loss=61.516, backward_time=0.097, grad_norm=32.668, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.055e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 23:26:33,354 (trainer:737) INFO: 9epoch:train:601-700batch: iter_time=1.359e-04, forward_time=0.103, loss_ctc=53.718, loss_att=60.116, acc=0.651, loss=58.196, backward_time=0.097, grad_norm=33.406, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.052e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-12 23:27:14,093 (trainer:737) INFO: 9epoch:train:701-800batch: iter_time=1.244e-04, forward_time=0.104, loss_ctc=65.433, loss_att=59.089, acc=0.673, loss=60.992, backward_time=0.097, grad_norm=36.950, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.049e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 23:27:54,712 (trainer:737) INFO: 9epoch:train:801-900batch: iter_time=1.444e-04, forward_time=0.103, loss_ctc=52.131, loss_att=56.575, acc=0.675, loss=55.242, backward_time=0.097, grad_norm=32.747, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.046e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 23:28:35,346 (trainer:737) INFO: 9epoch:train:901-1000batch: iter_time=1.202e-04, forward_time=0.103, loss_ctc=57.279, loss_att=62.892, acc=0.659, loss=61.208, backward_time=0.097, grad_norm=35.204, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.043e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 23:29:15,992 (trainer:737) INFO: 9epoch:train:1001-1100batch: iter_time=1.318e-04, forward_time=0.104, loss_ctc=60.537, loss_att=55.067, acc=0.671, loss=56.708, backward_time=0.097, grad_norm=36.324, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.040e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 23:29:57,117 (trainer:737) INFO: 9epoch:train:1101-1200batch: iter_time=1.444e-04, forward_time=0.104, loss_ctc=61.209, loss_att=71.148, acc=0.660, loss=68.166, backward_time=0.099, grad_norm=34.513, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.037e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 23:30:24,977 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-12 23:30:43,772 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 23:30:47,484 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 23:30:47,484 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-12 23:30:47,487 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 23:35:23,551 (trainer:737) INFO: 9epoch:train:1201-1300batch: iter_time=2.853, forward_time=0.105, loss_ctc=48.239, loss_att=63.188, acc=0.656, loss=58.703, backward_time=0.097, grad_norm=29.270, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.034e-04, train_time=3.264 +[gpuc02:0/16] 2024-01-12 23:36:04,476 (trainer:737) INFO: 9epoch:train:1301-1400batch: iter_time=2.142e-04, forward_time=0.105, loss_ctc=59.305, loss_att=61.629, acc=0.667, loss=60.932, backward_time=0.098, grad_norm=34.775, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.032e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 23:36:45,256 (trainer:737) INFO: 9epoch:train:1401-1500batch: iter_time=2.150e-04, forward_time=0.102, loss_ctc=45.564, loss_att=48.374, acc=0.678, loss=47.531, backward_time=0.096, grad_norm=27.615, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.029e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 23:37:26,371 (trainer:737) INFO: 9epoch:train:1501-1600batch: iter_time=1.627e-04, forward_time=0.104, loss_ctc=57.049, loss_att=62.315, acc=0.671, loss=60.735, backward_time=0.099, grad_norm=32.981, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.031, optim0_lr0=7.026e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 23:38:07,091 (trainer:737) INFO: 9epoch:train:1601-1700batch: iter_time=1.966e-04, forward_time=0.103, loss_ctc=51.459, loss_att=50.969, acc=0.703, loss=51.116, backward_time=0.096, grad_norm=31.202, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.023e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-12 23:38:48,117 (trainer:737) INFO: 9epoch:train:1701-1800batch: iter_time=2.050e-04, forward_time=0.103, loss_ctc=57.906, loss_att=59.498, acc=0.685, loss=59.020, backward_time=0.097, grad_norm=32.331, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.030, optim0_lr0=7.020e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 23:39:29,209 (trainer:737) INFO: 9epoch:train:1801-1900batch: iter_time=1.669e-04, forward_time=0.106, loss_ctc=51.206, loss_att=62.294, acc=0.663, loss=58.967, backward_time=0.097, grad_norm=30.293, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.017e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 23:40:10,415 (trainer:737) INFO: 9epoch:train:1901-2000batch: iter_time=2.003e-04, forward_time=0.103, loss_ctc=58.777, loss_att=60.924, acc=0.653, loss=60.280, backward_time=0.096, grad_norm=34.657, clip=100.000, loss_scale=7.556e+22, optim_step_time=0.029, optim0_lr0=7.014e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 23:40:51,306 (trainer:737) INFO: 9epoch:train:2001-2100batch: iter_time=1.881e-04, forward_time=0.103, loss_ctc=58.402, loss_att=48.233, acc=0.700, loss=51.284, backward_time=0.097, grad_norm=31.653, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.029, optim0_lr0=7.011e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 23:41:31,948 (trainer:737) INFO: 9epoch:train:2101-2200batch: iter_time=2.080e-04, forward_time=0.102, loss_ctc=55.356, loss_att=61.455, acc=0.668, loss=59.625, backward_time=0.096, grad_norm=32.551, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.029, optim0_lr0=7.009e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-12 23:42:13,019 (trainer:737) INFO: 9epoch:train:2201-2300batch: iter_time=2.182e-04, forward_time=0.103, loss_ctc=57.844, loss_att=63.446, acc=0.641, loss=61.765, backward_time=0.097, grad_norm=34.988, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=7.006e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 23:42:53,925 (trainer:737) INFO: 9epoch:train:2301-2400batch: iter_time=1.764e-04, forward_time=0.104, loss_ctc=52.307, loss_att=54.905, acc=0.705, loss=54.126, backward_time=0.097, grad_norm=29.474, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.029, optim0_lr0=7.003e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 23:43:34,803 (trainer:737) INFO: 9epoch:train:2401-2500batch: iter_time=1.741e-04, forward_time=0.104, loss_ctc=60.606, loss_att=75.665, acc=0.635, loss=71.147, backward_time=0.098, grad_norm=33.549, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=7.000e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 23:43:42,536 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-12 23:44:02,177 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 23:44:05,982 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 23:44:05,982 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-12 23:44:05,985 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-12 23:48:54,738 (trainer:737) INFO: 9epoch:train:2501-2600batch: iter_time=2.633, forward_time=0.106, loss_ctc=52.144, loss_att=57.079, acc=0.698, loss=55.599, backward_time=0.098, grad_norm=30.655, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.997e-04, train_time=3.199 +[gpuc02:0/16] 2024-01-12 23:49:36,850 (trainer:737) INFO: 9epoch:train:2601-2700batch: iter_time=0.001, forward_time=0.111, loss_ctc=50.867, loss_att=56.311, acc=0.672, loss=54.678, backward_time=0.099, grad_norm=30.705, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.031, optim0_lr0=6.994e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-12 23:50:19,075 (trainer:737) INFO: 9epoch:train:2701-2800batch: iter_time=1.638e-04, forward_time=0.115, loss_ctc=48.765, loss_att=57.706, acc=0.662, loss=55.024, backward_time=0.100, grad_norm=29.264, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.032, optim0_lr0=6.991e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-12 23:51:00,185 (trainer:737) INFO: 9epoch:train:2801-2900batch: iter_time=1.965e-04, forward_time=0.104, loss_ctc=55.530, loss_att=64.576, acc=0.680, loss=61.862, backward_time=0.098, grad_norm=32.406, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.989e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-12 23:51:41,369 (trainer:737) INFO: 9epoch:train:2901-3000batch: iter_time=1.716e-04, forward_time=0.103, loss_ctc=49.008, loss_att=53.503, acc=0.706, loss=52.155, backward_time=0.098, grad_norm=28.327, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.986e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-12 23:52:22,721 (trainer:737) INFO: 9epoch:train:3001-3100batch: iter_time=1.542e-04, forward_time=0.104, loss_ctc=56.851, loss_att=63.763, acc=0.678, loss=61.689, backward_time=0.098, grad_norm=31.533, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.983e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-12 23:53:03,734 (trainer:737) INFO: 9epoch:train:3101-3200batch: iter_time=1.588e-04, forward_time=0.104, loss_ctc=51.579, loss_att=61.752, acc=0.664, loss=58.700, backward_time=0.098, grad_norm=30.481, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.980e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 23:53:44,689 (trainer:737) INFO: 9epoch:train:3201-3300batch: iter_time=1.681e-04, forward_time=0.105, loss_ctc=63.077, loss_att=58.867, acc=0.691, loss=60.130, backward_time=0.098, grad_norm=34.218, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.977e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-12 23:54:25,715 (trainer:737) INFO: 9epoch:train:3301-3400batch: iter_time=1.415e-04, forward_time=0.105, loss_ctc=50.228, loss_att=55.275, acc=0.688, loss=53.761, backward_time=0.099, grad_norm=31.666, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.031, optim0_lr0=6.974e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 23:55:06,568 (trainer:737) INFO: 9epoch:train:3401-3500batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=54.660, loss_att=60.225, acc=0.677, loss=58.556, backward_time=0.099, grad_norm=32.043, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.031, optim0_lr0=6.972e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-12 23:55:47,572 (trainer:737) INFO: 9epoch:train:3501-3600batch: iter_time=1.788e-04, forward_time=0.103, loss_ctc=57.270, loss_att=54.330, acc=0.685, loss=55.212, backward_time=0.096, grad_norm=32.313, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.969e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-12 23:56:29,048 (trainer:737) INFO: 9epoch:train:3601-3700batch: iter_time=1.596e-04, forward_time=0.105, loss_ctc=58.940, loss_att=69.777, acc=0.677, loss=66.526, backward_time=0.098, grad_norm=33.841, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.966e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-12 23:56:58,012 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-12 23:57:16,896 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-12 23:57:20,546 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-12 23:57:20,546 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-12 23:57:20,549 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 00:02:30,217 (trainer:737) INFO: 9epoch:train:3701-3800batch: iter_time=3.159, forward_time=0.134, loss_ctc=47.035, loss_att=64.241, acc=0.669, loss=59.079, backward_time=0.101, grad_norm=27.629, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.031, optim0_lr0=6.963e-04, train_time=3.612 +[gpuc02:0/16] 2024-01-13 00:03:11,244 (trainer:737) INFO: 9epoch:train:3801-3900batch: iter_time=1.939e-04, forward_time=0.104, loss_ctc=57.984, loss_att=61.877, acc=0.681, loss=60.709, backward_time=0.097, grad_norm=35.567, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.960e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:03:51,912 (trainer:737) INFO: 9epoch:train:3901-4000batch: iter_time=1.802e-04, forward_time=0.103, loss_ctc=44.719, loss_att=47.510, acc=0.692, loss=46.673, backward_time=0.096, grad_norm=26.746, clip=100.000, loss_scale=1.511e+23, optim_step_time=0.030, optim0_lr0=6.957e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 00:04:32,820 (trainer:737) INFO: 9epoch:train:4001-4100batch: iter_time=1.695e-04, forward_time=0.104, loss_ctc=55.908, loss_att=64.007, acc=0.675, loss=61.577, backward_time=0.097, grad_norm=34.271, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.955e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:05:14,103 (trainer:737) INFO: 9epoch:train:4101-4200batch: iter_time=2.160e-04, forward_time=0.103, loss_ctc=49.954, loss_att=51.376, acc=0.704, loss=50.950, backward_time=0.096, grad_norm=29.969, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.952e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 00:05:55,502 (trainer:737) INFO: 9epoch:train:4201-4300batch: iter_time=2.020e-04, forward_time=0.104, loss_ctc=56.582, loss_att=62.496, acc=0.685, loss=60.722, backward_time=0.097, grad_norm=31.174, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.949e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 00:06:36,588 (trainer:737) INFO: 9epoch:train:4301-4400batch: iter_time=1.937e-04, forward_time=0.104, loss_ctc=49.945, loss_att=62.618, acc=0.679, loss=58.816, backward_time=0.097, grad_norm=30.170, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.946e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 00:07:17,386 (trainer:737) INFO: 9epoch:train:4401-4500batch: iter_time=2.013e-04, forward_time=0.104, loss_ctc=57.113, loss_att=62.449, acc=0.668, loss=60.848, backward_time=0.097, grad_norm=32.003, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.943e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 00:07:58,441 (trainer:737) INFO: 9epoch:train:4501-4600batch: iter_time=2.040e-04, forward_time=0.104, loss_ctc=56.899, loss_att=50.175, acc=0.705, loss=52.192, backward_time=0.097, grad_norm=32.093, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.941e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:08:39,642 (trainer:737) INFO: 9epoch:train:4601-4700batch: iter_time=1.914e-04, forward_time=0.103, loss_ctc=53.728, loss_att=59.735, acc=0.682, loss=57.933, backward_time=0.096, grad_norm=33.388, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.938e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 00:09:20,683 (trainer:737) INFO: 9epoch:train:4701-4800batch: iter_time=1.675e-04, forward_time=0.104, loss_ctc=55.810, loss_att=62.845, acc=0.655, loss=60.734, backward_time=0.097, grad_norm=33.286, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.935e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:10:01,922 (trainer:737) INFO: 9epoch:train:4801-4900batch: iter_time=1.884e-04, forward_time=0.104, loss_ctc=51.050, loss_att=53.875, acc=0.722, loss=53.027, backward_time=0.097, grad_norm=29.071, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.932e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 00:10:42,852 (trainer:737) INFO: 9epoch:train:4901-5000batch: iter_time=1.786e-04, forward_time=0.104, loss_ctc=60.162, loss_att=78.238, acc=0.647, loss=72.815, backward_time=0.098, grad_norm=36.061, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.029, optim0_lr0=6.930e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:10:52,725 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 00:11:12,067 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 00:11:15,714 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 00:11:15,714 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 00:11:15,717 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 00:16:12,526 (trainer:737) INFO: 9epoch:train:5001-5100batch: iter_time=2.831, forward_time=0.121, loss_ctc=50.502, loss_att=55.927, acc=0.688, loss=54.300, backward_time=0.101, grad_norm=29.699, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.031, optim0_lr0=6.927e-04, train_time=3.296 +[gpuc02:0/16] 2024-01-13 00:16:53,293 (trainer:737) INFO: 9epoch:train:5101-5200batch: iter_time=1.950e-04, forward_time=0.103, loss_ctc=50.177, loss_att=54.369, acc=0.675, loss=53.112, backward_time=0.096, grad_norm=30.366, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.030, optim0_lr0=6.924e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:17:33,954 (trainer:737) INFO: 9epoch:train:5201-5300batch: iter_time=1.832e-04, forward_time=0.103, loss_ctc=47.532, loss_att=55.391, acc=0.658, loss=53.033, backward_time=0.096, grad_norm=30.189, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.030, optim0_lr0=6.921e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 00:18:14,721 (trainer:737) INFO: 9epoch:train:5301-5400batch: iter_time=1.725e-04, forward_time=0.104, loss_ctc=54.119, loss_att=62.638, acc=0.683, loss=60.082, backward_time=0.097, grad_norm=30.521, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.030, optim0_lr0=6.918e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:18:55,657 (trainer:737) INFO: 9epoch:train:5401-5500batch: iter_time=1.992e-04, forward_time=0.104, loss_ctc=48.356, loss_att=49.758, acc=0.715, loss=49.338, backward_time=0.097, grad_norm=28.663, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.030, optim0_lr0=6.916e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:19:36,482 (trainer:737) INFO: 9epoch:train:5501-5600batch: iter_time=2.037e-04, forward_time=0.104, loss_ctc=55.496, loss_att=60.203, acc=0.683, loss=58.791, backward_time=0.097, grad_norm=29.744, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.030, optim0_lr0=6.913e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 00:20:17,112 (trainer:737) INFO: 9epoch:train:5601-5700batch: iter_time=2.208e-04, forward_time=0.103, loss_ctc=51.201, loss_att=58.752, acc=0.664, loss=56.487, backward_time=0.096, grad_norm=30.386, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.030, optim0_lr0=6.910e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 00:20:58,027 (trainer:737) INFO: 9epoch:train:5701-5800batch: iter_time=2.136e-04, forward_time=0.105, loss_ctc=62.112, loss_att=56.376, acc=0.681, loss=58.097, backward_time=0.098, grad_norm=33.556, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.031, optim0_lr0=6.907e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:21:38,792 (trainer:737) INFO: 9epoch:train:5801-5900batch: iter_time=1.985e-04, forward_time=0.105, loss_ctc=48.738, loss_att=53.800, acc=0.686, loss=52.281, backward_time=0.098, grad_norm=30.482, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.031, optim0_lr0=6.905e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:22:19,924 (trainer:737) INFO: 9epoch:train:5901-6000batch: iter_time=1.940e-04, forward_time=0.106, loss_ctc=54.714, loss_att=61.124, acc=0.670, loss=59.201, backward_time=0.099, grad_norm=33.868, clip=100.000, loss_scale=3.022e+23, optim_step_time=0.031, optim0_lr0=6.902e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 00:23:01,220 (trainer:737) INFO: 9epoch:train:6001-6100batch: iter_time=1.908e-04, forward_time=0.106, loss_ctc=56.460, loss_att=53.052, acc=0.678, loss=54.074, backward_time=0.098, grad_norm=33.920, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.031, optim0_lr0=6.899e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 00:23:42,409 (trainer:737) INFO: 9epoch:train:6101-6200batch: iter_time=1.745e-04, forward_time=0.105, loss_ctc=57.989, loss_att=68.088, acc=0.670, loss=65.058, backward_time=0.099, grad_norm=34.665, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.031, optim0_lr0=6.897e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 00:24:10,546 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 00:24:30,286 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 00:24:33,882 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 00:24:33,882 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 00:24:33,886 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 00:29:09,937 (trainer:737) INFO: 9epoch:train:6201-6300batch: iter_time=2.606, forward_time=0.109, loss_ctc=47.418, loss_att=64.221, acc=0.663, loss=59.180, backward_time=0.099, grad_norm=29.345, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.894e-04, train_time=3.275 +[gpuc02:0/16] 2024-01-13 00:29:51,103 (trainer:737) INFO: 9epoch:train:6301-6400batch: iter_time=2.295e-04, forward_time=0.105, loss_ctc=56.379, loss_att=61.437, acc=0.681, loss=59.919, backward_time=0.098, grad_norm=33.471, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.891e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 00:30:31,808 (trainer:737) INFO: 9epoch:train:6401-6500batch: iter_time=2.485e-04, forward_time=0.103, loss_ctc=44.249, loss_att=47.694, acc=0.693, loss=46.661, backward_time=0.097, grad_norm=27.736, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.888e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:31:13,184 (trainer:737) INFO: 9epoch:train:6501-6600batch: iter_time=1.846e-04, forward_time=0.105, loss_ctc=54.633, loss_att=63.927, acc=0.679, loss=61.139, backward_time=0.098, grad_norm=32.900, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.886e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 00:31:53,909 (trainer:737) INFO: 9epoch:train:6601-6700batch: iter_time=2.356e-04, forward_time=0.103, loss_ctc=49.405, loss_att=50.421, acc=0.709, loss=50.116, backward_time=0.097, grad_norm=27.471, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.883e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:32:34,657 (trainer:737) INFO: 9epoch:train:6701-6800batch: iter_time=1.930e-04, forward_time=0.104, loss_ctc=55.778, loss_att=61.062, acc=0.692, loss=59.477, backward_time=0.097, grad_norm=29.839, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.880e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:33:15,466 (trainer:737) INFO: 9epoch:train:6801-6900batch: iter_time=1.769e-04, forward_time=0.104, loss_ctc=49.913, loss_att=63.975, acc=0.675, loss=59.756, backward_time=0.097, grad_norm=30.449, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.877e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 00:33:56,193 (trainer:737) INFO: 9epoch:train:6901-7000batch: iter_time=1.853e-04, forward_time=0.105, loss_ctc=56.555, loss_att=61.835, acc=0.670, loss=60.251, backward_time=0.097, grad_norm=32.353, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.875e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:34:36,905 (trainer:737) INFO: 9epoch:train:7001-7100batch: iter_time=1.834e-04, forward_time=0.104, loss_ctc=55.015, loss_att=49.903, acc=0.705, loss=51.437, backward_time=0.097, grad_norm=32.930, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.872e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:35:17,849 (trainer:737) INFO: 9epoch:train:7101-7200batch: iter_time=2.172e-04, forward_time=0.107, loss_ctc=53.619, loss_att=60.663, acc=0.680, loss=58.550, backward_time=0.097, grad_norm=30.303, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.869e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:35:58,621 (trainer:737) INFO: 9epoch:train:7201-7300batch: iter_time=1.984e-04, forward_time=0.104, loss_ctc=55.550, loss_att=63.152, acc=0.653, loss=60.872, backward_time=0.096, grad_norm=34.790, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.867e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:36:39,791 (trainer:737) INFO: 9epoch:train:7301-7400batch: iter_time=2.053e-04, forward_time=0.105, loss_ctc=50.639, loss_att=52.586, acc=0.728, loss=52.002, backward_time=0.097, grad_norm=27.955, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.864e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 00:37:20,767 (trainer:737) INFO: 9epoch:train:7401-7500batch: iter_time=1.627e-04, forward_time=0.105, loss_ctc=59.252, loss_att=78.497, acc=0.647, loss=72.723, backward_time=0.098, grad_norm=34.134, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.029, optim0_lr0=6.861e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:37:25,707 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 00:37:45,358 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 00:37:49,136 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 00:37:49,136 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 00:37:49,139 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 00:42:26,602 (trainer:737) INFO: 9epoch:train:7501-7600batch: iter_time=2.616, forward_time=0.105, loss_ctc=51.200, loss_att=52.552, acc=0.708, loss=52.146, backward_time=0.097, grad_norm=30.668, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.859e-04, train_time=3.058 +[gpuc02:0/16] 2024-01-13 00:43:07,721 (trainer:737) INFO: 9epoch:train:7601-7700batch: iter_time=2.156e-04, forward_time=0.104, loss_ctc=49.857, loss_att=54.660, acc=0.679, loss=53.219, backward_time=0.097, grad_norm=29.897, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.856e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 00:43:48,749 (trainer:737) INFO: 9epoch:train:7701-7800batch: iter_time=1.958e-04, forward_time=0.105, loss_ctc=47.010, loss_att=55.753, acc=0.671, loss=53.131, backward_time=0.097, grad_norm=29.046, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.853e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:44:30,157 (trainer:737) INFO: 9epoch:train:7801-7900batch: iter_time=2.174e-04, forward_time=0.105, loss_ctc=53.755, loss_att=62.340, acc=0.689, loss=59.765, backward_time=0.098, grad_norm=31.908, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.851e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 00:45:10,906 (trainer:737) INFO: 9epoch:train:7901-8000batch: iter_time=2.378e-04, forward_time=0.105, loss_ctc=48.108, loss_att=52.051, acc=0.711, loss=50.868, backward_time=0.098, grad_norm=59.086, clip=100.000, loss_scale=6.045e+23, optim_step_time=0.030, optim0_lr0=6.848e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:45:51,805 (trainer:737) INFO: 9epoch:train:8001-8100batch: iter_time=2.086e-04, forward_time=0.105, loss_ctc=54.693, loss_att=62.672, acc=0.684, loss=60.278, backward_time=0.098, grad_norm=29.749, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.845e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:46:32,589 (trainer:737) INFO: 9epoch:train:8101-8200batch: iter_time=2.232e-04, forward_time=0.105, loss_ctc=50.818, loss_att=60.259, acc=0.671, loss=57.427, backward_time=0.097, grad_norm=30.832, clip=99.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.842e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 00:47:14,014 (trainer:737) INFO: 9epoch:train:8201-8300batch: iter_time=1.924e-04, forward_time=0.106, loss_ctc=61.406, loss_att=56.508, acc=0.698, loss=57.977, backward_time=0.098, grad_norm=33.039, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.840e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 00:47:54,735 (trainer:737) INFO: 9epoch:train:8301-8400batch: iter_time=1.958e-04, forward_time=0.105, loss_ctc=48.669, loss_att=55.151, acc=0.690, loss=53.206, backward_time=0.097, grad_norm=79.995, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.837e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:48:35,825 (trainer:737) INFO: 9epoch:train:8401-8500batch: iter_time=1.828e-04, forward_time=0.105, loss_ctc=53.196, loss_att=60.422, acc=0.677, loss=58.254, backward_time=0.098, grad_norm=30.990, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.834e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 00:49:16,831 (trainer:737) INFO: 9epoch:train:8501-8600batch: iter_time=1.988e-04, forward_time=0.104, loss_ctc=54.647, loss_att=52.690, acc=0.693, loss=53.277, backward_time=0.097, grad_norm=30.331, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.832e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:49:57,836 (trainer:737) INFO: 9epoch:train:8601-8700batch: iter_time=1.781e-04, forward_time=0.106, loss_ctc=57.396, loss_att=67.621, acc=0.687, loss=64.553, backward_time=0.098, grad_norm=32.388, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.829e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 00:50:24,318 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 00:50:43,896 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 00:50:47,600 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 00:50:47,600 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 00:50:47,604 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 00:55:07,002 (trainer:737) INFO: 9epoch:train:8701-8800batch: iter_time=2.659, forward_time=0.106, loss_ctc=46.135, loss_att=65.795, acc=0.663, loss=59.897, backward_time=0.097, grad_norm=27.886, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.827e-04, train_time=3.091 +[gpuc02:0/16] 2024-01-13 00:55:47,943 (trainer:737) INFO: 9epoch:train:8801-8900batch: iter_time=2.208e-04, forward_time=0.104, loss_ctc=55.498, loss_att=61.933, acc=0.672, loss=60.002, backward_time=0.098, grad_norm=33.371, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.824e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:56:28,559 (trainer:737) INFO: 9epoch:train:8901-9000batch: iter_time=2.290e-04, forward_time=0.102, loss_ctc=43.920, loss_att=48.224, acc=0.687, loss=46.932, backward_time=0.096, grad_norm=27.949, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.821e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 00:57:09,322 (trainer:737) INFO: 9epoch:train:9001-9100batch: iter_time=2.133e-04, forward_time=0.103, loss_ctc=53.907, loss_att=61.638, acc=0.678, loss=59.319, backward_time=0.097, grad_norm=32.191, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.819e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:57:50,225 (trainer:737) INFO: 9epoch:train:9101-9200batch: iter_time=2.346e-04, forward_time=0.102, loss_ctc=49.305, loss_att=50.477, acc=0.711, loss=50.125, backward_time=0.097, grad_norm=29.530, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.816e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 00:58:30,977 (trainer:737) INFO: 9epoch:train:9201-9300batch: iter_time=2.163e-04, forward_time=0.103, loss_ctc=54.692, loss_att=58.738, acc=0.693, loss=57.524, backward_time=0.097, grad_norm=30.209, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.030, optim0_lr0=6.813e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 00:59:12,346 (trainer:737) INFO: 9epoch:train:9301-9400batch: iter_time=2.087e-04, forward_time=0.103, loss_ctc=49.280, loss_att=62.119, acc=0.670, loss=58.267, backward_time=0.097, grad_norm=29.610, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.811e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 00:59:53,294 (trainer:737) INFO: 9epoch:train:9401-9500batch: iter_time=2.203e-04, forward_time=0.103, loss_ctc=55.510, loss_att=59.655, acc=0.661, loss=58.412, backward_time=0.097, grad_norm=31.741, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.808e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 01:00:34,314 (trainer:737) INFO: 9epoch:train:9501-9600batch: iter_time=2.022e-04, forward_time=0.103, loss_ctc=54.729, loss_att=47.081, acc=0.707, loss=49.376, backward_time=0.097, grad_norm=57.337, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.805e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:01:15,350 (trainer:737) INFO: 9epoch:train:9601-9700batch: iter_time=2.207e-04, forward_time=0.103, loss_ctc=53.370, loss_att=60.840, acc=0.675, loss=58.599, backward_time=0.097, grad_norm=87.861, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.803e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:01:56,479 (trainer:737) INFO: 9epoch:train:9701-9800batch: iter_time=2.233e-04, forward_time=0.103, loss_ctc=55.465, loss_att=61.997, acc=0.650, loss=60.038, backward_time=0.097, grad_norm=35.669, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.800e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 01:02:37,641 (trainer:737) INFO: 9epoch:train:9801-9900batch: iter_time=2.103e-04, forward_time=0.103, loss_ctc=50.029, loss_att=53.994, acc=0.712, loss=52.805, backward_time=0.098, grad_norm=27.537, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.798e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 01:03:19,048 (trainer:737) INFO: 9epoch:train:9901-10000batch: iter_time=1.795e-04, forward_time=0.104, loss_ctc=58.598, loss_att=75.821, acc=0.640, loss=70.654, backward_time=0.098, grad_norm=33.228, clip=100.000, loss_scale=1.209e+24, optim_step_time=0.029, optim0_lr0=6.795e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 01:03:25,393 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 01:03:44,684 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 01:03:48,462 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 01:03:48,462 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 01:03:48,466 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 01:08:28,650 (trainer:737) INFO: 9epoch:train:10001-10100batch: iter_time=2.650, forward_time=0.105, loss_ctc=50.644, loss_att=53.980, acc=0.708, loss=52.979, backward_time=0.097, grad_norm=31.318, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.029, optim0_lr0=6.792e-04, train_time=3.096 +[gpuc02:0/16] 2024-01-13 01:09:09,404 (trainer:737) INFO: 9epoch:train:10101-10200batch: iter_time=1.890e-04, forward_time=0.103, loss_ctc=49.091, loss_att=54.289, acc=0.681, loss=52.730, backward_time=0.097, grad_norm=30.782, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.029, optim0_lr0=6.790e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:09:50,165 (trainer:737) INFO: 9epoch:train:10201-10300batch: iter_time=1.797e-04, forward_time=0.102, loss_ctc=46.868, loss_att=56.046, acc=0.671, loss=53.293, backward_time=0.096, grad_norm=29.693, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.029, optim0_lr0=6.787e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:10:31,019 (trainer:737) INFO: 9epoch:train:10301-10400batch: iter_time=1.879e-04, forward_time=0.104, loss_ctc=53.357, loss_att=63.041, acc=0.686, loss=60.135, backward_time=0.097, grad_norm=31.280, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.029, optim0_lr0=6.784e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:11:11,814 (trainer:737) INFO: 9epoch:train:10401-10500batch: iter_time=1.978e-04, forward_time=0.105, loss_ctc=47.899, loss_att=52.265, acc=0.714, loss=50.955, backward_time=0.097, grad_norm=27.658, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.782e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:11:52,888 (trainer:737) INFO: 9epoch:train:10501-10600batch: iter_time=2.005e-04, forward_time=0.105, loss_ctc=54.707, loss_att=61.491, acc=0.688, loss=59.456, backward_time=0.098, grad_norm=30.487, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.779e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 01:12:33,763 (trainer:737) INFO: 9epoch:train:10601-10700batch: iter_time=2.150e-04, forward_time=0.105, loss_ctc=49.459, loss_att=59.258, acc=0.675, loss=56.318, backward_time=0.097, grad_norm=30.174, clip=99.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.777e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 01:13:14,730 (trainer:737) INFO: 9epoch:train:10701-10800batch: iter_time=1.868e-04, forward_time=0.106, loss_ctc=59.272, loss_att=56.563, acc=0.700, loss=57.376, backward_time=0.098, grad_norm=32.689, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.774e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 01:13:55,594 (trainer:737) INFO: 9epoch:train:10801-10900batch: iter_time=1.832e-04, forward_time=0.104, loss_ctc=47.438, loss_att=53.803, acc=0.695, loss=51.893, backward_time=0.097, grad_norm=31.714, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.772e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:14:36,774 (trainer:737) INFO: 9epoch:train:10901-11000batch: iter_time=1.916e-04, forward_time=0.105, loss_ctc=53.037, loss_att=58.992, acc=0.685, loss=57.205, backward_time=0.098, grad_norm=39.581, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.769e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 01:15:17,666 (trainer:737) INFO: 9epoch:train:11001-11100batch: iter_time=1.958e-04, forward_time=0.105, loss_ctc=55.060, loss_att=52.723, acc=0.692, loss=53.424, backward_time=0.097, grad_norm=32.651, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.766e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 01:15:58,739 (trainer:737) INFO: 9epoch:train:11101-11200batch: iter_time=1.871e-04, forward_time=0.106, loss_ctc=56.851, loss_att=67.605, acc=0.688, loss=64.379, backward_time=0.098, grad_norm=31.156, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.764e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 01:16:25,422 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 01:16:44,772 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 01:16:48,802 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 01:16:48,802 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 01:16:48,805 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 01:21:24,067 (trainer:737) INFO: 9epoch:train:11201-11300batch: iter_time=2.631, forward_time=0.106, loss_ctc=45.988, loss_att=63.583, acc=0.673, loss=58.304, backward_time=0.099, grad_norm=28.042, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.761e-04, train_time=3.253 +[gpuc02:0/16] 2024-01-13 01:22:05,116 (trainer:737) INFO: 9epoch:train:11301-11400batch: iter_time=1.877e-04, forward_time=0.104, loss_ctc=55.590, loss_att=59.034, acc=0.689, loss=58.001, backward_time=0.099, grad_norm=34.278, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.759e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:22:45,813 (trainer:737) INFO: 9epoch:train:11401-11500batch: iter_time=1.877e-04, forward_time=0.103, loss_ctc=42.957, loss_att=46.155, acc=0.699, loss=45.196, backward_time=0.097, grad_norm=26.732, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.756e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:23:26,812 (trainer:737) INFO: 9epoch:train:11501-11600batch: iter_time=1.809e-04, forward_time=0.104, loss_ctc=54.346, loss_att=61.862, acc=0.686, loss=59.607, backward_time=0.098, grad_norm=31.719, clip=99.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.753e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:24:07,604 (trainer:737) INFO: 9epoch:train:11601-11700batch: iter_time=2.045e-04, forward_time=0.104, loss_ctc=48.536, loss_att=50.139, acc=0.712, loss=49.658, backward_time=0.098, grad_norm=28.353, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.751e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:24:48,784 (trainer:737) INFO: 9epoch:train:11701-11800batch: iter_time=2.199e-04, forward_time=0.104, loss_ctc=54.398, loss_att=60.680, acc=0.693, loss=58.795, backward_time=0.098, grad_norm=30.997, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.748e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 01:25:29,942 (trainer:737) INFO: 9epoch:train:11801-11900batch: iter_time=2.266e-04, forward_time=0.105, loss_ctc=48.679, loss_att=62.001, acc=0.682, loss=58.005, backward_time=0.098, grad_norm=28.020, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.746e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 01:26:10,813 (trainer:737) INFO: 9epoch:train:11901-12000batch: iter_time=2.183e-04, forward_time=0.104, loss_ctc=55.887, loss_att=61.008, acc=0.675, loss=59.472, backward_time=0.098, grad_norm=32.092, clip=100.000, loss_scale=2.418e+24, optim_step_time=0.030, optim0_lr0=6.743e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:26:51,660 (trainer:737) INFO: 9epoch:train:12001-12100batch: iter_time=2.023e-04, forward_time=0.104, loss_ctc=54.495, loss_att=49.378, acc=0.709, loss=50.913, backward_time=0.097, grad_norm=33.610, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.741e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:27:32,482 (trainer:737) INFO: 9epoch:train:12101-12200batch: iter_time=2.072e-04, forward_time=0.104, loss_ctc=51.964, loss_att=58.610, acc=0.687, loss=56.616, backward_time=0.097, grad_norm=30.253, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.738e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:28:13,326 (trainer:737) INFO: 9epoch:train:12201-12300batch: iter_time=2.406e-04, forward_time=0.103, loss_ctc=53.411, loss_att=62.203, acc=0.658, loss=59.566, backward_time=0.097, grad_norm=30.904, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.736e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:28:55,088 (trainer:737) INFO: 9epoch:train:12301-12400batch: iter_time=2.226e-04, forward_time=0.105, loss_ctc=49.302, loss_att=51.306, acc=0.732, loss=50.705, backward_time=0.098, grad_norm=26.881, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.733e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 01:29:36,109 (trainer:737) INFO: 9epoch:train:12401-12500batch: iter_time=1.917e-04, forward_time=0.105, loss_ctc=57.830, loss_att=76.395, acc=0.654, loss=70.826, backward_time=0.098, grad_norm=33.682, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.730e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:29:44,437 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 01:30:03,524 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 01:30:07,195 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 01:30:07,195 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 01:30:07,198 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 01:35:02,654 (trainer:737) INFO: 9epoch:train:12501-12600batch: iter_time=2.735, forward_time=0.104, loss_ctc=49.465, loss_att=55.901, acc=0.692, loss=53.970, backward_time=0.097, grad_norm=32.031, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.728e-04, train_time=3.265 +[gpuc02:0/16] 2024-01-13 01:35:43,430 (trainer:737) INFO: 9epoch:train:12601-12700batch: iter_time=2.072e-04, forward_time=0.104, loss_ctc=48.633, loss_att=53.637, acc=0.681, loss=52.136, backward_time=0.097, grad_norm=29.793, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.725e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:36:24,090 (trainer:737) INFO: 9epoch:train:12701-12800batch: iter_time=2.212e-04, forward_time=0.102, loss_ctc=46.051, loss_att=54.412, acc=0.664, loss=51.903, backward_time=0.097, grad_norm=29.284, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.723e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 01:37:05,135 (trainer:737) INFO: 9epoch:train:12801-12900batch: iter_time=2.096e-04, forward_time=0.103, loss_ctc=52.703, loss_att=62.320, acc=0.687, loss=59.435, backward_time=0.097, grad_norm=32.083, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.720e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:37:45,861 (trainer:737) INFO: 9epoch:train:12901-13000batch: iter_time=2.207e-04, forward_time=0.103, loss_ctc=47.490, loss_att=48.930, acc=0.720, loss=48.498, backward_time=0.097, grad_norm=28.899, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.718e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:38:27,046 (trainer:737) INFO: 9epoch:train:13001-13100batch: iter_time=1.973e-04, forward_time=0.106, loss_ctc=53.919, loss_att=59.317, acc=0.689, loss=57.698, backward_time=0.098, grad_norm=31.922, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.715e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 01:39:08,302 (trainer:737) INFO: 9epoch:train:13101-13200batch: iter_time=2.331e-04, forward_time=0.103, loss_ctc=49.136, loss_att=56.894, acc=0.671, loss=54.567, backward_time=0.097, grad_norm=31.677, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.713e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 01:39:49,137 (trainer:737) INFO: 9epoch:train:13201-13300batch: iter_time=2.157e-04, forward_time=0.105, loss_ctc=58.691, loss_att=54.871, acc=0.687, loss=56.017, backward_time=0.097, grad_norm=33.476, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.710e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:40:30,303 (trainer:737) INFO: 9epoch:train:13301-13400batch: iter_time=2.071e-04, forward_time=0.103, loss_ctc=47.173, loss_att=53.308, acc=0.692, loss=51.468, backward_time=0.097, grad_norm=29.860, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.708e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 01:41:11,373 (trainer:737) INFO: 9epoch:train:13401-13500batch: iter_time=2.218e-04, forward_time=0.104, loss_ctc=53.826, loss_att=60.243, acc=0.675, loss=58.318, backward_time=0.097, grad_norm=34.295, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.705e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 01:41:52,663 (trainer:737) INFO: 9epoch:train:13501-13600batch: iter_time=2.255e-04, forward_time=0.103, loss_ctc=53.501, loss_att=51.490, acc=0.686, loss=52.094, backward_time=0.097, grad_norm=31.173, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.703e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 01:42:34,496 (trainer:737) INFO: 9epoch:train:13601-13700batch: iter_time=2.299e-04, forward_time=0.105, loss_ctc=56.153, loss_att=67.147, acc=0.677, loss=63.849, backward_time=0.098, grad_norm=32.228, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.700e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-13 01:43:02,816 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 01:43:22,375 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 01:43:26,179 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 01:43:26,179 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 01:43:26,183 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 01:47:52,292 (trainer:737) INFO: 9epoch:train:13701-13800batch: iter_time=2.728, forward_time=0.104, loss_ctc=46.536, loss_att=61.458, acc=0.667, loss=56.981, backward_time=0.097, grad_norm=29.034, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.030, optim0_lr0=6.698e-04, train_time=3.178 +[gpuc02:0/16] 2024-01-13 01:48:33,735 (trainer:737) INFO: 9epoch:train:13801-13900batch: iter_time=2.533e-04, forward_time=0.105, loss_ctc=54.873, loss_att=59.616, acc=0.679, loss=58.193, backward_time=0.097, grad_norm=34.430, clip=100.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.695e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 01:49:14,384 (trainer:737) INFO: 9epoch:train:13901-14000batch: iter_time=2.582e-04, forward_time=0.103, loss_ctc=42.921, loss_att=46.973, acc=0.691, loss=45.757, backward_time=0.096, grad_norm=26.611, clip=99.000, loss_scale=4.836e+24, optim_step_time=0.029, optim0_lr0=6.693e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 01:49:55,241 (trainer:737) INFO: 9epoch:train:14001-14100batch: iter_time=2.580e-04, forward_time=0.105, loss_ctc=52.982, loss_att=60.223, acc=0.682, loss=58.050, backward_time=0.097, grad_norm=30.904, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.690e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:50:35,940 (trainer:737) INFO: 9epoch:train:14101-14200batch: iter_time=2.290e-04, forward_time=0.104, loss_ctc=48.061, loss_att=47.941, acc=0.717, loss=47.977, backward_time=0.096, grad_norm=28.093, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.688e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:51:16,783 (trainer:737) INFO: 9epoch:train:14201-14300batch: iter_time=2.154e-04, forward_time=0.104, loss_ctc=53.596, loss_att=58.011, acc=0.698, loss=56.686, backward_time=0.097, grad_norm=29.426, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.685e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:51:57,597 (trainer:737) INFO: 9epoch:train:14301-14400batch: iter_time=2.246e-04, forward_time=0.104, loss_ctc=48.539, loss_att=60.375, acc=0.675, loss=56.824, backward_time=0.097, grad_norm=29.956, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.683e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 01:52:38,270 (trainer:737) INFO: 9epoch:train:14401-14500batch: iter_time=2.311e-04, forward_time=0.104, loss_ctc=54.724, loss_att=58.622, acc=0.664, loss=57.453, backward_time=0.096, grad_norm=33.722, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.680e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:53:19,001 (trainer:737) INFO: 9epoch:train:14501-14600batch: iter_time=1.960e-04, forward_time=0.104, loss_ctc=53.050, loss_att=45.901, acc=0.714, loss=48.046, backward_time=0.096, grad_norm=31.226, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.678e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:53:59,755 (trainer:737) INFO: 9epoch:train:14601-14700batch: iter_time=2.097e-04, forward_time=0.104, loss_ctc=52.124, loss_att=58.631, acc=0.681, loss=56.679, backward_time=0.096, grad_norm=32.216, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.675e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:54:40,522 (trainer:737) INFO: 9epoch:train:14701-14800batch: iter_time=1.865e-04, forward_time=0.104, loss_ctc=53.699, loss_att=59.557, acc=0.658, loss=57.800, backward_time=0.096, grad_norm=35.496, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.673e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 01:55:21,404 (trainer:737) INFO: 9epoch:train:14801-14900batch: iter_time=1.868e-04, forward_time=0.104, loss_ctc=49.177, loss_att=53.568, acc=0.715, loss=52.251, backward_time=0.097, grad_norm=29.891, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.670e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 01:56:05,880 (trainer:737) INFO: 9epoch:train:14901-15000batch: iter_time=1.487e-04, forward_time=0.129, loss_ctc=57.552, loss_att=73.445, acc=0.646, loss=68.677, backward_time=0.106, grad_norm=34.066, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.668e-04, train_time=0.445 +[gpuc02:0/16] 2024-01-13 02:17:14,302 (trainer:343) INFO: 9epoch results: [train] iter_time=0.218, forward_time=0.105, loss_ctc=53.027, loss_att=58.587, acc=0.682, loss=56.919, backward_time=0.097, grad_norm=32.525, clip=99.973, loss_scale=1.924e+24, optim_step_time=0.030, optim0_lr0=6.863e-04, train_time=0.634, time=2 hours, 38 minutes and 54.9 seconds, total_count=135000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=65.176, cer_ctc=0.325, loss_att=61.382, acc=0.533, cer=0.449, wer=1.000, loss=62.520, time=20 minutes and 48.01 seconds, total_count=42039, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 02:17:19,542 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-13 02:17:19,557 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/4epoch.pth +[gpuc02:0/16] 2024-01-13 02:17:19,557 (trainer:272) INFO: 10/45epoch started. Estimated time to finish: 4 days, 11 hours and 17 minutes +[gpuc02:0/16] 2024-01-13 02:17:19,568 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 02:17:38,334 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 02:17:41,875 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 02:17:41,876 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 02:17:41,879 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 02:22:15,849 (trainer:737) INFO: 10epoch:train:1-100batch: iter_time=2.550, forward_time=0.105, loss_ctc=57.487, loss_att=64.028, acc=0.692, loss=62.066, backward_time=0.098, grad_norm=34.325, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.665e-04, train_time=2.963 +[gpuc02:0/16] 2024-01-13 02:22:56,928 (trainer:737) INFO: 10epoch:train:101-200batch: iter_time=1.255e-04, forward_time=0.104, loss_ctc=53.906, loss_att=59.247, acc=0.706, loss=57.645, backward_time=0.098, grad_norm=31.879, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.663e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 02:23:37,899 (trainer:737) INFO: 10epoch:train:201-300batch: iter_time=1.191e-04, forward_time=0.103, loss_ctc=40.797, loss_att=44.916, acc=0.702, loss=43.680, backward_time=0.097, grad_norm=25.595, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.660e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 02:24:19,109 (trainer:737) INFO: 10epoch:train:301-400batch: iter_time=1.365e-04, forward_time=0.105, loss_ctc=59.377, loss_att=73.027, acc=0.682, loss=68.932, backward_time=0.099, grad_norm=31.664, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.029, optim0_lr0=6.658e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 02:25:00,119 (trainer:737) INFO: 10epoch:train:401-500batch: iter_time=1.341e-04, forward_time=0.105, loss_ctc=48.780, loss_att=59.942, acc=0.685, loss=56.593, backward_time=0.099, grad_norm=32.123, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.656e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 02:25:40,984 (trainer:737) INFO: 10epoch:train:501-600batch: iter_time=1.327e-04, forward_time=0.105, loss_ctc=52.095, loss_att=56.760, acc=0.724, loss=55.361, backward_time=0.099, grad_norm=29.613, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.653e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 02:26:22,951 (trainer:737) INFO: 10epoch:train:601-700batch: iter_time=1.237e-04, forward_time=0.110, loss_ctc=55.624, loss_att=59.671, acc=0.691, loss=58.457, backward_time=0.102, grad_norm=38.357, clip=99.000, loss_scale=9.671e+24, optim_step_time=0.031, optim0_lr0=6.651e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 02:27:06,005 (trainer:737) INFO: 10epoch:train:701-800batch: iter_time=1.240e-04, forward_time=0.105, loss_ctc=48.560, loss_att=59.262, acc=0.685, loss=56.052, backward_time=0.098, grad_norm=28.712, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.648e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-13 02:27:48,934 (trainer:737) INFO: 10epoch:train:801-900batch: iter_time=1.250e-04, forward_time=0.104, loss_ctc=65.482, loss_att=68.937, acc=0.677, loss=67.900, backward_time=0.099, grad_norm=39.734, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.646e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-13 02:28:32,648 (trainer:737) INFO: 10epoch:train:901-1000batch: iter_time=1.273e-04, forward_time=0.105, loss_ctc=69.457, loss_att=76.286, acc=0.670, loss=74.237, backward_time=0.100, grad_norm=39.951, clip=100.000, loss_scale=9.671e+24, optim_step_time=0.030, optim0_lr0=6.643e-04, train_time=0.437 +[gpuc02:0/16] 2024-01-13 02:29:15,152 (trainer:737) INFO: 10epoch:train:1001-1100batch: iter_time=1.321e-04, forward_time=0.103, loss_ctc=48.896, loss_att=42.149, acc=0.731, loss=44.173, backward_time=0.098, grad_norm=27.096, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.641e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-13 02:29:57,902 (trainer:737) INFO: 10epoch:train:1101-1200batch: iter_time=1.257e-04, forward_time=0.117, loss_ctc=59.559, loss_att=72.238, acc=0.675, loss=68.434, backward_time=0.105, grad_norm=33.415, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.031, optim0_lr0=6.638e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-13 02:30:33,974 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 02:30:53,040 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 02:30:56,789 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 02:30:56,789 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 02:30:56,793 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 02:37:03,098 (trainer:737) INFO: 10epoch:train:1201-1300batch: iter_time=3.041, forward_time=0.106, loss_ctc=52.845, loss_att=56.467, acc=0.710, loss=55.381, backward_time=0.099, grad_norm=30.645, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.636e-04, train_time=4.252 +[gpuc02:0/16] 2024-01-13 02:37:44,057 (trainer:737) INFO: 10epoch:train:1301-1400batch: iter_time=1.630e-04, forward_time=0.102, loss_ctc=52.894, loss_att=57.611, acc=0.685, loss=56.196, backward_time=0.097, grad_norm=31.725, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.029, optim0_lr0=6.634e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 02:38:25,822 (trainer:737) INFO: 10epoch:train:1401-1500batch: iter_time=1.440e-04, forward_time=0.108, loss_ctc=45.574, loss_att=52.100, acc=0.700, loss=50.142, backward_time=0.098, grad_norm=28.179, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.631e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 02:39:06,557 (trainer:737) INFO: 10epoch:train:1501-1600batch: iter_time=1.543e-04, forward_time=0.103, loss_ctc=45.232, loss_att=53.867, acc=0.680, loss=51.276, backward_time=0.098, grad_norm=27.173, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.629e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 02:39:49,604 (trainer:737) INFO: 10epoch:train:1601-1700batch: iter_time=1.463e-04, forward_time=0.111, loss_ctc=52.648, loss_att=67.097, acc=0.682, loss=62.762, backward_time=0.100, grad_norm=30.608, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.626e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-13 02:40:30,614 (trainer:737) INFO: 10epoch:train:1701-1800batch: iter_time=1.715e-04, forward_time=0.104, loss_ctc=54.250, loss_att=62.375, acc=0.690, loss=59.937, backward_time=0.099, grad_norm=33.767, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.624e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 02:41:15,031 (trainer:737) INFO: 10epoch:train:1801-1900batch: iter_time=1.543e-04, forward_time=0.103, loss_ctc=53.721, loss_att=53.884, acc=0.694, loss=53.835, backward_time=0.098, grad_norm=34.513, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.621e-04, train_time=0.444 +[gpuc02:0/16] 2024-01-13 02:41:55,745 (trainer:737) INFO: 10epoch:train:1901-2000batch: iter_time=1.645e-04, forward_time=0.103, loss_ctc=45.967, loss_att=52.192, acc=0.705, loss=50.325, backward_time=0.098, grad_norm=27.981, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.619e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 02:42:36,548 (trainer:737) INFO: 10epoch:train:2001-2100batch: iter_time=1.805e-04, forward_time=0.103, loss_ctc=54.793, loss_att=65.062, acc=0.669, loss=61.981, backward_time=0.098, grad_norm=32.459, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.617e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 02:43:17,369 (trainer:737) INFO: 10epoch:train:2101-2200batch: iter_time=1.569e-04, forward_time=0.104, loss_ctc=69.123, loss_att=66.545, acc=0.677, loss=67.318, backward_time=0.098, grad_norm=44.381, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.614e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 02:43:58,201 (trainer:737) INFO: 10epoch:train:2201-2300batch: iter_time=1.535e-04, forward_time=0.103, loss_ctc=53.945, loss_att=63.124, acc=0.691, loss=60.370, backward_time=0.098, grad_norm=29.530, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.612e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 02:44:38,916 (trainer:737) INFO: 10epoch:train:2301-2400batch: iter_time=1.508e-04, forward_time=0.103, loss_ctc=55.647, loss_att=54.303, acc=0.697, loss=54.706, backward_time=0.098, grad_norm=32.851, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.609e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 02:45:19,656 (trainer:737) INFO: 10epoch:train:2401-2500batch: iter_time=1.378e-04, forward_time=0.103, loss_ctc=50.359, loss_att=57.477, acc=0.691, loss=55.342, backward_time=0.098, grad_norm=31.057, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.607e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 02:45:30,826 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 02:45:50,331 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 02:45:53,999 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 02:45:53,999 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 02:45:54,003 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 02:51:12,872 (trainer:737) INFO: 10epoch:train:2501-2600batch: iter_time=3.122, forward_time=0.104, loss_ctc=55.729, loss_att=60.695, acc=0.689, loss=59.205, backward_time=0.098, grad_norm=30.815, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.605e-04, train_time=3.532 +[gpuc02:0/16] 2024-01-13 02:51:53,768 (trainer:737) INFO: 10epoch:train:2601-2700batch: iter_time=1.617e-04, forward_time=0.104, loss_ctc=51.178, loss_att=56.398, acc=0.704, loss=54.832, backward_time=0.098, grad_norm=30.707, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.602e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 02:52:34,255 (trainer:737) INFO: 10epoch:train:2701-2800batch: iter_time=2.414e-04, forward_time=0.103, loss_ctc=39.261, loss_att=43.556, acc=0.695, loss=42.268, backward_time=0.097, grad_norm=24.240, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.030, optim0_lr0=6.600e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-13 02:53:15,472 (trainer:737) INFO: 10epoch:train:2801-2900batch: iter_time=2.074e-04, forward_time=0.104, loss_ctc=57.113, loss_att=71.068, acc=0.675, loss=66.882, backward_time=0.098, grad_norm=31.318, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.029, optim0_lr0=6.597e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 02:53:56,642 (trainer:737) INFO: 10epoch:train:2901-3000batch: iter_time=2.127e-04, forward_time=0.103, loss_ctc=47.827, loss_att=55.625, acc=0.689, loss=53.286, backward_time=0.097, grad_norm=31.153, clip=100.000, loss_scale=1.934e+25, optim_step_time=0.029, optim0_lr0=6.595e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 02:54:37,906 (trainer:737) INFO: 10epoch:train:3001-3100batch: iter_time=2.104e-04, forward_time=0.104, loss_ctc=48.912, loss_att=54.071, acc=0.723, loss=52.523, backward_time=0.097, grad_norm=27.967, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.593e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 02:55:18,863 (trainer:737) INFO: 10epoch:train:3101-3200batch: iter_time=1.906e-04, forward_time=0.104, loss_ctc=53.774, loss_att=57.695, acc=0.689, loss=56.519, backward_time=0.097, grad_norm=33.375, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.590e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 02:56:00,021 (trainer:737) INFO: 10epoch:train:3201-3300batch: iter_time=1.935e-04, forward_time=0.103, loss_ctc=47.518, loss_att=56.875, acc=0.684, loss=54.068, backward_time=0.097, grad_norm=27.014, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.588e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 02:56:40,780 (trainer:737) INFO: 10epoch:train:3301-3400batch: iter_time=2.054e-04, forward_time=0.103, loss_ctc=62.450, loss_att=67.041, acc=0.671, loss=65.663, backward_time=0.097, grad_norm=40.608, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.585e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 02:57:22,102 (trainer:737) INFO: 10epoch:train:3401-3500batch: iter_time=2.020e-04, forward_time=0.104, loss_ctc=65.090, loss_att=74.551, acc=0.660, loss=71.713, backward_time=0.097, grad_norm=37.492, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.583e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 02:58:02,722 (trainer:737) INFO: 10epoch:train:3501-3600batch: iter_time=1.915e-04, forward_time=0.102, loss_ctc=48.091, loss_att=41.404, acc=0.734, loss=43.410, backward_time=0.096, grad_norm=25.470, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.581e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 02:58:43,567 (trainer:737) INFO: 10epoch:train:3601-3700batch: iter_time=2.121e-04, forward_time=0.104, loss_ctc=57.300, loss_att=68.559, acc=0.675, loss=65.182, backward_time=0.097, grad_norm=34.694, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.578e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 02:59:10,459 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 02:59:29,639 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 02:59:33,362 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 02:59:33,362 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 02:59:33,366 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 03:03:58,747 (trainer:737) INFO: 10epoch:train:3701-3800batch: iter_time=2.695, forward_time=0.104, loss_ctc=51.893, loss_att=56.633, acc=0.713, loss=55.211, backward_time=0.097, grad_norm=30.629, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.576e-04, train_time=3.152 +[gpuc02:0/16] 2024-01-13 03:04:39,678 (trainer:737) INFO: 10epoch:train:3801-3900batch: iter_time=2.083e-04, forward_time=0.104, loss_ctc=52.485, loss_att=57.098, acc=0.700, loss=55.714, backward_time=0.098, grad_norm=31.655, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.029, optim0_lr0=6.574e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:05:20,893 (trainer:737) INFO: 10epoch:train:3901-4000batch: iter_time=2.412e-04, forward_time=0.105, loss_ctc=44.422, loss_att=51.439, acc=0.712, loss=49.334, backward_time=0.098, grad_norm=27.845, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.571e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 03:06:02,265 (trainer:737) INFO: 10epoch:train:4001-4100batch: iter_time=2.098e-04, forward_time=0.107, loss_ctc=44.518, loss_att=53.654, acc=0.696, loss=50.913, backward_time=0.098, grad_norm=27.111, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.569e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 03:06:43,264 (trainer:737) INFO: 10epoch:train:4101-4200batch: iter_time=2.019e-04, forward_time=0.105, loss_ctc=51.225, loss_att=68.960, acc=0.691, loss=63.639, backward_time=0.098, grad_norm=30.665, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.566e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 03:07:24,871 (trainer:737) INFO: 10epoch:train:4201-4300batch: iter_time=2.296e-04, forward_time=0.106, loss_ctc=53.048, loss_att=62.651, acc=0.699, loss=59.770, backward_time=0.099, grad_norm=31.287, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.564e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 03:08:05,770 (trainer:737) INFO: 10epoch:train:4301-4400batch: iter_time=2.236e-04, forward_time=0.104, loss_ctc=52.274, loss_att=53.842, acc=0.707, loss=53.372, backward_time=0.098, grad_norm=31.336, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.562e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:08:46,571 (trainer:737) INFO: 10epoch:train:4401-4500batch: iter_time=2.324e-04, forward_time=0.105, loss_ctc=45.666, loss_att=53.673, acc=0.707, loss=51.271, backward_time=0.098, grad_norm=27.973, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.559e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:09:27,778 (trainer:737) INFO: 10epoch:train:4501-4600batch: iter_time=2.422e-04, forward_time=0.105, loss_ctc=53.844, loss_att=64.528, acc=0.684, loss=61.323, backward_time=0.098, grad_norm=31.331, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.557e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 03:10:09,258 (trainer:737) INFO: 10epoch:train:4601-4700batch: iter_time=2.396e-04, forward_time=0.105, loss_ctc=66.209, loss_att=65.667, acc=0.690, loss=65.830, backward_time=0.098, grad_norm=42.770, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.555e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 03:10:50,657 (trainer:737) INFO: 10epoch:train:4701-4800batch: iter_time=2.503e-04, forward_time=0.105, loss_ctc=52.773, loss_att=63.386, acc=0.702, loss=60.202, backward_time=0.098, grad_norm=29.608, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.552e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 03:11:31,638 (trainer:737) INFO: 10epoch:train:4801-4900batch: iter_time=2.393e-04, forward_time=0.104, loss_ctc=55.380, loss_att=56.604, acc=0.701, loss=56.237, backward_time=0.098, grad_norm=32.374, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.550e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 03:12:12,648 (trainer:737) INFO: 10epoch:train:4901-5000batch: iter_time=1.911e-04, forward_time=0.104, loss_ctc=49.420, loss_att=56.690, acc=0.701, loss=54.509, backward_time=0.098, grad_norm=30.345, clip=100.000, loss_scale=3.869e+25, optim_step_time=0.030, optim0_lr0=6.548e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 03:12:20,137 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 03:12:39,266 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 03:12:42,913 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 03:12:42,913 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 03:12:42,916 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 03:17:38,997 (trainer:737) INFO: 10epoch:train:5001-5100batch: iter_time=2.661, forward_time=0.125, loss_ctc=55.117, loss_att=62.306, acc=0.688, loss=60.150, backward_time=0.104, grad_norm=31.513, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.031, optim0_lr0=6.545e-04, train_time=3.263 +[gpuc02:0/16] 2024-01-13 03:18:19,974 (trainer:737) INFO: 10epoch:train:5101-5200batch: iter_time=2.057e-04, forward_time=0.105, loss_ctc=50.616, loss_att=57.306, acc=0.704, loss=55.299, backward_time=0.098, grad_norm=31.266, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.543e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 03:19:00,591 (trainer:737) INFO: 10epoch:train:5201-5300batch: iter_time=2.370e-04, forward_time=0.103, loss_ctc=38.930, loss_att=43.999, acc=0.695, loss=42.478, backward_time=0.097, grad_norm=25.184, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.541e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 03:19:41,654 (trainer:737) INFO: 10epoch:train:5301-5400batch: iter_time=2.077e-04, forward_time=0.105, loss_ctc=56.024, loss_att=70.748, acc=0.678, loss=66.331, backward_time=0.098, grad_norm=33.485, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.538e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 03:20:22,454 (trainer:737) INFO: 10epoch:train:5401-5500batch: iter_time=2.704e-04, forward_time=0.105, loss_ctc=47.754, loss_att=55.190, acc=0.693, loss=52.959, backward_time=0.097, grad_norm=30.844, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.536e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:21:03,356 (trainer:737) INFO: 10epoch:train:5501-5600batch: iter_time=2.197e-04, forward_time=0.105, loss_ctc=48.840, loss_att=54.190, acc=0.726, loss=52.585, backward_time=0.098, grad_norm=28.887, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.534e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:21:44,176 (trainer:737) INFO: 10epoch:train:5601-5700batch: iter_time=2.245e-04, forward_time=0.105, loss_ctc=51.939, loss_att=56.557, acc=0.695, loss=55.172, backward_time=0.097, grad_norm=30.523, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.531e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:22:25,933 (trainer:737) INFO: 10epoch:train:5701-5800batch: iter_time=2.454e-04, forward_time=0.104, loss_ctc=47.252, loss_att=57.032, acc=0.685, loss=54.098, backward_time=0.097, grad_norm=26.921, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.529e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 03:23:07,100 (trainer:737) INFO: 10epoch:train:5801-5900batch: iter_time=2.626e-04, forward_time=0.105, loss_ctc=60.822, loss_att=67.210, acc=0.671, loss=65.294, backward_time=0.097, grad_norm=38.960, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.527e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 03:23:48,201 (trainer:737) INFO: 10epoch:train:5901-6000batch: iter_time=2.576e-04, forward_time=0.105, loss_ctc=63.214, loss_att=74.021, acc=0.663, loss=70.779, backward_time=0.097, grad_norm=37.680, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.524e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 03:24:29,724 (trainer:737) INFO: 10epoch:train:6001-6100batch: iter_time=2.443e-04, forward_time=0.105, loss_ctc=47.513, loss_att=40.987, acc=0.735, loss=42.945, backward_time=0.097, grad_norm=25.966, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.522e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 03:25:11,174 (trainer:737) INFO: 10epoch:train:6101-6200batch: iter_time=2.438e-04, forward_time=0.107, loss_ctc=57.114, loss_att=67.365, acc=0.681, loss=64.290, backward_time=0.097, grad_norm=34.758, clip=99.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.520e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 03:25:38,926 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 03:25:57,921 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 03:26:01,608 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 03:26:01,608 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 03:26:01,612 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 03:30:54,446 (trainer:737) INFO: 10epoch:train:6201-6300batch: iter_time=2.780, forward_time=0.104, loss_ctc=51.720, loss_att=56.473, acc=0.712, loss=55.047, backward_time=0.097, grad_norm=30.531, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.517e-04, train_time=3.432 +[gpuc02:0/16] 2024-01-13 03:31:35,161 (trainer:737) INFO: 10epoch:train:6301-6400batch: iter_time=2.391e-04, forward_time=0.103, loss_ctc=51.282, loss_att=57.169, acc=0.698, loss=55.403, backward_time=0.097, grad_norm=30.209, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.515e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 03:32:16,002 (trainer:737) INFO: 10epoch:train:6401-6500batch: iter_time=2.343e-04, forward_time=0.104, loss_ctc=43.495, loss_att=50.465, acc=0.715, loss=48.374, backward_time=0.098, grad_norm=28.050, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.513e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:32:56,822 (trainer:737) INFO: 10epoch:train:6501-6600batch: iter_time=2.353e-04, forward_time=0.104, loss_ctc=43.841, loss_att=52.674, acc=0.699, loss=50.024, backward_time=0.098, grad_norm=25.559, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.511e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:33:37,751 (trainer:737) INFO: 10epoch:train:6601-6700batch: iter_time=2.274e-04, forward_time=0.104, loss_ctc=50.884, loss_att=67.765, acc=0.693, loss=62.701, backward_time=0.097, grad_norm=31.561, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.508e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:34:18,717 (trainer:737) INFO: 10epoch:train:6701-6800batch: iter_time=2.322e-04, forward_time=0.105, loss_ctc=52.042, loss_att=61.468, acc=0.702, loss=58.640, backward_time=0.098, grad_norm=31.404, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.506e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:34:59,509 (trainer:737) INFO: 10epoch:train:6801-6900batch: iter_time=2.206e-04, forward_time=0.104, loss_ctc=51.462, loss_att=54.036, acc=0.708, loss=53.264, backward_time=0.097, grad_norm=31.398, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.029, optim0_lr0=6.504e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:35:40,266 (trainer:737) INFO: 10epoch:train:6901-7000batch: iter_time=2.568e-04, forward_time=0.104, loss_ctc=44.655, loss_att=52.959, acc=0.707, loss=50.468, backward_time=0.097, grad_norm=28.385, clip=100.000, loss_scale=7.737e+25, optim_step_time=0.030, optim0_lr0=6.501e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 03:36:21,172 (trainer:737) INFO: 10epoch:train:7001-7100batch: iter_time=2.357e-04, forward_time=0.105, loss_ctc=52.830, loss_att=63.656, acc=0.686, loss=60.408, backward_time=0.097, grad_norm=31.231, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.499e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:37:02,081 (trainer:737) INFO: 10epoch:train:7101-7200batch: iter_time=2.189e-04, forward_time=0.105, loss_ctc=64.946, loss_att=65.030, acc=0.694, loss=65.005, backward_time=0.097, grad_norm=42.205, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.497e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:37:42,950 (trainer:737) INFO: 10epoch:train:7201-7300batch: iter_time=2.166e-04, forward_time=0.105, loss_ctc=51.995, loss_att=63.636, acc=0.705, loss=60.144, backward_time=0.098, grad_norm=30.143, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.495e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:38:23,732 (trainer:737) INFO: 10epoch:train:7301-7400batch: iter_time=2.263e-04, forward_time=0.104, loss_ctc=54.171, loss_att=55.532, acc=0.703, loss=55.123, backward_time=0.097, grad_norm=31.297, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.492e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:39:04,492 (trainer:737) INFO: 10epoch:train:7401-7500batch: iter_time=2.459e-04, forward_time=0.103, loss_ctc=48.587, loss_att=55.934, acc=0.705, loss=53.730, backward_time=0.097, grad_norm=31.296, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.490e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 03:39:11,618 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 03:39:31,019 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 03:39:34,701 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 03:39:34,701 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 03:39:34,704 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 03:44:26,755 (trainer:737) INFO: 10epoch:train:7501-7600batch: iter_time=2.807, forward_time=0.107, loss_ctc=54.492, loss_att=61.514, acc=0.692, loss=59.408, backward_time=0.098, grad_norm=30.162, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.488e-04, train_time=3.222 +[gpuc02:0/16] 2024-01-13 03:45:08,011 (trainer:737) INFO: 10epoch:train:7601-7700batch: iter_time=1.891e-04, forward_time=0.105, loss_ctc=50.203, loss_att=57.475, acc=0.705, loss=55.293, backward_time=0.098, grad_norm=31.786, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.485e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 03:45:48,614 (trainer:737) INFO: 10epoch:train:7701-7800batch: iter_time=2.111e-04, forward_time=0.103, loss_ctc=38.369, loss_att=43.727, acc=0.697, loss=42.120, backward_time=0.096, grad_norm=23.451, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.483e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 03:46:30,128 (trainer:737) INFO: 10epoch:train:7801-7900batch: iter_time=1.964e-04, forward_time=0.106, loss_ctc=55.473, loss_att=69.321, acc=0.681, loss=65.167, backward_time=0.098, grad_norm=31.292, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.481e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 03:47:11,715 (trainer:737) INFO: 10epoch:train:7901-8000batch: iter_time=2.030e-04, forward_time=0.104, loss_ctc=47.156, loss_att=54.516, acc=0.697, loss=52.308, backward_time=0.097, grad_norm=29.571, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.479e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 03:47:52,639 (trainer:737) INFO: 10epoch:train:8001-8100batch: iter_time=2.363e-04, forward_time=0.105, loss_ctc=48.635, loss_att=53.634, acc=0.728, loss=52.134, backward_time=0.098, grad_norm=29.719, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.476e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:48:33,703 (trainer:737) INFO: 10epoch:train:8101-8200batch: iter_time=2.046e-04, forward_time=0.105, loss_ctc=51.655, loss_att=55.765, acc=0.698, loss=54.532, backward_time=0.098, grad_norm=31.767, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.474e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 03:49:14,885 (trainer:737) INFO: 10epoch:train:8201-8300batch: iter_time=2.344e-04, forward_time=0.105, loss_ctc=45.826, loss_att=55.959, acc=0.688, loss=52.919, backward_time=0.098, grad_norm=27.161, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.472e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 03:49:55,656 (trainer:737) INFO: 10epoch:train:8301-8400batch: iter_time=2.046e-04, forward_time=0.105, loss_ctc=60.121, loss_att=67.454, acc=0.672, loss=65.254, backward_time=0.098, grad_norm=40.813, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.470e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 03:50:36,500 (trainer:737) INFO: 10epoch:train:8401-8500batch: iter_time=2.001e-04, forward_time=0.105, loss_ctc=62.620, loss_att=73.112, acc=0.665, loss=69.965, backward_time=0.098, grad_norm=37.763, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.467e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:51:17,244 (trainer:737) INFO: 10epoch:train:8501-8600batch: iter_time=2.311e-04, forward_time=0.104, loss_ctc=46.996, loss_att=40.222, acc=0.739, loss=42.254, backward_time=0.097, grad_norm=26.644, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.465e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 03:51:58,114 (trainer:737) INFO: 10epoch:train:8601-8700batch: iter_time=2.289e-04, forward_time=0.105, loss_ctc=55.902, loss_att=66.700, acc=0.683, loss=63.460, backward_time=0.098, grad_norm=34.817, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.029, optim0_lr0=6.463e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 03:52:23,842 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 03:52:43,542 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 03:52:47,241 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 03:52:47,241 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 03:52:47,244 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 03:57:18,318 (trainer:737) INFO: 10epoch:train:8701-8800batch: iter_time=2.732, forward_time=0.105, loss_ctc=51.817, loss_att=55.925, acc=0.714, loss=54.692, backward_time=0.098, grad_norm=31.573, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.461e-04, train_time=3.202 +[gpuc02:0/16] 2024-01-13 03:57:59,412 (trainer:737) INFO: 10epoch:train:8801-8900batch: iter_time=2.433e-04, forward_time=0.104, loss_ctc=50.916, loss_att=55.197, acc=0.704, loss=53.913, backward_time=0.098, grad_norm=29.981, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.458e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 03:58:40,298 (trainer:737) INFO: 10epoch:train:8901-9000batch: iter_time=2.322e-04, forward_time=0.105, loss_ctc=43.085, loss_att=50.179, acc=0.716, loss=48.051, backward_time=0.098, grad_norm=27.690, clip=100.000, loss_scale=1.547e+26, optim_step_time=0.030, optim0_lr0=6.456e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 03:59:21,362 (trainer:737) INFO: 10epoch:train:9001-9100batch: iter_time=2.440e-04, forward_time=0.104, loss_ctc=43.734, loss_att=52.523, acc=0.701, loss=49.886, backward_time=0.098, grad_norm=26.574, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.454e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:00:02,403 (trainer:737) INFO: 10epoch:train:9101-9200batch: iter_time=2.346e-04, forward_time=0.105, loss_ctc=49.998, loss_att=67.399, acc=0.695, loss=62.179, backward_time=0.098, grad_norm=30.006, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.452e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:00:43,468 (trainer:737) INFO: 10epoch:train:9201-9300batch: iter_time=1.998e-04, forward_time=0.105, loss_ctc=51.903, loss_att=61.896, acc=0.703, loss=58.898, backward_time=0.098, grad_norm=32.770, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.449e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:01:24,908 (trainer:737) INFO: 10epoch:train:9301-9400batch: iter_time=2.067e-04, forward_time=0.105, loss_ctc=50.812, loss_att=52.831, acc=0.711, loss=52.225, backward_time=0.098, grad_norm=31.565, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.447e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 04:02:05,848 (trainer:737) INFO: 10epoch:train:9401-9500batch: iter_time=2.449e-04, forward_time=0.104, loss_ctc=44.378, loss_att=52.625, acc=0.711, loss=50.151, backward_time=0.098, grad_norm=28.877, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.445e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:02:46,848 (trainer:737) INFO: 10epoch:train:9501-9600batch: iter_time=2.539e-04, forward_time=0.105, loss_ctc=52.390, loss_att=63.582, acc=0.689, loss=60.224, backward_time=0.098, grad_norm=32.115, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.443e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:03:29,155 (trainer:737) INFO: 10epoch:train:9601-9700batch: iter_time=2.446e-04, forward_time=0.105, loss_ctc=64.102, loss_att=64.639, acc=0.694, loss=64.478, backward_time=0.098, grad_norm=42.233, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.440e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-13 04:04:10,160 (trainer:737) INFO: 10epoch:train:9701-9800batch: iter_time=2.385e-04, forward_time=0.105, loss_ctc=51.632, loss_att=62.883, acc=0.707, loss=59.508, backward_time=0.098, grad_norm=29.569, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.438e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:04:51,096 (trainer:737) INFO: 10epoch:train:9801-9900batch: iter_time=2.182e-04, forward_time=0.104, loss_ctc=53.501, loss_att=54.679, acc=0.707, loss=54.325, backward_time=0.098, grad_norm=31.585, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.436e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:05:31,978 (trainer:737) INFO: 10epoch:train:9901-10000batch: iter_time=2.109e-04, forward_time=0.104, loss_ctc=48.990, loss_att=55.350, acc=0.706, loss=53.442, backward_time=0.098, grad_norm=31.667, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.434e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:05:36,943 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 04:05:56,819 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 04:06:00,958 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 04:06:00,958 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 04:06:00,961 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 04:10:50,771 (trainer:737) INFO: 10epoch:train:10001-10100batch: iter_time=2.589, forward_time=0.104, loss_ctc=54.511, loss_att=60.305, acc=0.704, loss=58.567, backward_time=0.097, grad_norm=30.504, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.432e-04, train_time=3.188 +[gpuc02:0/16] 2024-01-13 04:11:31,724 (trainer:737) INFO: 10epoch:train:10101-10200batch: iter_time=1.779e-04, forward_time=0.104, loss_ctc=49.531, loss_att=55.786, acc=0.718, loss=53.909, backward_time=0.097, grad_norm=31.203, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.429e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:12:12,358 (trainer:737) INFO: 10epoch:train:10201-10300batch: iter_time=2.094e-04, forward_time=0.103, loss_ctc=38.173, loss_att=42.493, acc=0.713, loss=41.197, backward_time=0.096, grad_norm=22.695, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.427e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 04:12:53,505 (trainer:737) INFO: 10epoch:train:10301-10400batch: iter_time=1.776e-04, forward_time=0.106, loss_ctc=54.884, loss_att=69.507, acc=0.692, loss=65.120, backward_time=0.098, grad_norm=31.676, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.425e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 04:13:34,482 (trainer:737) INFO: 10epoch:train:10401-10500batch: iter_time=1.734e-04, forward_time=0.105, loss_ctc=46.402, loss_att=57.536, acc=0.695, loss=54.196, backward_time=0.097, grad_norm=30.524, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.423e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:14:15,431 (trainer:737) INFO: 10epoch:train:10501-10600batch: iter_time=2.189e-04, forward_time=0.106, loss_ctc=47.819, loss_att=53.723, acc=0.735, loss=51.952, backward_time=0.098, grad_norm=27.775, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.420e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:14:56,264 (trainer:737) INFO: 10epoch:train:10601-10700batch: iter_time=2.103e-04, forward_time=0.105, loss_ctc=50.912, loss_att=57.157, acc=0.700, loss=55.283, backward_time=0.097, grad_norm=32.433, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.418e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:15:37,059 (trainer:737) INFO: 10epoch:train:10701-10800batch: iter_time=2.258e-04, forward_time=0.104, loss_ctc=45.768, loss_att=57.442, acc=0.693, loss=53.940, backward_time=0.097, grad_norm=26.770, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.416e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:16:18,018 (trainer:737) INFO: 10epoch:train:10801-10900batch: iter_time=1.988e-04, forward_time=0.105, loss_ctc=58.973, loss_att=65.294, acc=0.688, loss=63.398, backward_time=0.097, grad_norm=37.830, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.029, optim0_lr0=6.414e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:16:59,349 (trainer:737) INFO: 10epoch:train:10901-11000batch: iter_time=1.885e-04, forward_time=0.106, loss_ctc=60.932, loss_att=71.867, acc=0.683, loss=68.586, backward_time=0.098, grad_norm=39.026, clip=100.000, loss_scale=3.095e+26, optim_step_time=0.030, optim0_lr0=6.412e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 04:17:40,330 (trainer:737) INFO: 10epoch:train:11001-11100batch: iter_time=2.083e-04, forward_time=0.104, loss_ctc=46.664, loss_att=40.886, acc=0.738, loss=42.620, backward_time=0.096, grad_norm=26.294, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.409e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:18:21,278 (trainer:737) INFO: 10epoch:train:11101-11200batch: iter_time=2.050e-04, forward_time=0.105, loss_ctc=55.181, loss_att=69.260, acc=0.687, loss=65.036, backward_time=0.098, grad_norm=33.668, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.407e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:18:45,638 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 04:19:05,036 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 04:19:08,608 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 04:19:08,609 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 04:19:08,612 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 04:23:38,251 (trainer:737) INFO: 10epoch:train:11201-11300batch: iter_time=2.639, forward_time=0.106, loss_ctc=51.184, loss_att=54.302, acc=0.724, loss=53.366, backward_time=0.098, grad_norm=31.553, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.405e-04, train_time=3.170 +[gpuc02:0/16] 2024-01-13 04:24:19,511 (trainer:737) INFO: 10epoch:train:11301-11400batch: iter_time=1.546e-04, forward_time=0.105, loss_ctc=50.694, loss_att=53.936, acc=0.706, loss=52.963, backward_time=0.098, grad_norm=30.093, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.029, optim0_lr0=6.403e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 04:25:00,843 (trainer:737) INFO: 10epoch:train:11401-11500batch: iter_time=1.917e-04, forward_time=0.104, loss_ctc=42.982, loss_att=48.831, acc=0.719, loss=47.076, backward_time=0.097, grad_norm=27.140, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.401e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 04:25:41,588 (trainer:737) INFO: 10epoch:train:11501-11600batch: iter_time=1.622e-04, forward_time=0.104, loss_ctc=43.653, loss_att=51.078, acc=0.705, loss=48.850, backward_time=0.097, grad_norm=26.691, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.399e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:26:22,744 (trainer:737) INFO: 10epoch:train:11601-11700batch: iter_time=1.793e-04, forward_time=0.105, loss_ctc=50.203, loss_att=66.924, acc=0.697, loss=61.908, backward_time=0.098, grad_norm=31.028, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.396e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 04:27:04,079 (trainer:737) INFO: 10epoch:train:11701-11800batch: iter_time=1.863e-04, forward_time=0.105, loss_ctc=52.174, loss_att=60.475, acc=0.706, loss=57.985, backward_time=0.098, grad_norm=32.242, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.394e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 04:27:45,578 (trainer:737) INFO: 10epoch:train:11801-11900batch: iter_time=1.842e-04, forward_time=0.108, loss_ctc=50.526, loss_att=52.418, acc=0.712, loss=51.851, backward_time=0.098, grad_norm=29.828, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.392e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 04:28:26,425 (trainer:737) INFO: 10epoch:train:11901-12000batch: iter_time=1.849e-04, forward_time=0.105, loss_ctc=44.794, loss_att=52.789, acc=0.709, loss=50.390, backward_time=0.098, grad_norm=30.047, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.390e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:29:07,360 (trainer:737) INFO: 10epoch:train:12001-12100batch: iter_time=1.894e-04, forward_time=0.105, loss_ctc=52.067, loss_att=62.431, acc=0.692, loss=59.322, backward_time=0.098, grad_norm=31.475, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.388e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:29:48,281 (trainer:737) INFO: 10epoch:train:12101-12200batch: iter_time=1.942e-04, forward_time=0.105, loss_ctc=62.437, loss_att=63.838, acc=0.698, loss=63.418, backward_time=0.098, grad_norm=41.081, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.385e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:30:29,132 (trainer:737) INFO: 10epoch:train:12201-12300batch: iter_time=1.711e-04, forward_time=0.105, loss_ctc=51.178, loss_att=61.743, acc=0.709, loss=58.573, backward_time=0.098, grad_norm=29.163, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.383e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:31:09,900 (trainer:737) INFO: 10epoch:train:12301-12400batch: iter_time=1.956e-04, forward_time=0.104, loss_ctc=53.607, loss_att=55.296, acc=0.707, loss=54.789, backward_time=0.097, grad_norm=31.512, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.381e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:31:50,631 (trainer:737) INFO: 10epoch:train:12401-12500batch: iter_time=2.118e-04, forward_time=0.104, loss_ctc=48.447, loss_att=55.974, acc=0.709, loss=53.716, backward_time=0.098, grad_norm=31.581, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.379e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:31:59,553 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 04:32:18,996 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 04:32:22,730 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 04:32:22,730 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 04:32:22,733 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 04:37:08,787 (trainer:737) INFO: 10epoch:train:12501-12600batch: iter_time=2.715, forward_time=0.106, loss_ctc=53.957, loss_att=62.294, acc=0.692, loss=59.793, backward_time=0.099, grad_norm=31.472, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.377e-04, train_time=3.181 +[gpuc02:0/16] 2024-01-13 04:37:49,666 (trainer:737) INFO: 10epoch:train:12601-12700batch: iter_time=2.047e-04, forward_time=0.104, loss_ctc=48.541, loss_att=57.461, acc=0.707, loss=54.785, backward_time=0.098, grad_norm=30.500, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.029, optim0_lr0=6.375e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:38:30,156 (trainer:737) INFO: 10epoch:train:12701-12800batch: iter_time=2.311e-04, forward_time=0.103, loss_ctc=37.602, loss_att=43.869, acc=0.700, loss=41.989, backward_time=0.096, grad_norm=25.669, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.372e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-13 04:39:11,415 (trainer:737) INFO: 10epoch:train:12801-12900batch: iter_time=2.442e-04, forward_time=0.106, loss_ctc=54.293, loss_att=70.482, acc=0.682, loss=65.625, backward_time=0.099, grad_norm=31.842, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.370e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 04:39:52,175 (trainer:737) INFO: 10epoch:train:12901-13000batch: iter_time=2.559e-04, forward_time=0.104, loss_ctc=46.000, loss_att=54.832, acc=0.699, loss=52.183, backward_time=0.097, grad_norm=37.651, clip=100.000, loss_scale=6.190e+26, optim_step_time=0.030, optim0_lr0=6.368e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:40:33,377 (trainer:737) INFO: 10epoch:train:13001-13100batch: iter_time=2.309e-04, forward_time=0.105, loss_ctc=47.000, loss_att=52.940, acc=0.731, loss=51.158, backward_time=0.098, grad_norm=28.669, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.366e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 04:41:14,416 (trainer:737) INFO: 10epoch:train:13101-13200batch: iter_time=2.251e-04, forward_time=0.104, loss_ctc=50.458, loss_att=56.043, acc=0.698, loss=54.367, backward_time=0.097, grad_norm=32.097, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.364e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:41:55,273 (trainer:737) INFO: 10epoch:train:13201-13300batch: iter_time=2.134e-04, forward_time=0.104, loss_ctc=45.559, loss_att=56.451, acc=0.691, loss=53.183, backward_time=0.097, grad_norm=27.851, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.362e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:42:36,497 (trainer:737) INFO: 10epoch:train:13301-13400batch: iter_time=2.193e-04, forward_time=0.105, loss_ctc=59.071, loss_att=66.783, acc=0.674, loss=64.470, backward_time=0.098, grad_norm=40.413, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.360e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 04:43:18,181 (trainer:737) INFO: 10epoch:train:13401-13500batch: iter_time=2.151e-04, forward_time=0.105, loss_ctc=60.228, loss_att=72.850, acc=0.666, loss=69.063, backward_time=0.098, grad_norm=37.375, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.357e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 04:43:58,912 (trainer:737) INFO: 10epoch:train:13501-13600batch: iter_time=2.072e-04, forward_time=0.104, loss_ctc=46.152, loss_att=40.011, acc=0.740, loss=41.853, backward_time=0.097, grad_norm=25.372, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.355e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:44:40,357 (trainer:737) INFO: 10epoch:train:13601-13700batch: iter_time=2.432e-04, forward_time=0.107, loss_ctc=55.435, loss_att=66.749, acc=0.684, loss=63.355, backward_time=0.098, grad_norm=34.055, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.353e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 04:45:07,442 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 04:45:26,751 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 04:45:30,571 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 04:45:30,572 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 04:45:30,575 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 04:49:56,103 (trainer:737) INFO: 10epoch:train:13701-13800batch: iter_time=2.617, forward_time=0.107, loss_ctc=50.799, loss_att=54.272, acc=0.714, loss=53.230, backward_time=0.098, grad_norm=31.084, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.351e-04, train_time=3.157 +[gpuc02:0/16] 2024-01-13 04:50:36,865 (trainer:737) INFO: 10epoch:train:13801-13900batch: iter_time=2.012e-04, forward_time=0.104, loss_ctc=50.215, loss_att=54.210, acc=0.697, loss=53.011, backward_time=0.097, grad_norm=29.370, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.349e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:51:17,614 (trainer:737) INFO: 10epoch:train:13901-14000batch: iter_time=1.923e-04, forward_time=0.104, loss_ctc=42.335, loss_att=48.917, acc=0.711, loss=46.943, backward_time=0.098, grad_norm=27.886, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.347e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:51:58,395 (trainer:737) INFO: 10epoch:train:14001-14100batch: iter_time=2.111e-04, forward_time=0.104, loss_ctc=42.864, loss_att=51.482, acc=0.692, loss=48.897, backward_time=0.097, grad_norm=27.078, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.345e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:52:39,403 (trainer:737) INFO: 10epoch:train:14101-14200batch: iter_time=2.081e-04, forward_time=0.104, loss_ctc=49.046, loss_att=64.008, acc=0.695, loss=59.519, backward_time=0.098, grad_norm=31.231, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.030, optim0_lr0=6.343e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:53:20,445 (trainer:737) INFO: 10epoch:train:14201-14300batch: iter_time=2.333e-04, forward_time=0.105, loss_ctc=50.598, loss_att=59.899, acc=0.700, loss=57.109, backward_time=0.098, grad_norm=31.579, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.340e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 04:54:01,212 (trainer:737) INFO: 10epoch:train:14301-14400batch: iter_time=2.403e-04, forward_time=0.103, loss_ctc=50.956, loss_att=51.239, acc=0.706, loss=51.154, backward_time=0.097, grad_norm=31.469, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.338e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:54:41,896 (trainer:737) INFO: 10epoch:train:14401-14500batch: iter_time=2.234e-04, forward_time=0.104, loss_ctc=44.233, loss_att=50.524, acc=0.713, loss=48.637, backward_time=0.097, grad_norm=27.836, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.336e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:55:22,854 (trainer:737) INFO: 10epoch:train:14501-14600batch: iter_time=2.333e-04, forward_time=0.104, loss_ctc=51.907, loss_att=62.314, acc=0.679, loss=59.192, backward_time=0.098, grad_norm=31.793, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.334e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 04:56:03,630 (trainer:737) INFO: 10epoch:train:14601-14700batch: iter_time=2.273e-04, forward_time=0.104, loss_ctc=61.728, loss_att=63.581, acc=0.688, loss=63.025, backward_time=0.098, grad_norm=40.027, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.332e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:56:44,451 (trainer:737) INFO: 10epoch:train:14701-14800batch: iter_time=2.385e-04, forward_time=0.104, loss_ctc=50.176, loss_att=60.840, acc=0.702, loss=57.641, backward_time=0.098, grad_norm=29.643, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.330e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 04:57:25,200 (trainer:737) INFO: 10epoch:train:14801-14900batch: iter_time=2.081e-04, forward_time=0.104, loss_ctc=52.530, loss_att=52.067, acc=0.708, loss=52.206, backward_time=0.097, grad_norm=30.980, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.328e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 04:58:06,154 (trainer:737) INFO: 10epoch:train:14901-15000batch: iter_time=2.006e-04, forward_time=0.103, loss_ctc=47.840, loss_att=55.050, acc=0.700, loss=52.887, backward_time=0.097, grad_norm=31.430, clip=100.000, loss_scale=1.238e+27, optim_step_time=0.029, optim0_lr0=6.326e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 05:18:15,797 (trainer:343) INFO: 10epoch results: [train] iter_time=0.220, forward_time=0.105, loss_ctc=51.529, loss_att=58.361, acc=0.698, loss=56.312, backward_time=0.098, grad_norm=31.372, clip=99.987, loss_scale=3.282e+26, optim_step_time=0.030, optim0_lr0=6.491e-04, train_time=0.643, time=2 hours, 40 minutes and 59.27 seconds, total_count=150000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=65.265, cer_ctc=0.328, loss_att=62.695, acc=0.540, cer=0.439, wer=0.999, loss=63.466, time=19 minutes and 56.8 seconds, total_count=46710, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 05:18:20,594 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-13 05:18:20,603 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/5epoch.pth +[gpuc02:0/16] 2024-01-13 05:18:20,603 (trainer:272) INFO: 11/45epoch started. Estimated time to finish: 4 days, 8 hours and 26 minutes +[gpuc02:0/16] 2024-01-13 05:18:20,615 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 05:18:39,425 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 05:18:42,944 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 05:18:42,944 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 05:18:42,947 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 05:23:28,733 (trainer:737) INFO: 11epoch:train:1-100batch: iter_time=2.562, forward_time=0.157, loss_ctc=59.368, loss_att=56.940, acc=0.698, loss=57.668, backward_time=0.110, grad_norm=34.920, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.031, optim0_lr0=6.323e-04, train_time=3.081 +[gpuc02:0/16] 2024-01-13 05:24:11,634 (trainer:737) INFO: 11epoch:train:101-200batch: iter_time=1.294e-04, forward_time=0.116, loss_ctc=67.261, loss_att=80.685, acc=0.636, loss=76.658, backward_time=0.099, grad_norm=52.244, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.321e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-13 05:24:52,925 (trainer:737) INFO: 11epoch:train:201-300batch: iter_time=1.306e-04, forward_time=0.110, loss_ctc=55.509, loss_att=55.709, acc=0.682, loss=55.649, backward_time=0.098, grad_norm=36.983, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.319e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 05:25:34,268 (trainer:737) INFO: 11epoch:train:301-400batch: iter_time=1.266e-04, forward_time=0.104, loss_ctc=54.618, loss_att=60.447, acc=0.692, loss=58.698, backward_time=0.099, grad_norm=33.910, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.317e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 05:26:15,282 (trainer:737) INFO: 11epoch:train:401-500batch: iter_time=1.410e-04, forward_time=0.103, loss_ctc=47.090, loss_att=54.559, acc=0.688, loss=52.318, backward_time=0.099, grad_norm=29.971, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.315e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 05:26:56,890 (trainer:737) INFO: 11epoch:train:501-600batch: iter_time=1.325e-04, forward_time=0.104, loss_ctc=54.355, loss_att=56.793, acc=0.708, loss=56.062, backward_time=0.099, grad_norm=34.651, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.313e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 05:27:37,884 (trainer:737) INFO: 11epoch:train:601-700batch: iter_time=1.305e-04, forward_time=0.104, loss_ctc=50.925, loss_att=58.338, acc=0.690, loss=56.114, backward_time=0.099, grad_norm=32.045, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.311e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 05:28:20,028 (trainer:737) INFO: 11epoch:train:701-800batch: iter_time=1.253e-04, forward_time=0.112, loss_ctc=50.993, loss_att=54.562, acc=0.677, loss=53.491, backward_time=0.099, grad_norm=32.424, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.032, optim0_lr0=6.309e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-13 05:29:01,495 (trainer:737) INFO: 11epoch:train:801-900batch: iter_time=1.265e-04, forward_time=0.105, loss_ctc=58.203, loss_att=65.791, acc=0.695, loss=63.515, backward_time=0.100, grad_norm=36.337, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.307e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 05:29:42,849 (trainer:737) INFO: 11epoch:train:901-1000batch: iter_time=1.309e-04, forward_time=0.105, loss_ctc=63.160, loss_att=63.119, acc=0.704, loss=63.131, backward_time=0.099, grad_norm=37.047, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.305e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 05:30:25,644 (trainer:737) INFO: 11epoch:train:1001-1100batch: iter_time=1.323e-04, forward_time=0.111, loss_ctc=57.907, loss_att=62.784, acc=0.678, loss=61.321, backward_time=0.103, grad_norm=36.584, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.032, optim0_lr0=6.303e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-13 05:31:11,631 (trainer:737) INFO: 11epoch:train:1101-1200batch: iter_time=1.354e-04, forward_time=0.105, loss_ctc=55.741, loss_att=57.922, acc=0.687, loss=57.268, backward_time=0.100, grad_norm=35.541, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.300e-04, train_time=0.459 +[gpuc02:0/16] 2024-01-13 05:31:50,444 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 05:32:09,501 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 05:32:13,143 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 05:32:13,143 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 05:32:13,146 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 05:37:56,420 (trainer:737) INFO: 11epoch:train:1201-1300batch: iter_time=3.494, forward_time=0.105, loss_ctc=52.982, loss_att=56.123, acc=0.678, loss=55.181, backward_time=0.098, grad_norm=33.707, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.298e-04, train_time=4.048 +[gpuc02:0/16] 2024-01-13 05:38:37,683 (trainer:737) INFO: 11epoch:train:1301-1400batch: iter_time=2.000e-04, forward_time=0.104, loss_ctc=57.765, loss_att=66.100, acc=0.664, loss=63.599, backward_time=0.098, grad_norm=35.225, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.296e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 05:39:18,860 (trainer:737) INFO: 11epoch:train:1401-1500batch: iter_time=1.801e-04, forward_time=0.104, loss_ctc=58.268, loss_att=66.020, acc=0.670, loss=63.695, backward_time=0.097, grad_norm=48.180, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.294e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 05:39:59,692 (trainer:737) INFO: 11epoch:train:1501-1600batch: iter_time=1.858e-04, forward_time=0.104, loss_ctc=59.675, loss_att=59.315, acc=0.676, loss=59.423, backward_time=0.097, grad_norm=35.802, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.292e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 05:40:40,488 (trainer:737) INFO: 11epoch:train:1601-1700batch: iter_time=1.867e-04, forward_time=0.103, loss_ctc=51.000, loss_att=56.141, acc=0.695, loss=54.599, backward_time=0.097, grad_norm=34.148, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.290e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 05:41:21,732 (trainer:737) INFO: 11epoch:train:1701-1800batch: iter_time=1.955e-04, forward_time=0.104, loss_ctc=51.430, loss_att=58.036, acc=0.703, loss=56.054, backward_time=0.098, grad_norm=32.386, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.288e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 05:42:02,392 (trainer:737) INFO: 11epoch:train:1801-1900batch: iter_time=2.094e-04, forward_time=0.103, loss_ctc=49.724, loss_att=55.634, acc=0.697, loss=53.861, backward_time=0.097, grad_norm=31.838, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.286e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 05:42:43,567 (trainer:737) INFO: 11epoch:train:1901-2000batch: iter_time=2.062e-04, forward_time=0.103, loss_ctc=46.294, loss_att=53.311, acc=0.690, loss=51.206, backward_time=0.097, grad_norm=32.549, clip=100.000, loss_scale=2.476e+27, optim_step_time=0.030, optim0_lr0=6.284e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 05:43:25,036 (trainer:737) INFO: 11epoch:train:2001-2100batch: iter_time=1.683e-04, forward_time=0.108, loss_ctc=58.067, loss_att=67.434, acc=0.689, loss=64.624, backward_time=0.098, grad_norm=33.598, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.282e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 05:44:05,887 (trainer:737) INFO: 11epoch:train:2101-2200batch: iter_time=1.819e-04, forward_time=0.104, loss_ctc=58.014, loss_att=54.846, acc=0.715, loss=55.796, backward_time=0.098, grad_norm=36.832, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.280e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 05:44:47,121 (trainer:737) INFO: 11epoch:train:2201-2300batch: iter_time=1.841e-04, forward_time=0.103, loss_ctc=59.037, loss_att=62.439, acc=0.684, loss=61.418, backward_time=0.097, grad_norm=35.950, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.278e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 05:45:28,152 (trainer:737) INFO: 11epoch:train:2301-2400batch: iter_time=1.792e-04, forward_time=0.104, loss_ctc=56.202, loss_att=58.520, acc=0.694, loss=57.825, backward_time=0.098, grad_norm=34.603, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.276e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 05:46:08,960 (trainer:737) INFO: 11epoch:train:2401-2500batch: iter_time=1.732e-04, forward_time=0.103, loss_ctc=51.309, loss_att=59.365, acc=0.656, loss=56.948, backward_time=0.097, grad_norm=35.444, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.273e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 05:46:15,336 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 05:46:34,984 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 05:46:38,647 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 05:46:38,647 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 05:46:38,650 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 05:51:44,733 (trainer:737) INFO: 11epoch:train:2501-2600batch: iter_time=2.926, forward_time=0.118, loss_ctc=57.201, loss_att=55.652, acc=0.703, loss=56.117, backward_time=0.101, grad_norm=31.463, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.271e-04, train_time=3.357 +[gpuc02:0/16] 2024-01-13 05:52:25,650 (trainer:737) INFO: 11epoch:train:2601-2700batch: iter_time=2.244e-04, forward_time=0.104, loss_ctc=62.161, loss_att=78.342, acc=0.642, loss=73.487, backward_time=0.098, grad_norm=46.824, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.269e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 05:53:06,954 (trainer:737) INFO: 11epoch:train:2701-2800batch: iter_time=4.029e-04, forward_time=0.105, loss_ctc=53.404, loss_att=53.857, acc=0.690, loss=53.721, backward_time=0.100, grad_norm=34.167, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.031, optim0_lr0=6.267e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 05:53:47,951 (trainer:737) INFO: 11epoch:train:2801-2900batch: iter_time=1.561e-04, forward_time=0.104, loss_ctc=52.165, loss_att=58.539, acc=0.699, loss=56.627, backward_time=0.099, grad_norm=32.583, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.031, optim0_lr0=6.265e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 05:54:29,292 (trainer:737) INFO: 11epoch:train:2901-3000batch: iter_time=1.495e-04, forward_time=0.104, loss_ctc=46.183, loss_att=54.143, acc=0.692, loss=51.755, backward_time=0.099, grad_norm=29.914, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.031, optim0_lr0=6.263e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 05:55:10,366 (trainer:737) INFO: 11epoch:train:3001-3100batch: iter_time=2.067e-04, forward_time=0.103, loss_ctc=52.296, loss_att=54.758, acc=0.714, loss=54.020, backward_time=0.097, grad_norm=32.651, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.261e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 05:55:51,159 (trainer:737) INFO: 11epoch:train:3101-3200batch: iter_time=1.909e-04, forward_time=0.104, loss_ctc=48.776, loss_att=57.457, acc=0.693, loss=54.853, backward_time=0.098, grad_norm=30.574, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.259e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 05:56:31,940 (trainer:737) INFO: 11epoch:train:3201-3300batch: iter_time=2.124e-04, forward_time=0.104, loss_ctc=48.716, loss_att=51.683, acc=0.687, loss=50.793, backward_time=0.096, grad_norm=31.639, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.257e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 05:57:13,216 (trainer:737) INFO: 11epoch:train:3301-3400batch: iter_time=1.909e-04, forward_time=0.105, loss_ctc=55.707, loss_att=63.932, acc=0.705, loss=61.465, backward_time=0.098, grad_norm=34.727, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.029, optim0_lr0=6.255e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 05:57:54,477 (trainer:737) INFO: 11epoch:train:3401-3500batch: iter_time=2.333e-04, forward_time=0.105, loss_ctc=59.719, loss_att=60.954, acc=0.710, loss=60.583, backward_time=0.098, grad_norm=35.022, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.253e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 05:58:35,501 (trainer:737) INFO: 11epoch:train:3501-3600batch: iter_time=1.912e-04, forward_time=0.104, loss_ctc=55.703, loss_att=61.004, acc=0.683, loss=59.414, backward_time=0.097, grad_norm=34.200, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.251e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 05:59:16,500 (trainer:737) INFO: 11epoch:train:3601-3700batch: iter_time=1.913e-04, forward_time=0.104, loss_ctc=53.698, loss_att=55.411, acc=0.694, loss=54.897, backward_time=0.097, grad_norm=34.510, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.249e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 05:59:45,705 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 06:00:05,302 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 06:00:09,260 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 06:00:09,260 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 06:00:09,264 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 06:04:43,937 (trainer:737) INFO: 11epoch:train:3701-3800batch: iter_time=2.853, forward_time=0.107, loss_ctc=52.055, loss_att=55.793, acc=0.680, loss=54.671, backward_time=0.097, grad_norm=33.075, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.030, optim0_lr0=6.247e-04, train_time=3.274 +[gpuc02:0/16] 2024-01-13 06:05:24,862 (trainer:737) INFO: 11epoch:train:3801-3900batch: iter_time=2.265e-04, forward_time=0.104, loss_ctc=56.493, loss_att=64.959, acc=0.667, loss=62.419, backward_time=0.098, grad_norm=34.574, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.029, optim0_lr0=6.245e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:06:05,731 (trainer:737) INFO: 11epoch:train:3901-4000batch: iter_time=2.314e-04, forward_time=0.104, loss_ctc=57.403, loss_att=65.745, acc=0.672, loss=63.242, backward_time=0.097, grad_norm=48.383, clip=100.000, loss_scale=4.952e+27, optim_step_time=0.029, optim0_lr0=6.243e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:06:46,786 (trainer:737) INFO: 11epoch:train:4001-4100batch: iter_time=1.775e-04, forward_time=0.104, loss_ctc=58.039, loss_att=58.374, acc=0.678, loss=58.274, backward_time=0.097, grad_norm=33.327, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.029, optim0_lr0=6.241e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:07:27,610 (trainer:737) INFO: 11epoch:train:4101-4200batch: iter_time=2.068e-04, forward_time=0.103, loss_ctc=50.367, loss_att=55.960, acc=0.697, loss=54.282, backward_time=0.097, grad_norm=33.963, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.029, optim0_lr0=6.239e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:08:08,651 (trainer:737) INFO: 11epoch:train:4201-4300batch: iter_time=1.966e-04, forward_time=0.103, loss_ctc=49.774, loss_att=55.933, acc=0.708, loss=54.085, backward_time=0.097, grad_norm=30.601, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.029, optim0_lr0=6.237e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:08:49,444 (trainer:737) INFO: 11epoch:train:4301-4400batch: iter_time=1.977e-04, forward_time=0.102, loss_ctc=48.622, loss_att=55.396, acc=0.702, loss=53.364, backward_time=0.097, grad_norm=29.331, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.029, optim0_lr0=6.235e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:09:30,295 (trainer:737) INFO: 11epoch:train:4401-4500batch: iter_time=2.092e-04, forward_time=0.105, loss_ctc=45.408, loss_att=52.519, acc=0.693, loss=50.386, backward_time=0.097, grad_norm=31.415, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.233e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:10:11,422 (trainer:737) INFO: 11epoch:train:4501-4600batch: iter_time=1.822e-04, forward_time=0.106, loss_ctc=57.278, loss_att=67.244, acc=0.692, loss=64.254, backward_time=0.099, grad_norm=32.845, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.231e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 06:10:52,890 (trainer:737) INFO: 11epoch:train:4601-4700batch: iter_time=1.644e-04, forward_time=0.104, loss_ctc=56.511, loss_att=53.745, acc=0.718, loss=54.575, backward_time=0.098, grad_norm=37.486, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.031, optim0_lr0=6.229e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 06:11:34,163 (trainer:737) INFO: 11epoch:train:4701-4800batch: iter_time=1.486e-04, forward_time=0.104, loss_ctc=56.953, loss_att=61.483, acc=0.687, loss=60.124, backward_time=0.099, grad_norm=34.344, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.031, optim0_lr0=6.227e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 06:12:15,124 (trainer:737) INFO: 11epoch:train:4801-4900batch: iter_time=1.789e-04, forward_time=0.105, loss_ctc=55.348, loss_att=57.311, acc=0.697, loss=56.722, backward_time=0.098, grad_norm=34.404, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.225e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:12:55,846 (trainer:737) INFO: 11epoch:train:4901-5000batch: iter_time=1.599e-04, forward_time=0.103, loss_ctc=49.956, loss_att=58.418, acc=0.660, loss=55.879, backward_time=0.096, grad_norm=33.531, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.223e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 06:13:03,034 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 06:13:22,184 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 06:13:25,842 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 06:13:25,843 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 06:13:25,846 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 06:19:00,581 (trainer:737) INFO: 11epoch:train:5001-5100batch: iter_time=2.531, forward_time=0.105, loss_ctc=56.956, loss_att=57.666, acc=0.714, loss=57.453, backward_time=0.098, grad_norm=33.918, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.221e-04, train_time=3.647 +[gpuc02:0/16] 2024-01-13 06:19:42,245 (trainer:737) INFO: 11epoch:train:5101-5200batch: iter_time=1.078e-04, forward_time=0.108, loss_ctc=62.252, loss_att=82.374, acc=0.643, loss=76.337, backward_time=0.099, grad_norm=51.124, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.219e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 06:20:23,089 (trainer:737) INFO: 11epoch:train:5201-5300batch: iter_time=1.048e-04, forward_time=0.104, loss_ctc=51.967, loss_att=56.710, acc=0.693, loss=55.287, backward_time=0.097, grad_norm=32.844, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.217e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:21:04,263 (trainer:737) INFO: 11epoch:train:5301-5400batch: iter_time=1.208e-04, forward_time=0.105, loss_ctc=50.929, loss_att=61.194, acc=0.701, loss=58.114, backward_time=0.098, grad_norm=32.832, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.215e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 06:21:45,235 (trainer:737) INFO: 11epoch:train:5401-5500batch: iter_time=1.315e-04, forward_time=0.106, loss_ctc=45.303, loss_att=56.459, acc=0.702, loss=53.113, backward_time=0.098, grad_norm=27.566, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.029, optim0_lr0=6.213e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:22:26,534 (trainer:737) INFO: 11epoch:train:5501-5600batch: iter_time=1.378e-04, forward_time=0.106, loss_ctc=51.488, loss_att=59.538, acc=0.718, loss=57.123, backward_time=0.098, grad_norm=30.763, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.211e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 06:23:07,460 (trainer:737) INFO: 11epoch:train:5601-5700batch: iter_time=1.259e-04, forward_time=0.105, loss_ctc=48.135, loss_att=57.084, acc=0.697, loss=54.399, backward_time=0.097, grad_norm=32.618, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.209e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:23:48,661 (trainer:737) INFO: 11epoch:train:5701-5800batch: iter_time=1.389e-04, forward_time=0.104, loss_ctc=47.600, loss_att=52.126, acc=0.693, loss=50.768, backward_time=0.097, grad_norm=33.438, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.207e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 06:24:30,092 (trainer:737) INFO: 11epoch:train:5801-5900batch: iter_time=1.478e-04, forward_time=0.106, loss_ctc=54.706, loss_att=65.317, acc=0.706, loss=62.134, backward_time=0.098, grad_norm=35.134, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.205e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 06:25:11,227 (trainer:737) INFO: 11epoch:train:5901-6000batch: iter_time=1.458e-04, forward_time=0.106, loss_ctc=58.425, loss_att=61.419, acc=0.716, loss=60.520, backward_time=0.098, grad_norm=36.166, clip=100.000, loss_scale=9.904e+27, optim_step_time=0.030, optim0_lr0=6.203e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 06:25:52,494 (trainer:737) INFO: 11epoch:train:6001-6100batch: iter_time=1.530e-04, forward_time=0.105, loss_ctc=55.002, loss_att=63.359, acc=0.686, loss=60.852, backward_time=0.097, grad_norm=33.916, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.201e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 06:26:33,485 (trainer:737) INFO: 11epoch:train:6101-6200batch: iter_time=1.485e-04, forward_time=0.104, loss_ctc=52.766, loss_att=55.932, acc=0.708, loss=54.982, backward_time=0.097, grad_norm=33.281, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.199e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:26:59,436 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 06:27:19,136 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 06:27:22,961 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 06:27:22,961 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 06:27:22,965 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 06:31:45,392 (trainer:737) INFO: 11epoch:train:6201-6300batch: iter_time=2.416, forward_time=0.104, loss_ctc=50.475, loss_att=55.405, acc=0.698, loss=53.926, backward_time=0.097, grad_norm=31.395, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.197e-04, train_time=3.119 +[gpuc02:0/16] 2024-01-13 06:32:26,671 (trainer:737) INFO: 11epoch:train:6301-6400batch: iter_time=1.615e-04, forward_time=0.105, loss_ctc=56.367, loss_att=66.618, acc=0.675, loss=63.542, backward_time=0.098, grad_norm=33.321, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.195e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 06:33:07,696 (trainer:737) INFO: 11epoch:train:6401-6500batch: iter_time=1.279e-04, forward_time=0.105, loss_ctc=54.989, loss_att=64.503, acc=0.681, loss=61.649, backward_time=0.098, grad_norm=42.341, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.193e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:33:48,977 (trainer:737) INFO: 11epoch:train:6501-6600batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=57.799, loss_att=61.436, acc=0.686, loss=60.345, backward_time=0.098, grad_norm=34.646, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.191e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 06:34:30,025 (trainer:737) INFO: 11epoch:train:6601-6700batch: iter_time=1.408e-04, forward_time=0.106, loss_ctc=49.779, loss_att=56.641, acc=0.704, loss=54.582, backward_time=0.098, grad_norm=30.386, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.189e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:35:11,279 (trainer:737) INFO: 11epoch:train:6701-6800batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=49.287, loss_att=56.817, acc=0.721, loss=54.558, backward_time=0.098, grad_norm=30.605, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.187e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 06:35:52,237 (trainer:737) INFO: 11epoch:train:6801-6900batch: iter_time=1.242e-04, forward_time=0.105, loss_ctc=47.879, loss_att=58.567, acc=0.704, loss=55.360, backward_time=0.098, grad_norm=30.029, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.185e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:36:33,363 (trainer:737) INFO: 11epoch:train:6901-7000batch: iter_time=1.147e-04, forward_time=0.104, loss_ctc=45.001, loss_att=52.808, acc=0.698, loss=50.466, backward_time=0.097, grad_norm=32.688, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.183e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 06:37:15,126 (trainer:737) INFO: 11epoch:train:7001-7100batch: iter_time=1.112e-04, forward_time=0.106, loss_ctc=56.406, loss_att=66.491, acc=0.703, loss=63.465, backward_time=0.098, grad_norm=31.264, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.029, optim0_lr0=6.181e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 06:37:56,182 (trainer:737) INFO: 11epoch:train:7101-7200batch: iter_time=1.501e-04, forward_time=0.105, loss_ctc=55.833, loss_att=55.802, acc=0.720, loss=55.811, backward_time=0.098, grad_norm=36.760, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.179e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:38:37,193 (trainer:737) INFO: 11epoch:train:7201-7300batch: iter_time=1.416e-04, forward_time=0.105, loss_ctc=55.712, loss_att=62.070, acc=0.693, loss=60.163, backward_time=0.098, grad_norm=33.668, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.177e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:39:18,818 (trainer:737) INFO: 11epoch:train:7301-7400batch: iter_time=1.531e-04, forward_time=0.110, loss_ctc=54.741, loss_att=59.257, acc=0.706, loss=57.902, backward_time=0.099, grad_norm=34.685, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.175e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 06:39:59,684 (trainer:737) INFO: 11epoch:train:7401-7500batch: iter_time=1.413e-04, forward_time=0.104, loss_ctc=49.061, loss_att=59.137, acc=0.673, loss=56.114, backward_time=0.097, grad_norm=31.581, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.173e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:40:03,668 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 06:40:22,869 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 06:40:26,618 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 06:40:26,618 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 06:40:26,621 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 06:45:13,177 (trainer:737) INFO: 11epoch:train:7501-7600batch: iter_time=2.468, forward_time=0.107, loss_ctc=56.365, loss_att=54.692, acc=0.717, loss=55.194, backward_time=0.098, grad_norm=31.822, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.171e-04, train_time=3.135 +[gpuc02:0/16] 2024-01-13 06:45:54,330 (trainer:737) INFO: 11epoch:train:7601-7700batch: iter_time=1.633e-04, forward_time=0.105, loss_ctc=60.463, loss_att=80.577, acc=0.649, loss=74.543, backward_time=0.098, grad_norm=51.615, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.169e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 06:46:35,262 (trainer:737) INFO: 11epoch:train:7701-7800batch: iter_time=1.657e-04, forward_time=0.105, loss_ctc=51.863, loss_att=54.485, acc=0.698, loss=53.699, backward_time=0.097, grad_norm=33.233, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.167e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:47:16,357 (trainer:737) INFO: 11epoch:train:7801-7900batch: iter_time=1.761e-04, forward_time=0.106, loss_ctc=50.540, loss_att=58.217, acc=0.711, loss=55.914, backward_time=0.098, grad_norm=31.791, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.165e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 06:47:57,352 (trainer:737) INFO: 11epoch:train:7901-8000batch: iter_time=1.742e-04, forward_time=0.106, loss_ctc=45.396, loss_att=54.032, acc=0.710, loss=51.441, backward_time=0.098, grad_norm=29.584, clip=100.000, loss_scale=1.981e+28, optim_step_time=0.030, optim0_lr0=6.163e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:48:38,245 (trainer:737) INFO: 11epoch:train:8001-8100batch: iter_time=1.803e-04, forward_time=0.104, loss_ctc=51.267, loss_att=58.741, acc=0.719, loss=56.499, backward_time=0.097, grad_norm=32.146, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.161e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 06:49:19,382 (trainer:737) INFO: 11epoch:train:8101-8200batch: iter_time=1.882e-04, forward_time=0.104, loss_ctc=47.821, loss_att=56.827, acc=0.698, loss=54.126, backward_time=0.097, grad_norm=30.365, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.159e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 06:50:00,572 (trainer:737) INFO: 11epoch:train:8201-8300batch: iter_time=1.810e-04, forward_time=0.105, loss_ctc=47.701, loss_att=51.260, acc=0.698, loss=50.192, backward_time=0.097, grad_norm=32.245, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.157e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 06:50:41,969 (trainer:737) INFO: 11epoch:train:8301-8400batch: iter_time=1.520e-04, forward_time=0.106, loss_ctc=54.685, loss_att=65.077, acc=0.709, loss=61.959, backward_time=0.098, grad_norm=36.744, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.156e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 06:51:23,013 (trainer:737) INFO: 11epoch:train:8401-8500batch: iter_time=1.446e-04, forward_time=0.106, loss_ctc=57.920, loss_att=60.054, acc=0.719, loss=59.414, backward_time=0.098, grad_norm=34.176, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.154e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 06:52:04,376 (trainer:737) INFO: 11epoch:train:8501-8600batch: iter_time=1.837e-04, forward_time=0.104, loss_ctc=53.928, loss_att=62.484, acc=0.688, loss=59.917, backward_time=0.097, grad_norm=33.643, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.152e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 06:52:45,232 (trainer:737) INFO: 11epoch:train:8601-8700batch: iter_time=1.871e-04, forward_time=0.105, loss_ctc=52.223, loss_att=55.053, acc=0.710, loss=54.204, backward_time=0.097, grad_norm=33.303, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.150e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 06:53:10,544 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 06:53:30,479 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 06:53:34,260 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 06:53:34,261 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 06:53:34,264 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 06:57:57,745 (trainer:737) INFO: 11epoch:train:8701-8800batch: iter_time=2.521, forward_time=0.105, loss_ctc=50.587, loss_att=55.449, acc=0.698, loss=53.991, backward_time=0.098, grad_norm=31.947, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.148e-04, train_time=3.125 +[gpuc02:0/16] 2024-01-13 06:58:38,947 (trainer:737) INFO: 11epoch:train:8801-8900batch: iter_time=1.561e-04, forward_time=0.105, loss_ctc=54.773, loss_att=64.914, acc=0.677, loss=61.872, backward_time=0.098, grad_norm=32.482, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.146e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 06:59:19,802 (trainer:737) INFO: 11epoch:train:8901-9000batch: iter_time=1.552e-04, forward_time=0.105, loss_ctc=53.627, loss_att=63.573, acc=0.685, loss=60.589, backward_time=0.098, grad_norm=43.689, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.144e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:00:01,024 (trainer:737) INFO: 11epoch:train:9001-9100batch: iter_time=1.569e-04, forward_time=0.106, loss_ctc=56.991, loss_att=60.114, acc=0.690, loss=59.177, backward_time=0.098, grad_norm=35.257, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.142e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 07:00:41,944 (trainer:737) INFO: 11epoch:train:9101-9200batch: iter_time=1.600e-04, forward_time=0.106, loss_ctc=49.613, loss_att=56.078, acc=0.706, loss=54.139, backward_time=0.098, grad_norm=32.968, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.140e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:01:23,137 (trainer:737) INFO: 11epoch:train:9201-9300batch: iter_time=1.466e-04, forward_time=0.106, loss_ctc=48.971, loss_att=56.104, acc=0.723, loss=53.964, backward_time=0.098, grad_norm=29.151, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.138e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 07:02:03,993 (trainer:737) INFO: 11epoch:train:9301-9400batch: iter_time=1.597e-04, forward_time=0.106, loss_ctc=47.518, loss_att=58.657, acc=0.706, loss=55.316, backward_time=0.098, grad_norm=29.823, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.136e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:02:44,742 (trainer:737) INFO: 11epoch:train:9401-9500batch: iter_time=1.691e-04, forward_time=0.106, loss_ctc=44.550, loss_att=51.931, acc=0.701, loss=49.716, backward_time=0.098, grad_norm=30.772, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.134e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 07:03:26,425 (trainer:737) INFO: 11epoch:train:9501-9600batch: iter_time=1.544e-04, forward_time=0.107, loss_ctc=55.886, loss_att=65.799, acc=0.706, loss=62.825, backward_time=0.099, grad_norm=33.187, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.132e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 07:04:07,648 (trainer:737) INFO: 11epoch:train:9601-9700batch: iter_time=1.658e-04, forward_time=0.106, loss_ctc=54.765, loss_att=54.650, acc=0.722, loss=54.684, backward_time=0.098, grad_norm=35.458, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.130e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 07:04:48,653 (trainer:737) INFO: 11epoch:train:9701-9800batch: iter_time=1.493e-04, forward_time=0.106, loss_ctc=55.506, loss_att=61.175, acc=0.695, loss=59.474, backward_time=0.098, grad_norm=34.229, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.128e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:05:29,815 (trainer:737) INFO: 11epoch:train:9801-9900batch: iter_time=1.567e-04, forward_time=0.107, loss_ctc=54.285, loss_att=58.902, acc=0.709, loss=57.517, backward_time=0.098, grad_norm=32.609, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.127e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 07:06:10,672 (trainer:737) INFO: 11epoch:train:9901-10000batch: iter_time=1.287e-04, forward_time=0.105, loss_ctc=49.800, loss_att=58.711, acc=0.675, loss=56.037, backward_time=0.098, grad_norm=33.401, clip=100.000, loss_scale=3.961e+28, optim_step_time=0.030, optim0_lr0=6.125e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:06:14,884 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 07:06:33,958 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 07:06:37,662 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 07:06:37,662 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 07:06:37,665 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 07:11:44,080 (trainer:737) INFO: 11epoch:train:10001-10100batch: iter_time=2.431, forward_time=0.106, loss_ctc=56.581, loss_att=54.057, acc=0.720, loss=54.814, backward_time=0.098, grad_norm=32.762, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.123e-04, train_time=3.334 +[gpuc02:0/16] 2024-01-13 07:12:25,092 (trainer:737) INFO: 11epoch:train:10101-10200batch: iter_time=1.426e-04, forward_time=0.105, loss_ctc=58.673, loss_att=78.421, acc=0.653, loss=72.497, backward_time=0.099, grad_norm=48.165, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.121e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:13:05,850 (trainer:737) INFO: 11epoch:train:10201-10300batch: iter_time=1.332e-04, forward_time=0.104, loss_ctc=51.288, loss_att=54.683, acc=0.699, loss=53.665, backward_time=0.097, grad_norm=33.004, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.119e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 07:13:47,640 (trainer:737) INFO: 11epoch:train:10301-10400batch: iter_time=1.466e-04, forward_time=0.105, loss_ctc=50.573, loss_att=58.616, acc=0.709, loss=56.203, backward_time=0.099, grad_norm=33.280, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.117e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-13 07:14:28,424 (trainer:737) INFO: 11epoch:train:10401-10500batch: iter_time=1.581e-04, forward_time=0.105, loss_ctc=45.194, loss_att=53.888, acc=0.708, loss=51.280, backward_time=0.098, grad_norm=28.797, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.115e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:15:09,226 (trainer:737) INFO: 11epoch:train:10501-10600batch: iter_time=1.551e-04, forward_time=0.104, loss_ctc=50.917, loss_att=58.060, acc=0.722, loss=55.917, backward_time=0.098, grad_norm=29.748, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.113e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:15:50,059 (trainer:737) INFO: 11epoch:train:10601-10700batch: iter_time=1.812e-04, forward_time=0.104, loss_ctc=47.627, loss_att=56.486, acc=0.701, loss=53.828, backward_time=0.097, grad_norm=29.996, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.111e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:16:30,868 (trainer:737) INFO: 11epoch:train:10701-10800batch: iter_time=1.632e-04, forward_time=0.105, loss_ctc=47.126, loss_att=50.891, acc=0.698, loss=49.761, backward_time=0.097, grad_norm=31.336, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.109e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:17:12,014 (trainer:737) INFO: 11epoch:train:10801-10900batch: iter_time=1.755e-04, forward_time=0.106, loss_ctc=53.889, loss_att=64.554, acc=0.711, loss=61.355, backward_time=0.099, grad_norm=34.041, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.107e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 07:17:53,694 (trainer:737) INFO: 11epoch:train:10901-11000batch: iter_time=1.716e-04, forward_time=0.108, loss_ctc=57.336, loss_att=59.858, acc=0.720, loss=59.102, backward_time=0.099, grad_norm=34.640, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.106e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 07:18:34,869 (trainer:737) INFO: 11epoch:train:11001-11100batch: iter_time=1.641e-04, forward_time=0.105, loss_ctc=53.243, loss_att=61.313, acc=0.692, loss=58.892, backward_time=0.098, grad_norm=32.216, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.104e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 07:19:17,709 (trainer:737) INFO: 11epoch:train:11101-11200batch: iter_time=1.509e-04, forward_time=0.121, loss_ctc=51.363, loss_att=53.977, acc=0.714, loss=53.193, backward_time=0.102, grad_norm=33.357, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.033, optim0_lr0=6.102e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-13 07:19:42,889 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 07:20:01,979 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 07:20:05,743 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 07:20:05,743 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 07:20:05,747 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 07:24:42,300 (trainer:737) INFO: 11epoch:train:11201-11300batch: iter_time=2.466, forward_time=0.105, loss_ctc=50.423, loss_att=53.807, acc=0.706, loss=52.792, backward_time=0.099, grad_norm=33.043, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.031, optim0_lr0=6.100e-04, train_time=3.246 +[gpuc02:0/16] 2024-01-13 07:25:23,315 (trainer:737) INFO: 11epoch:train:11301-11400batch: iter_time=1.207e-04, forward_time=0.104, loss_ctc=55.106, loss_att=65.240, acc=0.679, loss=62.200, backward_time=0.098, grad_norm=33.261, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.029, optim0_lr0=6.098e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:26:04,138 (trainer:737) INFO: 11epoch:train:11401-11500batch: iter_time=1.788e-04, forward_time=0.103, loss_ctc=54.611, loss_att=63.622, acc=0.687, loss=60.918, backward_time=0.097, grad_norm=46.629, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.030, optim0_lr0=6.096e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:26:45,107 (trainer:737) INFO: 11epoch:train:11501-11600batch: iter_time=1.288e-04, forward_time=0.104, loss_ctc=56.636, loss_att=60.852, acc=0.686, loss=59.587, backward_time=0.097, grad_norm=33.744, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.029, optim0_lr0=6.094e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:27:26,018 (trainer:737) INFO: 11epoch:train:11601-11700batch: iter_time=1.216e-04, forward_time=0.104, loss_ctc=49.003, loss_att=55.803, acc=0.707, loss=53.763, backward_time=0.097, grad_norm=30.569, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.029, optim0_lr0=6.092e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:28:07,272 (trainer:737) INFO: 11epoch:train:11701-11800batch: iter_time=1.282e-04, forward_time=0.104, loss_ctc=48.693, loss_att=55.490, acc=0.725, loss=53.451, backward_time=0.097, grad_norm=28.804, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.029, optim0_lr0=6.090e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 07:28:48,204 (trainer:737) INFO: 11epoch:train:11801-11900batch: iter_time=1.081e-04, forward_time=0.104, loss_ctc=48.022, loss_att=57.624, acc=0.709, loss=54.743, backward_time=0.097, grad_norm=30.549, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.029, optim0_lr0=6.089e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:29:29,613 (trainer:737) INFO: 11epoch:train:11901-12000batch: iter_time=1.164e-04, forward_time=0.104, loss_ctc=44.138, loss_att=52.211, acc=0.698, loss=49.789, backward_time=0.097, grad_norm=33.276, clip=100.000, loss_scale=7.923e+28, optim_step_time=0.029, optim0_lr0=6.087e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 07:30:10,793 (trainer:737) INFO: 11epoch:train:12001-12100batch: iter_time=1.092e-04, forward_time=0.105, loss_ctc=55.520, loss_att=65.049, acc=0.707, loss=62.190, backward_time=0.098, grad_norm=31.569, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.029, optim0_lr0=6.085e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 07:30:52,367 (trainer:737) INFO: 11epoch:train:12101-12200batch: iter_time=1.183e-04, forward_time=0.105, loss_ctc=54.281, loss_att=53.361, acc=0.727, loss=53.637, backward_time=0.097, grad_norm=35.636, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.083e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 07:31:33,363 (trainer:737) INFO: 11epoch:train:12201-12300batch: iter_time=1.131e-04, forward_time=0.104, loss_ctc=54.198, loss_att=60.582, acc=0.695, loss=58.666, backward_time=0.097, grad_norm=33.357, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.081e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:32:14,357 (trainer:737) INFO: 11epoch:train:12301-12400batch: iter_time=1.146e-04, forward_time=0.104, loss_ctc=53.453, loss_att=58.423, acc=0.712, loss=56.932, backward_time=0.097, grad_norm=32.191, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.079e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:32:55,151 (trainer:737) INFO: 11epoch:train:12401-12500batch: iter_time=1.431e-04, forward_time=0.103, loss_ctc=48.825, loss_att=57.658, acc=0.682, loss=55.008, backward_time=0.097, grad_norm=32.715, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.077e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:33:00,138 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 07:33:19,303 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 07:33:23,111 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 07:33:23,111 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 07:33:23,114 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 07:38:26,720 (trainer:737) INFO: 11epoch:train:12501-12600batch: iter_time=2.509, forward_time=0.106, loss_ctc=55.616, loss_att=57.301, acc=0.703, loss=56.796, backward_time=0.099, grad_norm=32.709, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.075e-04, train_time=3.315 +[gpuc02:0/16] 2024-01-13 07:39:08,022 (trainer:737) INFO: 11epoch:train:12601-12700batch: iter_time=1.578e-04, forward_time=0.106, loss_ctc=56.300, loss_att=80.869, acc=0.640, loss=73.498, backward_time=0.099, grad_norm=41.400, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.074e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 07:39:49,070 (trainer:737) INFO: 11epoch:train:12701-12800batch: iter_time=1.706e-04, forward_time=0.107, loss_ctc=50.840, loss_att=53.846, acc=0.694, loss=52.944, backward_time=0.097, grad_norm=32.921, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.072e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:40:30,082 (trainer:737) INFO: 11epoch:train:12801-12900batch: iter_time=1.564e-04, forward_time=0.106, loss_ctc=50.267, loss_att=58.537, acc=0.705, loss=56.056, backward_time=0.098, grad_norm=33.819, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.070e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:41:11,100 (trainer:737) INFO: 11epoch:train:12901-13000batch: iter_time=1.844e-04, forward_time=0.104, loss_ctc=44.743, loss_att=55.169, acc=0.692, loss=52.041, backward_time=0.097, grad_norm=28.902, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.029, optim0_lr0=6.068e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:41:51,958 (trainer:737) INFO: 11epoch:train:13001-13100batch: iter_time=1.956e-04, forward_time=0.105, loss_ctc=50.495, loss_att=54.621, acc=0.718, loss=53.383, backward_time=0.097, grad_norm=31.025, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.066e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:42:32,722 (trainer:737) INFO: 11epoch:train:13101-13200batch: iter_time=2.026e-04, forward_time=0.104, loss_ctc=47.098, loss_att=56.875, acc=0.699, loss=53.942, backward_time=0.098, grad_norm=31.350, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.064e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 07:43:14,095 (trainer:737) INFO: 11epoch:train:13201-13300batch: iter_time=1.682e-04, forward_time=0.104, loss_ctc=46.392, loss_att=51.176, acc=0.691, loss=49.741, backward_time=0.097, grad_norm=30.133, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.062e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 07:43:55,095 (trainer:737) INFO: 11epoch:train:13301-13400batch: iter_time=1.593e-04, forward_time=0.105, loss_ctc=53.296, loss_att=62.709, acc=0.711, loss=59.885, backward_time=0.099, grad_norm=35.689, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.061e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:44:36,079 (trainer:737) INFO: 11epoch:train:13401-13500batch: iter_time=1.717e-04, forward_time=0.105, loss_ctc=56.722, loss_att=60.088, acc=0.714, loss=59.078, backward_time=0.098, grad_norm=34.098, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.059e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:45:17,185 (trainer:737) INFO: 11epoch:train:13501-13600batch: iter_time=1.975e-04, forward_time=0.104, loss_ctc=53.379, loss_att=59.710, acc=0.689, loss=57.811, backward_time=0.098, grad_norm=33.318, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.057e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 07:45:57,939 (trainer:737) INFO: 11epoch:train:13601-13700batch: iter_time=1.936e-04, forward_time=0.104, loss_ctc=51.947, loss_att=55.438, acc=0.698, loss=54.391, backward_time=0.097, grad_norm=33.443, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.055e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 07:46:22,745 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 07:46:42,337 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 07:46:46,061 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 07:46:46,061 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 07:46:46,064 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 07:51:24,259 (trainer:737) INFO: 11epoch:train:13701-13800batch: iter_time=2.483, forward_time=0.147, loss_ctc=50.230, loss_att=55.515, acc=0.685, loss=53.930, backward_time=0.107, grad_norm=31.525, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.031, optim0_lr0=6.053e-04, train_time=3.263 +[gpuc02:0/16] 2024-01-13 07:52:05,252 (trainer:737) INFO: 11epoch:train:13801-13900batch: iter_time=1.243e-04, forward_time=0.105, loss_ctc=54.803, loss_att=65.332, acc=0.670, loss=62.173, backward_time=0.098, grad_norm=34.987, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.051e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:52:46,212 (trainer:737) INFO: 11epoch:train:13901-14000batch: iter_time=1.526e-04, forward_time=0.104, loss_ctc=51.975, loss_att=63.231, acc=0.681, loss=59.855, backward_time=0.098, grad_norm=42.469, clip=100.000, loss_scale=1.585e+29, optim_step_time=0.030, optim0_lr0=6.049e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:53:27,131 (trainer:737) INFO: 11epoch:train:14001-14100batch: iter_time=1.655e-04, forward_time=0.105, loss_ctc=56.202, loss_att=58.196, acc=0.683, loss=57.598, backward_time=0.098, grad_norm=34.916, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.048e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:54:08,906 (trainer:737) INFO: 11epoch:train:14101-14200batch: iter_time=1.612e-04, forward_time=0.105, loss_ctc=48.670, loss_att=54.888, acc=0.703, loss=53.023, backward_time=0.098, grad_norm=31.966, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.046e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-13 07:54:49,814 (trainer:737) INFO: 11epoch:train:14201-14300batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=48.261, loss_att=56.359, acc=0.708, loss=53.930, backward_time=0.097, grad_norm=28.714, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.044e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:55:30,582 (trainer:737) INFO: 11epoch:train:14301-14400batch: iter_time=1.474e-04, forward_time=0.105, loss_ctc=47.659, loss_att=54.646, acc=0.705, loss=52.550, backward_time=0.097, grad_norm=31.528, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.042e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 07:56:11,402 (trainer:737) INFO: 11epoch:train:14401-14500batch: iter_time=1.811e-04, forward_time=0.105, loss_ctc=43.850, loss_att=51.218, acc=0.701, loss=49.008, backward_time=0.097, grad_norm=30.321, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.040e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:56:52,406 (trainer:737) INFO: 11epoch:train:14501-14600batch: iter_time=1.461e-04, forward_time=0.106, loss_ctc=54.739, loss_att=65.396, acc=0.700, loss=62.199, backward_time=0.098, grad_norm=33.972, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.038e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 07:57:33,375 (trainer:737) INFO: 11epoch:train:14601-14700batch: iter_time=1.229e-04, forward_time=0.105, loss_ctc=54.330, loss_att=52.075, acc=0.727, loss=52.751, backward_time=0.098, grad_norm=34.576, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.037e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:58:14,189 (trainer:737) INFO: 11epoch:train:14701-14800batch: iter_time=1.125e-04, forward_time=0.105, loss_ctc=54.326, loss_att=60.394, acc=0.692, loss=58.574, backward_time=0.098, grad_norm=35.427, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.035e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 07:58:55,138 (trainer:737) INFO: 11epoch:train:14801-14900batch: iter_time=1.215e-04, forward_time=0.106, loss_ctc=53.120, loss_att=56.462, acc=0.703, loss=55.459, backward_time=0.098, grad_norm=32.824, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.033e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 07:59:36,465 (trainer:737) INFO: 11epoch:train:14901-15000batch: iter_time=1.236e-04, forward_time=0.103, loss_ctc=48.706, loss_att=58.037, acc=0.664, loss=55.238, backward_time=0.096, grad_norm=34.009, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.031e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 08:19:41,872 (trainer:343) INFO: 11epoch results: [train] iter_time=0.211, forward_time=0.106, loss_ctc=52.876, loss_att=59.163, acc=0.695, loss=57.277, backward_time=0.098, grad_norm=34.092, clip=100.000, loss_scale=6.305e+28, optim_step_time=0.030, optim0_lr0=6.174e-04, train_time=0.645, time=2 hours, 41 minutes and 25.66 seconds, total_count=165000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=61.414, cer_ctc=0.314, loss_att=60.853, acc=0.549, cer=0.422, wer=1.000, loss=61.021, time=19 minutes and 55.41 seconds, total_count=51381, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 08:19:46,639 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-13 08:19:46,643 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/6epoch.pth +[gpuc02:0/16] 2024-01-13 08:19:46,643 (trainer:272) INFO: 12/45epoch started. Estimated time to finish: 4 days, 5 hours and 34 minutes +[gpuc02:0/16] 2024-01-13 08:19:46,652 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 08:20:05,389 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 08:20:08,814 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 08:20:08,814 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 08:20:08,817 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 08:24:56,777 (trainer:737) INFO: 12epoch:train:1-100batch: iter_time=2.364, forward_time=0.105, loss_ctc=47.498, loss_att=66.106, acc=0.697, loss=60.523, backward_time=0.099, grad_norm=29.623, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.029e-04, train_time=3.101 +[gpuc02:0/16] 2024-01-13 08:25:37,876 (trainer:737) INFO: 12epoch:train:101-200batch: iter_time=1.113e-04, forward_time=0.104, loss_ctc=50.101, loss_att=53.208, acc=0.717, loss=52.276, backward_time=0.098, grad_norm=33.174, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.027e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 08:26:18,817 (trainer:737) INFO: 12epoch:train:201-300batch: iter_time=1.082e-04, forward_time=0.104, loss_ctc=48.782, loss_att=50.715, acc=0.706, loss=50.135, backward_time=0.098, grad_norm=32.427, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.026e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 08:26:59,790 (trainer:737) INFO: 12epoch:train:301-400batch: iter_time=1.086e-04, forward_time=0.103, loss_ctc=62.000, loss_att=52.873, acc=0.726, loss=55.611, backward_time=0.098, grad_norm=40.558, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.024e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 08:27:42,091 (trainer:737) INFO: 12epoch:train:401-500batch: iter_time=1.206e-04, forward_time=0.116, loss_ctc=51.238, loss_att=58.514, acc=0.673, loss=56.331, backward_time=0.099, grad_norm=36.793, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.022e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-13 08:28:22,925 (trainer:737) INFO: 12epoch:train:501-600batch: iter_time=1.137e-04, forward_time=0.105, loss_ctc=55.203, loss_att=60.558, acc=0.692, loss=58.952, backward_time=0.098, grad_norm=35.698, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.020e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 08:29:03,740 (trainer:737) INFO: 12epoch:train:601-700batch: iter_time=1.117e-04, forward_time=0.104, loss_ctc=58.601, loss_att=61.437, acc=0.701, loss=60.586, backward_time=0.098, grad_norm=36.608, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.018e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 08:29:45,844 (trainer:737) INFO: 12epoch:train:701-800batch: iter_time=1.185e-04, forward_time=0.113, loss_ctc=53.513, loss_att=58.605, acc=0.704, loss=57.078, backward_time=0.099, grad_norm=33.543, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.032, optim0_lr0=6.017e-04, train_time=0.421 +[gpuc02:0/16] 2024-01-13 08:30:28,089 (trainer:737) INFO: 12epoch:train:801-900batch: iter_time=1.040e-04, forward_time=0.108, loss_ctc=53.655, loss_att=57.439, acc=0.713, loss=56.304, backward_time=0.098, grad_norm=34.868, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.033, optim0_lr0=6.015e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 08:31:13,437 (trainer:737) INFO: 12epoch:train:901-1000batch: iter_time=1.048e-04, forward_time=0.112, loss_ctc=62.646, loss_att=66.463, acc=0.691, loss=65.318, backward_time=0.124, grad_norm=41.374, clip=100.000, loss_scale=3.169e+29, optim_step_time=0.030, optim0_lr0=6.013e-04, train_time=0.453 +[gpuc02:0/16] 2024-01-13 08:31:54,422 (trainer:737) INFO: 12epoch:train:1001-1100batch: iter_time=1.200e-04, forward_time=0.104, loss_ctc=46.016, loss_att=55.844, acc=0.710, loss=52.896, backward_time=0.098, grad_norm=33.248, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=6.011e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 08:32:36,736 (trainer:737) INFO: 12epoch:train:1101-1200batch: iter_time=1.284e-04, forward_time=0.109, loss_ctc=65.442, loss_att=58.318, acc=0.732, loss=60.455, backward_time=0.099, grad_norm=41.108, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.031, optim0_lr0=6.009e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 08:33:25,706 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 08:33:45,097 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 08:33:48,868 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 08:33:48,868 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 08:33:48,871 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 08:41:04,405 (trainer:737) INFO: 12epoch:train:1201-1300batch: iter_time=4.444, forward_time=0.109, loss_ctc=47.442, loss_att=56.922, acc=0.709, loss=54.078, backward_time=0.098, grad_norm=32.302, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=6.007e-04, train_time=5.077 +[gpuc02:0/16] 2024-01-13 08:41:45,395 (trainer:737) INFO: 12epoch:train:1301-1400batch: iter_time=1.265e-04, forward_time=0.103, loss_ctc=47.807, loss_att=54.766, acc=0.714, loss=52.678, backward_time=0.097, grad_norm=32.157, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=6.006e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 08:42:26,355 (trainer:737) INFO: 12epoch:train:1401-1500batch: iter_time=1.466e-04, forward_time=0.104, loss_ctc=49.489, loss_att=53.185, acc=0.700, loss=52.076, backward_time=0.097, grad_norm=31.844, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=6.004e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 08:43:07,376 (trainer:737) INFO: 12epoch:train:1501-1600batch: iter_time=1.644e-04, forward_time=0.104, loss_ctc=55.975, loss_att=58.886, acc=0.704, loss=58.013, backward_time=0.098, grad_norm=35.531, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=6.002e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 08:43:48,057 (trainer:737) INFO: 12epoch:train:1601-1700batch: iter_time=1.742e-04, forward_time=0.103, loss_ctc=59.096, loss_att=52.589, acc=0.688, loss=54.541, backward_time=0.097, grad_norm=42.707, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=6.000e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 08:44:28,918 (trainer:737) INFO: 12epoch:train:1701-1800batch: iter_time=1.550e-04, forward_time=0.103, loss_ctc=43.690, loss_att=54.958, acc=0.680, loss=51.577, backward_time=0.097, grad_norm=31.339, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.998e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 08:45:10,672 (trainer:737) INFO: 12epoch:train:1801-1900batch: iter_time=1.649e-04, forward_time=0.109, loss_ctc=55.268, loss_att=59.703, acc=0.705, loss=58.373, backward_time=0.100, grad_norm=32.925, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.997e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 08:45:51,573 (trainer:737) INFO: 12epoch:train:1901-2000batch: iter_time=1.421e-04, forward_time=0.105, loss_ctc=62.393, loss_att=61.538, acc=0.692, loss=61.795, backward_time=0.099, grad_norm=37.206, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.995e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 08:46:32,382 (trainer:737) INFO: 12epoch:train:2001-2100batch: iter_time=1.634e-04, forward_time=0.104, loss_ctc=48.524, loss_att=57.808, acc=0.699, loss=55.023, backward_time=0.098, grad_norm=31.851, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.993e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 08:47:13,113 (trainer:737) INFO: 12epoch:train:2101-2200batch: iter_time=1.511e-04, forward_time=0.104, loss_ctc=66.119, loss_att=61.105, acc=0.701, loss=62.609, backward_time=0.097, grad_norm=42.726, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.991e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 08:47:53,841 (trainer:737) INFO: 12epoch:train:2201-2300batch: iter_time=1.460e-04, forward_time=0.103, loss_ctc=46.560, loss_att=60.330, acc=0.685, loss=56.199, backward_time=0.097, grad_norm=34.197, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.990e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 08:48:35,609 (trainer:737) INFO: 12epoch:train:2301-2400batch: iter_time=1.606e-04, forward_time=0.111, loss_ctc=50.567, loss_att=45.567, acc=0.727, loss=47.067, backward_time=0.099, grad_norm=32.135, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.031, optim0_lr0=5.988e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 08:49:18,053 (trainer:737) INFO: 12epoch:train:2401-2500batch: iter_time=1.370e-04, forward_time=0.112, loss_ctc=59.317, loss_att=57.334, acc=0.720, loss=57.929, backward_time=0.102, grad_norm=40.191, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.986e-04, train_time=0.424 +[gpuc02:0/16] 2024-01-13 08:49:26,310 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 08:49:45,358 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 08:49:49,207 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 08:49:49,207 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 08:49:49,210 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 08:54:44,489 (trainer:737) INFO: 12epoch:train:2501-2600batch: iter_time=2.682, forward_time=0.119, loss_ctc=46.594, loss_att=65.368, acc=0.702, loss=59.736, backward_time=0.101, grad_norm=31.169, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.031, optim0_lr0=5.984e-04, train_time=3.264 +[gpuc02:0/16] 2024-01-13 08:55:25,372 (trainer:737) INFO: 12epoch:train:2601-2700batch: iter_time=1.506e-04, forward_time=0.104, loss_ctc=48.638, loss_att=52.675, acc=0.720, loss=51.464, backward_time=0.098, grad_norm=31.372, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.982e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 08:56:06,156 (trainer:737) INFO: 12epoch:train:2701-2800batch: iter_time=1.390e-04, forward_time=0.104, loss_ctc=47.683, loss_att=50.041, acc=0.712, loss=49.334, backward_time=0.098, grad_norm=29.116, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.981e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 08:56:47,534 (trainer:737) INFO: 12epoch:train:2801-2900batch: iter_time=1.582e-04, forward_time=0.104, loss_ctc=60.170, loss_att=52.956, acc=0.727, loss=55.120, backward_time=0.098, grad_norm=37.248, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.979e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 08:57:28,534 (trainer:737) INFO: 12epoch:train:2901-3000batch: iter_time=1.252e-04, forward_time=0.104, loss_ctc=49.920, loss_att=57.928, acc=0.676, loss=55.526, backward_time=0.098, grad_norm=35.474, clip=100.000, loss_scale=6.338e+29, optim_step_time=0.030, optim0_lr0=5.977e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 08:58:09,583 (trainer:737) INFO: 12epoch:train:3001-3100batch: iter_time=1.739e-04, forward_time=0.104, loss_ctc=53.667, loss_att=58.453, acc=0.700, loss=57.017, backward_time=0.098, grad_norm=32.320, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.975e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 08:58:50,497 (trainer:737) INFO: 12epoch:train:3101-3200batch: iter_time=1.322e-04, forward_time=0.105, loss_ctc=55.515, loss_att=59.649, acc=0.710, loss=58.409, backward_time=0.098, grad_norm=36.249, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.973e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 08:59:31,693 (trainer:737) INFO: 12epoch:train:3201-3300batch: iter_time=1.148e-04, forward_time=0.105, loss_ctc=52.312, loss_att=57.762, acc=0.706, loss=56.127, backward_time=0.098, grad_norm=31.452, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.972e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 09:00:12,833 (trainer:737) INFO: 12epoch:train:3301-3400batch: iter_time=1.181e-04, forward_time=0.105, loss_ctc=51.563, loss_att=56.525, acc=0.717, loss=55.036, backward_time=0.098, grad_norm=33.100, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.970e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 09:00:53,846 (trainer:737) INFO: 12epoch:train:3401-3500batch: iter_time=1.135e-04, forward_time=0.104, loss_ctc=61.063, loss_att=65.812, acc=0.699, loss=64.387, backward_time=0.097, grad_norm=41.198, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.968e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:01:34,574 (trainer:737) INFO: 12epoch:train:3501-3600batch: iter_time=1.460e-04, forward_time=0.104, loss_ctc=45.331, loss_att=55.195, acc=0.714, loss=52.236, backward_time=0.098, grad_norm=32.999, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.966e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 09:02:15,434 (trainer:737) INFO: 12epoch:train:3601-3700batch: iter_time=1.521e-04, forward_time=0.105, loss_ctc=62.989, loss_att=56.284, acc=0.737, loss=58.296, backward_time=0.098, grad_norm=39.360, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.965e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:02:41,019 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 09:02:59,995 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 09:03:03,618 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 09:03:03,618 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 09:03:03,621 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 09:07:41,475 (trainer:737) INFO: 12epoch:train:3701-3800batch: iter_time=2.539, forward_time=0.105, loss_ctc=46.626, loss_att=54.137, acc=0.721, loss=51.884, backward_time=0.098, grad_norm=30.898, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.963e-04, train_time=3.260 +[gpuc02:0/16] 2024-01-13 09:08:22,411 (trainer:737) INFO: 12epoch:train:3801-3900batch: iter_time=1.561e-04, forward_time=0.104, loss_ctc=46.985, loss_att=56.757, acc=0.714, loss=53.826, backward_time=0.098, grad_norm=32.855, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.031, optim0_lr0=5.961e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:09:03,830 (trainer:737) INFO: 12epoch:train:3901-4000batch: iter_time=1.449e-04, forward_time=0.104, loss_ctc=48.029, loss_att=51.527, acc=0.712, loss=50.477, backward_time=0.098, grad_norm=34.540, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.959e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 09:09:45,136 (trainer:737) INFO: 12epoch:train:4001-4100batch: iter_time=1.790e-04, forward_time=0.104, loss_ctc=56.713, loss_att=57.496, acc=0.718, loss=57.261, backward_time=0.098, grad_norm=34.936, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.958e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 09:10:26,136 (trainer:737) INFO: 12epoch:train:4101-4200batch: iter_time=1.698e-04, forward_time=0.103, loss_ctc=58.684, loss_att=50.322, acc=0.708, loss=52.831, backward_time=0.098, grad_norm=38.734, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.956e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:11:07,397 (trainer:737) INFO: 12epoch:train:4201-4300batch: iter_time=1.499e-04, forward_time=0.104, loss_ctc=42.921, loss_att=54.053, acc=0.687, loss=50.713, backward_time=0.098, grad_norm=30.002, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.954e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 09:11:48,432 (trainer:737) INFO: 12epoch:train:4301-4400batch: iter_time=1.425e-04, forward_time=0.105, loss_ctc=54.493, loss_att=58.503, acc=0.716, loss=57.300, backward_time=0.098, grad_norm=32.596, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.952e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:12:29,789 (trainer:737) INFO: 12epoch:train:4401-4500batch: iter_time=1.501e-04, forward_time=0.106, loss_ctc=61.270, loss_att=59.425, acc=0.709, loss=59.978, backward_time=0.099, grad_norm=36.197, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.950e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 09:13:11,037 (trainer:737) INFO: 12epoch:train:4501-4600batch: iter_time=1.496e-04, forward_time=0.104, loss_ctc=48.059, loss_att=58.026, acc=0.712, loss=55.036, backward_time=0.098, grad_norm=31.775, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.949e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 09:13:52,102 (trainer:737) INFO: 12epoch:train:4601-4700batch: iter_time=1.592e-04, forward_time=0.104, loss_ctc=63.081, loss_att=60.261, acc=0.706, loss=61.107, backward_time=0.098, grad_norm=42.362, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.947e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:14:33,023 (trainer:737) INFO: 12epoch:train:4701-4800batch: iter_time=1.634e-04, forward_time=0.104, loss_ctc=45.683, loss_att=60.884, acc=0.699, loss=56.324, backward_time=0.098, grad_norm=32.382, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.945e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:15:14,131 (trainer:737) INFO: 12epoch:train:4801-4900batch: iter_time=1.448e-04, forward_time=0.104, loss_ctc=49.811, loss_att=45.453, acc=0.736, loss=46.761, backward_time=0.098, grad_norm=31.195, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.943e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 09:15:55,242 (trainer:737) INFO: 12epoch:train:4901-5000batch: iter_time=1.397e-04, forward_time=0.104, loss_ctc=56.975, loss_att=55.369, acc=0.735, loss=55.851, backward_time=0.098, grad_norm=40.145, clip=100.000, loss_scale=1.268e+30, optim_step_time=0.030, optim0_lr0=5.942e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 09:15:59,302 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 09:16:18,483 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 09:16:22,071 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 09:16:22,071 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 09:16:22,075 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 09:21:45,047 (trainer:737) INFO: 12epoch:train:5001-5100batch: iter_time=2.540, forward_time=0.105, loss_ctc=45.822, loss_att=65.517, acc=0.701, loss=59.608, backward_time=0.099, grad_norm=30.769, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.940e-04, train_time=3.498 +[gpuc02:0/16] 2024-01-13 09:22:26,111 (trainer:737) INFO: 12epoch:train:5101-5200batch: iter_time=1.534e-04, forward_time=0.103, loss_ctc=47.922, loss_att=50.695, acc=0.720, loss=49.863, backward_time=0.097, grad_norm=32.628, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.938e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:23:06,789 (trainer:737) INFO: 12epoch:train:5201-5300batch: iter_time=1.914e-04, forward_time=0.103, loss_ctc=47.672, loss_att=50.415, acc=0.706, loss=49.592, backward_time=0.097, grad_norm=31.749, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.936e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 09:23:47,561 (trainer:737) INFO: 12epoch:train:5301-5400batch: iter_time=2.058e-04, forward_time=0.105, loss_ctc=58.987, loss_att=52.750, acc=0.722, loss=54.621, backward_time=0.098, grad_norm=39.076, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.935e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:24:28,538 (trainer:737) INFO: 12epoch:train:5401-5500batch: iter_time=1.933e-04, forward_time=0.103, loss_ctc=49.623, loss_att=57.563, acc=0.666, loss=55.181, backward_time=0.097, grad_norm=34.974, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.933e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:25:09,336 (trainer:737) INFO: 12epoch:train:5501-5600batch: iter_time=1.837e-04, forward_time=0.104, loss_ctc=52.735, loss_att=59.149, acc=0.691, loss=57.225, backward_time=0.097, grad_norm=35.176, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.931e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:25:50,192 (trainer:737) INFO: 12epoch:train:5601-5700batch: iter_time=3.176e-04, forward_time=0.104, loss_ctc=54.451, loss_att=58.769, acc=0.706, loss=57.474, backward_time=0.097, grad_norm=32.988, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.930e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:26:31,883 (trainer:737) INFO: 12epoch:train:5701-5800batch: iter_time=1.661e-04, forward_time=0.107, loss_ctc=51.516, loss_att=56.950, acc=0.696, loss=55.320, backward_time=0.097, grad_norm=33.527, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.029, optim0_lr0=5.928e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 09:27:12,933 (trainer:737) INFO: 12epoch:train:5801-5900batch: iter_time=1.581e-04, forward_time=0.105, loss_ctc=51.174, loss_att=56.410, acc=0.709, loss=54.839, backward_time=0.098, grad_norm=36.715, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.926e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:27:54,384 (trainer:737) INFO: 12epoch:train:5901-6000batch: iter_time=1.327e-04, forward_time=0.104, loss_ctc=57.673, loss_att=61.472, acc=0.692, loss=60.332, backward_time=0.099, grad_norm=41.797, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.924e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 09:28:35,459 (trainer:737) INFO: 12epoch:train:6001-6100batch: iter_time=1.852e-04, forward_time=0.104, loss_ctc=44.338, loss_att=53.998, acc=0.707, loss=51.100, backward_time=0.097, grad_norm=31.722, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.029, optim0_lr0=5.923e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 09:29:16,331 (trainer:737) INFO: 12epoch:train:6101-6200batch: iter_time=1.791e-04, forward_time=0.104, loss_ctc=62.460, loss_att=57.352, acc=0.731, loss=58.884, backward_time=0.097, grad_norm=39.595, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.921e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:29:42,511 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 09:30:02,108 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 09:30:05,727 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 09:30:05,727 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 09:30:05,731 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 09:34:36,926 (trainer:737) INFO: 12epoch:train:6201-6300batch: iter_time=2.645, forward_time=0.105, loss_ctc=46.561, loss_att=55.886, acc=0.709, loss=53.089, backward_time=0.099, grad_norm=30.452, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.031, optim0_lr0=5.919e-04, train_time=3.206 +[gpuc02:0/16] 2024-01-13 09:35:17,844 (trainer:737) INFO: 12epoch:train:6301-6400batch: iter_time=1.222e-04, forward_time=0.104, loss_ctc=46.703, loss_att=56.925, acc=0.713, loss=53.858, backward_time=0.097, grad_norm=32.428, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.917e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:35:58,727 (trainer:737) INFO: 12epoch:train:6401-6500batch: iter_time=1.372e-04, forward_time=0.104, loss_ctc=48.072, loss_att=52.477, acc=0.713, loss=51.156, backward_time=0.098, grad_norm=30.195, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.916e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:36:39,637 (trainer:737) INFO: 12epoch:train:6501-6600batch: iter_time=1.709e-04, forward_time=0.104, loss_ctc=55.558, loss_att=58.109, acc=0.717, loss=57.344, backward_time=0.097, grad_norm=33.575, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.914e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:37:20,373 (trainer:737) INFO: 12epoch:train:6601-6700batch: iter_time=1.636e-04, forward_time=0.104, loss_ctc=57.481, loss_att=50.821, acc=0.706, loss=52.819, backward_time=0.097, grad_norm=39.166, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.912e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 09:38:01,705 (trainer:737) INFO: 12epoch:train:6701-6800batch: iter_time=1.532e-04, forward_time=0.104, loss_ctc=42.031, loss_att=54.566, acc=0.688, loss=50.806, backward_time=0.097, grad_norm=29.038, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.911e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 09:38:42,738 (trainer:737) INFO: 12epoch:train:6801-6900batch: iter_time=1.674e-04, forward_time=0.105, loss_ctc=54.157, loss_att=59.305, acc=0.717, loss=57.761, backward_time=0.099, grad_norm=31.719, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.909e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:39:23,791 (trainer:737) INFO: 12epoch:train:6901-7000batch: iter_time=1.583e-04, forward_time=0.106, loss_ctc=60.378, loss_att=59.596, acc=0.711, loss=59.831, backward_time=0.098, grad_norm=36.220, clip=100.000, loss_scale=2.535e+30, optim_step_time=0.030, optim0_lr0=5.907e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:40:04,988 (trainer:737) INFO: 12epoch:train:7001-7100batch: iter_time=1.760e-04, forward_time=0.105, loss_ctc=47.315, loss_att=58.152, acc=0.713, loss=54.901, backward_time=0.097, grad_norm=30.714, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.905e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 09:40:45,810 (trainer:737) INFO: 12epoch:train:7101-7200batch: iter_time=1.571e-04, forward_time=0.104, loss_ctc=62.170, loss_att=59.213, acc=0.714, loss=60.100, backward_time=0.097, grad_norm=40.910, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.904e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:41:26,700 (trainer:737) INFO: 12epoch:train:7201-7300batch: iter_time=1.637e-04, forward_time=0.105, loss_ctc=44.787, loss_att=60.440, acc=0.701, loss=55.745, backward_time=0.098, grad_norm=30.968, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.902e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:42:08,227 (trainer:737) INFO: 12epoch:train:7301-7400batch: iter_time=1.731e-04, forward_time=0.105, loss_ctc=49.485, loss_att=45.237, acc=0.737, loss=46.512, backward_time=0.097, grad_norm=32.158, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.900e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 09:42:49,006 (trainer:737) INFO: 12epoch:train:7401-7500batch: iter_time=1.475e-04, forward_time=0.104, loss_ctc=56.865, loss_att=55.417, acc=0.736, loss=55.851, backward_time=0.097, grad_norm=38.702, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.899e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:42:53,733 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 09:43:13,025 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 09:43:16,659 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 09:43:16,659 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 09:43:16,662 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 09:49:23,431 (trainer:737) INFO: 12epoch:train:7501-7600batch: iter_time=2.558, forward_time=0.105, loss_ctc=45.525, loss_att=64.671, acc=0.698, loss=58.927, backward_time=0.098, grad_norm=31.328, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.897e-04, train_time=3.944 +[gpuc02:0/16] 2024-01-13 09:50:04,273 (trainer:737) INFO: 12epoch:train:7601-7700batch: iter_time=1.236e-04, forward_time=0.104, loss_ctc=47.186, loss_att=50.457, acc=0.719, loss=49.475, backward_time=0.098, grad_norm=31.821, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.895e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:50:45,077 (trainer:737) INFO: 12epoch:train:7701-7800batch: iter_time=1.381e-04, forward_time=0.104, loss_ctc=46.461, loss_att=49.615, acc=0.709, loss=48.669, backward_time=0.098, grad_norm=30.352, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.893e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:51:26,072 (trainer:737) INFO: 12epoch:train:7801-7900batch: iter_time=1.513e-04, forward_time=0.104, loss_ctc=58.801, loss_att=51.334, acc=0.727, loss=53.574, backward_time=0.098, grad_norm=38.560, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.892e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:52:07,085 (trainer:737) INFO: 12epoch:train:7901-8000batch: iter_time=1.280e-04, forward_time=0.104, loss_ctc=49.275, loss_att=57.373, acc=0.668, loss=54.943, backward_time=0.098, grad_norm=36.014, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.890e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 09:52:47,931 (trainer:737) INFO: 12epoch:train:8001-8100batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=52.722, loss_att=58.966, acc=0.692, loss=57.093, backward_time=0.098, grad_norm=34.840, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.888e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:53:28,863 (trainer:737) INFO: 12epoch:train:8101-8200batch: iter_time=1.333e-04, forward_time=0.104, loss_ctc=54.857, loss_att=59.205, acc=0.704, loss=57.901, backward_time=0.098, grad_norm=37.615, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.887e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:54:10,372 (trainer:737) INFO: 12epoch:train:8201-8300batch: iter_time=1.377e-04, forward_time=0.104, loss_ctc=51.104, loss_att=56.276, acc=0.698, loss=54.724, backward_time=0.098, grad_norm=33.551, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.885e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 09:54:51,230 (trainer:737) INFO: 12epoch:train:8301-8400batch: iter_time=1.426e-04, forward_time=0.104, loss_ctc=50.478, loss_att=55.796, acc=0.711, loss=54.201, backward_time=0.098, grad_norm=32.703, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.883e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:55:32,020 (trainer:737) INFO: 12epoch:train:8401-8500batch: iter_time=1.665e-04, forward_time=0.105, loss_ctc=56.895, loss_att=62.931, acc=0.692, loss=61.120, backward_time=0.097, grad_norm=41.472, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.881e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 09:56:12,778 (trainer:737) INFO: 12epoch:train:8501-8600batch: iter_time=1.608e-04, forward_time=0.104, loss_ctc=44.312, loss_att=53.509, acc=0.707, loss=50.750, backward_time=0.097, grad_norm=33.313, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.880e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 09:56:53,673 (trainer:737) INFO: 12epoch:train:8601-8700batch: iter_time=1.539e-04, forward_time=0.105, loss_ctc=60.469, loss_att=55.716, acc=0.732, loss=57.142, backward_time=0.098, grad_norm=39.098, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.878e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 09:57:18,232 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 09:57:37,316 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 09:57:40,892 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 09:57:40,892 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 09:57:40,895 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 10:02:12,230 (trainer:737) INFO: 12epoch:train:8701-8800batch: iter_time=2.503, forward_time=0.104, loss_ctc=45.542, loss_att=55.423, acc=0.710, loss=52.459, backward_time=0.098, grad_norm=30.803, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.876e-04, train_time=3.185 +[gpuc02:0/16] 2024-01-13 10:02:53,219 (trainer:737) INFO: 12epoch:train:8801-8900batch: iter_time=1.748e-04, forward_time=0.104, loss_ctc=45.736, loss_att=56.689, acc=0.716, loss=53.403, backward_time=0.097, grad_norm=31.040, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.875e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:03:34,231 (trainer:737) INFO: 12epoch:train:8901-9000batch: iter_time=1.622e-04, forward_time=0.104, loss_ctc=47.916, loss_att=52.403, acc=0.714, loss=51.057, backward_time=0.097, grad_norm=32.340, clip=100.000, loss_scale=5.071e+30, optim_step_time=0.030, optim0_lr0=5.873e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:04:15,548 (trainer:737) INFO: 12epoch:train:9001-9100batch: iter_time=1.958e-04, forward_time=0.105, loss_ctc=54.406, loss_att=56.952, acc=0.720, loss=56.188, backward_time=0.098, grad_norm=34.445, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.871e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 10:04:56,218 (trainer:737) INFO: 12epoch:train:9101-9200batch: iter_time=1.910e-04, forward_time=0.104, loss_ctc=57.203, loss_att=50.503, acc=0.708, loss=52.513, backward_time=0.097, grad_norm=40.193, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.870e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 10:05:36,951 (trainer:737) INFO: 12epoch:train:9201-9300batch: iter_time=1.680e-04, forward_time=0.104, loss_ctc=42.109, loss_att=54.408, acc=0.690, loss=50.718, backward_time=0.098, grad_norm=30.037, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.868e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:06:18,125 (trainer:737) INFO: 12epoch:train:9301-9400batch: iter_time=1.630e-04, forward_time=0.105, loss_ctc=53.862, loss_att=58.724, acc=0.718, loss=57.265, backward_time=0.098, grad_norm=33.243, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.031, optim0_lr0=5.866e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 10:06:59,182 (trainer:737) INFO: 12epoch:train:9401-9500batch: iter_time=1.566e-04, forward_time=0.105, loss_ctc=59.576, loss_att=58.604, acc=0.713, loss=58.896, backward_time=0.099, grad_norm=37.176, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.865e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:07:40,316 (trainer:737) INFO: 12epoch:train:9501-9600batch: iter_time=1.568e-04, forward_time=0.107, loss_ctc=46.725, loss_att=57.635, acc=0.714, loss=54.362, backward_time=0.098, grad_norm=30.836, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.863e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:08:21,629 (trainer:737) INFO: 12epoch:train:9601-9700batch: iter_time=1.510e-04, forward_time=0.105, loss_ctc=62.396, loss_att=61.208, acc=0.713, loss=61.565, backward_time=0.098, grad_norm=45.813, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.031, optim0_lr0=5.861e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 10:09:02,710 (trainer:737) INFO: 12epoch:train:9701-9800batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=44.280, loss_att=60.332, acc=0.700, loss=55.516, backward_time=0.098, grad_norm=31.004, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.031, optim0_lr0=5.860e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:09:43,480 (trainer:737) INFO: 12epoch:train:9801-9900batch: iter_time=1.395e-04, forward_time=0.105, loss_ctc=49.214, loss_att=45.239, acc=0.737, loss=46.431, backward_time=0.098, grad_norm=31.234, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.858e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:10:24,451 (trainer:737) INFO: 12epoch:train:9901-10000batch: iter_time=1.456e-04, forward_time=0.104, loss_ctc=56.433, loss_att=55.160, acc=0.739, loss=55.542, backward_time=0.098, grad_norm=38.993, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.856e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:10:31,513 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 10:10:50,914 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 10:10:54,627 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 10:10:54,627 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 10:10:54,630 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 10:15:41,974 (trainer:737) INFO: 12epoch:train:10001-10100batch: iter_time=2.559, forward_time=0.105, loss_ctc=45.360, loss_att=64.655, acc=0.699, loss=58.866, backward_time=0.098, grad_norm=32.053, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.855e-04, train_time=3.175 +[gpuc02:0/16] 2024-01-13 10:16:22,842 (trainer:737) INFO: 12epoch:train:10101-10200batch: iter_time=1.892e-04, forward_time=0.104, loss_ctc=47.086, loss_att=49.973, acc=0.720, loss=49.107, backward_time=0.098, grad_norm=32.629, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.853e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:17:03,566 (trainer:737) INFO: 12epoch:train:10201-10300batch: iter_time=1.657e-04, forward_time=0.103, loss_ctc=46.289, loss_att=49.196, acc=0.710, loss=48.324, backward_time=0.097, grad_norm=32.371, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.851e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:17:44,405 (trainer:737) INFO: 12epoch:train:10301-10400batch: iter_time=1.711e-04, forward_time=0.104, loss_ctc=58.089, loss_att=51.440, acc=0.727, loss=53.435, backward_time=0.097, grad_norm=39.554, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.850e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:18:25,484 (trainer:737) INFO: 12epoch:train:10401-10500batch: iter_time=1.806e-04, forward_time=0.104, loss_ctc=49.046, loss_att=56.671, acc=0.671, loss=54.383, backward_time=0.097, grad_norm=35.699, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.848e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:19:06,395 (trainer:737) INFO: 12epoch:train:10501-10600batch: iter_time=1.763e-04, forward_time=0.106, loss_ctc=52.580, loss_att=58.313, acc=0.696, loss=56.593, backward_time=0.098, grad_norm=35.676, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.846e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:19:47,327 (trainer:737) INFO: 12epoch:train:10601-10700batch: iter_time=1.487e-04, forward_time=0.105, loss_ctc=54.542, loss_att=58.305, acc=0.706, loss=57.176, backward_time=0.098, grad_norm=34.621, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.845e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:20:28,486 (trainer:737) INFO: 12epoch:train:10701-10800batch: iter_time=1.426e-04, forward_time=0.105, loss_ctc=50.727, loss_att=56.285, acc=0.698, loss=54.617, backward_time=0.097, grad_norm=32.620, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.843e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:21:09,599 (trainer:737) INFO: 12epoch:train:10801-10900batch: iter_time=1.295e-04, forward_time=0.105, loss_ctc=49.909, loss_att=55.767, acc=0.712, loss=54.010, backward_time=0.097, grad_norm=33.504, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.841e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:21:50,719 (trainer:737) INFO: 12epoch:train:10901-11000batch: iter_time=1.366e-04, forward_time=0.104, loss_ctc=56.645, loss_att=62.136, acc=0.693, loss=60.488, backward_time=0.097, grad_norm=42.098, clip=100.000, loss_scale=1.014e+31, optim_step_time=0.030, optim0_lr0=5.840e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:22:31,740 (trainer:737) INFO: 12epoch:train:11001-11100batch: iter_time=1.509e-04, forward_time=0.104, loss_ctc=43.654, loss_att=53.110, acc=0.708, loss=50.273, backward_time=0.097, grad_norm=31.809, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.838e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:23:12,892 (trainer:737) INFO: 12epoch:train:11101-11200batch: iter_time=1.628e-04, forward_time=0.106, loss_ctc=61.799, loss_att=56.827, acc=0.733, loss=58.319, backward_time=0.097, grad_norm=40.294, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.836e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:23:37,490 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 10:23:56,824 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 10:24:00,387 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 10:24:00,387 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 10:24:00,390 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 10:28:37,184 (trainer:737) INFO: 12epoch:train:11201-11300batch: iter_time=2.479, forward_time=0.104, loss_ctc=45.716, loss_att=52.836, acc=0.711, loss=50.700, backward_time=0.097, grad_norm=31.285, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.835e-04, train_time=3.243 +[gpuc02:0/16] 2024-01-13 10:29:17,864 (trainer:737) INFO: 12epoch:train:11301-11400batch: iter_time=1.300e-04, forward_time=0.104, loss_ctc=46.175, loss_att=53.258, acc=0.720, loss=51.133, backward_time=0.098, grad_norm=32.155, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.833e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:29:58,579 (trainer:737) INFO: 12epoch:train:11401-11500batch: iter_time=1.551e-04, forward_time=0.104, loss_ctc=47.555, loss_att=51.318, acc=0.709, loss=50.189, backward_time=0.097, grad_norm=31.514, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.831e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:30:39,345 (trainer:737) INFO: 12epoch:train:11501-11600batch: iter_time=1.496e-04, forward_time=0.104, loss_ctc=54.700, loss_att=57.422, acc=0.711, loss=56.605, backward_time=0.098, grad_norm=34.403, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.830e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:31:20,026 (trainer:737) INFO: 12epoch:train:11601-11700batch: iter_time=1.564e-04, forward_time=0.103, loss_ctc=56.275, loss_att=50.524, acc=0.697, loss=52.249, backward_time=0.097, grad_norm=40.204, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.828e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:32:00,952 (trainer:737) INFO: 12epoch:train:11701-11800batch: iter_time=1.768e-04, forward_time=0.104, loss_ctc=41.705, loss_att=52.690, acc=0.689, loss=49.394, backward_time=0.097, grad_norm=30.693, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.826e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:32:42,137 (trainer:737) INFO: 12epoch:train:11801-11900batch: iter_time=1.925e-04, forward_time=0.105, loss_ctc=53.912, loss_att=57.985, acc=0.714, loss=56.763, backward_time=0.098, grad_norm=31.941, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.825e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 10:33:23,125 (trainer:737) INFO: 12epoch:train:11901-12000batch: iter_time=1.882e-04, forward_time=0.106, loss_ctc=59.989, loss_att=59.606, acc=0.700, loss=59.721, backward_time=0.098, grad_norm=37.158, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.823e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:34:03,920 (trainer:737) INFO: 12epoch:train:12001-12100batch: iter_time=1.684e-04, forward_time=0.105, loss_ctc=46.405, loss_att=56.470, acc=0.707, loss=53.451, backward_time=0.098, grad_norm=31.989, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.821e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:34:44,689 (trainer:737) INFO: 12epoch:train:12101-12200batch: iter_time=1.550e-04, forward_time=0.105, loss_ctc=61.953, loss_att=59.340, acc=0.708, loss=60.124, backward_time=0.097, grad_norm=43.305, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.820e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:35:25,420 (trainer:737) INFO: 12epoch:train:12201-12300batch: iter_time=1.798e-04, forward_time=0.106, loss_ctc=44.856, loss_att=59.351, acc=0.691, loss=55.003, backward_time=0.098, grad_norm=36.755, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.818e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:36:06,152 (trainer:737) INFO: 12epoch:train:12301-12400batch: iter_time=1.685e-04, forward_time=0.105, loss_ctc=48.608, loss_att=44.217, acc=0.733, loss=45.534, backward_time=0.097, grad_norm=33.003, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.816e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:36:46,909 (trainer:737) INFO: 12epoch:train:12401-12500batch: iter_time=1.588e-04, forward_time=0.104, loss_ctc=56.054, loss_att=55.465, acc=0.726, loss=55.642, backward_time=0.098, grad_norm=38.619, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.815e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:36:53,961 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 10:37:13,171 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 10:37:16,870 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 10:37:16,871 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 10:37:16,874 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 10:42:06,599 (trainer:737) INFO: 12epoch:train:12501-12600batch: iter_time=2.543, forward_time=0.105, loss_ctc=45.190, loss_att=65.536, acc=0.706, loss=59.432, backward_time=0.098, grad_norm=30.980, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.813e-04, train_time=3.197 +[gpuc02:0/16] 2024-01-13 10:42:47,402 (trainer:737) INFO: 12epoch:train:12601-12700batch: iter_time=1.699e-04, forward_time=0.104, loss_ctc=47.318, loss_att=51.991, acc=0.726, loss=50.589, backward_time=0.097, grad_norm=31.684, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.812e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:43:28,076 (trainer:737) INFO: 12epoch:train:12701-12800batch: iter_time=1.670e-04, forward_time=0.104, loss_ctc=46.409, loss_att=49.297, acc=0.718, loss=48.431, backward_time=0.097, grad_norm=31.959, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.810e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:44:09,065 (trainer:737) INFO: 12epoch:train:12801-12900batch: iter_time=1.725e-04, forward_time=0.105, loss_ctc=58.348, loss_att=51.359, acc=0.732, loss=53.456, backward_time=0.098, grad_norm=37.583, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.029, optim0_lr0=5.808e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:44:49,844 (trainer:737) INFO: 12epoch:train:12901-13000batch: iter_time=1.862e-04, forward_time=0.104, loss_ctc=49.012, loss_att=56.989, acc=0.684, loss=54.596, backward_time=0.098, grad_norm=35.801, clip=100.000, loss_scale=2.028e+31, optim_step_time=0.030, optim0_lr0=5.807e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:45:30,736 (trainer:737) INFO: 12epoch:train:13001-13100batch: iter_time=1.676e-04, forward_time=0.105, loss_ctc=52.244, loss_att=58.611, acc=0.704, loss=56.701, backward_time=0.098, grad_norm=34.090, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.805e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:46:12,013 (trainer:737) INFO: 12epoch:train:13101-13200batch: iter_time=1.637e-04, forward_time=0.104, loss_ctc=53.285, loss_att=58.513, acc=0.713, loss=56.945, backward_time=0.098, grad_norm=34.624, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.803e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 10:46:52,961 (trainer:737) INFO: 12epoch:train:13201-13300batch: iter_time=1.692e-04, forward_time=0.105, loss_ctc=50.479, loss_att=56.402, acc=0.713, loss=54.625, backward_time=0.098, grad_norm=33.652, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.802e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:47:33,809 (trainer:737) INFO: 12epoch:train:13301-13400batch: iter_time=1.432e-04, forward_time=0.105, loss_ctc=49.955, loss_att=55.405, acc=0.725, loss=53.770, backward_time=0.098, grad_norm=32.664, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.800e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:48:14,900 (trainer:737) INFO: 12epoch:train:13401-13500batch: iter_time=1.591e-04, forward_time=0.104, loss_ctc=55.847, loss_att=63.053, acc=0.702, loss=60.891, backward_time=0.097, grad_norm=40.831, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.798e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 10:48:56,100 (trainer:737) INFO: 12epoch:train:13501-13600batch: iter_time=1.645e-04, forward_time=0.105, loss_ctc=43.510, loss_att=53.815, acc=0.720, loss=50.724, backward_time=0.097, grad_norm=30.928, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.797e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 10:49:37,511 (trainer:737) INFO: 12epoch:train:13601-13700batch: iter_time=1.732e-04, forward_time=0.104, loss_ctc=59.897, loss_att=54.922, acc=0.741, loss=56.414, backward_time=0.098, grad_norm=41.351, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.795e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 10:50:08,181 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 10:50:27,342 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 10:50:31,278 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 10:50:31,279 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 10:50:31,282 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 10:55:00,445 (trainer:737) INFO: 12epoch:train:13701-13800batch: iter_time=2.806, forward_time=0.106, loss_ctc=45.410, loss_att=54.541, acc=0.716, loss=51.801, backward_time=0.098, grad_norm=31.029, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.794e-04, train_time=3.229 +[gpuc02:0/16] 2024-01-13 10:55:41,343 (trainer:737) INFO: 12epoch:train:13801-13900batch: iter_time=1.807e-04, forward_time=0.105, loss_ctc=45.410, loss_att=53.695, acc=0.719, loss=51.210, backward_time=0.097, grad_norm=32.726, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.792e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:56:22,197 (trainer:737) INFO: 12epoch:train:13901-14000batch: iter_time=1.967e-04, forward_time=0.105, loss_ctc=47.444, loss_att=52.474, acc=0.707, loss=50.965, backward_time=0.098, grad_norm=32.890, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.790e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 10:57:03,111 (trainer:737) INFO: 12epoch:train:14001-14100batch: iter_time=2.094e-04, forward_time=0.104, loss_ctc=53.681, loss_att=56.432, acc=0.716, loss=55.607, backward_time=0.097, grad_norm=33.529, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.789e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:57:43,830 (trainer:737) INFO: 12epoch:train:14101-14200batch: iter_time=2.118e-04, forward_time=0.104, loss_ctc=55.119, loss_att=49.686, acc=0.699, loss=51.316, backward_time=0.097, grad_norm=39.946, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.787e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 10:58:24,855 (trainer:737) INFO: 12epoch:train:14201-14300batch: iter_time=1.449e-04, forward_time=0.104, loss_ctc=41.651, loss_att=53.502, acc=0.690, loss=49.947, backward_time=0.097, grad_norm=30.287, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.786e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 10:59:05,798 (trainer:737) INFO: 12epoch:train:14301-14400batch: iter_time=1.249e-04, forward_time=0.105, loss_ctc=52.996, loss_att=58.702, acc=0.712, loss=56.990, backward_time=0.098, grad_norm=33.955, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.784e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 10:59:46,821 (trainer:737) INFO: 12epoch:train:14401-14500batch: iter_time=1.280e-04, forward_time=0.106, loss_ctc=59.148, loss_att=59.143, acc=0.701, loss=59.144, backward_time=0.099, grad_norm=36.885, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.782e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 11:00:27,702 (trainer:737) INFO: 12epoch:train:14501-14600batch: iter_time=1.469e-04, forward_time=0.105, loss_ctc=46.552, loss_att=56.755, acc=0.706, loss=53.694, backward_time=0.098, grad_norm=30.713, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.781e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 11:01:08,559 (trainer:737) INFO: 12epoch:train:14601-14700batch: iter_time=1.690e-04, forward_time=0.104, loss_ctc=61.284, loss_att=58.217, acc=0.707, loss=59.137, backward_time=0.097, grad_norm=44.844, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.779e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 11:01:49,715 (trainer:737) INFO: 12epoch:train:14701-14800batch: iter_time=1.916e-04, forward_time=0.105, loss_ctc=44.163, loss_att=59.030, acc=0.690, loss=54.570, backward_time=0.097, grad_norm=33.675, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.777e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 11:02:30,835 (trainer:737) INFO: 12epoch:train:14801-14900batch: iter_time=1.652e-04, forward_time=0.105, loss_ctc=48.403, loss_att=44.176, acc=0.733, loss=45.444, backward_time=0.097, grad_norm=33.031, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.029, optim0_lr0=5.776e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 11:03:12,065 (trainer:737) INFO: 12epoch:train:14901-15000batch: iter_time=1.753e-04, forward_time=0.104, loss_ctc=55.472, loss_att=54.560, acc=0.727, loss=54.834, backward_time=0.097, grad_norm=39.299, clip=100.000, loss_scale=4.056e+31, optim_step_time=0.030, optim0_lr0=5.774e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 11:23:14,190 (trainer:343) INFO: 12epoch results: [train] iter_time=0.218, forward_time=0.105, loss_ctc=51.927, loss_att=56.146, acc=0.709, loss=54.880, backward_time=0.098, grad_norm=34.770, clip=100.000, loss_scale=1.075e+31, optim_step_time=0.030, optim0_lr0=5.899e-04, train_time=0.653, time=2 hours, 43 minutes and 39.74 seconds, total_count=180000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=62.625, cer_ctc=0.310, loss_att=62.345, acc=0.549, cer=0.409, wer=1.000, loss=62.429, time=19 minutes and 47.62 seconds, total_count=56052, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 11:23:19,101 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-13 11:23:19,105 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/7epoch.pth +[gpuc02:0/16] 2024-01-13 11:23:19,105 (trainer:272) INFO: 13/45epoch started. Estimated time to finish: 4 days, 2 hours and 47 minutes +[gpuc02:0/16] 2024-01-13 11:23:19,117 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 11:23:38,003 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 11:23:41,947 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 11:23:41,947 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 11:23:41,950 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 11:28:15,569 (trainer:737) INFO: 13epoch:train:1-100batch: iter_time=2.392, forward_time=0.105, loss_ctc=62.114, loss_att=67.230, acc=0.678, loss=65.695, backward_time=0.098, grad_norm=41.994, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.773e-04, train_time=2.964 +[gpuc02:0/16] 2024-01-13 11:28:57,255 (trainer:737) INFO: 13epoch:train:101-200batch: iter_time=1.069e-04, forward_time=0.104, loss_ctc=46.830, loss_att=58.153, acc=0.692, loss=54.757, backward_time=0.098, grad_norm=33.462, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.771e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 11:29:38,634 (trainer:737) INFO: 13epoch:train:201-300batch: iter_time=1.040e-04, forward_time=0.104, loss_ctc=66.872, loss_att=65.716, acc=0.694, loss=66.063, backward_time=0.099, grad_norm=43.395, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.769e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 11:30:21,169 (trainer:737) INFO: 13epoch:train:301-400batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=62.969, loss_att=65.054, acc=0.719, loss=64.429, backward_time=0.100, grad_norm=42.023, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.768e-04, train_time=0.425 +[gpuc02:0/16] 2024-01-13 11:31:02,977 (trainer:737) INFO: 13epoch:train:401-500batch: iter_time=1.109e-04, forward_time=0.104, loss_ctc=65.672, loss_att=62.721, acc=0.676, loss=63.606, backward_time=0.099, grad_norm=46.295, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.766e-04, train_time=0.418 +[gpuc02:0/16] 2024-01-13 11:31:54,227 (trainer:737) INFO: 13epoch:train:501-600batch: iter_time=1.188e-04, forward_time=0.111, loss_ctc=41.274, loss_att=42.468, acc=0.720, loss=42.109, backward_time=0.103, grad_norm=29.664, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.031, optim0_lr0=5.765e-04, train_time=0.512 +[gpuc02:0/16] 2024-01-13 11:32:36,413 (trainer:737) INFO: 13epoch:train:601-700batch: iter_time=1.124e-04, forward_time=0.116, loss_ctc=56.846, loss_att=60.658, acc=0.711, loss=59.514, backward_time=0.101, grad_norm=36.281, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.031, optim0_lr0=5.763e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 11:33:17,533 (trainer:737) INFO: 13epoch:train:701-800batch: iter_time=1.124e-04, forward_time=0.104, loss_ctc=45.764, loss_att=51.715, acc=0.745, loss=49.930, backward_time=0.102, grad_norm=30.605, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.761e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 11:34:00,513 (trainer:737) INFO: 13epoch:train:801-900batch: iter_time=1.227e-04, forward_time=0.113, loss_ctc=56.630, loss_att=59.504, acc=0.729, loss=58.642, backward_time=0.099, grad_norm=36.070, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.034, optim0_lr0=5.760e-04, train_time=0.430 +[gpuc02:0/16] 2024-01-13 11:34:41,741 (trainer:737) INFO: 13epoch:train:901-1000batch: iter_time=1.294e-04, forward_time=0.105, loss_ctc=56.698, loss_att=53.796, acc=0.705, loss=54.666, backward_time=0.098, grad_norm=38.458, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.033, optim0_lr0=5.758e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 11:35:24,832 (trainer:737) INFO: 13epoch:train:1001-1100batch: iter_time=1.313e-04, forward_time=0.114, loss_ctc=55.290, loss_att=51.639, acc=0.722, loss=52.734, backward_time=0.109, grad_norm=37.981, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.757e-04, train_time=0.431 +[gpuc02:0/16] 2024-01-13 11:36:09,751 (trainer:737) INFO: 13epoch:train:1101-1200batch: iter_time=1.330e-04, forward_time=0.115, loss_ctc=56.659, loss_att=59.383, acc=0.729, loss=58.566, backward_time=0.101, grad_norm=34.206, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.755e-04, train_time=0.449 +[gpuc02:0/16] 2024-01-13 11:36:46,142 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 11:37:05,140 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 11:37:08,692 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 11:37:08,693 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 11:37:08,696 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 11:43:36,631 (trainer:737) INFO: 13epoch:train:1201-1300batch: iter_time=4.047, forward_time=0.105, loss_ctc=63.629, loss_att=66.436, acc=0.680, loss=65.594, backward_time=0.099, grad_norm=45.235, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.754e-04, train_time=4.468 +[gpuc02:0/16] 2024-01-13 11:44:17,468 (trainer:737) INFO: 13epoch:train:1301-1400batch: iter_time=1.174e-04, forward_time=0.104, loss_ctc=48.999, loss_att=61.744, acc=0.682, loss=57.920, backward_time=0.098, grad_norm=34.231, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.752e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 11:44:58,669 (trainer:737) INFO: 13epoch:train:1401-1500batch: iter_time=1.278e-04, forward_time=0.104, loss_ctc=47.037, loss_att=54.705, acc=0.703, loss=52.404, backward_time=0.098, grad_norm=32.479, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.750e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 11:45:40,058 (trainer:737) INFO: 13epoch:train:1501-1600batch: iter_time=1.260e-04, forward_time=0.106, loss_ctc=73.343, loss_att=70.746, acc=0.715, loss=71.525, backward_time=0.099, grad_norm=49.916, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.749e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 11:46:21,558 (trainer:737) INFO: 13epoch:train:1601-1700batch: iter_time=1.267e-04, forward_time=0.106, loss_ctc=60.313, loss_att=65.645, acc=0.681, loss=64.045, backward_time=0.099, grad_norm=39.477, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.747e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 11:47:02,324 (trainer:737) INFO: 13epoch:train:1701-1800batch: iter_time=1.611e-04, forward_time=0.104, loss_ctc=52.079, loss_att=47.845, acc=0.722, loss=49.115, backward_time=0.097, grad_norm=37.876, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.746e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 11:47:43,405 (trainer:737) INFO: 13epoch:train:1801-1900batch: iter_time=1.546e-04, forward_time=0.103, loss_ctc=45.014, loss_att=42.653, acc=0.728, loss=43.361, backward_time=0.097, grad_norm=30.175, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.744e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 11:48:24,740 (trainer:737) INFO: 13epoch:train:1901-2000batch: iter_time=1.204e-04, forward_time=0.106, loss_ctc=54.897, loss_att=64.975, acc=0.727, loss=61.952, backward_time=0.099, grad_norm=34.969, clip=100.000, loss_scale=8.113e+31, optim_step_time=0.030, optim0_lr0=5.742e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 11:49:05,469 (trainer:737) INFO: 13epoch:train:2001-2100batch: iter_time=1.172e-04, forward_time=0.104, loss_ctc=40.819, loss_att=53.041, acc=0.731, loss=49.375, backward_time=0.097, grad_norm=27.645, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.029, optim0_lr0=5.741e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 11:49:46,237 (trainer:737) INFO: 13epoch:train:2101-2200batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=63.564, loss_att=53.325, acc=0.731, loss=56.397, backward_time=0.098, grad_norm=41.217, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.739e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 11:50:27,043 (trainer:737) INFO: 13epoch:train:2201-2300batch: iter_time=1.099e-04, forward_time=0.104, loss_ctc=52.671, loss_att=53.748, acc=0.700, loss=53.425, backward_time=0.097, grad_norm=36.594, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.738e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 11:51:09,269 (trainer:737) INFO: 13epoch:train:2301-2400batch: iter_time=1.238e-04, forward_time=0.105, loss_ctc=50.650, loss_att=48.098, acc=0.741, loss=48.863, backward_time=0.098, grad_norm=31.761, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.736e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 11:51:50,955 (trainer:737) INFO: 13epoch:train:2401-2500batch: iter_time=1.425e-04, forward_time=0.105, loss_ctc=62.063, loss_att=68.964, acc=0.702, loss=66.894, backward_time=0.098, grad_norm=41.647, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.735e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 11:51:58,235 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 11:52:17,437 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 11:52:21,048 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 11:52:21,048 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 11:52:21,051 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 11:57:12,763 (trainer:737) INFO: 13epoch:train:2501-2600batch: iter_time=2.543, forward_time=0.107, loss_ctc=58.841, loss_att=63.395, acc=0.683, loss=62.029, backward_time=0.098, grad_norm=38.622, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.733e-04, train_time=3.218 +[gpuc02:0/16] 2024-01-13 11:57:53,534 (trainer:737) INFO: 13epoch:train:2601-2700batch: iter_time=1.390e-04, forward_time=0.104, loss_ctc=44.827, loss_att=57.119, acc=0.690, loss=53.431, backward_time=0.098, grad_norm=35.610, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.731e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 11:58:34,709 (trainer:737) INFO: 13epoch:train:2701-2800batch: iter_time=1.374e-04, forward_time=0.105, loss_ctc=64.074, loss_att=62.230, acc=0.702, loss=62.783, backward_time=0.098, grad_norm=45.513, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.029, optim0_lr0=5.730e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 11:59:16,119 (trainer:737) INFO: 13epoch:train:2801-2900batch: iter_time=1.307e-04, forward_time=0.105, loss_ctc=58.577, loss_att=60.538, acc=0.730, loss=59.950, backward_time=0.099, grad_norm=37.166, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.728e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 11:59:57,556 (trainer:737) INFO: 13epoch:train:2901-3000batch: iter_time=1.344e-04, forward_time=0.107, loss_ctc=62.069, loss_att=60.040, acc=0.684, loss=60.649, backward_time=0.098, grad_norm=42.103, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.727e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:00:38,709 (trainer:737) INFO: 13epoch:train:3001-3100batch: iter_time=1.241e-04, forward_time=0.103, loss_ctc=40.653, loss_att=41.781, acc=0.725, loss=41.442, backward_time=0.096, grad_norm=28.578, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.725e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:01:20,093 (trainer:737) INFO: 13epoch:train:3101-3200batch: iter_time=1.170e-04, forward_time=0.105, loss_ctc=55.839, loss_att=59.361, acc=0.717, loss=58.304, backward_time=0.098, grad_norm=36.669, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.724e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:02:00,914 (trainer:737) INFO: 13epoch:train:3201-3300batch: iter_time=1.358e-04, forward_time=0.104, loss_ctc=45.212, loss_att=50.311, acc=0.749, loss=48.781, backward_time=0.097, grad_norm=30.133, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.722e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:02:41,846 (trainer:737) INFO: 13epoch:train:3301-3400batch: iter_time=1.376e-04, forward_time=0.105, loss_ctc=54.740, loss_att=59.396, acc=0.728, loss=57.999, backward_time=0.098, grad_norm=35.765, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.720e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 12:03:23,121 (trainer:737) INFO: 13epoch:train:3401-3500batch: iter_time=1.384e-04, forward_time=0.104, loss_ctc=54.624, loss_att=52.490, acc=0.712, loss=53.130, backward_time=0.097, grad_norm=37.867, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.719e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 12:04:04,213 (trainer:737) INFO: 13epoch:train:3501-3600batch: iter_time=1.048e-04, forward_time=0.104, loss_ctc=53.166, loss_att=50.980, acc=0.723, loss=51.636, backward_time=0.098, grad_norm=34.141, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.029, optim0_lr0=5.717e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:04:45,171 (trainer:737) INFO: 13epoch:train:3601-3700batch: iter_time=1.163e-04, forward_time=0.105, loss_ctc=54.892, loss_att=58.093, acc=0.732, loss=57.133, backward_time=0.098, grad_norm=33.094, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.716e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 12:05:12,602 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 12:05:31,998 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 12:05:35,713 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 12:05:35,714 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 12:05:35,717 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 12:10:07,069 (trainer:737) INFO: 13epoch:train:3701-3800batch: iter_time=2.714, forward_time=0.129, loss_ctc=62.207, loss_att=65.149, acc=0.686, loss=64.267, backward_time=0.101, grad_norm=43.596, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.031, optim0_lr0=5.714e-04, train_time=3.219 +[gpuc02:0/16] 2024-01-13 12:10:48,538 (trainer:737) INFO: 13epoch:train:3801-3900batch: iter_time=1.841e-04, forward_time=0.106, loss_ctc=47.781, loss_att=59.724, acc=0.689, loss=56.141, backward_time=0.098, grad_norm=34.596, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.713e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:11:29,402 (trainer:737) INFO: 13epoch:train:3901-4000batch: iter_time=1.793e-04, forward_time=0.105, loss_ctc=46.624, loss_att=54.194, acc=0.705, loss=51.923, backward_time=0.097, grad_norm=33.837, clip=100.000, loss_scale=1.623e+32, optim_step_time=0.030, optim0_lr0=5.711e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:12:10,693 (trainer:737) INFO: 13epoch:train:4001-4100batch: iter_time=1.518e-04, forward_time=0.107, loss_ctc=73.188, loss_att=69.353, acc=0.718, loss=70.503, backward_time=0.099, grad_norm=47.007, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.710e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 12:12:52,068 (trainer:737) INFO: 13epoch:train:4101-4200batch: iter_time=1.712e-04, forward_time=0.106, loss_ctc=59.709, loss_att=65.628, acc=0.678, loss=63.852, backward_time=0.098, grad_norm=40.422, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.708e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:13:32,961 (trainer:737) INFO: 13epoch:train:4201-4300batch: iter_time=1.815e-04, forward_time=0.105, loss_ctc=50.600, loss_att=47.078, acc=0.723, loss=48.135, backward_time=0.097, grad_norm=35.459, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.707e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 12:14:13,627 (trainer:737) INFO: 13epoch:train:4301-4400batch: iter_time=1.620e-04, forward_time=0.104, loss_ctc=44.544, loss_att=41.763, acc=0.730, loss=42.598, backward_time=0.096, grad_norm=29.809, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.705e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 12:14:55,004 (trainer:737) INFO: 13epoch:train:4401-4500batch: iter_time=1.620e-04, forward_time=0.107, loss_ctc=54.061, loss_att=63.886, acc=0.727, loss=60.938, backward_time=0.098, grad_norm=35.120, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.029, optim0_lr0=5.703e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:15:36,114 (trainer:737) INFO: 13epoch:train:4501-4600batch: iter_time=1.427e-04, forward_time=0.105, loss_ctc=39.602, loss_att=52.077, acc=0.733, loss=48.334, backward_time=0.097, grad_norm=26.804, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.702e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:16:17,388 (trainer:737) INFO: 13epoch:train:4601-4700batch: iter_time=1.742e-04, forward_time=0.105, loss_ctc=61.678, loss_att=52.207, acc=0.736, loss=55.049, backward_time=0.097, grad_norm=40.126, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.700e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 12:16:58,739 (trainer:737) INFO: 13epoch:train:4701-4800batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=51.449, loss_att=54.046, acc=0.699, loss=53.267, backward_time=0.097, grad_norm=34.985, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.699e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 12:17:40,633 (trainer:737) INFO: 13epoch:train:4801-4900batch: iter_time=1.631e-04, forward_time=0.109, loss_ctc=49.640, loss_att=46.900, acc=0.747, loss=47.722, backward_time=0.099, grad_norm=31.279, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.697e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 12:18:21,775 (trainer:737) INFO: 13epoch:train:4901-5000batch: iter_time=1.321e-04, forward_time=0.106, loss_ctc=60.845, loss_att=68.197, acc=0.706, loss=65.991, backward_time=0.098, grad_norm=41.799, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.696e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:18:31,252 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 12:18:51,393 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 12:18:55,138 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 12:18:55,138 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 12:18:55,141 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 12:23:51,472 (trainer:737) INFO: 13epoch:train:5001-5100batch: iter_time=2.615, forward_time=0.105, loss_ctc=57.702, loss_att=64.991, acc=0.676, loss=62.804, backward_time=0.098, grad_norm=38.848, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.694e-04, train_time=3.297 +[gpuc02:0/16] 2024-01-13 12:24:32,305 (trainer:737) INFO: 13epoch:train:5101-5200batch: iter_time=1.184e-04, forward_time=0.104, loss_ctc=44.028, loss_att=59.122, acc=0.683, loss=54.594, backward_time=0.098, grad_norm=33.016, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.693e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:25:13,293 (trainer:737) INFO: 13epoch:train:5201-5300batch: iter_time=1.158e-04, forward_time=0.104, loss_ctc=62.827, loss_att=62.066, acc=0.698, loss=62.294, backward_time=0.098, grad_norm=41.497, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.691e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 12:25:54,373 (trainer:737) INFO: 13epoch:train:5301-5400batch: iter_time=1.327e-04, forward_time=0.105, loss_ctc=58.101, loss_att=60.894, acc=0.715, loss=60.056, backward_time=0.099, grad_norm=39.024, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.690e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:26:35,152 (trainer:737) INFO: 13epoch:train:5401-5500batch: iter_time=1.624e-04, forward_time=0.103, loss_ctc=61.281, loss_att=60.392, acc=0.678, loss=60.659, backward_time=0.098, grad_norm=41.460, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.688e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:27:16,010 (trainer:737) INFO: 13epoch:train:5501-5600batch: iter_time=1.840e-04, forward_time=0.103, loss_ctc=40.243, loss_att=42.066, acc=0.717, loss=41.519, backward_time=0.096, grad_norm=29.002, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.686e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:27:57,337 (trainer:737) INFO: 13epoch:train:5601-5700batch: iter_time=1.600e-04, forward_time=0.104, loss_ctc=54.421, loss_att=60.449, acc=0.698, loss=58.640, backward_time=0.098, grad_norm=36.437, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.685e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 12:28:38,038 (trainer:737) INFO: 13epoch:train:5701-5800batch: iter_time=1.527e-04, forward_time=0.104, loss_ctc=44.540, loss_att=51.198, acc=0.742, loss=49.201, backward_time=0.099, grad_norm=30.754, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.031, optim0_lr0=5.683e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 12:29:19,428 (trainer:737) INFO: 13epoch:train:5801-5900batch: iter_time=1.958e-04, forward_time=0.104, loss_ctc=53.878, loss_att=59.727, acc=0.718, loss=57.972, backward_time=0.098, grad_norm=36.540, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.682e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:30:00,050 (trainer:737) INFO: 13epoch:train:5901-6000batch: iter_time=2.005e-04, forward_time=0.104, loss_ctc=54.169, loss_att=52.807, acc=0.701, loss=53.216, backward_time=0.096, grad_norm=38.890, clip=100.000, loss_scale=3.245e+32, optim_step_time=0.030, optim0_lr0=5.680e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 12:30:40,847 (trainer:737) INFO: 13epoch:train:6001-6100batch: iter_time=1.826e-04, forward_time=0.105, loss_ctc=53.266, loss_att=49.207, acc=0.725, loss=50.424, backward_time=0.097, grad_norm=36.339, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.679e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:31:21,619 (trainer:737) INFO: 13epoch:train:6101-6200batch: iter_time=1.752e-04, forward_time=0.105, loss_ctc=53.711, loss_att=57.646, acc=0.727, loss=56.466, backward_time=0.097, grad_norm=32.622, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.029, optim0_lr0=5.677e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:31:49,869 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 12:32:09,670 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 12:32:13,472 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 12:32:13,473 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 12:32:13,476 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 12:36:42,578 (trainer:737) INFO: 13epoch:train:6201-6300batch: iter_time=2.634, forward_time=0.104, loss_ctc=61.630, loss_att=64.080, acc=0.681, loss=63.345, backward_time=0.097, grad_norm=42.167, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.676e-04, train_time=3.209 +[gpuc02:0/16] 2024-01-13 12:37:23,700 (trainer:737) INFO: 13epoch:train:6301-6400batch: iter_time=1.494e-04, forward_time=0.103, loss_ctc=46.575, loss_att=61.221, acc=0.676, loss=56.827, backward_time=0.097, grad_norm=34.597, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.674e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:38:04,572 (trainer:737) INFO: 13epoch:train:6401-6500batch: iter_time=1.357e-04, forward_time=0.103, loss_ctc=46.039, loss_att=53.055, acc=0.707, loss=50.950, backward_time=0.097, grad_norm=32.806, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.673e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 12:38:45,840 (trainer:737) INFO: 13epoch:train:6501-6600batch: iter_time=1.292e-04, forward_time=0.106, loss_ctc=71.427, loss_att=69.096, acc=0.712, loss=69.795, backward_time=0.100, grad_norm=48.691, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.671e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 12:39:26,963 (trainer:737) INFO: 13epoch:train:6601-6700batch: iter_time=1.505e-04, forward_time=0.105, loss_ctc=58.538, loss_att=62.971, acc=0.674, loss=61.641, backward_time=0.099, grad_norm=39.682, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.670e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:40:07,724 (trainer:737) INFO: 13epoch:train:6701-6800batch: iter_time=1.377e-04, forward_time=0.103, loss_ctc=50.751, loss_att=46.508, acc=0.720, loss=47.781, backward_time=0.098, grad_norm=37.445, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.668e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 12:40:48,460 (trainer:737) INFO: 13epoch:train:6801-6900batch: iter_time=1.253e-04, forward_time=0.103, loss_ctc=44.110, loss_att=42.342, acc=0.723, loss=42.872, backward_time=0.097, grad_norm=30.842, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.667e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 12:41:29,492 (trainer:737) INFO: 13epoch:train:6901-7000batch: iter_time=1.386e-04, forward_time=0.105, loss_ctc=53.266, loss_att=64.423, acc=0.711, loss=61.076, backward_time=0.098, grad_norm=36.522, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.665e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 12:42:10,257 (trainer:737) INFO: 13epoch:train:7001-7100batch: iter_time=1.420e-04, forward_time=0.104, loss_ctc=39.375, loss_att=52.251, acc=0.724, loss=48.388, backward_time=0.096, grad_norm=27.352, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.664e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 12:42:51,262 (trainer:737) INFO: 13epoch:train:7101-7200batch: iter_time=1.417e-04, forward_time=0.104, loss_ctc=62.188, loss_att=52.467, acc=0.727, loss=55.383, backward_time=0.097, grad_norm=44.168, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.662e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 12:43:32,271 (trainer:737) INFO: 13epoch:train:7201-7300batch: iter_time=1.391e-04, forward_time=0.104, loss_ctc=51.023, loss_att=52.441, acc=0.695, loss=52.015, backward_time=0.096, grad_norm=35.529, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.661e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 12:44:13,385 (trainer:737) INFO: 13epoch:train:7301-7400batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=49.271, loss_att=47.325, acc=0.743, loss=47.909, backward_time=0.097, grad_norm=31.758, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.659e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 12:44:54,808 (trainer:737) INFO: 13epoch:train:7401-7500batch: iter_time=1.266e-04, forward_time=0.105, loss_ctc=60.217, loss_att=67.507, acc=0.698, loss=65.320, backward_time=0.098, grad_norm=42.300, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.658e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 12:44:58,517 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 12:45:18,370 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 12:45:22,011 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 12:45:22,011 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 12:45:22,015 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 12:50:13,311 (trainer:737) INFO: 13epoch:train:7501-7600batch: iter_time=2.772, forward_time=0.104, loss_ctc=56.952, loss_att=61.099, acc=0.683, loss=59.855, backward_time=0.097, grad_norm=38.173, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.656e-04, train_time=3.185 +[gpuc02:0/16] 2024-01-13 12:50:54,139 (trainer:737) INFO: 13epoch:train:7601-7700batch: iter_time=1.748e-04, forward_time=0.104, loss_ctc=43.545, loss_att=56.883, acc=0.688, loss=52.882, backward_time=0.098, grad_norm=32.648, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.655e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:51:35,618 (trainer:737) INFO: 13epoch:train:7701-7800batch: iter_time=1.708e-04, forward_time=0.104, loss_ctc=62.570, loss_att=60.851, acc=0.702, loss=61.367, backward_time=0.098, grad_norm=42.751, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.653e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 12:52:17,171 (trainer:737) INFO: 13epoch:train:7801-7900batch: iter_time=1.661e-04, forward_time=0.105, loss_ctc=57.813, loss_att=59.223, acc=0.719, loss=58.800, backward_time=0.098, grad_norm=39.053, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.652e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 12:52:58,223 (trainer:737) INFO: 13epoch:train:7901-8000batch: iter_time=1.880e-04, forward_time=0.103, loss_ctc=60.400, loss_att=59.033, acc=0.681, loss=59.443, backward_time=0.097, grad_norm=41.237, clip=100.000, loss_scale=6.490e+32, optim_step_time=0.030, optim0_lr0=5.650e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 12:53:38,807 (trainer:737) INFO: 13epoch:train:8001-8100batch: iter_time=2.093e-04, forward_time=0.104, loss_ctc=39.990, loss_att=40.556, acc=0.721, loss=40.386, backward_time=0.097, grad_norm=29.495, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.649e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 12:54:19,653 (trainer:737) INFO: 13epoch:train:8101-8200batch: iter_time=2.146e-04, forward_time=0.105, loss_ctc=54.291, loss_att=59.582, acc=0.703, loss=57.994, backward_time=0.098, grad_norm=34.962, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.647e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 12:55:01,185 (trainer:737) INFO: 13epoch:train:8201-8300batch: iter_time=1.842e-04, forward_time=0.104, loss_ctc=44.671, loss_att=49.941, acc=0.744, loss=48.360, backward_time=0.097, grad_norm=29.620, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.646e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 12:55:42,067 (trainer:737) INFO: 13epoch:train:8301-8400batch: iter_time=1.913e-04, forward_time=0.105, loss_ctc=53.673, loss_att=58.860, acc=0.721, loss=57.304, backward_time=0.098, grad_norm=36.546, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.644e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 12:56:22,816 (trainer:737) INFO: 13epoch:train:8401-8500batch: iter_time=1.948e-04, forward_time=0.104, loss_ctc=54.266, loss_att=52.075, acc=0.702, loss=52.733, backward_time=0.097, grad_norm=38.870, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.643e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 12:57:03,689 (trainer:737) INFO: 13epoch:train:8501-8600batch: iter_time=1.585e-04, forward_time=0.105, loss_ctc=53.518, loss_att=48.641, acc=0.727, loss=50.104, backward_time=0.098, grad_norm=36.137, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.641e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 12:57:44,931 (trainer:737) INFO: 13epoch:train:8601-8700batch: iter_time=1.793e-04, forward_time=0.108, loss_ctc=54.151, loss_att=57.775, acc=0.729, loss=56.688, backward_time=0.098, grad_norm=34.250, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.640e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 12:58:11,739 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 12:58:32,486 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 12:58:36,369 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 12:58:36,369 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 12:58:36,372 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 13:03:05,203 (trainer:737) INFO: 13epoch:train:8701-8800batch: iter_time=2.652, forward_time=0.105, loss_ctc=60.816, loss_att=63.106, acc=0.683, loss=62.419, backward_time=0.098, grad_norm=42.087, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.638e-04, train_time=3.202 +[gpuc02:0/16] 2024-01-13 13:03:46,056 (trainer:737) INFO: 13epoch:train:8801-8900batch: iter_time=1.924e-04, forward_time=0.104, loss_ctc=46.122, loss_att=59.921, acc=0.680, loss=55.781, backward_time=0.097, grad_norm=33.984, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.637e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:04:27,137 (trainer:737) INFO: 13epoch:train:8901-9000batch: iter_time=2.033e-04, forward_time=0.104, loss_ctc=45.516, loss_att=52.665, acc=0.709, loss=50.520, backward_time=0.097, grad_norm=30.733, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.635e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:05:08,303 (trainer:737) INFO: 13epoch:train:9001-9100batch: iter_time=2.134e-04, forward_time=0.107, loss_ctc=70.844, loss_att=68.562, acc=0.713, loss=69.247, backward_time=0.098, grad_norm=45.742, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.029, optim0_lr0=5.634e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:05:49,598 (trainer:737) INFO: 13epoch:train:9101-9200batch: iter_time=1.974e-04, forward_time=0.105, loss_ctc=58.141, loss_att=62.587, acc=0.676, loss=61.253, backward_time=0.097, grad_norm=38.982, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.632e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 13:06:30,370 (trainer:737) INFO: 13epoch:train:9201-9300batch: iter_time=2.269e-04, forward_time=0.105, loss_ctc=50.217, loss_att=45.750, acc=0.722, loss=47.090, backward_time=0.097, grad_norm=38.011, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.029, optim0_lr0=5.631e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:07:10,981 (trainer:737) INFO: 13epoch:train:9301-9400batch: iter_time=2.104e-04, forward_time=0.104, loss_ctc=44.527, loss_att=41.965, acc=0.725, loss=42.734, backward_time=0.096, grad_norm=30.307, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.629e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 13:07:51,929 (trainer:737) INFO: 13epoch:train:9401-9500batch: iter_time=2.014e-04, forward_time=0.105, loss_ctc=53.413, loss_att=63.732, acc=0.714, loss=60.636, backward_time=0.097, grad_norm=36.712, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.628e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 13:08:32,972 (trainer:737) INFO: 13epoch:train:9501-9600batch: iter_time=2.142e-04, forward_time=0.105, loss_ctc=39.008, loss_att=51.842, acc=0.726, loss=47.992, backward_time=0.096, grad_norm=28.063, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.626e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:09:14,080 (trainer:737) INFO: 13epoch:train:9601-9700batch: iter_time=2.258e-04, forward_time=0.105, loss_ctc=61.435, loss_att=52.307, acc=0.729, loss=55.045, backward_time=0.097, grad_norm=42.793, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.625e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:09:55,125 (trainer:737) INFO: 13epoch:train:9701-9800batch: iter_time=1.940e-04, forward_time=0.105, loss_ctc=50.955, loss_att=52.302, acc=0.696, loss=51.898, backward_time=0.097, grad_norm=36.967, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.623e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:10:36,707 (trainer:737) INFO: 13epoch:train:9801-9900batch: iter_time=2.124e-04, forward_time=0.106, loss_ctc=49.090, loss_att=47.092, acc=0.745, loss=47.691, backward_time=0.098, grad_norm=31.168, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.622e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 13:11:18,044 (trainer:737) INFO: 13epoch:train:9901-10000batch: iter_time=2.015e-04, forward_time=0.105, loss_ctc=60.225, loss_att=67.166, acc=0.700, loss=65.084, backward_time=0.098, grad_norm=39.333, clip=100.000, loss_scale=1.298e+33, optim_step_time=0.030, optim0_lr0=5.620e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 13:11:25,045 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 13:11:44,529 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 13:11:48,228 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 13:11:48,229 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 13:11:48,232 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 13:16:45,380 (trainer:737) INFO: 13epoch:train:10001-10100batch: iter_time=2.521, forward_time=0.107, loss_ctc=56.731, loss_att=60.703, acc=0.685, loss=59.511, backward_time=0.097, grad_norm=38.898, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.619e-04, train_time=3.273 +[gpuc02:0/16] 2024-01-13 13:17:26,381 (trainer:737) INFO: 13epoch:train:10101-10200batch: iter_time=1.346e-04, forward_time=0.105, loss_ctc=43.477, loss_att=56.247, acc=0.689, loss=52.416, backward_time=0.096, grad_norm=33.177, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.617e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:18:07,295 (trainer:737) INFO: 13epoch:train:10201-10300batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=62.101, loss_att=59.961, acc=0.704, loss=60.603, backward_time=0.097, grad_norm=40.652, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.029, optim0_lr0=5.616e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 13:18:48,319 (trainer:737) INFO: 13epoch:train:10301-10400batch: iter_time=1.510e-04, forward_time=0.106, loss_ctc=56.641, loss_att=58.878, acc=0.718, loss=58.207, backward_time=0.098, grad_norm=39.632, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.614e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:19:29,120 (trainer:737) INFO: 13epoch:train:10401-10500batch: iter_time=1.564e-04, forward_time=0.104, loss_ctc=59.843, loss_att=58.334, acc=0.683, loss=58.787, backward_time=0.097, grad_norm=42.686, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.613e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:20:09,668 (trainer:737) INFO: 13epoch:train:10501-10600batch: iter_time=1.488e-04, forward_time=0.104, loss_ctc=39.474, loss_att=40.203, acc=0.722, loss=39.984, backward_time=0.097, grad_norm=30.388, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.611e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-13 13:20:50,699 (trainer:737) INFO: 13epoch:train:10601-10700batch: iter_time=1.524e-04, forward_time=0.105, loss_ctc=54.024, loss_att=58.939, acc=0.703, loss=57.465, backward_time=0.098, grad_norm=36.216, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.610e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:21:31,685 (trainer:737) INFO: 13epoch:train:10701-10800batch: iter_time=1.626e-04, forward_time=0.104, loss_ctc=43.991, loss_att=49.967, acc=0.746, loss=48.174, backward_time=0.097, grad_norm=30.676, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.608e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:22:12,964 (trainer:737) INFO: 13epoch:train:10801-10900batch: iter_time=1.548e-04, forward_time=0.105, loss_ctc=53.401, loss_att=58.703, acc=0.722, loss=57.113, backward_time=0.098, grad_norm=35.941, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.607e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 13:22:54,347 (trainer:737) INFO: 13epoch:train:10901-11000batch: iter_time=1.467e-04, forward_time=0.104, loss_ctc=53.254, loss_att=51.362, acc=0.705, loss=51.930, backward_time=0.097, grad_norm=42.202, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.605e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 13:23:35,328 (trainer:737) INFO: 13epoch:train:11001-11100batch: iter_time=1.514e-04, forward_time=0.105, loss_ctc=52.009, loss_att=47.838, acc=0.728, loss=49.090, backward_time=0.098, grad_norm=34.979, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.604e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:24:16,657 (trainer:737) INFO: 13epoch:train:11101-11200batch: iter_time=1.535e-04, forward_time=0.105, loss_ctc=53.374, loss_att=57.212, acc=0.731, loss=56.060, backward_time=0.098, grad_norm=32.525, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.603e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 13:24:43,884 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 13:25:02,794 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 13:25:06,478 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 13:25:06,478 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 13:25:06,482 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 13:29:44,120 (trainer:737) INFO: 13epoch:train:11201-11300batch: iter_time=2.655, forward_time=0.105, loss_ctc=60.576, loss_att=65.539, acc=0.681, loss=64.050, backward_time=0.098, grad_norm=44.739, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.601e-04, train_time=3.274 +[gpuc02:0/16] 2024-01-13 13:30:25,123 (trainer:737) INFO: 13epoch:train:11301-11400batch: iter_time=1.572e-04, forward_time=0.104, loss_ctc=46.176, loss_att=61.369, acc=0.685, loss=56.811, backward_time=0.098, grad_norm=33.190, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.600e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:31:06,613 (trainer:737) INFO: 13epoch:train:11401-11500batch: iter_time=1.583e-04, forward_time=0.104, loss_ctc=45.494, loss_att=55.275, acc=0.706, loss=52.341, backward_time=0.098, grad_norm=32.292, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.598e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 13:31:47,859 (trainer:737) INFO: 13epoch:train:11501-11600batch: iter_time=1.618e-04, forward_time=0.106, loss_ctc=69.789, loss_att=69.396, acc=0.721, loss=69.514, backward_time=0.099, grad_norm=48.403, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.597e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 13:32:28,987 (trainer:737) INFO: 13epoch:train:11601-11700batch: iter_time=1.580e-04, forward_time=0.106, loss_ctc=57.836, loss_att=65.345, acc=0.685, loss=63.092, backward_time=0.098, grad_norm=38.265, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.595e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:33:09,823 (trainer:737) INFO: 13epoch:train:11701-11800batch: iter_time=1.701e-04, forward_time=0.103, loss_ctc=48.493, loss_att=46.878, acc=0.728, loss=47.363, backward_time=0.097, grad_norm=35.639, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.594e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:33:50,995 (trainer:737) INFO: 13epoch:train:11801-11900batch: iter_time=2.089e-04, forward_time=0.104, loss_ctc=43.926, loss_att=42.079, acc=0.732, loss=42.634, backward_time=0.096, grad_norm=31.201, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.029, optim0_lr0=5.592e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 13:34:32,542 (trainer:737) INFO: 13epoch:train:11901-12000batch: iter_time=1.536e-04, forward_time=0.105, loss_ctc=52.851, loss_att=64.302, acc=0.731, loss=60.867, backward_time=0.098, grad_norm=35.906, clip=100.000, loss_scale=2.596e+33, optim_step_time=0.030, optim0_lr0=5.591e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 13:35:13,320 (trainer:737) INFO: 13epoch:train:12001-12100batch: iter_time=1.814e-04, forward_time=0.104, loss_ctc=39.328, loss_att=52.785, acc=0.734, loss=48.748, backward_time=0.097, grad_norm=28.523, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.589e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:35:54,186 (trainer:737) INFO: 13epoch:train:12101-12200batch: iter_time=2.053e-04, forward_time=0.104, loss_ctc=60.692, loss_att=52.511, acc=0.736, loss=54.965, backward_time=0.097, grad_norm=41.375, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.588e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:36:35,010 (trainer:737) INFO: 13epoch:train:12201-12300batch: iter_time=1.721e-04, forward_time=0.104, loss_ctc=50.607, loss_att=53.183, acc=0.705, loss=52.410, backward_time=0.097, grad_norm=36.854, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.587e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:37:15,977 (trainer:737) INFO: 13epoch:train:12301-12400batch: iter_time=1.513e-04, forward_time=0.104, loss_ctc=49.061, loss_att=47.797, acc=0.746, loss=48.176, backward_time=0.098, grad_norm=31.978, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.585e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 13:37:57,102 (trainer:737) INFO: 13epoch:train:12401-12500batch: iter_time=1.424e-04, forward_time=0.105, loss_ctc=59.681, loss_att=68.305, acc=0.706, loss=65.718, backward_time=0.098, grad_norm=40.598, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.584e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:38:03,795 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 13:38:23,416 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 13:38:27,482 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 13:38:27,482 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 13:38:27,485 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 13:43:27,486 (trainer:737) INFO: 13epoch:train:12501-12600batch: iter_time=2.673, forward_time=0.104, loss_ctc=56.375, loss_att=63.030, acc=0.681, loss=61.033, backward_time=0.097, grad_norm=37.773, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.582e-04, train_time=3.304 +[gpuc02:0/16] 2024-01-13 13:44:08,349 (trainer:737) INFO: 13epoch:train:12601-12700batch: iter_time=1.826e-04, forward_time=0.104, loss_ctc=42.796, loss_att=56.138, acc=0.694, loss=52.135, backward_time=0.096, grad_norm=33.627, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.581e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 13:44:49,388 (trainer:737) INFO: 13epoch:train:12701-12800batch: iter_time=1.406e-04, forward_time=0.104, loss_ctc=61.325, loss_att=60.845, acc=0.703, loss=60.989, backward_time=0.097, grad_norm=44.349, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.579e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:45:30,562 (trainer:737) INFO: 13epoch:train:12801-12900batch: iter_time=1.441e-04, forward_time=0.105, loss_ctc=56.424, loss_att=58.765, acc=0.719, loss=58.063, backward_time=0.098, grad_norm=37.826, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.578e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 13:46:11,777 (trainer:737) INFO: 13epoch:train:12901-13000batch: iter_time=1.555e-04, forward_time=0.104, loss_ctc=58.882, loss_att=58.897, acc=0.681, loss=58.893, backward_time=0.097, grad_norm=42.017, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.576e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 13:46:52,468 (trainer:737) INFO: 13epoch:train:13001-13100batch: iter_time=1.637e-04, forward_time=0.104, loss_ctc=39.239, loss_att=40.503, acc=0.722, loss=40.124, backward_time=0.096, grad_norm=30.571, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.575e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 13:47:33,504 (trainer:737) INFO: 13epoch:train:13101-13200batch: iter_time=1.696e-04, forward_time=0.104, loss_ctc=54.269, loss_att=59.214, acc=0.703, loss=57.731, backward_time=0.097, grad_norm=36.592, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.573e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:48:14,666 (trainer:737) INFO: 13epoch:train:13201-13300batch: iter_time=1.700e-04, forward_time=0.103, loss_ctc=44.080, loss_att=50.152, acc=0.745, loss=48.330, backward_time=0.096, grad_norm=31.404, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.029, optim0_lr0=5.572e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:48:55,698 (trainer:737) INFO: 13epoch:train:13301-13400batch: iter_time=1.679e-04, forward_time=0.105, loss_ctc=52.233, loss_att=58.610, acc=0.722, loss=56.697, backward_time=0.097, grad_norm=36.678, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.029, optim0_lr0=5.571e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 13:49:36,850 (trainer:737) INFO: 13epoch:train:13401-13500batch: iter_time=1.704e-04, forward_time=0.104, loss_ctc=53.629, loss_att=52.475, acc=0.702, loss=52.821, backward_time=0.096, grad_norm=38.109, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.029, optim0_lr0=5.569e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:50:17,812 (trainer:737) INFO: 13epoch:train:13501-13600batch: iter_time=1.800e-04, forward_time=0.105, loss_ctc=51.667, loss_att=47.927, acc=0.728, loss=49.049, backward_time=0.097, grad_norm=35.516, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.029, optim0_lr0=5.568e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 13:50:59,394 (trainer:737) INFO: 13epoch:train:13601-13700batch: iter_time=1.889e-04, forward_time=0.105, loss_ctc=52.664, loss_att=56.918, acc=0.732, loss=55.642, backward_time=0.098, grad_norm=33.104, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.029, optim0_lr0=5.566e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 13:51:26,958 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 13:51:46,016 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 13:51:49,647 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 13:51:49,648 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 13:51:49,651 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 13:56:33,493 (trainer:737) INFO: 13epoch:train:13701-13800batch: iter_time=2.556, forward_time=0.105, loss_ctc=59.646, loss_att=64.401, acc=0.683, loss=62.975, backward_time=0.097, grad_norm=42.348, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.565e-04, train_time=3.341 +[gpuc02:0/16] 2024-01-13 13:57:14,650 (trainer:737) INFO: 13epoch:train:13801-13900batch: iter_time=1.833e-04, forward_time=0.104, loss_ctc=45.846, loss_att=59.776, acc=0.690, loss=55.597, backward_time=0.097, grad_norm=33.997, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.563e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 13:57:55,847 (trainer:737) INFO: 13epoch:train:13901-14000batch: iter_time=1.720e-04, forward_time=0.105, loss_ctc=45.270, loss_att=54.481, acc=0.707, loss=51.718, backward_time=0.098, grad_norm=33.070, clip=100.000, loss_scale=5.192e+33, optim_step_time=0.030, optim0_lr0=5.562e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 13:58:37,338 (trainer:737) INFO: 13epoch:train:14001-14100batch: iter_time=2.059e-04, forward_time=0.106, loss_ctc=69.805, loss_att=68.824, acc=0.722, loss=69.118, backward_time=0.099, grad_norm=49.673, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.561e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 13:59:18,698 (trainer:737) INFO: 13epoch:train:14101-14200batch: iter_time=1.827e-04, forward_time=0.106, loss_ctc=57.284, loss_att=65.826, acc=0.682, loss=63.264, backward_time=0.098, grad_norm=40.564, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.559e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 13:59:59,719 (trainer:737) INFO: 13epoch:train:14201-14300batch: iter_time=1.791e-04, forward_time=0.105, loss_ctc=47.950, loss_att=46.637, acc=0.728, loss=47.031, backward_time=0.097, grad_norm=35.701, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.558e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:00:40,682 (trainer:737) INFO: 13epoch:train:14301-14400batch: iter_time=1.925e-04, forward_time=0.104, loss_ctc=43.654, loss_att=41.727, acc=0.735, loss=42.305, backward_time=0.097, grad_norm=29.739, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.556e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 14:01:22,209 (trainer:737) INFO: 13epoch:train:14401-14500batch: iter_time=1.735e-04, forward_time=0.106, loss_ctc=53.436, loss_att=64.943, acc=0.730, loss=61.491, backward_time=0.099, grad_norm=36.011, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.555e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 14:02:03,282 (trainer:737) INFO: 13epoch:train:14501-14600batch: iter_time=1.673e-04, forward_time=0.104, loss_ctc=38.871, loss_att=52.584, acc=0.735, loss=48.470, backward_time=0.097, grad_norm=27.646, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.553e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 14:02:44,660 (trainer:737) INFO: 13epoch:train:14601-14700batch: iter_time=1.597e-04, forward_time=0.108, loss_ctc=60.501, loss_att=51.416, acc=0.740, loss=54.142, backward_time=0.097, grad_norm=67.087, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.552e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 14:03:25,679 (trainer:737) INFO: 13epoch:train:14701-14800batch: iter_time=1.601e-04, forward_time=0.105, loss_ctc=49.935, loss_att=53.299, acc=0.703, loss=52.290, backward_time=0.097, grad_norm=36.803, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.551e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:04:06,727 (trainer:737) INFO: 13epoch:train:14801-14900batch: iter_time=1.608e-04, forward_time=0.105, loss_ctc=48.551, loss_att=46.478, acc=0.751, loss=47.100, backward_time=0.098, grad_norm=30.779, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.029, optim0_lr0=5.549e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:04:48,704 (trainer:737) INFO: 13epoch:train:14901-15000batch: iter_time=1.265e-04, forward_time=0.106, loss_ctc=58.978, loss_att=67.648, acc=0.708, loss=65.047, backward_time=0.099, grad_norm=39.710, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.548e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-13 14:24:56,667 (trainer:343) INFO: 13epoch results: [train] iter_time=0.219, forward_time=0.105, loss_ctc=53.420, loss_att=56.535, acc=0.711, loss=55.601, backward_time=0.098, grad_norm=36.855, clip=100.000, loss_scale=2.066e+33, optim_step_time=0.030, optim0_lr0=5.658e-04, train_time=0.646, time=2 hours, 41 minutes and 42.03 seconds, total_count=195000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=58.037, cer_ctc=0.308, loss_att=56.017, acc=0.570, cer=0.374, wer=0.999, loss=56.623, time=19 minutes and 55.33 seconds, total_count=60723, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 14:25:01,745 (trainer:391) INFO: The best model has been updated: valid.acc, valid.total_count +[gpuc02:0/16] 2024-01-13 14:25:01,749 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/8epoch.pth +[gpuc02:0/16] 2024-01-13 14:25:01,749 (trainer:272) INFO: 14/45epoch started. Estimated time to finish: 3 days, 23 hours and 52 minutes +[gpuc02:0/16] 2024-01-13 14:25:01,758 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 14:25:20,716 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 14:25:24,261 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 14:25:24,262 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 14:25:24,265 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 14:30:08,091 (trainer:737) INFO: 14epoch:train:1-100batch: iter_time=2.536, forward_time=0.105, loss_ctc=55.522, loss_att=73.256, acc=0.689, loss=67.936, backward_time=0.099, grad_norm=38.771, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.546e-04, train_time=3.063 +[gpuc02:0/16] 2024-01-13 14:30:48,943 (trainer:737) INFO: 14epoch:train:101-200batch: iter_time=1.116e-04, forward_time=0.104, loss_ctc=59.108, loss_att=59.913, acc=0.689, loss=59.671, backward_time=0.098, grad_norm=37.896, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.545e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 14:31:29,777 (trainer:737) INFO: 14epoch:train:201-300batch: iter_time=1.165e-04, forward_time=0.104, loss_ctc=48.269, loss_att=60.860, acc=0.692, loss=57.083, backward_time=0.098, grad_norm=35.084, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.543e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 14:32:10,996 (trainer:737) INFO: 14epoch:train:301-400batch: iter_time=1.177e-04, forward_time=0.103, loss_ctc=47.267, loss_att=48.623, acc=0.720, loss=48.216, backward_time=0.097, grad_norm=35.178, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.542e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 14:32:53,047 (trainer:737) INFO: 14epoch:train:401-500batch: iter_time=1.206e-04, forward_time=0.103, loss_ctc=53.853, loss_att=46.282, acc=0.715, loss=48.554, backward_time=0.097, grad_norm=38.060, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.031, optim0_lr0=5.541e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-13 14:33:35,063 (trainer:737) INFO: 14epoch:train:501-600batch: iter_time=1.208e-04, forward_time=0.106, loss_ctc=51.111, loss_att=54.198, acc=0.702, loss=53.272, backward_time=0.102, grad_norm=37.685, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.539e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-13 14:34:17,647 (trainer:737) INFO: 14epoch:train:601-700batch: iter_time=1.129e-04, forward_time=0.108, loss_ctc=49.358, loss_att=58.953, acc=0.690, loss=56.074, backward_time=0.097, grad_norm=34.689, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.032, optim0_lr0=5.538e-04, train_time=0.426 +[gpuc02:0/16] 2024-01-13 14:34:58,692 (trainer:737) INFO: 14epoch:train:701-800batch: iter_time=1.305e-04, forward_time=0.104, loss_ctc=50.339, loss_att=50.159, acc=0.716, loss=50.213, backward_time=0.097, grad_norm=37.535, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.536e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:35:41,518 (trainer:737) INFO: 14epoch:train:801-900batch: iter_time=1.285e-04, forward_time=0.111, loss_ctc=47.232, loss_att=48.565, acc=0.729, loss=48.165, backward_time=0.098, grad_norm=32.697, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.535e-04, train_time=0.428 +[gpuc02:0/16] 2024-01-13 14:36:22,230 (trainer:737) INFO: 14epoch:train:901-1000batch: iter_time=1.185e-04, forward_time=0.104, loss_ctc=56.763, loss_att=49.931, acc=0.743, loss=51.981, backward_time=0.098, grad_norm=43.700, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.534e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 14:37:16,879 (trainer:737) INFO: 14epoch:train:1001-1100batch: iter_time=1.278e-04, forward_time=0.123, loss_ctc=49.174, loss_att=49.408, acc=0.719, loss=49.338, backward_time=0.120, grad_norm=33.085, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.032, optim0_lr0=5.532e-04, train_time=0.546 +[gpuc02:0/16] 2024-01-13 14:38:00,163 (trainer:737) INFO: 14epoch:train:1101-1200batch: iter_time=1.200e-04, forward_time=0.120, loss_ctc=51.912, loss_att=56.418, acc=0.700, loss=55.067, backward_time=0.100, grad_norm=37.696, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.033, optim0_lr0=5.531e-04, train_time=0.433 +[gpuc02:0/16] 2024-01-13 14:38:39,329 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 14:38:59,245 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 14:39:03,296 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 14:39:03,296 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 14:39:03,299 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 14:46:44,362 (trainer:737) INFO: 14epoch:train:1201-1300batch: iter_time=3.695, forward_time=0.141, loss_ctc=46.749, loss_att=61.084, acc=0.703, loss=56.783, backward_time=0.104, grad_norm=32.837, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.033, optim0_lr0=5.529e-04, train_time=5.242 +[gpuc02:0/16] 2024-01-13 14:47:25,544 (trainer:737) INFO: 14epoch:train:1301-1400batch: iter_time=1.324e-04, forward_time=0.104, loss_ctc=58.140, loss_att=65.277, acc=0.694, loss=63.136, backward_time=0.098, grad_norm=40.887, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.528e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 14:48:06,566 (trainer:737) INFO: 14epoch:train:1401-1500batch: iter_time=1.415e-04, forward_time=0.103, loss_ctc=53.006, loss_att=60.207, acc=0.682, loss=58.047, backward_time=0.097, grad_norm=35.472, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.526e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:48:47,578 (trainer:737) INFO: 14epoch:train:1501-1600batch: iter_time=1.409e-04, forward_time=0.105, loss_ctc=46.821, loss_att=54.652, acc=0.725, loss=52.303, backward_time=0.098, grad_norm=34.069, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.525e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:49:28,250 (trainer:737) INFO: 14epoch:train:1601-1700batch: iter_time=1.395e-04, forward_time=0.103, loss_ctc=48.163, loss_att=42.608, acc=0.733, loss=44.275, backward_time=0.096, grad_norm=32.625, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.524e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 14:50:09,264 (trainer:737) INFO: 14epoch:train:1701-1800batch: iter_time=1.521e-04, forward_time=0.104, loss_ctc=54.604, loss_att=50.629, acc=0.693, loss=51.821, backward_time=0.097, grad_norm=38.433, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.522e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:50:50,473 (trainer:737) INFO: 14epoch:train:1801-1900batch: iter_time=1.345e-04, forward_time=0.104, loss_ctc=52.496, loss_att=64.609, acc=0.690, loss=60.975, backward_time=0.097, grad_norm=37.970, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.521e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 14:51:31,611 (trainer:737) INFO: 14epoch:train:1901-2000batch: iter_time=1.382e-04, forward_time=0.103, loss_ctc=47.960, loss_att=51.312, acc=0.700, loss=50.306, backward_time=0.097, grad_norm=32.620, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.519e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 14:52:12,787 (trainer:737) INFO: 14epoch:train:2001-2100batch: iter_time=1.484e-04, forward_time=0.103, loss_ctc=46.213, loss_att=42.933, acc=0.746, loss=43.917, backward_time=0.097, grad_norm=31.047, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.518e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 14:52:53,861 (trainer:737) INFO: 14epoch:train:2101-2200batch: iter_time=1.262e-04, forward_time=0.104, loss_ctc=46.452, loss_att=48.656, acc=0.741, loss=47.995, backward_time=0.098, grad_norm=32.951, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.517e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 14:53:34,539 (trainer:737) INFO: 14epoch:train:2201-2300batch: iter_time=1.397e-04, forward_time=0.103, loss_ctc=49.572, loss_att=48.240, acc=0.721, loss=48.640, backward_time=0.097, grad_norm=41.456, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.515e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 14:54:15,773 (trainer:737) INFO: 14epoch:train:2301-2400batch: iter_time=1.403e-04, forward_time=0.103, loss_ctc=54.390, loss_att=49.068, acc=0.717, loss=50.665, backward_time=0.097, grad_norm=35.020, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.514e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 14:54:56,553 (trainer:737) INFO: 14epoch:train:2401-2500batch: iter_time=1.352e-04, forward_time=0.103, loss_ctc=46.305, loss_att=57.429, acc=0.707, loss=54.092, backward_time=0.097, grad_norm=33.937, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.512e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 14:55:14,704 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 14:55:33,739 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 14:55:37,412 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 14:55:37,412 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 14:55:37,416 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 15:01:18,069 (trainer:737) INFO: 14epoch:train:2501-2600batch: iter_time=3.389, forward_time=0.108, loss_ctc=53.200, loss_att=72.913, acc=0.707, loss=66.999, backward_time=0.099, grad_norm=35.439, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.511e-04, train_time=3.815 +[gpuc02:0/16] 2024-01-13 15:01:59,036 (trainer:737) INFO: 14epoch:train:2601-2700batch: iter_time=1.489e-04, forward_time=0.104, loss_ctc=57.521, loss_att=61.892, acc=0.693, loss=60.581, backward_time=0.098, grad_norm=38.702, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.510e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:02:39,929 (trainer:737) INFO: 14epoch:train:2701-2800batch: iter_time=1.479e-04, forward_time=0.104, loss_ctc=46.814, loss_att=61.979, acc=0.695, loss=57.429, backward_time=0.098, grad_norm=34.442, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.508e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:03:20,699 (trainer:737) INFO: 14epoch:train:2801-2900batch: iter_time=1.738e-04, forward_time=0.104, loss_ctc=45.931, loss_att=48.958, acc=0.725, loss=48.050, backward_time=0.098, grad_norm=31.931, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.507e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:04:01,695 (trainer:737) INFO: 14epoch:train:2901-3000batch: iter_time=1.588e-04, forward_time=0.103, loss_ctc=50.780, loss_att=46.592, acc=0.723, loss=47.848, backward_time=0.098, grad_norm=35.504, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.505e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:04:42,792 (trainer:737) INFO: 14epoch:train:3001-3100batch: iter_time=1.578e-04, forward_time=0.104, loss_ctc=50.023, loss_att=52.612, acc=0.718, loss=51.835, backward_time=0.098, grad_norm=36.264, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.504e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 15:05:23,602 (trainer:737) INFO: 14epoch:train:3101-3200batch: iter_time=1.542e-04, forward_time=0.104, loss_ctc=48.495, loss_att=60.030, acc=0.700, loss=56.569, backward_time=0.098, grad_norm=32.776, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.503e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:06:04,361 (trainer:737) INFO: 14epoch:train:3201-3300batch: iter_time=1.634e-04, forward_time=0.103, loss_ctc=48.901, loss_att=49.663, acc=0.726, loss=49.434, backward_time=0.098, grad_norm=33.701, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.501e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:06:45,413 (trainer:737) INFO: 14epoch:train:3301-3400batch: iter_time=1.605e-04, forward_time=0.104, loss_ctc=45.612, loss_att=46.555, acc=0.745, loss=46.272, backward_time=0.098, grad_norm=31.193, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.500e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:07:26,578 (trainer:737) INFO: 14epoch:train:3401-3500batch: iter_time=1.523e-04, forward_time=0.104, loss_ctc=55.041, loss_att=50.971, acc=0.757, loss=52.192, backward_time=0.099, grad_norm=42.461, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.499e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 15:08:07,609 (trainer:737) INFO: 14epoch:train:3501-3600batch: iter_time=1.364e-04, forward_time=0.104, loss_ctc=48.115, loss_att=49.691, acc=0.723, loss=49.218, backward_time=0.098, grad_norm=32.390, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.497e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:08:29,514 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 15:08:49,215 (trainer:737) INFO: 14epoch:train:3601-3700batch: iter_time=1.294e-04, forward_time=0.104, loss_ctc=50.389, loss_att=55.577, acc=0.708, loss=54.021, backward_time=0.098, grad_norm=35.016, clip=100.000, loss_scale=3.168e+34, optim_step_time=0.031, optim0_lr0=5.496e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 15:09:15,353 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 15:09:34,778 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 15:09:38,526 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 15:09:38,526 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 15:09:38,529 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 15:14:10,523 (trainer:737) INFO: 14epoch:train:3701-3800batch: iter_time=2.719, forward_time=0.105, loss_ctc=45.352, loss_att=59.993, acc=0.720, loss=55.601, backward_time=0.099, grad_norm=30.764, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.494e-04, train_time=3.213 +[gpuc02:0/16] 2024-01-13 15:14:52,068 (trainer:737) INFO: 14epoch:train:3801-3900batch: iter_time=1.704e-04, forward_time=0.106, loss_ctc=57.097, loss_att=68.368, acc=0.696, loss=64.987, backward_time=0.098, grad_norm=40.525, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.493e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 15:15:33,206 (trainer:737) INFO: 14epoch:train:3901-4000batch: iter_time=1.729e-04, forward_time=0.104, loss_ctc=51.366, loss_att=59.619, acc=0.693, loss=57.143, backward_time=0.097, grad_norm=35.858, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.492e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 15:16:14,457 (trainer:737) INFO: 14epoch:train:4001-4100batch: iter_time=1.641e-04, forward_time=0.105, loss_ctc=46.026, loss_att=55.463, acc=0.729, loss=52.632, backward_time=0.098, grad_norm=34.131, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.490e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 15:16:55,398 (trainer:737) INFO: 14epoch:train:4101-4200batch: iter_time=2.106e-04, forward_time=0.104, loss_ctc=47.367, loss_att=42.301, acc=0.738, loss=43.821, backward_time=0.097, grad_norm=33.244, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.489e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:17:36,241 (trainer:737) INFO: 14epoch:train:4201-4300batch: iter_time=1.956e-04, forward_time=0.106, loss_ctc=53.314, loss_att=53.044, acc=0.698, loss=53.125, backward_time=0.098, grad_norm=37.188, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.488e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:18:17,152 (trainer:737) INFO: 14epoch:train:4301-4400batch: iter_time=1.633e-04, forward_time=0.105, loss_ctc=51.366, loss_att=64.183, acc=0.702, loss=60.338, backward_time=0.097, grad_norm=37.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.486e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:18:58,210 (trainer:737) INFO: 14epoch:train:4401-4500batch: iter_time=1.955e-04, forward_time=0.107, loss_ctc=47.263, loss_att=51.082, acc=0.715, loss=49.936, backward_time=0.097, grad_norm=33.696, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.485e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:19:39,051 (trainer:737) INFO: 14epoch:train:4501-4600batch: iter_time=2.074e-04, forward_time=0.104, loss_ctc=45.594, loss_att=41.896, acc=0.755, loss=43.006, backward_time=0.097, grad_norm=31.369, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.483e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:20:20,522 (trainer:737) INFO: 14epoch:train:4601-4700batch: iter_time=1.730e-04, forward_time=0.105, loss_ctc=45.333, loss_att=49.973, acc=0.755, loss=48.581, backward_time=0.098, grad_norm=40.809, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.482e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 15:21:01,286 (trainer:737) INFO: 14epoch:train:4701-4800batch: iter_time=1.828e-04, forward_time=0.104, loss_ctc=48.194, loss_att=47.675, acc=0.734, loss=47.831, backward_time=0.097, grad_norm=40.946, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.481e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:21:42,176 (trainer:737) INFO: 14epoch:train:4801-4900batch: iter_time=1.968e-04, forward_time=0.106, loss_ctc=53.294, loss_att=49.777, acc=0.721, loss=50.832, backward_time=0.098, grad_norm=33.222, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.479e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:22:22,984 (trainer:737) INFO: 14epoch:train:4901-5000batch: iter_time=1.873e-04, forward_time=0.105, loss_ctc=45.323, loss_att=56.371, acc=0.716, loss=53.056, backward_time=0.097, grad_norm=33.036, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.478e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:22:29,626 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 15:22:48,925 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 15:22:52,595 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 15:22:52,595 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 15:22:52,598 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 15:27:56,646 (trainer:737) INFO: 14epoch:train:5001-5100batch: iter_time=2.921, forward_time=0.106, loss_ctc=52.213, loss_att=72.597, acc=0.696, loss=66.482, backward_time=0.098, grad_norm=36.677, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.477e-04, train_time=3.336 +[gpuc02:0/16] 2024-01-13 15:28:37,618 (trainer:737) INFO: 14epoch:train:5101-5200batch: iter_time=1.519e-04, forward_time=0.105, loss_ctc=57.816, loss_att=59.577, acc=0.693, loss=59.048, backward_time=0.097, grad_norm=41.482, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.475e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:29:18,565 (trainer:737) INFO: 14epoch:train:5201-5300batch: iter_time=1.239e-04, forward_time=0.105, loss_ctc=46.498, loss_att=60.472, acc=0.696, loss=56.280, backward_time=0.097, grad_norm=35.300, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.474e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:29:59,334 (trainer:737) INFO: 14epoch:train:5301-5400batch: iter_time=1.375e-04, forward_time=0.104, loss_ctc=45.255, loss_att=47.520, acc=0.725, loss=46.840, backward_time=0.096, grad_norm=32.394, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.472e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:30:40,103 (trainer:737) INFO: 14epoch:train:5401-5500batch: iter_time=1.806e-04, forward_time=0.104, loss_ctc=51.056, loss_att=44.794, acc=0.721, loss=46.673, backward_time=0.097, grad_norm=35.349, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.471e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:31:21,082 (trainer:737) INFO: 14epoch:train:5501-5600batch: iter_time=1.253e-04, forward_time=0.105, loss_ctc=49.143, loss_att=53.425, acc=0.707, loss=52.140, backward_time=0.097, grad_norm=35.931, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.470e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:32:02,175 (trainer:737) INFO: 14epoch:train:5601-5700batch: iter_time=1.101e-04, forward_time=0.104, loss_ctc=47.871, loss_att=59.454, acc=0.693, loss=55.979, backward_time=0.096, grad_norm=34.541, clip=100.000, loss_scale=3.053e+34, optim_step_time=0.030, optim0_lr0=5.468e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 15:32:41,820 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 15:32:43,456 (trainer:737) INFO: 14epoch:train:5701-5800batch: iter_time=1.267e-04, forward_time=0.104, loss_ctc=48.357, loss_att=49.088, acc=0.722, loss=48.869, backward_time=0.096, grad_norm=34.879, clip=100.000, loss_scale=4.070e+34, optim_step_time=0.030, optim0_lr0=5.467e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 15:33:24,406 (trainer:737) INFO: 14epoch:train:5801-5900batch: iter_time=1.123e-04, forward_time=0.105, loss_ctc=45.083, loss_att=47.522, acc=0.734, loss=46.790, backward_time=0.097, grad_norm=31.666, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.466e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:34:05,662 (trainer:737) INFO: 14epoch:train:5901-6000batch: iter_time=1.178e-04, forward_time=0.105, loss_ctc=53.387, loss_att=48.992, acc=0.748, loss=50.310, backward_time=0.097, grad_norm=45.318, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.464e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 15:34:46,518 (trainer:737) INFO: 14epoch:train:6001-6100batch: iter_time=1.429e-04, forward_time=0.104, loss_ctc=47.040, loss_att=48.169, acc=0.725, loss=47.830, backward_time=0.096, grad_norm=32.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.463e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:35:27,359 (trainer:737) INFO: 14epoch:train:6101-6200batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=49.728, loss_att=55.113, acc=0.705, loss=53.498, backward_time=0.097, grad_norm=34.889, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.462e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:35:52,435 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 15:36:12,224 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 15:36:16,289 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 15:36:16,290 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 15:36:16,293 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 15:40:48,105 (trainer:737) INFO: 14epoch:train:6201-6300batch: iter_time=2.582, forward_time=0.105, loss_ctc=45.042, loss_att=59.908, acc=0.707, loss=55.448, backward_time=0.098, grad_norm=30.175, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.460e-04, train_time=3.207 +[gpuc02:0/16] 2024-01-13 15:41:29,098 (trainer:737) INFO: 14epoch:train:6301-6400batch: iter_time=1.632e-04, forward_time=0.105, loss_ctc=56.511, loss_att=64.408, acc=0.698, loss=62.039, backward_time=0.098, grad_norm=40.458, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.459e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:42:10,326 (trainer:737) INFO: 14epoch:train:6401-6500batch: iter_time=1.673e-04, forward_time=0.103, loss_ctc=51.589, loss_att=59.175, acc=0.687, loss=56.899, backward_time=0.097, grad_norm=36.797, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.457e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 15:42:51,754 (trainer:737) INFO: 14epoch:train:6501-6600batch: iter_time=1.473e-04, forward_time=0.105, loss_ctc=45.996, loss_att=54.311, acc=0.728, loss=51.816, backward_time=0.098, grad_norm=33.892, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.456e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 15:43:32,336 (trainer:737) INFO: 14epoch:train:6601-6700batch: iter_time=1.733e-04, forward_time=0.103, loss_ctc=46.795, loss_att=41.572, acc=0.737, loss=43.139, backward_time=0.096, grad_norm=31.183, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.455e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 15:44:13,361 (trainer:737) INFO: 14epoch:train:6701-6800batch: iter_time=1.475e-04, forward_time=0.104, loss_ctc=53.529, loss_att=50.365, acc=0.698, loss=51.314, backward_time=0.097, grad_norm=36.984, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.453e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:44:54,722 (trainer:737) INFO: 14epoch:train:6801-6900batch: iter_time=1.478e-04, forward_time=0.104, loss_ctc=50.885, loss_att=63.850, acc=0.692, loss=59.960, backward_time=0.097, grad_norm=37.785, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.452e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 15:45:35,404 (trainer:737) INFO: 14epoch:train:6901-7000batch: iter_time=1.748e-04, forward_time=0.104, loss_ctc=46.389, loss_att=51.077, acc=0.705, loss=49.671, backward_time=0.097, grad_norm=32.853, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.451e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:46:16,099 (trainer:737) INFO: 14epoch:train:7001-7100batch: iter_time=1.628e-04, forward_time=0.104, loss_ctc=45.334, loss_att=42.397, acc=0.749, loss=43.278, backward_time=0.097, grad_norm=31.541, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.449e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 15:46:56,953 (trainer:737) INFO: 14epoch:train:7101-7200batch: iter_time=1.626e-04, forward_time=0.105, loss_ctc=45.382, loss_att=48.465, acc=0.744, loss=47.540, backward_time=0.098, grad_norm=30.699, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.448e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:47:37,510 (trainer:737) INFO: 14epoch:train:7201-7300batch: iter_time=1.598e-04, forward_time=0.104, loss_ctc=48.548, loss_att=47.847, acc=0.724, loss=48.057, backward_time=0.097, grad_norm=42.020, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.447e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-13 15:48:18,305 (trainer:737) INFO: 14epoch:train:7301-7400batch: iter_time=1.567e-04, forward_time=0.105, loss_ctc=53.330, loss_att=48.726, acc=0.721, loss=50.108, backward_time=0.097, grad_norm=34.973, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.445e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:48:59,145 (trainer:737) INFO: 14epoch:train:7401-7500batch: iter_time=1.242e-04, forward_time=0.104, loss_ctc=44.824, loss_att=56.605, acc=0.708, loss=53.071, backward_time=0.099, grad_norm=32.675, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.444e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:49:04,035 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 15:49:23,262 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 15:49:26,929 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 15:49:26,929 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 15:49:26,933 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 15:54:30,251 (trainer:737) INFO: 14epoch:train:7501-7600batch: iter_time=2.711, forward_time=0.106, loss_ctc=52.206, loss_att=71.499, acc=0.713, loss=65.711, backward_time=0.099, grad_norm=36.861, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.443e-04, train_time=3.311 +[gpuc02:0/16] 2024-01-13 15:55:11,758 (trainer:737) INFO: 14epoch:train:7601-7700batch: iter_time=1.750e-04, forward_time=0.105, loss_ctc=56.117, loss_att=60.367, acc=0.697, loss=59.092, backward_time=0.098, grad_norm=38.616, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.441e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 15:55:52,691 (trainer:737) INFO: 14epoch:train:7701-7800batch: iter_time=1.780e-04, forward_time=0.105, loss_ctc=45.646, loss_att=60.777, acc=0.700, loss=56.237, backward_time=0.099, grad_norm=34.209, clip=100.000, loss_scale=2.160e+34, optim_step_time=0.030, optim0_lr0=5.440e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 15:56:02,909 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 15:56:33,481 (trainer:737) INFO: 14epoch:train:7801-7900batch: iter_time=1.846e-04, forward_time=0.105, loss_ctc=44.398, loss_att=47.980, acc=0.731, loss=46.905, backward_time=0.098, grad_norm=33.544, clip=100.000, loss_scale=2.580e+34, optim_step_time=0.031, optim0_lr0=5.439e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:57:14,552 (trainer:737) INFO: 14epoch:train:7901-8000batch: iter_time=1.942e-04, forward_time=0.108, loss_ctc=50.591, loss_att=45.997, acc=0.729, loss=47.375, backward_time=0.098, grad_norm=36.060, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.437e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 15:57:55,407 (trainer:737) INFO: 14epoch:train:8001-8100batch: iter_time=1.775e-04, forward_time=0.105, loss_ctc=49.186, loss_att=52.279, acc=0.721, loss=51.351, backward_time=0.098, grad_norm=35.384, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.436e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 15:58:36,575 (trainer:737) INFO: 14epoch:train:8101-8200batch: iter_time=1.944e-04, forward_time=0.105, loss_ctc=47.308, loss_att=58.950, acc=0.706, loss=55.457, backward_time=0.098, grad_norm=32.980, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.435e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 15:59:17,806 (trainer:737) INFO: 14epoch:train:8201-8300batch: iter_time=1.793e-04, forward_time=0.105, loss_ctc=47.925, loss_att=48.345, acc=0.733, loss=48.219, backward_time=0.098, grad_norm=31.372, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.433e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 15:59:58,610 (trainer:737) INFO: 14epoch:train:8301-8400batch: iter_time=1.911e-04, forward_time=0.105, loss_ctc=45.146, loss_att=46.657, acc=0.747, loss=46.203, backward_time=0.098, grad_norm=31.625, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.432e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:00:41,815 (trainer:737) INFO: 14epoch:train:8401-8500batch: iter_time=1.514e-04, forward_time=0.105, loss_ctc=52.459, loss_att=49.933, acc=0.763, loss=50.690, backward_time=0.099, grad_norm=43.530, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.431e-04, train_time=0.432 +[gpuc02:0/16] 2024-01-13 16:01:22,854 (trainer:737) INFO: 14epoch:train:8501-8600batch: iter_time=1.696e-04, forward_time=0.105, loss_ctc=46.992, loss_att=49.449, acc=0.725, loss=48.711, backward_time=0.098, grad_norm=32.028, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.429e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:02:03,683 (trainer:737) INFO: 14epoch:train:8601-8700batch: iter_time=1.670e-04, forward_time=0.105, loss_ctc=49.921, loss_att=54.870, acc=0.714, loss=53.385, backward_time=0.098, grad_norm=35.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.428e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:02:29,347 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 16:02:49,869 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 16:02:53,831 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 16:02:53,832 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 16:02:53,835 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 16:07:21,926 (trainer:737) INFO: 14epoch:train:8701-8800batch: iter_time=2.660, forward_time=0.105, loss_ctc=44.299, loss_att=61.696, acc=0.710, loss=56.477, backward_time=0.098, grad_norm=30.543, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.427e-04, train_time=3.182 +[gpuc02:0/16] 2024-01-13 16:08:03,531 (trainer:737) INFO: 14epoch:train:8801-8900batch: iter_time=1.333e-04, forward_time=0.105, loss_ctc=55.495, loss_att=65.375, acc=0.698, loss=62.411, backward_time=0.098, grad_norm=41.183, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.425e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 16:08:24,201 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 16:08:44,528 (trainer:737) INFO: 14epoch:train:8901-9000batch: iter_time=1.539e-04, forward_time=0.104, loss_ctc=51.133, loss_att=60.306, acc=0.686, loss=57.554, backward_time=0.097, grad_norm=36.082, clip=100.000, loss_scale=1.552e+34, optim_step_time=0.030, optim0_lr0=5.424e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:09:25,423 (trainer:737) INFO: 14epoch:train:9001-9100batch: iter_time=1.547e-04, forward_time=0.104, loss_ctc=45.658, loss_att=54.755, acc=0.727, loss=52.026, backward_time=0.098, grad_norm=32.340, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.423e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:10:05,944 (trainer:737) INFO: 14epoch:train:9101-9200batch: iter_time=1.724e-04, forward_time=0.102, loss_ctc=46.767, loss_att=42.383, acc=0.738, loss=43.699, backward_time=0.097, grad_norm=31.987, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.421e-04, train_time=0.405 +[gpuc02:0/16] 2024-01-13 16:10:46,928 (trainer:737) INFO: 14epoch:train:9201-9300batch: iter_time=1.613e-04, forward_time=0.104, loss_ctc=52.726, loss_att=50.133, acc=0.699, loss=50.911, backward_time=0.098, grad_norm=38.707, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.420e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:11:27,913 (trainer:737) INFO: 14epoch:train:9301-9400batch: iter_time=1.577e-04, forward_time=0.104, loss_ctc=50.225, loss_att=63.976, acc=0.693, loss=59.851, backward_time=0.098, grad_norm=36.465, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.419e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:12:08,747 (trainer:737) INFO: 14epoch:train:9401-9500batch: iter_time=1.603e-04, forward_time=0.104, loss_ctc=46.355, loss_att=50.564, acc=0.710, loss=49.301, backward_time=0.098, grad_norm=31.026, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.417e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:12:49,652 (trainer:737) INFO: 14epoch:train:9501-9600batch: iter_time=1.589e-04, forward_time=0.104, loss_ctc=45.472, loss_att=41.951, acc=0.752, loss=43.007, backward_time=0.098, grad_norm=30.678, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.416e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:13:31,204 (trainer:737) INFO: 14epoch:train:9601-9700batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=45.148, loss_att=48.770, acc=0.742, loss=47.684, backward_time=0.098, grad_norm=33.841, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.415e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 16:14:11,893 (trainer:737) INFO: 14epoch:train:9701-9800batch: iter_time=1.619e-04, forward_time=0.103, loss_ctc=48.198, loss_att=48.267, acc=0.727, loss=48.246, backward_time=0.097, grad_norm=42.751, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.413e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 16:14:52,830 (trainer:737) INFO: 14epoch:train:9801-9900batch: iter_time=1.624e-04, forward_time=0.104, loss_ctc=53.163, loss_att=48.632, acc=0.721, loss=49.991, backward_time=0.097, grad_norm=33.677, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.412e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:15:33,712 (trainer:737) INFO: 14epoch:train:9901-10000batch: iter_time=1.558e-04, forward_time=0.105, loss_ctc=44.530, loss_att=56.946, acc=0.708, loss=53.221, backward_time=0.097, grad_norm=33.275, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.411e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:15:41,362 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 16:16:01,465 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 16:16:05,512 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 16:16:05,512 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 16:16:05,515 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 16:20:51,229 (trainer:737) INFO: 14epoch:train:10001-10100batch: iter_time=2.663, forward_time=0.106, loss_ctc=51.503, loss_att=71.022, acc=0.713, loss=65.166, backward_time=0.100, grad_norm=35.752, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.031, optim0_lr0=5.409e-04, train_time=3.175 +[gpuc02:0/16] 2024-01-13 16:21:32,426 (trainer:737) INFO: 14epoch:train:10101-10200batch: iter_time=1.454e-04, forward_time=0.105, loss_ctc=56.488, loss_att=60.260, acc=0.700, loss=59.128, backward_time=0.098, grad_norm=37.505, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.408e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 16:22:13,340 (trainer:737) INFO: 14epoch:train:10201-10300batch: iter_time=1.621e-04, forward_time=0.104, loss_ctc=44.668, loss_att=60.481, acc=0.701, loss=55.737, backward_time=0.098, grad_norm=33.699, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.407e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:22:54,154 (trainer:737) INFO: 14epoch:train:10301-10400batch: iter_time=1.906e-04, forward_time=0.104, loss_ctc=44.127, loss_att=48.028, acc=0.731, loss=46.858, backward_time=0.098, grad_norm=32.202, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.405e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:23:35,002 (trainer:737) INFO: 14epoch:train:10401-10500batch: iter_time=1.702e-04, forward_time=0.104, loss_ctc=50.451, loss_att=46.626, acc=0.728, loss=47.773, backward_time=0.098, grad_norm=35.127, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.404e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:24:15,936 (trainer:737) INFO: 14epoch:train:10501-10600batch: iter_time=1.696e-04, forward_time=0.104, loss_ctc=48.243, loss_att=51.332, acc=0.726, loss=50.405, backward_time=0.098, grad_norm=38.031, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.403e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:24:57,033 (trainer:737) INFO: 14epoch:train:10601-10700batch: iter_time=1.763e-04, forward_time=0.104, loss_ctc=46.739, loss_att=59.573, acc=0.703, loss=55.723, backward_time=0.097, grad_norm=34.042, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.401e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 16:25:37,830 (trainer:737) INFO: 14epoch:train:10701-10800batch: iter_time=1.712e-04, forward_time=0.104, loss_ctc=48.047, loss_att=48.901, acc=0.731, loss=48.645, backward_time=0.097, grad_norm=34.980, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.400e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:26:18,942 (trainer:737) INFO: 14epoch:train:10801-10900batch: iter_time=1.564e-04, forward_time=0.104, loss_ctc=44.964, loss_att=46.745, acc=0.748, loss=46.211, backward_time=0.097, grad_norm=32.939, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.399e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 16:27:00,153 (trainer:737) INFO: 14epoch:train:10901-11000batch: iter_time=1.642e-04, forward_time=0.104, loss_ctc=52.743, loss_att=50.568, acc=0.762, loss=51.220, backward_time=0.097, grad_norm=41.673, clip=100.000, loss_scale=1.558e+34, optim_step_time=0.030, optim0_lr0=5.398e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 16:27:41,199 (trainer:737) INFO: 14epoch:train:11001-11100batch: iter_time=1.888e-04, forward_time=0.104, loss_ctc=46.633, loss_att=48.493, acc=0.728, loss=47.935, backward_time=0.098, grad_norm=32.801, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.396e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:28:22,056 (trainer:737) INFO: 14epoch:train:11101-11200batch: iter_time=1.988e-04, forward_time=0.104, loss_ctc=49.490, loss_att=54.884, acc=0.715, loss=53.266, backward_time=0.098, grad_norm=34.711, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.395e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:28:47,198 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 16:29:07,421 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 16:29:11,234 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 16:29:11,235 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 16:29:11,238 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 16:33:38,036 (trainer:737) INFO: 14epoch:train:11201-11300batch: iter_time=2.607, forward_time=0.104, loss_ctc=43.932, loss_att=58.462, acc=0.724, loss=54.103, backward_time=0.098, grad_norm=30.933, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.394e-04, train_time=3.160 +[gpuc02:0/16] 2024-01-13 16:34:19,080 (trainer:737) INFO: 14epoch:train:11301-11400batch: iter_time=1.262e-04, forward_time=0.105, loss_ctc=55.698, loss_att=66.300, acc=0.703, loss=63.119, backward_time=0.098, grad_norm=40.911, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.392e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:34:59,944 (trainer:737) INFO: 14epoch:train:11401-11500batch: iter_time=1.343e-04, forward_time=0.104, loss_ctc=51.311, loss_att=59.592, acc=0.697, loss=57.107, backward_time=0.097, grad_norm=37.096, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.391e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:35:40,949 (trainer:737) INFO: 14epoch:train:11501-11600batch: iter_time=1.340e-04, forward_time=0.105, loss_ctc=45.290, loss_att=54.279, acc=0.735, loss=51.582, backward_time=0.098, grad_norm=33.243, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.390e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:36:21,925 (trainer:737) INFO: 14epoch:train:11601-11700batch: iter_time=1.690e-04, forward_time=0.103, loss_ctc=45.587, loss_att=41.836, acc=0.741, loss=42.961, backward_time=0.096, grad_norm=31.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.388e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:37:03,014 (trainer:737) INFO: 14epoch:train:11701-11800batch: iter_time=1.628e-04, forward_time=0.104, loss_ctc=53.067, loss_att=52.237, acc=0.705, loss=52.486, backward_time=0.097, grad_norm=38.214, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.387e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 16:37:44,284 (trainer:737) INFO: 14epoch:train:11801-11900batch: iter_time=1.619e-04, forward_time=0.105, loss_ctc=49.925, loss_att=63.465, acc=0.705, loss=59.403, backward_time=0.098, grad_norm=36.056, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.386e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 16:38:25,062 (trainer:737) INFO: 14epoch:train:11901-12000batch: iter_time=1.806e-04, forward_time=0.104, loss_ctc=45.728, loss_att=49.709, acc=0.723, loss=48.515, backward_time=0.097, grad_norm=32.978, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.385e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:39:06,063 (trainer:737) INFO: 14epoch:train:12001-12100batch: iter_time=1.741e-04, forward_time=0.107, loss_ctc=45.350, loss_att=41.579, acc=0.758, loss=42.710, backward_time=0.097, grad_norm=30.866, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.383e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:39:47,289 (trainer:737) INFO: 14epoch:train:12101-12200batch: iter_time=1.352e-04, forward_time=0.105, loss_ctc=44.831, loss_att=49.427, acc=0.758, loss=48.049, backward_time=0.098, grad_norm=32.195, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.382e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 16:40:28,475 (trainer:737) INFO: 14epoch:train:12201-12300batch: iter_time=1.538e-04, forward_time=0.104, loss_ctc=46.949, loss_att=47.277, acc=0.735, loss=47.179, backward_time=0.097, grad_norm=40.537, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.381e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 16:41:09,899 (trainer:737) INFO: 14epoch:train:12301-12400batch: iter_time=1.555e-04, forward_time=0.104, loss_ctc=52.642, loss_att=49.236, acc=0.726, loss=50.258, backward_time=0.098, grad_norm=34.256, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.379e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 16:41:50,992 (trainer:737) INFO: 14epoch:train:12401-12500batch: iter_time=1.392e-04, forward_time=0.104, loss_ctc=44.112, loss_att=55.997, acc=0.717, loss=52.432, backward_time=0.097, grad_norm=32.973, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.378e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 16:41:57,259 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 16:42:16,679 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 16:42:20,411 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 16:42:20,411 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 16:42:20,414 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 16:47:13,580 (trainer:737) INFO: 14epoch:train:12501-12600batch: iter_time=2.598, forward_time=0.107, loss_ctc=51.782, loss_att=66.830, acc=0.721, loss=62.316, backward_time=0.099, grad_norm=35.555, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.377e-04, train_time=3.226 +[gpuc02:0/16] 2024-01-13 16:47:54,527 (trainer:737) INFO: 14epoch:train:12601-12700batch: iter_time=1.919e-04, forward_time=0.105, loss_ctc=55.946, loss_att=60.368, acc=0.699, loss=59.041, backward_time=0.098, grad_norm=38.826, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.375e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:48:35,504 (trainer:737) INFO: 14epoch:train:12701-12800batch: iter_time=1.824e-04, forward_time=0.105, loss_ctc=44.837, loss_att=59.018, acc=0.705, loss=54.764, backward_time=0.098, grad_norm=33.733, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.374e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 16:49:16,661 (trainer:737) INFO: 14epoch:train:12801-12900batch: iter_time=1.633e-04, forward_time=0.105, loss_ctc=43.855, loss_att=46.944, acc=0.734, loss=46.017, backward_time=0.098, grad_norm=30.600, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.373e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 16:49:57,503 (trainer:737) INFO: 14epoch:train:12901-13000batch: iter_time=1.896e-04, forward_time=0.104, loss_ctc=50.030, loss_att=45.430, acc=0.731, loss=46.810, backward_time=0.097, grad_norm=35.612, clip=100.000, loss_scale=3.115e+34, optim_step_time=0.030, optim0_lr0=5.372e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:50:00,332 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 16:50:38,453 (trainer:737) INFO: 14epoch:train:13001-13100batch: iter_time=1.810e-04, forward_time=0.105, loss_ctc=47.947, loss_att=51.120, acc=0.724, loss=50.168, backward_time=0.098, grad_norm=35.540, clip=100.000, loss_scale=2.203e+34, optim_step_time=0.030, optim0_lr0=5.370e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:51:19,369 (trainer:737) INFO: 14epoch:train:13101-13200batch: iter_time=1.555e-04, forward_time=0.105, loss_ctc=46.933, loss_att=58.854, acc=0.710, loss=55.278, backward_time=0.098, grad_norm=34.686, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.369e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:52:00,175 (trainer:737) INFO: 14epoch:train:13201-13300batch: iter_time=1.702e-04, forward_time=0.104, loss_ctc=47.592, loss_att=48.060, acc=0.738, loss=47.920, backward_time=0.098, grad_norm=31.938, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.368e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 16:52:41,052 (trainer:737) INFO: 14epoch:train:13301-13400batch: iter_time=1.596e-04, forward_time=0.105, loss_ctc=44.730, loss_att=45.788, acc=0.749, loss=45.470, backward_time=0.098, grad_norm=31.542, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.366e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:53:21,967 (trainer:737) INFO: 14epoch:train:13401-13500batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=51.625, loss_att=49.151, acc=0.765, loss=49.893, backward_time=0.098, grad_norm=41.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.365e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:54:03,419 (trainer:737) INFO: 14epoch:train:13501-13600batch: iter_time=1.622e-04, forward_time=0.105, loss_ctc=46.695, loss_att=48.881, acc=0.728, loss=48.225, backward_time=0.098, grad_norm=32.378, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.364e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 16:54:44,335 (trainer:737) INFO: 14epoch:train:13601-13700batch: iter_time=1.767e-04, forward_time=0.104, loss_ctc=49.108, loss_att=54.432, acc=0.716, loss=52.834, backward_time=0.098, grad_norm=34.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.363e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 16:55:12,637 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 16:55:32,660 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 16:55:36,485 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 16:55:36,485 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 16:55:36,488 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 17:00:09,191 (trainer:737) INFO: 14epoch:train:13701-13800batch: iter_time=2.768, forward_time=0.105, loss_ctc=43.663, loss_att=61.709, acc=0.711, loss=56.295, backward_time=0.099, grad_norm=33.369, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.361e-04, train_time=3.248 +[gpuc02:0/16] 2024-01-13 17:00:51,105 (trainer:737) INFO: 14epoch:train:13801-13900batch: iter_time=1.869e-04, forward_time=0.105, loss_ctc=55.245, loss_att=66.392, acc=0.698, loss=63.048, backward_time=0.098, grad_norm=39.653, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.360e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 17:01:31,907 (trainer:737) INFO: 14epoch:train:13901-14000batch: iter_time=1.695e-04, forward_time=0.104, loss_ctc=50.047, loss_att=60.609, acc=0.686, loss=57.441, backward_time=0.097, grad_norm=35.474, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.359e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 17:02:12,858 (trainer:737) INFO: 14epoch:train:14001-14100batch: iter_time=1.491e-04, forward_time=0.104, loss_ctc=44.672, loss_att=54.868, acc=0.729, loss=51.809, backward_time=0.098, grad_norm=34.493, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.357e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:02:53,517 (trainer:737) INFO: 14epoch:train:14101-14200batch: iter_time=1.811e-04, forward_time=0.103, loss_ctc=45.727, loss_att=41.617, acc=0.740, loss=42.850, backward_time=0.096, grad_norm=33.898, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.356e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 17:03:34,357 (trainer:737) INFO: 14epoch:train:14201-14300batch: iter_time=1.949e-04, forward_time=0.104, loss_ctc=52.031, loss_att=50.345, acc=0.700, loss=50.851, backward_time=0.097, grad_norm=37.417, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.355e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 17:04:15,296 (trainer:737) INFO: 14epoch:train:14301-14400batch: iter_time=1.974e-04, forward_time=0.105, loss_ctc=49.377, loss_att=63.764, acc=0.694, loss=59.448, backward_time=0.097, grad_norm=38.155, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.354e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:04:56,058 (trainer:737) INFO: 14epoch:train:14401-14500batch: iter_time=2.010e-04, forward_time=0.103, loss_ctc=45.772, loss_att=51.189, acc=0.706, loss=49.564, backward_time=0.096, grad_norm=32.819, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.352e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 17:05:36,822 (trainer:737) INFO: 14epoch:train:14501-14600batch: iter_time=1.767e-04, forward_time=0.103, loss_ctc=44.824, loss_att=42.462, acc=0.750, loss=43.170, backward_time=0.097, grad_norm=31.581, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.351e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 17:06:17,709 (trainer:737) INFO: 14epoch:train:14601-14700batch: iter_time=1.630e-04, forward_time=0.104, loss_ctc=44.072, loss_att=48.365, acc=0.747, loss=47.077, backward_time=0.097, grad_norm=31.345, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.350e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:06:58,374 (trainer:737) INFO: 14epoch:train:14701-14800batch: iter_time=1.794e-04, forward_time=0.102, loss_ctc=47.399, loss_att=48.724, acc=0.726, loss=48.326, backward_time=0.096, grad_norm=42.571, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.348e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 17:07:39,256 (trainer:737) INFO: 14epoch:train:14801-14900batch: iter_time=1.493e-04, forward_time=0.105, loss_ctc=52.181, loss_att=48.102, acc=0.724, loss=49.326, backward_time=0.097, grad_norm=34.571, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.347e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:08:20,629 (trainer:737) INFO: 14epoch:train:14901-15000batch: iter_time=1.442e-04, forward_time=0.103, loss_ctc=43.917, loss_att=56.036, acc=0.713, loss=52.401, backward_time=0.097, grad_norm=32.957, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.346e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 17:28:20,301 (trainer:343) INFO: 14epoch results: [train] iter_time=0.226, forward_time=0.105, loss_ctc=49.078, loss_att=53.681, acc=0.718, loss=52.300, backward_time=0.098, grad_norm=35.270, clip=100.000, loss_scale=1.991e+34, optim_step_time=0.030, optim0_lr0=5.444e-04, train_time=0.653, time=2 hours, 43 minutes and 29.56 seconds, total_count=210000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=57.965, cer_ctc=0.297, loss_att=57.033, acc=0.564, cer=0.368, wer=0.999, loss=57.313, time=19 minutes and 48.66 seconds, total_count=65394, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 17:28:25,385 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-13 17:28:25,438 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/9epoch.pth +[gpuc02:0/16] 2024-01-13 17:28:25,438 (trainer:272) INFO: 15/45epoch started. Estimated time to finish: 3 days, 21 hours and 55.64 seconds +[gpuc02:0/16] 2024-01-13 17:28:25,447 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 17:28:44,389 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 17:28:47,962 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 17:28:47,962 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 17:28:47,965 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 17:33:27,144 (trainer:737) INFO: 15epoch:train:1-100batch: iter_time=2.530, forward_time=0.106, loss_ctc=47.549, loss_att=57.641, acc=0.699, loss=54.613, backward_time=0.099, grad_norm=34.879, clip=100.000, loss_scale=4.008e+34, optim_step_time=0.030, optim0_lr0=5.345e-04, train_time=3.017 +[gpuc02:0/16] 2024-01-13 17:34:07,934 (trainer:737) INFO: 15epoch:train:101-200batch: iter_time=1.247e-04, forward_time=0.102, loss_ctc=49.748, loss_att=45.930, acc=0.718, loss=47.075, backward_time=0.098, grad_norm=39.830, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.343e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 17:34:48,808 (trainer:737) INFO: 15epoch:train:201-300batch: iter_time=1.241e-04, forward_time=0.104, loss_ctc=49.974, loss_att=58.842, acc=0.704, loss=56.181, backward_time=0.099, grad_norm=38.346, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.342e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:35:30,000 (trainer:737) INFO: 15epoch:train:301-400batch: iter_time=1.282e-04, forward_time=0.103, loss_ctc=54.832, loss_att=60.027, acc=0.686, loss=58.469, backward_time=0.098, grad_norm=41.395, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.341e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 17:36:11,040 (trainer:737) INFO: 15epoch:train:401-500batch: iter_time=1.250e-04, forward_time=0.104, loss_ctc=57.504, loss_att=63.895, acc=0.701, loss=61.978, backward_time=0.099, grad_norm=38.305, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.340e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 17:36:54,461 (trainer:737) INFO: 15epoch:train:501-600batch: iter_time=1.273e-04, forward_time=0.112, loss_ctc=49.393, loss_att=51.285, acc=0.726, loss=50.718, backward_time=0.100, grad_norm=35.736, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.338e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-13 17:37:35,535 (trainer:737) INFO: 15epoch:train:601-700batch: iter_time=1.236e-04, forward_time=0.105, loss_ctc=57.821, loss_att=69.241, acc=0.690, loss=65.815, backward_time=0.099, grad_norm=40.698, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.337e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 17:38:16,220 (trainer:737) INFO: 15epoch:train:701-800batch: iter_time=1.327e-04, forward_time=0.104, loss_ctc=53.709, loss_att=53.939, acc=0.709, loss=53.870, backward_time=0.098, grad_norm=40.455, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.336e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 17:38:57,542 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 17:39:01,032 (trainer:737) INFO: 15epoch:train:801-900batch: iter_time=1.338e-04, forward_time=0.104, loss_ctc=50.106, loss_att=47.251, acc=0.762, loss=48.108, backward_time=0.099, grad_norm=34.179, clip=100.000, loss_scale=4.007e+34, optim_step_time=0.030, optim0_lr0=5.334e-04, train_time=0.448 +[gpuc02:0/16] 2024-01-13 17:39:43,263 (trainer:737) INFO: 15epoch:train:901-1000batch: iter_time=1.241e-04, forward_time=0.103, loss_ctc=52.605, loss_att=48.406, acc=0.733, loss=49.666, backward_time=0.098, grad_norm=35.720, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.333e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 17:40:24,965 (trainer:737) INFO: 15epoch:train:1001-1100batch: iter_time=1.327e-04, forward_time=0.107, loss_ctc=48.744, loss_att=58.368, acc=0.703, loss=55.481, backward_time=0.105, grad_norm=34.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.332e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 17:41:14,036 (trainer:737) INFO: 15epoch:train:1101-1200batch: iter_time=1.257e-04, forward_time=0.106, loss_ctc=51.655, loss_att=62.653, acc=0.704, loss=59.354, backward_time=0.103, grad_norm=34.837, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.331e-04, train_time=0.490 +[gpuc02:0/16] 2024-01-13 17:41:46,410 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 17:42:05,616 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 17:42:09,366 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 17:42:09,366 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 17:42:09,369 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 17:47:43,781 (trainer:737) INFO: 15epoch:train:1201-1300batch: iter_time=2.830, forward_time=0.123, loss_ctc=53.304, loss_att=63.957, acc=0.700, loss=60.761, backward_time=0.099, grad_norm=39.083, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.329e-04, train_time=3.897 +[gpuc02:0/16] 2024-01-13 17:48:24,560 (trainer:737) INFO: 15epoch:train:1301-1400batch: iter_time=1.429e-04, forward_time=0.103, loss_ctc=48.903, loss_att=48.896, acc=0.698, loss=48.898, backward_time=0.097, grad_norm=36.449, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.328e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 17:49:05,656 (trainer:737) INFO: 15epoch:train:1401-1500batch: iter_time=1.273e-04, forward_time=0.103, loss_ctc=48.842, loss_att=58.498, acc=0.694, loss=55.601, backward_time=0.098, grad_norm=35.237, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.327e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 17:49:46,325 (trainer:737) INFO: 15epoch:train:1501-1600batch: iter_time=1.305e-04, forward_time=0.103, loss_ctc=51.661, loss_att=55.720, acc=0.692, loss=54.502, backward_time=0.097, grad_norm=43.045, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.326e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 17:50:27,057 (trainer:737) INFO: 15epoch:train:1601-1700batch: iter_time=1.347e-04, forward_time=0.103, loss_ctc=50.300, loss_att=57.860, acc=0.694, loss=55.592, backward_time=0.097, grad_norm=36.911, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.324e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 17:51:08,118 (trainer:737) INFO: 15epoch:train:1701-1800batch: iter_time=1.341e-04, forward_time=0.106, loss_ctc=55.171, loss_att=58.250, acc=0.712, loss=57.326, backward_time=0.098, grad_norm=39.075, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.323e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 17:51:52,129 (trainer:737) INFO: 15epoch:train:1801-1900batch: iter_time=1.090e-04, forward_time=0.114, loss_ctc=53.107, loss_att=56.507, acc=0.707, loss=55.487, backward_time=0.112, grad_norm=36.313, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.322e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-13 17:52:33,046 (trainer:737) INFO: 15epoch:train:1901-2000batch: iter_time=1.246e-04, forward_time=0.105, loss_ctc=51.928, loss_att=61.339, acc=0.694, loss=58.516, backward_time=0.098, grad_norm=35.808, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.321e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:53:14,174 (trainer:737) INFO: 15epoch:train:2001-2100batch: iter_time=1.191e-04, forward_time=0.104, loss_ctc=52.324, loss_att=51.931, acc=0.727, loss=52.049, backward_time=0.098, grad_norm=40.768, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.319e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 17:53:54,968 (trainer:737) INFO: 15epoch:train:2101-2200batch: iter_time=1.193e-04, forward_time=0.104, loss_ctc=45.283, loss_att=38.279, acc=0.760, loss=40.380, backward_time=0.098, grad_norm=29.935, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.318e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 17:54:35,844 (trainer:737) INFO: 15epoch:train:2201-2300batch: iter_time=1.450e-04, forward_time=0.104, loss_ctc=51.414, loss_att=55.346, acc=0.707, loss=54.166, backward_time=0.098, grad_norm=36.762, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.317e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 17:55:19,818 (trainer:737) INFO: 15epoch:train:2301-2400batch: iter_time=1.349e-04, forward_time=0.115, loss_ctc=49.620, loss_att=62.938, acc=0.702, loss=58.943, backward_time=0.101, grad_norm=33.660, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.316e-04, train_time=0.440 +[gpuc02:0/16] 2024-01-13 17:56:04,874 (trainer:737) INFO: 15epoch:train:2401-2500batch: iter_time=1.241e-04, forward_time=0.130, loss_ctc=58.660, loss_att=65.257, acc=0.692, loss=63.278, backward_time=0.101, grad_norm=40.167, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.034, optim0_lr0=5.314e-04, train_time=0.450 +[gpuc02:0/16] 2024-01-13 17:56:37,684 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 17:56:57,003 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 17:57:00,788 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 17:57:00,788 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 17:57:00,792 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 18:04:05,085 (trainer:737) INFO: 15epoch:train:2501-2600batch: iter_time=4.287, forward_time=0.104, loss_ctc=45.676, loss_att=55.914, acc=0.705, loss=52.842, backward_time=0.098, grad_norm=32.787, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.313e-04, train_time=4.802 +[gpuc02:0/16] 2024-01-13 18:04:45,801 (trainer:737) INFO: 15epoch:train:2601-2700batch: iter_time=1.270e-04, forward_time=0.103, loss_ctc=46.446, loss_att=44.065, acc=0.725, loss=44.779, backward_time=0.097, grad_norm=35.156, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.312e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 18:05:26,693 (trainer:737) INFO: 15epoch:train:2701-2800batch: iter_time=1.379e-04, forward_time=0.103, loss_ctc=48.117, loss_att=58.167, acc=0.709, loss=55.152, backward_time=0.099, grad_norm=37.305, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.311e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:06:07,450 (trainer:737) INFO: 15epoch:train:2801-2900batch: iter_time=1.372e-04, forward_time=0.103, loss_ctc=51.420, loss_att=59.329, acc=0.690, loss=56.956, backward_time=0.098, grad_norm=43.174, clip=100.000, loss_scale=2.222e+34, optim_step_time=0.030, optim0_lr0=5.309e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 18:06:48,442 (trainer:737) INFO: 15epoch:train:2901-3000batch: iter_time=1.338e-04, forward_time=0.105, loss_ctc=57.173, loss_att=62.990, acc=0.706, loss=61.245, backward_time=0.099, grad_norm=40.618, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.308e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 18:07:29,516 (trainer:737) INFO: 15epoch:train:3001-3100batch: iter_time=1.667e-04, forward_time=0.104, loss_ctc=48.013, loss_att=50.463, acc=0.730, loss=49.728, backward_time=0.098, grad_norm=33.704, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.307e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 18:08:10,632 (trainer:737) INFO: 15epoch:train:3101-3200batch: iter_time=1.648e-04, forward_time=0.105, loss_ctc=56.014, loss_att=68.424, acc=0.693, loss=64.701, backward_time=0.099, grad_norm=38.390, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.306e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 18:08:51,447 (trainer:737) INFO: 15epoch:train:3201-3300batch: iter_time=1.802e-04, forward_time=0.104, loss_ctc=52.752, loss_att=53.415, acc=0.713, loss=53.216, backward_time=0.098, grad_norm=38.428, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.304e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:09:32,921 (trainer:737) INFO: 15epoch:train:3301-3400batch: iter_time=1.585e-04, forward_time=0.105, loss_ctc=48.702, loss_att=47.493, acc=0.764, loss=47.856, backward_time=0.098, grad_norm=33.035, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.303e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 18:10:13,742 (trainer:737) INFO: 15epoch:train:3401-3500batch: iter_time=1.396e-04, forward_time=0.104, loss_ctc=50.831, loss_att=48.061, acc=0.736, loss=48.892, backward_time=0.098, grad_norm=35.134, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.302e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:10:17,388 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 18:10:54,568 (trainer:737) INFO: 15epoch:train:3501-3600batch: iter_time=1.640e-04, forward_time=0.104, loss_ctc=47.001, loss_att=56.574, acc=0.711, loss=53.702, backward_time=0.098, grad_norm=33.135, clip=100.000, loss_scale=2.245e+34, optim_step_time=0.031, optim0_lr0=5.301e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:11:36,048 (trainer:737) INFO: 15epoch:train:3601-3700batch: iter_time=1.475e-04, forward_time=0.107, loss_ctc=50.136, loss_att=61.587, acc=0.707, loss=58.152, backward_time=0.099, grad_norm=34.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.299e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 18:12:04,244 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 18:12:23,690 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 18:12:27,421 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 18:12:27,421 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 18:12:27,424 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 18:17:17,957 (trainer:737) INFO: 15epoch:train:3701-3800batch: iter_time=2.708, forward_time=0.104, loss_ctc=50.375, loss_att=62.304, acc=0.703, loss=58.725, backward_time=0.098, grad_norm=39.191, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.298e-04, train_time=3.419 +[gpuc02:0/16] 2024-01-13 18:17:58,734 (trainer:737) INFO: 15epoch:train:3801-3900batch: iter_time=1.590e-04, forward_time=0.104, loss_ctc=48.024, loss_att=48.428, acc=0.699, loss=48.307, backward_time=0.097, grad_norm=37.923, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.297e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:18:39,999 (trainer:737) INFO: 15epoch:train:3901-4000batch: iter_time=1.800e-04, forward_time=0.104, loss_ctc=48.053, loss_att=57.747, acc=0.695, loss=54.839, backward_time=0.097, grad_norm=34.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.296e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 18:19:20,874 (trainer:737) INFO: 15epoch:train:4001-4100batch: iter_time=1.973e-04, forward_time=0.103, loss_ctc=51.067, loss_att=55.593, acc=0.695, loss=54.235, backward_time=0.096, grad_norm=41.235, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.294e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:20:02,827 (trainer:737) INFO: 15epoch:train:4101-4200batch: iter_time=2.046e-04, forward_time=0.104, loss_ctc=49.879, loss_att=57.489, acc=0.695, loss=55.206, backward_time=0.097, grad_norm=37.400, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.293e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 18:20:43,744 (trainer:737) INFO: 15epoch:train:4201-4300batch: iter_time=1.998e-04, forward_time=0.104, loss_ctc=54.515, loss_att=58.028, acc=0.714, loss=56.974, backward_time=0.097, grad_norm=34.891, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.292e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:21:24,653 (trainer:737) INFO: 15epoch:train:4301-4400batch: iter_time=1.926e-04, forward_time=0.105, loss_ctc=52.381, loss_att=55.833, acc=0.710, loss=54.797, backward_time=0.097, grad_norm=35.980, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.291e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:22:05,602 (trainer:737) INFO: 15epoch:train:4401-4500batch: iter_time=1.990e-04, forward_time=0.104, loss_ctc=50.834, loss_att=60.437, acc=0.696, loss=57.556, backward_time=0.097, grad_norm=34.607, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.290e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:22:46,641 (trainer:737) INFO: 15epoch:train:4501-4600batch: iter_time=1.974e-04, forward_time=0.105, loss_ctc=51.570, loss_att=51.175, acc=0.731, loss=51.293, backward_time=0.097, grad_norm=39.094, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.288e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 18:23:27,751 (trainer:737) INFO: 15epoch:train:4601-4700batch: iter_time=1.994e-04, forward_time=0.105, loss_ctc=44.859, loss_att=37.839, acc=0.762, loss=39.945, backward_time=0.097, grad_norm=30.098, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.287e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 18:24:08,680 (trainer:737) INFO: 15epoch:train:4701-4800batch: iter_time=1.828e-04, forward_time=0.105, loss_ctc=49.296, loss_att=54.334, acc=0.712, loss=52.823, backward_time=0.098, grad_norm=34.032, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.286e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:24:49,598 (trainer:737) INFO: 15epoch:train:4801-4900batch: iter_time=1.833e-04, forward_time=0.105, loss_ctc=48.448, loss_att=61.855, acc=0.705, loss=57.833, backward_time=0.098, grad_norm=33.453, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.285e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:25:30,447 (trainer:737) INFO: 15epoch:train:4901-5000batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=56.999, loss_att=64.137, acc=0.695, loss=61.996, backward_time=0.098, grad_norm=39.540, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.283e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:25:36,525 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 18:25:56,178 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 18:25:59,903 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 18:25:59,903 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 18:25:59,907 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 18:30:53,717 (trainer:737) INFO: 15epoch:train:5001-5100batch: iter_time=2.640, forward_time=0.114, loss_ctc=45.148, loss_att=53.159, acc=0.690, loss=50.756, backward_time=0.099, grad_norm=35.693, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.282e-04, train_time=3.232 +[gpuc02:0/16] 2024-01-13 18:31:34,407 (trainer:737) INFO: 15epoch:train:5101-5200batch: iter_time=1.302e-04, forward_time=0.103, loss_ctc=45.926, loss_att=42.872, acc=0.716, loss=43.788, backward_time=0.098, grad_norm=36.683, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.281e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 18:32:15,192 (trainer:737) INFO: 15epoch:train:5201-5300batch: iter_time=1.440e-04, forward_time=0.103, loss_ctc=48.098, loss_att=57.458, acc=0.698, loss=54.650, backward_time=0.097, grad_norm=35.514, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.280e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:32:55,803 (trainer:737) INFO: 15epoch:train:5301-5400batch: iter_time=1.822e-04, forward_time=0.104, loss_ctc=50.323, loss_att=58.797, acc=0.689, loss=56.255, backward_time=0.097, grad_norm=48.967, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.278e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 18:33:36,666 (trainer:737) INFO: 15epoch:train:5401-5500batch: iter_time=1.482e-04, forward_time=0.105, loss_ctc=56.366, loss_att=62.061, acc=0.695, loss=60.352, backward_time=0.098, grad_norm=38.392, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.277e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:34:17,693 (trainer:737) INFO: 15epoch:train:5501-5600batch: iter_time=1.272e-04, forward_time=0.104, loss_ctc=47.406, loss_att=48.973, acc=0.732, loss=48.503, backward_time=0.097, grad_norm=36.834, clip=100.000, loss_scale=3.967e+34, optim_step_time=0.030, optim0_lr0=5.276e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 18:34:58,854 (trainer:737) INFO: 15epoch:train:5601-5700batch: iter_time=1.451e-04, forward_time=0.104, loss_ctc=54.494, loss_att=64.683, acc=0.690, loss=61.626, backward_time=0.097, grad_norm=38.807, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.275e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 18:35:40,222 (trainer:737) INFO: 15epoch:train:5701-5800batch: iter_time=1.247e-04, forward_time=0.104, loss_ctc=52.265, loss_att=51.875, acc=0.707, loss=51.992, backward_time=0.097, grad_norm=39.392, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.274e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 18:36:21,597 (trainer:737) INFO: 15epoch:train:5801-5900batch: iter_time=1.301e-04, forward_time=0.104, loss_ctc=48.083, loss_att=44.398, acc=0.767, loss=45.504, backward_time=0.097, grad_norm=33.303, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.272e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 18:36:32,536 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 18:37:02,787 (trainer:737) INFO: 15epoch:train:5901-6000batch: iter_time=1.262e-04, forward_time=0.103, loss_ctc=49.846, loss_att=48.150, acc=0.727, loss=48.659, backward_time=0.097, grad_norm=35.722, clip=100.000, loss_scale=2.622e+34, optim_step_time=0.030, optim0_lr0=5.271e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 18:37:43,711 (trainer:737) INFO: 15epoch:train:6001-6100batch: iter_time=1.312e-04, forward_time=0.104, loss_ctc=46.344, loss_att=56.537, acc=0.706, loss=53.479, backward_time=0.097, grad_norm=32.053, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.270e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:38:24,607 (trainer:737) INFO: 15epoch:train:6101-6200batch: iter_time=1.379e-04, forward_time=0.104, loss_ctc=49.747, loss_att=60.705, acc=0.702, loss=57.418, backward_time=0.097, grad_norm=33.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.269e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:38:52,837 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 18:39:12,009 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 18:39:15,714 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 18:39:15,714 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 18:39:15,717 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 18:43:43,176 (trainer:737) INFO: 15epoch:train:6201-6300batch: iter_time=2.764, forward_time=0.104, loss_ctc=49.082, loss_att=59.333, acc=0.707, loss=56.258, backward_time=0.097, grad_norm=36.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.267e-04, train_time=3.185 +[gpuc02:0/16] 2024-01-13 18:44:24,117 (trainer:737) INFO: 15epoch:train:6301-6400batch: iter_time=1.341e-04, forward_time=0.103, loss_ctc=46.925, loss_att=46.690, acc=0.703, loss=46.761, backward_time=0.097, grad_norm=35.010, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.266e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:45:05,009 (trainer:737) INFO: 15epoch:train:6401-6500batch: iter_time=1.265e-04, forward_time=0.104, loss_ctc=47.103, loss_att=55.672, acc=0.698, loss=53.102, backward_time=0.098, grad_norm=35.478, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.265e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:45:35,926 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 18:45:45,675 (trainer:737) INFO: 15epoch:train:6501-6600batch: iter_time=1.455e-04, forward_time=0.104, loss_ctc=50.177, loss_att=54.393, acc=0.694, loss=53.128, backward_time=0.097, grad_norm=37.059, clip=100.000, loss_scale=1.825e+34, optim_step_time=0.030, optim0_lr0=5.264e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 18:46:26,430 (trainer:737) INFO: 15epoch:train:6601-6700batch: iter_time=1.553e-04, forward_time=0.104, loss_ctc=48.976, loss_att=56.658, acc=0.695, loss=54.354, backward_time=0.098, grad_norm=36.665, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.263e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 18:47:07,313 (trainer:737) INFO: 15epoch:train:6701-6800batch: iter_time=1.408e-04, forward_time=0.104, loss_ctc=54.195, loss_att=57.714, acc=0.713, loss=56.658, backward_time=0.098, grad_norm=37.865, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.261e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:47:48,177 (trainer:737) INFO: 15epoch:train:6801-6900batch: iter_time=1.758e-04, forward_time=0.105, loss_ctc=51.606, loss_att=54.921, acc=0.712, loss=53.927, backward_time=0.098, grad_norm=35.258, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.260e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:48:29,337 (trainer:737) INFO: 15epoch:train:6901-7000batch: iter_time=1.512e-04, forward_time=0.106, loss_ctc=50.353, loss_att=59.146, acc=0.700, loss=56.508, backward_time=0.098, grad_norm=35.470, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.259e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 18:49:10,169 (trainer:737) INFO: 15epoch:train:7001-7100batch: iter_time=1.590e-04, forward_time=0.105, loss_ctc=51.619, loss_att=50.576, acc=0.733, loss=50.889, backward_time=0.098, grad_norm=38.211, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.258e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:49:50,946 (trainer:737) INFO: 15epoch:train:7101-7200batch: iter_time=1.548e-04, forward_time=0.105, loss_ctc=44.259, loss_att=37.193, acc=0.765, loss=39.313, backward_time=0.097, grad_norm=29.989, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.257e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:50:32,126 (trainer:737) INFO: 15epoch:train:7201-7300batch: iter_time=1.448e-04, forward_time=0.108, loss_ctc=48.580, loss_att=54.821, acc=0.710, loss=52.949, backward_time=0.098, grad_norm=33.859, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.255e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 18:51:13,072 (trainer:737) INFO: 15epoch:train:7301-7400batch: iter_time=1.658e-04, forward_time=0.105, loss_ctc=48.789, loss_att=60.740, acc=0.709, loss=57.155, backward_time=0.098, grad_norm=33.058, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.254e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 18:51:54,254 (trainer:737) INFO: 15epoch:train:7401-7500batch: iter_time=1.463e-04, forward_time=0.105, loss_ctc=55.581, loss_att=63.495, acc=0.697, loss=61.121, backward_time=0.098, grad_norm=39.060, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.253e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 18:52:01,058 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 18:52:20,160 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 18:52:23,907 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 18:52:23,907 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 18:52:23,910 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 18:57:13,091 (trainer:737) INFO: 15epoch:train:7501-7600batch: iter_time=2.581, forward_time=0.105, loss_ctc=44.560, loss_att=56.886, acc=0.706, loss=53.188, backward_time=0.098, grad_norm=35.041, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.252e-04, train_time=3.188 +[gpuc02:0/16] 2024-01-13 18:57:53,950 (trainer:737) INFO: 15epoch:train:7601-7700batch: iter_time=1.521e-04, forward_time=0.103, loss_ctc=45.841, loss_att=44.314, acc=0.725, loss=44.772, backward_time=0.097, grad_norm=34.030, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.251e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:58:35,205 (trainer:737) INFO: 15epoch:train:7701-7800batch: iter_time=1.313e-04, forward_time=0.104, loss_ctc=46.959, loss_att=58.268, acc=0.711, loss=54.875, backward_time=0.099, grad_norm=35.859, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.249e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 18:59:16,039 (trainer:737) INFO: 15epoch:train:7801-7900batch: iter_time=1.389e-04, forward_time=0.103, loss_ctc=49.370, loss_att=58.253, acc=0.694, loss=55.588, backward_time=0.098, grad_norm=40.903, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.248e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 18:59:57,313 (trainer:737) INFO: 15epoch:train:7901-8000batch: iter_time=1.495e-04, forward_time=0.104, loss_ctc=55.651, loss_att=62.619, acc=0.708, loss=60.529, backward_time=0.098, grad_norm=37.407, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.247e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 19:00:38,220 (trainer:737) INFO: 15epoch:train:8001-8100batch: iter_time=1.509e-04, forward_time=0.104, loss_ctc=46.692, loss_att=49.893, acc=0.732, loss=48.933, backward_time=0.098, grad_norm=33.990, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.030, optim0_lr0=5.246e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:01:19,574 (trainer:737) INFO: 15epoch:train:8101-8200batch: iter_time=1.324e-04, forward_time=0.105, loss_ctc=54.294, loss_att=68.174, acc=0.696, loss=64.010, backward_time=0.099, grad_norm=37.626, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.031, optim0_lr0=5.245e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 19:02:00,932 (trainer:737) INFO: 15epoch:train:8201-8300batch: iter_time=1.712e-04, forward_time=0.103, loss_ctc=51.623, loss_att=53.397, acc=0.715, loss=52.865, backward_time=0.098, grad_norm=37.757, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.031, optim0_lr0=5.243e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 19:02:41,947 (trainer:737) INFO: 15epoch:train:8301-8400batch: iter_time=1.482e-04, forward_time=0.105, loss_ctc=47.492, loss_att=46.305, acc=0.767, loss=46.661, backward_time=0.099, grad_norm=32.350, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.031, optim0_lr0=5.242e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:03:22,806 (trainer:737) INFO: 15epoch:train:8401-8500batch: iter_time=1.596e-04, forward_time=0.104, loss_ctc=49.175, loss_att=47.771, acc=0.738, loss=48.192, backward_time=0.098, grad_norm=34.620, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.031, optim0_lr0=5.241e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:04:03,715 (trainer:737) INFO: 15epoch:train:8501-8600batch: iter_time=1.697e-04, forward_time=0.103, loss_ctc=46.350, loss_att=56.681, acc=0.712, loss=53.582, backward_time=0.098, grad_norm=34.064, clip=100.000, loss_scale=1.288e+34, optim_step_time=0.030, optim0_lr0=5.240e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:04:44,697 (trainer:737) INFO: 15epoch:train:8601-8700batch: iter_time=1.948e-04, forward_time=0.104, loss_ctc=48.890, loss_att=61.419, acc=0.711, loss=57.661, backward_time=0.098, grad_norm=34.337, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.239e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:05:11,156 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 19:05:30,356 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 19:05:34,084 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 19:05:34,084 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 19:05:34,088 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 19:10:02,226 (trainer:737) INFO: 15epoch:train:8701-8800batch: iter_time=2.687, forward_time=0.106, loss_ctc=48.901, loss_att=58.928, acc=0.724, loss=55.920, backward_time=0.098, grad_norm=37.291, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.237e-04, train_time=3.175 +[gpuc02:0/16] 2024-01-13 19:10:43,528 (trainer:737) INFO: 15epoch:train:8801-8900batch: iter_time=1.863e-04, forward_time=0.103, loss_ctc=46.755, loss_att=46.871, acc=0.710, loss=46.836, backward_time=0.097, grad_norm=35.130, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.236e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 19:11:24,702 (trainer:737) INFO: 15epoch:train:8901-9000batch: iter_time=1.888e-04, forward_time=0.104, loss_ctc=47.221, loss_att=56.491, acc=0.713, loss=53.710, backward_time=0.098, grad_norm=33.921, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.235e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 19:12:06,697 (trainer:737) INFO: 15epoch:train:9001-9100batch: iter_time=1.206e-04, forward_time=0.103, loss_ctc=50.215, loss_att=55.204, acc=0.701, loss=53.707, backward_time=0.098, grad_norm=40.479, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.234e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-13 19:12:48,713 (trainer:737) INFO: 15epoch:train:9101-9200batch: iter_time=1.057e-04, forward_time=0.104, loss_ctc=49.966, loss_att=57.832, acc=0.704, loss=55.473, backward_time=0.098, grad_norm=38.057, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.233e-04, train_time=0.420 +[gpuc02:0/16] 2024-01-13 19:13:29,756 (trainer:737) INFO: 15epoch:train:9201-9300batch: iter_time=1.380e-04, forward_time=0.104, loss_ctc=53.581, loss_att=58.054, acc=0.721, loss=56.712, backward_time=0.099, grad_norm=38.106, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.231e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:14:10,735 (trainer:737) INFO: 15epoch:train:9301-9400batch: iter_time=1.843e-04, forward_time=0.104, loss_ctc=51.748, loss_att=58.311, acc=0.711, loss=56.342, backward_time=0.098, grad_norm=35.672, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.230e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:14:51,760 (trainer:737) INFO: 15epoch:train:9401-9500batch: iter_time=1.364e-04, forward_time=0.104, loss_ctc=50.163, loss_att=59.350, acc=0.712, loss=56.594, backward_time=0.099, grad_norm=32.561, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.229e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:15:32,720 (trainer:737) INFO: 15epoch:train:9501-9600batch: iter_time=2.032e-04, forward_time=0.104, loss_ctc=50.371, loss_att=51.346, acc=0.740, loss=51.054, backward_time=0.097, grad_norm=38.549, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.228e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:16:13,640 (trainer:737) INFO: 15epoch:train:9601-9700batch: iter_time=1.720e-04, forward_time=0.104, loss_ctc=44.407, loss_att=38.446, acc=0.768, loss=40.234, backward_time=0.098, grad_norm=31.166, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.227e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:16:54,564 (trainer:737) INFO: 15epoch:train:9701-9800batch: iter_time=1.841e-04, forward_time=0.104, loss_ctc=48.469, loss_att=54.006, acc=0.720, loss=52.345, backward_time=0.098, grad_norm=34.944, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.225e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:17:36,785 (trainer:737) INFO: 15epoch:train:9801-9900batch: iter_time=1.735e-04, forward_time=0.105, loss_ctc=48.431, loss_att=61.980, acc=0.715, loss=57.915, backward_time=0.098, grad_norm=32.847, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.224e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 19:18:17,773 (trainer:737) INFO: 15epoch:train:9901-10000batch: iter_time=1.766e-04, forward_time=0.104, loss_ctc=55.637, loss_att=64.454, acc=0.704, loss=61.809, backward_time=0.098, grad_norm=39.391, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.223e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:18:23,874 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 19:18:43,016 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 19:18:46,791 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 19:18:46,791 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 19:18:46,795 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 19:23:41,825 (trainer:737) INFO: 15epoch:train:10001-10100batch: iter_time=2.821, forward_time=0.104, loss_ctc=44.967, loss_att=51.719, acc=0.712, loss=49.693, backward_time=0.097, grad_norm=34.372, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.222e-04, train_time=3.240 +[gpuc02:0/16] 2024-01-13 19:24:22,483 (trainer:737) INFO: 15epoch:train:10101-10200batch: iter_time=1.392e-04, forward_time=0.104, loss_ctc=45.356, loss_att=42.662, acc=0.730, loss=43.471, backward_time=0.097, grad_norm=36.269, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.221e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 19:25:03,600 (trainer:737) INFO: 15epoch:train:10201-10300batch: iter_time=1.664e-04, forward_time=0.103, loss_ctc=47.167, loss_att=56.414, acc=0.713, loss=53.640, backward_time=0.098, grad_norm=35.785, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.219e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 19:25:44,326 (trainer:737) INFO: 15epoch:train:10301-10400batch: iter_time=1.808e-04, forward_time=0.103, loss_ctc=48.729, loss_att=58.091, acc=0.695, loss=55.283, backward_time=0.097, grad_norm=39.402, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.218e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 19:26:25,639 (trainer:737) INFO: 15epoch:train:10401-10500batch: iter_time=1.402e-04, forward_time=0.104, loss_ctc=56.256, loss_att=61.455, acc=0.711, loss=59.895, backward_time=0.099, grad_norm=40.071, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.217e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 19:27:06,439 (trainer:737) INFO: 15epoch:train:10501-10600batch: iter_time=1.216e-04, forward_time=0.104, loss_ctc=46.437, loss_att=48.524, acc=0.735, loss=47.898, backward_time=0.098, grad_norm=34.980, clip=100.000, loss_scale=2.575e+34, optim_step_time=0.030, optim0_lr0=5.216e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:27:47,504 (trainer:737) INFO: 15epoch:train:10601-10700batch: iter_time=1.140e-04, forward_time=0.105, loss_ctc=53.975, loss_att=67.258, acc=0.697, loss=63.273, backward_time=0.099, grad_norm=39.083, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.215e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:28:11,572 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 19:28:28,290 (trainer:737) INFO: 15epoch:train:10701-10800batch: iter_time=1.185e-04, forward_time=0.104, loss_ctc=51.273, loss_att=52.794, acc=0.717, loss=52.338, backward_time=0.098, grad_norm=36.713, clip=100.000, loss_scale=3.294e+34, optim_step_time=0.030, optim0_lr0=5.214e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:29:09,580 (trainer:737) INFO: 15epoch:train:10801-10900batch: iter_time=1.313e-04, forward_time=0.104, loss_ctc=47.106, loss_att=46.014, acc=0.768, loss=46.342, backward_time=0.098, grad_norm=31.992, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.212e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 19:29:51,339 (trainer:737) INFO: 15epoch:train:10901-11000batch: iter_time=1.206e-04, forward_time=0.104, loss_ctc=48.559, loss_att=47.190, acc=0.740, loss=47.600, backward_time=0.098, grad_norm=34.262, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.211e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 19:30:32,818 (trainer:737) INFO: 15epoch:train:11001-11100batch: iter_time=1.207e-04, forward_time=0.104, loss_ctc=45.779, loss_att=55.920, acc=0.715, loss=52.878, backward_time=0.099, grad_norm=33.416, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.210e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 19:31:13,870 (trainer:737) INFO: 15epoch:train:11101-11200batch: iter_time=1.261e-04, forward_time=0.105, loss_ctc=48.917, loss_att=60.435, acc=0.712, loss=56.979, backward_time=0.098, grad_norm=34.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.209e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:31:43,895 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 19:32:03,971 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 19:32:08,148 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 19:32:08,148 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 19:32:08,151 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 19:36:42,250 (trainer:737) INFO: 15epoch:train:11201-11300batch: iter_time=2.873, forward_time=0.105, loss_ctc=48.934, loss_att=63.220, acc=0.703, loss=58.934, backward_time=0.098, grad_norm=36.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.208e-04, train_time=3.284 +[gpuc02:0/16] 2024-01-13 19:37:22,996 (trainer:737) INFO: 15epoch:train:11301-11400batch: iter_time=2.046e-04, forward_time=0.104, loss_ctc=46.784, loss_att=48.275, acc=0.701, loss=47.828, backward_time=0.097, grad_norm=37.735, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.206e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 19:38:03,811 (trainer:737) INFO: 15epoch:train:11401-11500batch: iter_time=2.027e-04, forward_time=0.103, loss_ctc=46.484, loss_att=58.116, acc=0.696, loss=54.627, backward_time=0.098, grad_norm=35.947, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.205e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:38:44,489 (trainer:737) INFO: 15epoch:train:11501-11600batch: iter_time=2.183e-04, forward_time=0.102, loss_ctc=49.145, loss_att=54.683, acc=0.697, loss=53.021, backward_time=0.096, grad_norm=41.440, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.204e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 19:39:25,865 (trainer:737) INFO: 15epoch:train:11601-11700batch: iter_time=1.852e-04, forward_time=0.103, loss_ctc=49.152, loss_att=57.096, acc=0.699, loss=54.713, backward_time=0.097, grad_norm=38.086, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.203e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 19:40:06,862 (trainer:737) INFO: 15epoch:train:11701-11800batch: iter_time=1.438e-04, forward_time=0.104, loss_ctc=53.933, loss_att=57.453, acc=0.716, loss=56.397, backward_time=0.098, grad_norm=36.865, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.202e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:40:48,073 (trainer:737) INFO: 15epoch:train:11801-11900batch: iter_time=1.379e-04, forward_time=0.104, loss_ctc=50.989, loss_att=55.327, acc=0.713, loss=54.026, backward_time=0.098, grad_norm=36.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.201e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 19:41:28,976 (trainer:737) INFO: 15epoch:train:11901-12000batch: iter_time=1.987e-04, forward_time=0.104, loss_ctc=49.471, loss_att=58.899, acc=0.702, loss=56.071, backward_time=0.098, grad_norm=33.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.199e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:42:09,938 (trainer:737) INFO: 15epoch:train:12001-12100batch: iter_time=1.378e-04, forward_time=0.104, loss_ctc=50.258, loss_att=50.598, acc=0.733, loss=50.496, backward_time=0.098, grad_norm=37.666, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.198e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:42:50,770 (trainer:737) INFO: 15epoch:train:12101-12200batch: iter_time=1.365e-04, forward_time=0.104, loss_ctc=43.346, loss_att=36.855, acc=0.766, loss=38.802, backward_time=0.097, grad_norm=29.515, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.197e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:43:31,673 (trainer:737) INFO: 15epoch:train:12201-12300batch: iter_time=1.471e-04, forward_time=0.104, loss_ctc=48.068, loss_att=53.774, acc=0.715, loss=52.062, backward_time=0.098, grad_norm=36.255, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.196e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:44:12,600 (trainer:737) INFO: 15epoch:train:12301-12400batch: iter_time=1.171e-04, forward_time=0.104, loss_ctc=48.027, loss_att=61.372, acc=0.708, loss=57.369, backward_time=0.098, grad_norm=35.259, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.195e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:44:53,484 (trainer:737) INFO: 15epoch:train:12401-12500batch: iter_time=1.137e-04, forward_time=0.105, loss_ctc=55.401, loss_att=63.755, acc=0.697, loss=61.249, backward_time=0.097, grad_norm=42.865, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.194e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:44:59,671 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 19:45:19,467 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 19:45:23,143 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 19:45:23,143 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 19:45:23,147 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 19:50:16,140 (trainer:737) INFO: 15epoch:train:12501-12600batch: iter_time=2.684, forward_time=0.114, loss_ctc=44.225, loss_att=52.539, acc=0.693, loss=50.045, backward_time=0.100, grad_norm=33.058, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.192e-04, train_time=3.226 +[gpuc02:0/16] 2024-01-13 19:50:57,404 (trainer:737) INFO: 15epoch:train:12601-12700batch: iter_time=1.981e-04, forward_time=0.104, loss_ctc=44.650, loss_att=42.322, acc=0.720, loss=43.021, backward_time=0.097, grad_norm=34.902, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.191e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 19:51:38,189 (trainer:737) INFO: 15epoch:train:12701-12800batch: iter_time=1.742e-04, forward_time=0.104, loss_ctc=47.123, loss_att=57.370, acc=0.700, loss=54.296, backward_time=0.097, grad_norm=36.686, clip=100.000, loss_scale=2.928e+34, optim_step_time=0.030, optim0_lr0=5.190e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:52:19,131 (trainer:737) INFO: 15epoch:train:12801-12900batch: iter_time=2.005e-04, forward_time=0.103, loss_ctc=48.590, loss_att=58.077, acc=0.694, loss=55.231, backward_time=0.096, grad_norm=39.586, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.189e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:53:00,634 (trainer:737) INFO: 15epoch:train:12901-13000batch: iter_time=1.560e-04, forward_time=0.107, loss_ctc=55.668, loss_att=61.830, acc=0.698, loss=59.981, backward_time=0.098, grad_norm=39.612, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.188e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 19:53:41,477 (trainer:737) INFO: 15epoch:train:13001-13100batch: iter_time=1.489e-04, forward_time=0.104, loss_ctc=46.029, loss_att=48.255, acc=0.736, loss=47.587, backward_time=0.098, grad_norm=34.378, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.187e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:54:22,503 (trainer:737) INFO: 15epoch:train:13101-13200batch: iter_time=1.333e-04, forward_time=0.105, loss_ctc=54.110, loss_att=64.027, acc=0.692, loss=61.052, backward_time=0.099, grad_norm=38.955, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.185e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:55:03,485 (trainer:737) INFO: 15epoch:train:13201-13300batch: iter_time=1.370e-04, forward_time=0.104, loss_ctc=51.043, loss_att=50.814, acc=0.711, loss=50.883, backward_time=0.099, grad_norm=38.214, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.184e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 19:55:44,608 (trainer:737) INFO: 15epoch:train:13301-13400batch: iter_time=1.387e-04, forward_time=0.106, loss_ctc=47.144, loss_att=44.133, acc=0.770, loss=45.037, backward_time=0.099, grad_norm=32.596, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.183e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 19:56:25,532 (trainer:737) INFO: 15epoch:train:13401-13500batch: iter_time=1.379e-04, forward_time=0.104, loss_ctc=48.364, loss_att=47.762, acc=0.730, loss=47.943, backward_time=0.098, grad_norm=34.468, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.182e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 19:57:06,376 (trainer:737) INFO: 15epoch:train:13501-13600batch: iter_time=1.411e-04, forward_time=0.104, loss_ctc=45.701, loss_att=55.909, acc=0.707, loss=52.847, backward_time=0.098, grad_norm=32.732, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.181e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 19:57:47,572 (trainer:737) INFO: 15epoch:train:13601-13700batch: iter_time=1.489e-04, forward_time=0.104, loss_ctc=48.443, loss_att=59.773, acc=0.704, loss=56.374, backward_time=0.098, grad_norm=33.395, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.180e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 19:58:13,352 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 19:58:32,703 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 19:58:36,577 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 19:58:36,577 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 19:58:36,580 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 20:03:08,785 (trainer:737) INFO: 15epoch:train:13701-13800batch: iter_time=2.733, forward_time=0.104, loss_ctc=48.828, loss_att=61.917, acc=0.717, loss=57.991, backward_time=0.098, grad_norm=38.523, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.178e-04, train_time=3.212 +[gpuc02:0/16] 2024-01-13 20:03:49,689 (trainer:737) INFO: 15epoch:train:13801-13900batch: iter_time=1.793e-04, forward_time=0.104, loss_ctc=46.033, loss_att=47.661, acc=0.711, loss=47.173, backward_time=0.097, grad_norm=37.400, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.177e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 20:04:30,722 (trainer:737) INFO: 15epoch:train:13901-14000batch: iter_time=1.703e-04, forward_time=0.104, loss_ctc=47.014, loss_att=57.682, acc=0.712, loss=54.482, backward_time=0.098, grad_norm=35.992, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.176e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:05:11,440 (trainer:737) INFO: 15epoch:train:14001-14100batch: iter_time=1.852e-04, forward_time=0.103, loss_ctc=48.268, loss_att=53.718, acc=0.703, loss=52.083, backward_time=0.096, grad_norm=42.203, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.175e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 20:05:52,293 (trainer:737) INFO: 15epoch:train:14101-14200batch: iter_time=1.765e-04, forward_time=0.103, loss_ctc=48.483, loss_att=57.220, acc=0.707, loss=54.599, backward_time=0.097, grad_norm=38.278, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.174e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 20:06:33,485 (trainer:737) INFO: 15epoch:train:14201-14300batch: iter_time=1.658e-04, forward_time=0.104, loss_ctc=52.881, loss_att=58.449, acc=0.721, loss=56.779, backward_time=0.098, grad_norm=37.344, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.173e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 20:07:14,480 (trainer:737) INFO: 15epoch:train:14301-14400batch: iter_time=1.483e-04, forward_time=0.104, loss_ctc=51.020, loss_att=58.067, acc=0.712, loss=55.953, backward_time=0.098, grad_norm=35.830, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.172e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:07:55,488 (trainer:737) INFO: 15epoch:train:14401-14500batch: iter_time=1.738e-04, forward_time=0.104, loss_ctc=49.447, loss_att=58.736, acc=0.714, loss=55.949, backward_time=0.099, grad_norm=35.395, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.170e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:08:36,433 (trainer:737) INFO: 15epoch:train:14501-14600batch: iter_time=1.565e-04, forward_time=0.104, loss_ctc=49.317, loss_att=50.900, acc=0.742, loss=50.425, backward_time=0.098, grad_norm=37.578, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.169e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 20:09:17,350 (trainer:737) INFO: 15epoch:train:14601-14700batch: iter_time=1.607e-04, forward_time=0.104, loss_ctc=43.836, loss_att=38.278, acc=0.770, loss=39.946, backward_time=0.098, grad_norm=29.830, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.168e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 20:09:58,536 (trainer:737) INFO: 15epoch:train:14701-14800batch: iter_time=1.644e-04, forward_time=0.104, loss_ctc=47.272, loss_att=53.616, acc=0.724, loss=51.713, backward_time=0.098, grad_norm=33.981, clip=100.000, loss_scale=5.857e+34, optim_step_time=0.030, optim0_lr0=5.167e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 20:10:37,485 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 20:10:39,552 (trainer:737) INFO: 15epoch:train:14801-14900batch: iter_time=1.494e-04, forward_time=0.104, loss_ctc=47.764, loss_att=62.153, acc=0.715, loss=57.836, backward_time=0.099, grad_norm=32.509, clip=100.000, loss_scale=8.098e+34, optim_step_time=0.030, optim0_lr0=5.166e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:11:20,536 (trainer:737) INFO: 15epoch:train:14901-15000batch: iter_time=1.607e-04, forward_time=0.104, loss_ctc=54.885, loss_att=63.480, acc=0.705, loss=60.902, backward_time=0.098, grad_norm=38.927, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.165e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:31:19,551 (trainer:343) INFO: 15epoch results: [train] iter_time=0.228, forward_time=0.105, loss_ctc=49.783, loss_att=55.219, acc=0.713, loss=53.588, backward_time=0.098, grad_norm=36.374, clip=100.000, loss_scale=2.577e+34, optim_step_time=0.030, optim0_lr0=5.253e-04, train_time=0.651, time=2 hours, 43 minutes and 6.59 seconds, total_count=225000, gpu_max_cached_mem_GB=26.045, [valid] loss_ctc=54.366, cer_ctc=0.290, loss_att=56.824, acc=0.569, cer=0.349, wer=1.000, loss=56.087, time=19 minutes and 47.31 seconds, total_count=70065, gpu_max_cached_mem_GB=26.045 +[gpuc02:0/16] 2024-01-13 20:31:24,647 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc02:0/16] 2024-01-13 20:31:24,652 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/10epoch.pth +[gpuc02:0/16] 2024-01-13 20:31:24,652 (trainer:272) INFO: 16/45epoch started. Estimated time to finish: 3 days, 18 hours and 6 minutes +[gpuc02:0/16] 2024-01-13 20:31:24,662 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc02:0/16] 2024-01-13 20:31:43,557 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 20:31:47,112 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 20:31:47,112 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc02:0/16] 2024-01-13 20:31:47,115 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 20:36:45,779 (trainer:737) INFO: 16epoch:train:1-100batch: iter_time=2.721, forward_time=0.148, loss_ctc=45.553, loss_att=50.026, acc=0.718, loss=48.684, backward_time=0.110, grad_norm=33.183, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.164e-04, train_time=3.211 +[gpuc02:0/16] 2024-01-13 20:37:26,552 (trainer:737) INFO: 16epoch:train:101-200batch: iter_time=1.218e-04, forward_time=0.103, loss_ctc=54.074, loss_att=60.226, acc=0.700, loss=58.380, backward_time=0.098, grad_norm=49.584, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.162e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 20:38:07,712 (trainer:737) INFO: 16epoch:train:201-300batch: iter_time=1.190e-04, forward_time=0.104, loss_ctc=55.750, loss_att=59.329, acc=0.699, loss=58.256, backward_time=0.098, grad_norm=46.234, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.161e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 20:38:48,414 (trainer:737) INFO: 16epoch:train:301-400batch: iter_time=1.326e-04, forward_time=0.103, loss_ctc=44.825, loss_att=56.523, acc=0.713, loss=53.014, backward_time=0.099, grad_norm=33.769, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.031, optim0_lr0=5.160e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 20:39:33,980 (trainer:737) INFO: 16epoch:train:401-500batch: iter_time=1.277e-04, forward_time=0.123, loss_ctc=52.113, loss_att=59.987, acc=0.725, loss=57.625, backward_time=0.103, grad_norm=37.675, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.033, optim0_lr0=5.159e-04, train_time=0.455 +[gpuc02:0/16] 2024-01-13 20:40:15,536 (trainer:737) INFO: 16epoch:train:501-600batch: iter_time=1.286e-04, forward_time=0.112, loss_ctc=43.051, loss_att=51.486, acc=0.728, loss=48.956, backward_time=0.098, grad_norm=33.658, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.158e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 20:40:56,627 (trainer:737) INFO: 16epoch:train:601-700batch: iter_time=1.288e-04, forward_time=0.104, loss_ctc=50.923, loss_att=57.415, acc=0.730, loss=55.468, backward_time=0.100, grad_norm=36.884, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.157e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 20:41:38,347 (trainer:737) INFO: 16epoch:train:701-800batch: iter_time=1.393e-04, forward_time=0.103, loss_ctc=47.222, loss_att=49.292, acc=0.717, loss=48.671, backward_time=0.098, grad_norm=36.409, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.156e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 20:42:21,752 (trainer:737) INFO: 16epoch:train:801-900batch: iter_time=1.353e-04, forward_time=0.104, loss_ctc=43.738, loss_att=49.039, acc=0.712, loss=47.448, backward_time=0.101, grad_norm=33.896, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.154e-04, train_time=0.434 +[gpuc02:0/16] 2024-01-13 20:43:04,660 (trainer:737) INFO: 16epoch:train:901-1000batch: iter_time=1.236e-04, forward_time=0.102, loss_ctc=42.860, loss_att=48.893, acc=0.710, loss=47.083, backward_time=0.098, grad_norm=35.601, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.153e-04, train_time=0.429 +[gpuc02:0/16] 2024-01-13 20:43:47,006 (trainer:737) INFO: 16epoch:train:1001-1100batch: iter_time=1.136e-04, forward_time=0.107, loss_ctc=46.051, loss_att=48.255, acc=0.732, loss=47.594, backward_time=0.099, grad_norm=34.919, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.152e-04, train_time=0.423 +[gpuc02:0/16] 2024-01-13 20:44:29,253 (trainer:737) INFO: 16epoch:train:1101-1200batch: iter_time=1.013e-04, forward_time=0.104, loss_ctc=51.244, loss_att=52.682, acc=0.722, loss=52.251, backward_time=0.098, grad_norm=35.988, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.151e-04, train_time=0.422 +[gpuc02:0/16] 2024-01-13 20:45:19,973 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc02:0/16] 2024-01-13 20:45:39,287 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 20:45:43,042 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 20:45:43,042 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc02:0/16] 2024-01-13 20:45:43,046 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 20:53:11,348 (trainer:737) INFO: 16epoch:train:1201-1300batch: iter_time=4.685, forward_time=0.132, loss_ctc=54.939, loss_att=64.533, acc=0.709, loss=61.654, backward_time=0.100, grad_norm=43.156, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.150e-04, train_time=5.221 +[gpuc02:0/16] 2024-01-13 20:53:52,312 (trainer:737) INFO: 16epoch:train:1301-1400batch: iter_time=1.838e-04, forward_time=0.104, loss_ctc=53.679, loss_att=56.247, acc=0.711, loss=55.477, backward_time=0.098, grad_norm=44.992, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.149e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:54:33,107 (trainer:737) INFO: 16epoch:train:1401-1500batch: iter_time=1.594e-04, forward_time=0.104, loss_ctc=46.413, loss_att=55.485, acc=0.698, loss=52.764, backward_time=0.098, grad_norm=40.405, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.148e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 20:55:14,059 (trainer:737) INFO: 16epoch:train:1501-1600batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=50.334, loss_att=60.356, acc=0.724, loss=57.350, backward_time=0.099, grad_norm=40.375, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.146e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 20:55:54,972 (trainer:737) INFO: 16epoch:train:1601-1700batch: iter_time=1.504e-04, forward_time=0.105, loss_ctc=47.663, loss_att=57.050, acc=0.723, loss=54.234, backward_time=0.098, grad_norm=33.194, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.145e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 20:56:36,273 (trainer:737) INFO: 16epoch:train:1701-1800batch: iter_time=1.592e-04, forward_time=0.105, loss_ctc=50.137, loss_att=62.584, acc=0.730, loss=58.850, backward_time=0.099, grad_norm=35.327, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.144e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 20:57:17,272 (trainer:737) INFO: 16epoch:train:1801-1900batch: iter_time=1.664e-04, forward_time=0.104, loss_ctc=46.715, loss_att=56.032, acc=0.732, loss=53.237, backward_time=0.099, grad_norm=35.006, clip=100.000, loss_scale=4.362e+34, optim_step_time=0.029, optim0_lr0=5.143e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 20:57:38,979 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 20:57:58,437 (trainer:737) INFO: 16epoch:train:1901-2000batch: iter_time=1.515e-04, forward_time=0.105, loss_ctc=46.193, loss_att=52.814, acc=0.738, loss=50.828, backward_time=0.098, grad_norm=35.604, clip=100.000, loss_scale=6.336e+34, optim_step_time=0.030, optim0_lr0=5.142e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 20:58:39,156 (trainer:737) INFO: 16epoch:train:2001-2100batch: iter_time=1.377e-04, forward_time=0.104, loss_ctc=42.643, loss_att=45.676, acc=0.728, loss=44.766, backward_time=0.098, grad_norm=34.437, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.141e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 20:59:19,908 (trainer:737) INFO: 16epoch:train:2101-2200batch: iter_time=1.440e-04, forward_time=0.104, loss_ctc=44.530, loss_att=54.784, acc=0.706, loss=51.708, backward_time=0.098, grad_norm=34.121, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.140e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 21:00:00,879 (trainer:737) INFO: 16epoch:train:2201-2300batch: iter_time=1.658e-04, forward_time=0.104, loss_ctc=45.722, loss_att=47.846, acc=0.744, loss=47.209, backward_time=0.097, grad_norm=34.308, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.138e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:00:43,587 (trainer:737) INFO: 16epoch:train:2301-2400batch: iter_time=1.250e-04, forward_time=0.105, loss_ctc=47.842, loss_att=52.812, acc=0.733, loss=51.321, backward_time=0.098, grad_norm=34.857, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.137e-04, train_time=0.427 +[gpuc02:0/16] 2024-01-13 21:01:24,374 (trainer:737) INFO: 16epoch:train:2401-2500batch: iter_time=1.271e-04, forward_time=0.104, loss_ctc=55.787, loss_att=56.183, acc=0.723, loss=56.064, backward_time=0.097, grad_norm=42.571, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.136e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:01:28,935 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc02:0/16] 2024-01-13 21:01:48,395 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 21:01:52,301 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 21:01:52,301 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc02:0/16] 2024-01-13 21:01:52,305 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 21:08:35,001 (trainer:737) INFO: 16epoch:train:2501-2600batch: iter_time=2.627, forward_time=0.104, loss_ctc=44.490, loss_att=48.351, acc=0.730, loss=47.193, backward_time=0.098, grad_norm=32.152, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.135e-04, train_time=4.306 +[gpuc02:0/16] 2024-01-13 21:08:48,102 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 21:09:15,950 (trainer:737) INFO: 16epoch:train:2601-2700batch: iter_time=1.387e-04, forward_time=0.103, loss_ctc=52.292, loss_att=61.585, acc=0.703, loss=58.797, backward_time=0.098, grad_norm=44.848, clip=100.000, loss_scale=2.727e+34, optim_step_time=0.030, optim0_lr0=5.134e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:09:56,969 (trainer:737) INFO: 16epoch:train:2701-2800batch: iter_time=1.438e-04, forward_time=0.104, loss_ctc=52.756, loss_att=59.580, acc=0.700, loss=57.533, backward_time=0.098, grad_norm=45.121, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.133e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:10:37,792 (trainer:737) INFO: 16epoch:train:2801-2900batch: iter_time=1.486e-04, forward_time=0.104, loss_ctc=44.261, loss_att=56.997, acc=0.722, loss=53.176, backward_time=0.098, grad_norm=32.609, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.132e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:11:19,441 (trainer:737) INFO: 16epoch:train:2901-3000batch: iter_time=1.559e-04, forward_time=0.105, loss_ctc=51.287, loss_att=59.430, acc=0.739, loss=56.987, backward_time=0.099, grad_norm=37.046, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.131e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 21:12:00,295 (trainer:737) INFO: 16epoch:train:3001-3100batch: iter_time=1.561e-04, forward_time=0.103, loss_ctc=42.249, loss_att=54.160, acc=0.732, loss=50.587, backward_time=0.098, grad_norm=32.758, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.129e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:12:41,363 (trainer:737) INFO: 16epoch:train:3101-3200batch: iter_time=1.401e-04, forward_time=0.105, loss_ctc=49.437, loss_att=57.114, acc=0.738, loss=54.811, backward_time=0.098, grad_norm=34.037, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.128e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:13:22,518 (trainer:737) INFO: 16epoch:train:3201-3300batch: iter_time=1.707e-04, forward_time=0.103, loss_ctc=46.233, loss_att=49.075, acc=0.727, loss=48.222, backward_time=0.098, grad_norm=35.432, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.127e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:14:03,405 (trainer:737) INFO: 16epoch:train:3301-3400batch: iter_time=1.742e-04, forward_time=0.104, loss_ctc=43.563, loss_att=50.760, acc=0.724, loss=48.601, backward_time=0.098, grad_norm=34.007, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.126e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:14:44,179 (trainer:737) INFO: 16epoch:train:3401-3500batch: iter_time=1.676e-04, forward_time=0.103, loss_ctc=41.887, loss_att=47.393, acc=0.730, loss=45.741, backward_time=0.098, grad_norm=33.586, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.125e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:15:25,146 (trainer:737) INFO: 16epoch:train:3501-3600batch: iter_time=1.417e-04, forward_time=0.104, loss_ctc=44.303, loss_att=46.083, acc=0.756, loss=45.549, backward_time=0.099, grad_norm=33.308, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.124e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:16:06,151 (trainer:737) INFO: 16epoch:train:3601-3700batch: iter_time=1.573e-04, forward_time=0.104, loss_ctc=50.036, loss_att=52.013, acc=0.727, loss=51.420, backward_time=0.098, grad_norm=34.789, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.123e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:16:33,369 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc02:0/16] 2024-01-13 21:16:52,605 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 21:16:56,329 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 21:16:56,329 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc02:0/16] 2024-01-13 21:16:56,333 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 21:21:36,010 (trainer:737) INFO: 16epoch:train:3701-3800batch: iter_time=2.650, forward_time=0.103, loss_ctc=52.985, loss_att=61.377, acc=0.716, loss=58.859, backward_time=0.098, grad_norm=43.278, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.122e-04, train_time=3.298 +[gpuc02:0/16] 2024-01-13 21:22:17,098 (trainer:737) INFO: 16epoch:train:3801-3900batch: iter_time=1.674e-04, forward_time=0.106, loss_ctc=52.783, loss_att=54.897, acc=0.714, loss=54.263, backward_time=0.098, grad_norm=43.099, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.120e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:22:58,135 (trainer:737) INFO: 16epoch:train:3901-4000batch: iter_time=1.470e-04, forward_time=0.104, loss_ctc=45.186, loss_att=53.261, acc=0.702, loss=50.838, backward_time=0.097, grad_norm=39.392, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.119e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:23:39,882 (trainer:737) INFO: 16epoch:train:4001-4100batch: iter_time=1.540e-04, forward_time=0.105, loss_ctc=49.397, loss_att=58.763, acc=0.727, loss=55.953, backward_time=0.098, grad_norm=52.029, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.118e-04, train_time=0.417 +[gpuc02:0/16] 2024-01-13 21:24:21,265 (trainer:737) INFO: 16epoch:train:4101-4200batch: iter_time=1.636e-04, forward_time=0.104, loss_ctc=47.022, loss_att=55.926, acc=0.728, loss=53.255, backward_time=0.098, grad_norm=33.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.117e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 21:25:02,531 (trainer:737) INFO: 16epoch:train:4201-4300batch: iter_time=1.458e-04, forward_time=0.105, loss_ctc=49.169, loss_att=61.321, acc=0.734, loss=57.675, backward_time=0.099, grad_norm=33.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.116e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 21:25:43,649 (trainer:737) INFO: 16epoch:train:4301-4400batch: iter_time=1.449e-04, forward_time=0.104, loss_ctc=46.447, loss_att=55.090, acc=0.735, loss=52.497, backward_time=0.099, grad_norm=34.175, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.115e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:26:24,650 (trainer:737) INFO: 16epoch:train:4401-4500batch: iter_time=1.420e-04, forward_time=0.105, loss_ctc=45.299, loss_att=52.068, acc=0.740, loss=50.037, backward_time=0.098, grad_norm=34.935, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.114e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:27:05,432 (trainer:737) INFO: 16epoch:train:4501-4600batch: iter_time=1.353e-04, forward_time=0.103, loss_ctc=43.325, loss_att=45.859, acc=0.729, loss=45.099, backward_time=0.097, grad_norm=34.684, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.113e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:27:46,806 (trainer:737) INFO: 16epoch:train:4601-4700batch: iter_time=1.455e-04, forward_time=0.104, loss_ctc=43.723, loss_att=53.245, acc=0.711, loss=50.388, backward_time=0.097, grad_norm=34.759, clip=100.000, loss_scale=3.489e+34, optim_step_time=0.029, optim0_lr0=5.112e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 21:28:27,657 (trainer:737) INFO: 16epoch:train:4701-4800batch: iter_time=1.657e-04, forward_time=0.104, loss_ctc=44.886, loss_att=47.109, acc=0.746, loss=46.442, backward_time=0.097, grad_norm=32.996, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.110e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:29:00,986 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 21:29:08,723 (trainer:737) INFO: 16epoch:train:4801-4900batch: iter_time=1.397e-04, forward_time=0.104, loss_ctc=46.942, loss_att=52.720, acc=0.735, loss=50.986, backward_time=0.098, grad_norm=33.689, clip=100.000, loss_scale=3.755e+34, optim_step_time=0.030, optim0_lr0=5.109e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:29:49,845 (trainer:737) INFO: 16epoch:train:4901-5000batch: iter_time=1.351e-04, forward_time=0.104, loss_ctc=54.245, loss_att=56.557, acc=0.724, loss=55.863, backward_time=0.098, grad_norm=42.622, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.108e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:29:57,657 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc02:0/16] 2024-01-13 21:30:16,705 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 21:30:20,267 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 21:30:20,267 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc02:0/16] 2024-01-13 21:30:20,270 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 21:35:16,461 (trainer:737) INFO: 16epoch:train:5001-5100batch: iter_time=2.567, forward_time=0.124, loss_ctc=44.022, loss_att=48.099, acc=0.732, loss=46.876, backward_time=0.101, grad_norm=32.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.107e-04, train_time=3.266 +[gpuc02:0/16] 2024-01-13 21:35:57,394 (trainer:737) INFO: 16epoch:train:5101-5200batch: iter_time=1.675e-04, forward_time=0.104, loss_ctc=50.366, loss_att=59.486, acc=0.707, loss=56.750, backward_time=0.098, grad_norm=46.407, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.106e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:36:38,595 (trainer:737) INFO: 16epoch:train:5201-5300batch: iter_time=1.505e-04, forward_time=0.104, loss_ctc=52.474, loss_att=58.051, acc=0.707, loss=56.378, backward_time=0.098, grad_norm=43.497, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.105e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 21:37:19,414 (trainer:737) INFO: 16epoch:train:5301-5400batch: iter_time=1.886e-04, forward_time=0.104, loss_ctc=43.986, loss_att=56.553, acc=0.724, loss=52.783, backward_time=0.098, grad_norm=33.324, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.104e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:38:00,457 (trainer:737) INFO: 16epoch:train:5401-5500batch: iter_time=1.770e-04, forward_time=0.105, loss_ctc=50.339, loss_att=59.215, acc=0.742, loss=56.552, backward_time=0.099, grad_norm=35.115, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.103e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:38:41,520 (trainer:737) INFO: 16epoch:train:5501-5600batch: iter_time=2.217e-04, forward_time=0.104, loss_ctc=41.420, loss_att=52.952, acc=0.735, loss=49.492, backward_time=0.098, grad_norm=32.606, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.102e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:39:22,664 (trainer:737) INFO: 16epoch:train:5601-5700batch: iter_time=1.881e-04, forward_time=0.105, loss_ctc=49.145, loss_att=56.607, acc=0.741, loss=54.368, backward_time=0.099, grad_norm=34.903, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.100e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:40:04,013 (trainer:737) INFO: 16epoch:train:5701-5800batch: iter_time=1.948e-04, forward_time=0.104, loss_ctc=46.097, loss_att=48.251, acc=0.730, loss=47.605, backward_time=0.097, grad_norm=35.129, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.099e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 21:40:45,907 (trainer:737) INFO: 16epoch:train:5801-5900batch: iter_time=1.636e-04, forward_time=0.106, loss_ctc=42.850, loss_att=49.369, acc=0.728, loss=47.413, backward_time=0.098, grad_norm=33.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.098e-04, train_time=0.419 +[gpuc02:0/16] 2024-01-13 21:41:27,237 (trainer:737) INFO: 16epoch:train:5901-6000batch: iter_time=1.789e-04, forward_time=0.103, loss_ctc=41.137, loss_att=46.721, acc=0.733, loss=45.046, backward_time=0.098, grad_norm=32.412, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.097e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 21:42:08,418 (trainer:737) INFO: 16epoch:train:6001-6100batch: iter_time=1.947e-04, forward_time=0.104, loss_ctc=44.258, loss_att=46.472, acc=0.755, loss=45.808, backward_time=0.098, grad_norm=32.187, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.096e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 21:42:49,371 (trainer:737) INFO: 16epoch:train:6101-6200batch: iter_time=1.542e-04, forward_time=0.104, loss_ctc=49.984, loss_att=52.837, acc=0.724, loss=51.981, backward_time=0.098, grad_norm=36.181, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.095e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:43:16,636 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc02:0/16] 2024-01-13 21:43:37,146 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 21:43:41,022 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 21:43:41,022 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc02:0/16] 2024-01-13 21:43:41,026 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 21:48:20,923 (trainer:737) INFO: 16epoch:train:6201-6300batch: iter_time=2.751, forward_time=0.142, loss_ctc=52.257, loss_att=63.382, acc=0.710, loss=60.044, backward_time=0.104, grad_norm=43.163, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.032, optim0_lr0=5.094e-04, train_time=3.315 +[gpuc02:0/16] 2024-01-13 21:49:01,838 (trainer:737) INFO: 16epoch:train:6301-6400batch: iter_time=1.133e-04, forward_time=0.104, loss_ctc=52.845, loss_att=56.511, acc=0.712, loss=55.411, backward_time=0.098, grad_norm=42.789, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.093e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:49:42,644 (trainer:737) INFO: 16epoch:train:6401-6500batch: iter_time=1.136e-04, forward_time=0.103, loss_ctc=45.111, loss_att=54.934, acc=0.698, loss=51.987, backward_time=0.098, grad_norm=38.507, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.092e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:50:23,609 (trainer:737) INFO: 16epoch:train:6501-6600batch: iter_time=1.265e-04, forward_time=0.104, loss_ctc=48.951, loss_att=58.820, acc=0.728, loss=55.859, backward_time=0.098, grad_norm=40.525, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.091e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:51:04,460 (trainer:737) INFO: 16epoch:train:6601-6700batch: iter_time=1.253e-04, forward_time=0.104, loss_ctc=46.855, loss_att=57.091, acc=0.717, loss=54.020, backward_time=0.098, grad_norm=35.629, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.089e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:51:45,504 (trainer:737) INFO: 16epoch:train:6701-6800batch: iter_time=1.232e-04, forward_time=0.105, loss_ctc=48.794, loss_att=61.555, acc=0.728, loss=57.727, backward_time=0.098, grad_norm=33.296, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.088e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 21:52:26,645 (trainer:737) INFO: 16epoch:train:6801-6900batch: iter_time=1.556e-04, forward_time=0.104, loss_ctc=45.785, loss_att=52.898, acc=0.730, loss=50.764, backward_time=0.098, grad_norm=34.675, clip=100.000, loss_scale=2.472e+34, optim_step_time=0.030, optim0_lr0=5.087e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:53:07,470 (trainer:737) INFO: 16epoch:train:6901-7000batch: iter_time=1.891e-04, forward_time=0.104, loss_ctc=45.085, loss_att=51.346, acc=0.736, loss=49.468, backward_time=0.097, grad_norm=35.267, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.086e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:53:48,401 (trainer:737) INFO: 16epoch:train:7001-7100batch: iter_time=1.978e-04, forward_time=0.103, loss_ctc=42.626, loss_att=43.479, acc=0.728, loss=43.223, backward_time=0.097, grad_norm=34.456, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.085e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:54:29,045 (trainer:737) INFO: 16epoch:train:7101-7200batch: iter_time=1.565e-04, forward_time=0.103, loss_ctc=43.517, loss_att=55.528, acc=0.688, loss=51.925, backward_time=0.097, grad_norm=35.776, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.084e-04, train_time=0.406 +[gpuc02:0/16] 2024-01-13 21:55:09,944 (trainer:737) INFO: 16epoch:train:7201-7300batch: iter_time=1.630e-04, forward_time=0.104, loss_ctc=44.527, loss_att=47.800, acc=0.733, loss=46.818, backward_time=0.097, grad_norm=32.924, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.083e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 21:55:51,102 (trainer:737) INFO: 16epoch:train:7301-7400batch: iter_time=1.847e-04, forward_time=0.104, loss_ctc=46.783, loss_att=52.943, acc=0.728, loss=51.095, backward_time=0.097, grad_norm=35.761, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.082e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 21:56:31,947 (trainer:737) INFO: 16epoch:train:7401-7500batch: iter_time=1.584e-04, forward_time=0.104, loss_ctc=53.776, loss_att=55.991, acc=0.725, loss=55.326, backward_time=0.097, grad_norm=42.521, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.081e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 21:56:39,005 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc02:0/16] 2024-01-13 21:56:58,237 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 21:57:01,909 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 21:57:01,909 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc02:0/16] 2024-01-13 21:57:01,912 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 22:01:56,740 (trainer:737) INFO: 16epoch:train:7501-7600batch: iter_time=2.528, forward_time=0.104, loss_ctc=43.965, loss_att=49.905, acc=0.731, loss=48.123, backward_time=0.098, grad_norm=32.982, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.080e-04, train_time=3.248 +[gpuc02:0/16] 2024-01-13 22:02:37,876 (trainer:737) INFO: 16epoch:train:7601-7700batch: iter_time=1.732e-04, forward_time=0.103, loss_ctc=49.719, loss_att=60.010, acc=0.707, loss=56.923, backward_time=0.099, grad_norm=43.923, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.079e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:03:18,854 (trainer:737) INFO: 16epoch:train:7701-7800batch: iter_time=1.931e-04, forward_time=0.104, loss_ctc=51.522, loss_att=58.222, acc=0.708, loss=56.212, backward_time=0.099, grad_norm=44.710, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.077e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:03:59,737 (trainer:737) INFO: 16epoch:train:7801-7900batch: iter_time=1.769e-04, forward_time=0.104, loss_ctc=43.554, loss_att=56.676, acc=0.723, loss=52.740, backward_time=0.098, grad_norm=32.265, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.076e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:04:40,795 (trainer:737) INFO: 16epoch:train:7901-8000batch: iter_time=1.689e-04, forward_time=0.105, loss_ctc=50.447, loss_att=59.213, acc=0.741, loss=56.583, backward_time=0.100, grad_norm=36.521, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.075e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:05:21,655 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 22:05:21,662 (trainer:737) INFO: 16epoch:train:8001-8100batch: iter_time=1.765e-04, forward_time=0.104, loss_ctc=41.451, loss_att=53.452, acc=0.736, loss=49.852, backward_time=0.099, grad_norm=32.508, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.074e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:06:02,975 (trainer:737) INFO: 16epoch:train:8101-8200batch: iter_time=1.455e-04, forward_time=0.105, loss_ctc=49.003, loss_att=56.506, acc=0.742, loss=54.255, backward_time=0.099, grad_norm=34.551, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.073e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 22:06:43,790 (trainer:737) INFO: 16epoch:train:8201-8300batch: iter_time=1.809e-04, forward_time=0.103, loss_ctc=44.917, loss_att=48.122, acc=0.731, loss=47.161, backward_time=0.098, grad_norm=34.552, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.072e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:07:24,645 (trainer:737) INFO: 16epoch:train:8301-8400batch: iter_time=2.060e-04, forward_time=0.103, loss_ctc=42.402, loss_att=49.395, acc=0.730, loss=47.297, backward_time=0.098, grad_norm=35.489, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.071e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:08:05,463 (trainer:737) INFO: 16epoch:train:8401-8500batch: iter_time=2.217e-04, forward_time=0.103, loss_ctc=41.344, loss_att=47.239, acc=0.732, loss=45.471, backward_time=0.098, grad_norm=32.616, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.070e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:08:46,465 (trainer:737) INFO: 16epoch:train:8501-8600batch: iter_time=1.780e-04, forward_time=0.105, loss_ctc=43.811, loss_att=46.590, acc=0.755, loss=45.756, backward_time=0.098, grad_norm=31.729, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.069e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:09:27,414 (trainer:737) INFO: 16epoch:train:8601-8700batch: iter_time=1.719e-04, forward_time=0.104, loss_ctc=49.596, loss_att=52.803, acc=0.725, loss=51.841, backward_time=0.098, grad_norm=36.717, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.068e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:09:54,882 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc02:0/16] 2024-01-13 22:10:14,931 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 22:10:18,763 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 22:10:18,764 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc02:0/16] 2024-01-13 22:10:18,767 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 22:15:05,422 (trainer:737) INFO: 16epoch:train:8701-8800batch: iter_time=2.617, forward_time=0.104, loss_ctc=51.411, loss_att=62.037, acc=0.710, loss=58.849, backward_time=0.098, grad_norm=42.150, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.067e-04, train_time=3.380 +[gpuc02:0/16] 2024-01-13 22:15:46,572 (trainer:737) INFO: 16epoch:train:8801-8900batch: iter_time=1.643e-04, forward_time=0.103, loss_ctc=50.282, loss_att=53.975, acc=0.716, loss=52.867, backward_time=0.097, grad_norm=41.267, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.065e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:16:27,669 (trainer:737) INFO: 16epoch:train:8901-9000batch: iter_time=1.609e-04, forward_time=0.104, loss_ctc=44.964, loss_att=54.149, acc=0.700, loss=51.394, backward_time=0.098, grad_norm=37.599, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.064e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:17:09,121 (trainer:737) INFO: 16epoch:train:9001-9100batch: iter_time=2.155e-04, forward_time=0.104, loss_ctc=47.817, loss_att=57.849, acc=0.730, loss=54.839, backward_time=0.098, grad_norm=38.650, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.063e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 22:17:50,650 (trainer:737) INFO: 16epoch:train:9101-9200batch: iter_time=1.941e-04, forward_time=0.104, loss_ctc=46.604, loss_att=56.506, acc=0.717, loss=53.535, backward_time=0.098, grad_norm=34.308, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.062e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 22:18:32,261 (trainer:737) INFO: 16epoch:train:9201-9300batch: iter_time=1.536e-04, forward_time=0.105, loss_ctc=49.125, loss_att=61.679, acc=0.730, loss=57.912, backward_time=0.099, grad_norm=35.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.061e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 22:19:13,199 (trainer:737) INFO: 16epoch:train:9301-9400batch: iter_time=1.579e-04, forward_time=0.105, loss_ctc=45.581, loss_att=53.189, acc=0.729, loss=50.907, backward_time=0.098, grad_norm=34.694, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.060e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:19:54,125 (trainer:737) INFO: 16epoch:train:9401-9500batch: iter_time=1.720e-04, forward_time=0.105, loss_ctc=44.484, loss_att=51.013, acc=0.737, loss=49.055, backward_time=0.098, grad_norm=35.507, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.059e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:20:35,090 (trainer:737) INFO: 16epoch:train:9501-9600batch: iter_time=1.859e-04, forward_time=0.107, loss_ctc=42.681, loss_att=43.457, acc=0.726, loss=43.224, backward_time=0.097, grad_norm=33.308, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.058e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:21:16,358 (trainer:737) INFO: 16epoch:train:9601-9700batch: iter_time=1.825e-04, forward_time=0.103, loss_ctc=43.136, loss_att=54.207, acc=0.691, loss=50.886, backward_time=0.098, grad_norm=37.765, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.057e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 22:21:57,135 (trainer:737) INFO: 16epoch:train:9701-9800batch: iter_time=1.789e-04, forward_time=0.105, loss_ctc=44.125, loss_att=47.146, acc=0.736, loss=46.240, backward_time=0.098, grad_norm=32.743, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.056e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:22:38,088 (trainer:737) INFO: 16epoch:train:9801-9900batch: iter_time=1.593e-04, forward_time=0.106, loss_ctc=46.444, loss_att=52.507, acc=0.726, loss=50.688, backward_time=0.098, grad_norm=35.293, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.055e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:23:18,856 (trainer:737) INFO: 16epoch:train:9901-10000batch: iter_time=1.353e-04, forward_time=0.104, loss_ctc=53.287, loss_att=57.260, acc=0.722, loss=56.068, backward_time=0.098, grad_norm=41.106, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.054e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 22:23:23,094 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc02:0/16] 2024-01-13 22:23:42,793 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 22:23:46,555 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 22:23:46,555 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc02:0/16] 2024-01-13 22:23:46,559 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 22:28:49,700 (trainer:737) INFO: 16epoch:train:10001-10100batch: iter_time=2.659, forward_time=0.104, loss_ctc=43.457, loss_att=46.991, acc=0.728, loss=45.931, backward_time=0.097, grad_norm=30.992, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.053e-04, train_time=3.308 +[gpuc02:0/16] 2024-01-13 22:29:21,497 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 22:29:30,969 (trainer:737) INFO: 16epoch:train:10101-10200batch: iter_time=1.697e-04, forward_time=0.104, loss_ctc=49.316, loss_att=58.101, acc=0.707, loss=55.465, backward_time=0.099, grad_norm=45.209, clip=100.000, loss_scale=3.671e+34, optim_step_time=0.031, optim0_lr0=5.051e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 22:30:14,867 (trainer:737) INFO: 16epoch:train:10201-10300batch: iter_time=1.648e-04, forward_time=0.104, loss_ctc=51.562, loss_att=57.721, acc=0.706, loss=55.874, backward_time=0.098, grad_norm=44.766, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.050e-04, train_time=0.439 +[gpuc02:0/16] 2024-01-13 22:30:55,925 (trainer:737) INFO: 16epoch:train:10301-10400batch: iter_time=2.086e-04, forward_time=0.104, loss_ctc=43.210, loss_att=55.453, acc=0.719, loss=51.780, backward_time=0.097, grad_norm=33.021, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.049e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:31:36,902 (trainer:737) INFO: 16epoch:train:10401-10500batch: iter_time=1.939e-04, forward_time=0.105, loss_ctc=49.907, loss_att=59.066, acc=0.730, loss=56.318, backward_time=0.098, grad_norm=33.636, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.048e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:32:17,707 (trainer:737) INFO: 16epoch:train:10501-10600batch: iter_time=1.963e-04, forward_time=0.104, loss_ctc=40.987, loss_att=50.306, acc=0.733, loss=47.510, backward_time=0.097, grad_norm=31.981, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.047e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:32:58,860 (trainer:737) INFO: 16epoch:train:10601-10700batch: iter_time=1.269e-04, forward_time=0.106, loss_ctc=48.445, loss_att=56.067, acc=0.738, loss=53.781, backward_time=0.100, grad_norm=38.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.046e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:33:40,047 (trainer:737) INFO: 16epoch:train:10701-10800batch: iter_time=1.425e-04, forward_time=0.104, loss_ctc=45.243, loss_att=47.553, acc=0.726, loss=46.860, backward_time=0.099, grad_norm=34.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.032, optim0_lr0=5.045e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 22:34:20,820 (trainer:737) INFO: 16epoch:train:10801-10900batch: iter_time=1.353e-04, forward_time=0.105, loss_ctc=42.581, loss_att=47.971, acc=0.717, loss=46.354, backward_time=0.099, grad_norm=34.109, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.044e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 22:35:01,938 (trainer:737) INFO: 16epoch:train:10901-11000batch: iter_time=1.438e-04, forward_time=0.104, loss_ctc=41.010, loss_att=47.407, acc=0.717, loss=45.488, backward_time=0.099, grad_norm=33.625, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.043e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:35:43,457 (trainer:737) INFO: 16epoch:train:11001-11100batch: iter_time=1.248e-04, forward_time=0.104, loss_ctc=43.731, loss_att=46.979, acc=0.740, loss=46.005, backward_time=0.099, grad_norm=33.540, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.042e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 22:36:24,872 (trainer:737) INFO: 16epoch:train:11101-11200batch: iter_time=1.391e-04, forward_time=0.105, loss_ctc=49.915, loss_att=52.208, acc=0.728, loss=51.520, backward_time=0.100, grad_norm=36.950, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.041e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 22:36:53,073 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc02:0/16] 2024-01-13 22:37:12,714 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 22:37:16,450 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 22:37:16,450 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc02:0/16] 2024-01-13 22:37:16,453 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 22:41:55,233 (trainer:737) INFO: 16epoch:train:11201-11300batch: iter_time=2.714, forward_time=0.104, loss_ctc=50.672, loss_att=60.568, acc=0.714, loss=57.599, backward_time=0.099, grad_norm=41.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.031, optim0_lr0=5.040e-04, train_time=3.303 +[gpuc02:0/16] 2024-01-13 22:42:36,116 (trainer:737) INFO: 16epoch:train:11301-11400batch: iter_time=1.501e-04, forward_time=0.104, loss_ctc=51.227, loss_att=52.948, acc=0.721, loss=52.432, backward_time=0.097, grad_norm=44.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.039e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:43:17,053 (trainer:737) INFO: 16epoch:train:11401-11500batch: iter_time=1.573e-04, forward_time=0.103, loss_ctc=44.333, loss_att=52.134, acc=0.703, loss=49.793, backward_time=0.097, grad_norm=38.506, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.038e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:43:58,033 (trainer:737) INFO: 16epoch:train:11501-11600batch: iter_time=1.499e-04, forward_time=0.104, loss_ctc=47.368, loss_att=56.331, acc=0.732, loss=53.642, backward_time=0.097, grad_norm=38.326, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.036e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:44:38,899 (trainer:737) INFO: 16epoch:train:11601-11700batch: iter_time=1.648e-04, forward_time=0.104, loss_ctc=46.659, loss_att=55.532, acc=0.719, loss=52.870, backward_time=0.097, grad_norm=33.984, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.035e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:45:20,251 (trainer:737) INFO: 16epoch:train:11701-11800batch: iter_time=1.865e-04, forward_time=0.104, loss_ctc=48.821, loss_att=61.038, acc=0.731, loss=57.373, backward_time=0.098, grad_norm=35.065, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.034e-04, train_time=0.413 +[gpuc02:0/16] 2024-01-13 22:46:01,192 (trainer:737) INFO: 16epoch:train:11801-11900batch: iter_time=1.652e-04, forward_time=0.104, loss_ctc=44.972, loss_att=51.735, acc=0.732, loss=49.706, backward_time=0.097, grad_norm=34.914, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.033e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:46:42,066 (trainer:737) INFO: 16epoch:train:11901-12000batch: iter_time=1.638e-04, forward_time=0.103, loss_ctc=44.949, loss_att=51.316, acc=0.738, loss=49.406, backward_time=0.097, grad_norm=34.310, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.032e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 22:47:22,795 (trainer:737) INFO: 16epoch:train:12001-12100batch: iter_time=1.941e-04, forward_time=0.103, loss_ctc=42.239, loss_att=43.003, acc=0.728, loss=42.774, backward_time=0.096, grad_norm=33.553, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.031e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 22:48:03,536 (trainer:737) INFO: 16epoch:train:12101-12200batch: iter_time=1.938e-04, forward_time=0.103, loss_ctc=43.090, loss_att=53.423, acc=0.696, loss=50.323, backward_time=0.096, grad_norm=36.126, clip=100.000, loss_scale=2.555e+34, optim_step_time=0.030, optim0_lr0=5.030e-04, train_time=0.407 +[gpuc02:0/16] 2024-01-13 22:48:44,380 (trainer:737) INFO: 16epoch:train:12201-12300batch: iter_time=1.927e-04, forward_time=0.105, loss_ctc=44.412, loss_att=47.097, acc=0.737, loss=46.292, backward_time=0.097, grad_norm=32.184, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.029e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:48:47,201 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc02:0/16] 2024-01-13 22:49:25,228 (trainer:737) INFO: 16epoch:train:12301-12400batch: iter_time=1.776e-04, forward_time=0.105, loss_ctc=46.489, loss_att=52.066, acc=0.729, loss=50.393, backward_time=0.097, grad_norm=35.569, clip=100.000, loss_scale=2.203e+34, optim_step_time=0.030, optim0_lr0=5.028e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 22:50:06,309 (trainer:737) INFO: 16epoch:train:12401-12500batch: iter_time=1.654e-04, forward_time=0.103, loss_ctc=53.076, loss_att=56.580, acc=0.723, loss=55.529, backward_time=0.097, grad_norm=42.934, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.027e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:50:10,109 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc02:0/16] 2024-01-13 22:50:29,230 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 22:50:32,970 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 22:50:32,970 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc02:0/16] 2024-01-13 22:50:32,974 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 22:55:43,484 (trainer:737) INFO: 16epoch:train:12501-12600batch: iter_time=2.747, forward_time=0.105, loss_ctc=43.350, loss_att=51.437, acc=0.729, loss=49.011, backward_time=0.098, grad_norm=32.154, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.026e-04, train_time=3.372 +[gpuc02:0/16] 2024-01-13 22:56:24,476 (trainer:737) INFO: 16epoch:train:12601-12700batch: iter_time=1.760e-04, forward_time=0.104, loss_ctc=49.608, loss_att=60.073, acc=0.709, loss=56.933, backward_time=0.098, grad_norm=44.345, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.025e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 22:57:06,051 (trainer:737) INFO: 16epoch:train:12701-12800batch: iter_time=1.652e-04, forward_time=0.104, loss_ctc=50.949, loss_att=57.989, acc=0.709, loss=55.877, backward_time=0.098, grad_norm=45.341, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.024e-04, train_time=0.416 +[gpuc02:0/16] 2024-01-13 22:57:47,222 (trainer:737) INFO: 16epoch:train:12801-12900batch: iter_time=1.910e-04, forward_time=0.103, loss_ctc=43.382, loss_att=57.482, acc=0.723, loss=53.252, backward_time=0.098, grad_norm=33.201, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.023e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:58:28,608 (trainer:737) INFO: 16epoch:train:12901-13000batch: iter_time=1.912e-04, forward_time=0.106, loss_ctc=49.826, loss_att=59.306, acc=0.743, loss=56.462, backward_time=0.099, grad_norm=35.295, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.022e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 22:59:09,752 (trainer:737) INFO: 16epoch:train:13001-13100batch: iter_time=1.747e-04, forward_time=0.104, loss_ctc=40.907, loss_att=53.024, acc=0.737, loss=49.389, backward_time=0.098, grad_norm=31.559, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.021e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 22:59:50,723 (trainer:737) INFO: 16epoch:train:13101-13200batch: iter_time=1.724e-04, forward_time=0.105, loss_ctc=48.168, loss_att=56.500, acc=0.744, loss=54.000, backward_time=0.098, grad_norm=34.084, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.020e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 23:00:31,504 (trainer:737) INFO: 16epoch:train:13201-13300batch: iter_time=2.068e-04, forward_time=0.104, loss_ctc=45.002, loss_att=48.535, acc=0.729, loss=47.475, backward_time=0.097, grad_norm=35.203, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.018e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 23:01:12,339 (trainer:737) INFO: 16epoch:train:13301-13400batch: iter_time=1.960e-04, forward_time=0.104, loss_ctc=43.203, loss_att=50.544, acc=0.729, loss=48.342, backward_time=0.097, grad_norm=33.985, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.017e-04, train_time=0.408 +[gpuc02:0/16] 2024-01-13 23:01:53,720 (trainer:737) INFO: 16epoch:train:13401-13500batch: iter_time=1.879e-04, forward_time=0.104, loss_ctc=40.927, loss_att=47.321, acc=0.733, loss=45.403, backward_time=0.097, grad_norm=31.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.016e-04, train_time=0.414 +[gpuc02:0/16] 2024-01-13 23:02:34,739 (trainer:737) INFO: 16epoch:train:13501-13600batch: iter_time=1.999e-04, forward_time=0.105, loss_ctc=43.606, loss_att=46.653, acc=0.756, loss=45.739, backward_time=0.097, grad_norm=31.894, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.015e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 23:03:15,654 (trainer:737) INFO: 16epoch:train:13601-13700batch: iter_time=1.953e-04, forward_time=0.104, loss_ctc=49.494, loss_att=52.297, acc=0.727, loss=51.456, backward_time=0.097, grad_norm=35.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.014e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 23:03:42,837 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc02:0/16] 2024-01-13 23:04:02,115 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc02:0/16] 2024-01-13 23:04:06,044 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc02:0/16] 2024-01-13 23:04:06,044 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc02:0/16] 2024-01-13 23:04:06,047 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc02:0/16] 2024-01-13 23:09:27,411 (trainer:737) INFO: 16epoch:train:13701-13800batch: iter_time=2.584, forward_time=0.104, loss_ctc=50.435, loss_att=62.446, acc=0.713, loss=58.843, backward_time=0.097, grad_norm=42.297, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.013e-04, train_time=3.717 +[gpuc02:0/16] 2024-01-13 23:10:08,319 (trainer:737) INFO: 16epoch:train:13801-13900batch: iter_time=1.587e-04, forward_time=0.104, loss_ctc=50.781, loss_att=53.739, acc=0.720, loss=52.851, backward_time=0.097, grad_norm=44.728, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.012e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 23:10:49,499 (trainer:737) INFO: 16epoch:train:13901-14000batch: iter_time=1.391e-04, forward_time=0.104, loss_ctc=43.943, loss_att=53.173, acc=0.704, loss=50.404, backward_time=0.097, grad_norm=36.564, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.011e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 23:11:30,633 (trainer:737) INFO: 16epoch:train:14001-14100batch: iter_time=1.645e-04, forward_time=0.103, loss_ctc=47.714, loss_att=57.435, acc=0.731, loss=54.519, backward_time=0.097, grad_norm=39.249, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.010e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 23:12:11,624 (trainer:737) INFO: 16epoch:train:14101-14200batch: iter_time=1.811e-04, forward_time=0.105, loss_ctc=46.440, loss_att=56.037, acc=0.720, loss=53.158, backward_time=0.097, grad_norm=34.604, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.030, optim0_lr0=5.009e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 23:12:53,111 (trainer:737) INFO: 16epoch:train:14201-14300batch: iter_time=1.647e-04, forward_time=0.104, loss_ctc=48.248, loss_att=60.734, acc=0.732, loss=56.988, backward_time=0.098, grad_norm=34.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.029, optim0_lr0=5.008e-04, train_time=0.415 +[gpuc02:0/16] 2024-01-13 23:13:34,192 (trainer:737) INFO: 16epoch:train:14301-14400batch: iter_time=1.709e-04, forward_time=0.104, loss_ctc=44.834, loss_att=52.410, acc=0.731, loss=50.137, backward_time=0.097, grad_norm=35.167, clip=100.000, loss_scale=4.008e+34, optim_step_time=0.029, optim0_lr0=5.007e-04, train_time=0.411 +[gpuc02:0/16] 2024-01-13 23:14:15,157 (trainer:737) INFO: 16epoch:train:14401-14500batch: iter_time=1.637e-04, forward_time=0.104, loss_ctc=44.224, loss_att=50.929, acc=0.739, loss=48.917, backward_time=0.097, grad_norm=36.990, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.006e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 23:14:56,099 (trainer:737) INFO: 16epoch:train:14501-14600batch: iter_time=1.548e-04, forward_time=0.104, loss_ctc=42.897, loss_att=43.690, acc=0.729, loss=43.452, backward_time=0.096, grad_norm=34.588, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.005e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 23:15:37,314 (trainer:737) INFO: 16epoch:train:14601-14700batch: iter_time=1.447e-04, forward_time=0.103, loss_ctc=42.928, loss_att=53.683, acc=0.694, loss=50.457, backward_time=0.097, grad_norm=35.296, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.004e-04, train_time=0.412 +[gpuc02:0/16] 2024-01-13 23:16:18,271 (trainer:737) INFO: 16epoch:train:14701-14800batch: iter_time=1.486e-04, forward_time=0.104, loss_ctc=43.751, loss_att=46.789, acc=0.738, loss=45.877, backward_time=0.097, grad_norm=33.797, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.029, optim0_lr0=5.003e-04, train_time=0.409 +[gpuc02:0/16] 2024-01-13 23:16:59,257 (trainer:737) INFO: 16epoch:train:14801-14900batch: iter_time=1.515e-04, forward_time=0.105, loss_ctc=46.166, loss_att=51.230, acc=0.730, loss=49.711, backward_time=0.098, grad_norm=36.086, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.002e-04, train_time=0.410 +[gpuc02:0/16] 2024-01-13 23:17:40,481 (trainer:737) INFO: 16epoch:train:14901-15000batch: iter_time=1.391e-04, forward_time=0.104, loss_ctc=53.157, loss_att=57.391, acc=0.722, loss=56.121, backward_time=0.097, grad_norm=45.375, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.030, optim0_lr0=5.001e-04, train_time=0.412 +srun: Job step aborted: Waiting up to 32 seconds for job step to finish. +slurmstepd: error: *** STEP 2855139.0 ON gpuc02 CANCELLED AT 2024-01-13T23:24:35 DUE TO TIME LIMIT *** diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log new file mode 100644 index 0000000000000000000000000000000000000000..8b778daf6962a273c23980f1ad8d8337f0776ebe --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log @@ -0,0 +1,4388 @@ +# Running on gpuc04.delta.ncsa.illinois.edu +# Started at Tue Jan 16 12:19:43 CST 2024 +# SLURMD_NODENAME=gpuc04 +# SLURM_CLUSTER_NAME=delta +# SLURM_CONF=/var/spool/slurmd/conf-cache/slurm.conf +# SLURM_CPUS_ON_NODE=128 +# SLURM_CPUS_PER_TASK=128 +# SLURM_EXPORT_ENV=PATH +# SLURM_GET_USER_ENV=1 +# SLURM_GPUS_ON_NODE=8 +# SLURM_GTIDS=0 +# SLURM_JOBID=2863201 +# SLURM_JOB_ACCOUNT=bbjs-delta-gpu +# SLURM_JOB_CPUS_PER_NODE='128(x2)' +# SLURM_JOB_END_TIME=1705601961 +# SLURM_JOB_GID=202 +# SLURM_JOB_GPUS=0,1,2,3,4,5,6,7 +# SLURM_JOB_ID=2863201 +# SLURM_JOB_NAME=exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/train.log +# SLURM_JOB_NODELIST='gpuc[04,06]' +# SLURM_JOB_NUM_NODES=2 +# SLURM_JOB_PARTITION=gpuA100x8 +# SLURM_JOB_QOS=bbjs-delta-gpu +# SLURM_JOB_START_TIME=1705429161 +# SLURM_JOB_UID=68077 +# SLURM_JOB_USER=peng6 +# SLURM_LOCALID=0 +# SLURM_MEM_PER_NODE=2000000 +# SLURM_NNODES=2 +# SLURM_NODEID=0 +# SLURM_NODELIST='gpuc[04,06]' +# SLURM_NODE_ALIASES='(null)' +# SLURM_OPEN_MODE=a +# SLURM_PRIO_PROCESS=0 +# SLURM_PROCID=0 +# SLURM_SUBMIT_DIR=/scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1 +# SLURM_SUBMIT_HOST=dt-login01.delta.ncsa.illinois.edu +# SLURM_TASKS_PER_NODE='1(x2)' +# SLURM_TASK_PID=3119733 +# SLURM_TOPOLOGY_ADDR=ss00.ss05.gpuc04 +# SLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.node +# SLURM_WORKING_CLUSTER=delta:dt-sched:6817:9984:109 +# srun --export=ALL python3 -m espnet2.bin.s2t_train --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_2e5d3388-5a62-4d9b-abf3-231f106e2517 +/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_2e5d3388-5a62-4d9b-abf3-231f106e2517 +[gpuc04:0/16] 2024-01-16 12:21:43,253 (distributed_c10d:319) INFO: Added key: store_based_barrier_key:1 to store for rank: 0 +[gpuc04:0/16] 2024-01-16 12:21:53,265 (distributed_c10d:337) INFO: Waiting in store based barrier to initialize process group for rank: 0, key: store_based_barrier_key:1 (world_size=16, worker_count=8, timeout=0:30:00) +[gpuc04:0/16] 2024-01-16 12:22:03,272 (distributed_c10d:337) INFO: Waiting in store based barrier to initialize process group for rank: 0, key: store_based_barrier_key:1 (world_size=16, worker_count=8, timeout=0:30:00) +[gpuc04:0/16] 2024-01-16 12:22:13,275 (distributed_c10d:337) INFO: Waiting in store based barrier to initialize process group for rank: 0, key: store_based_barrier_key:1 (world_size=16, worker_count=8, timeout=0:30:00) +/scratch/bbjs/peng6/espnet-whisper-public/tools/miniconda/envs/espnet/bin/python3 /scratch/bbjs/peng6/espnet-whisper-public/espnet2/bin/s2t_train.py --use_preprocessor true --bpemodel data/token_list/bpe_unigram50000/bpe.model --token_type bpe --token_list data/token_list/bpe_unigram50000/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_v3/wav.scp,speech,kaldi_ark --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/speech_shape --resume true --fold_length 80000 --output_dir exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000 --config conf/train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg.yaml --frontend_conf fs=16k --normalize=global_mvn --normalize_conf stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/wav.scp,speech,kaldi_ark --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/speech_shape --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.prev,text_prev,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_prev_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text.ctc,text_ctc,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_ctc_shape.bpe --fold_length 150 --train_data_path_and_name_and_type exp/s2t_stats_raw_bpe50000/splits12/text,text,text --train_shape_file exp/s2t_stats_raw_bpe50000/splits12/text_shape.bpe --multiple_iterator true --valid_data_path_and_name_and_type dump/raw/dev_v3/text.prev,text_prev,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_prev_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text.ctc,text_ctc,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_ctc_shape.bpe --valid_data_path_and_name_and_type dump/raw/dev_v3/text,text,text --valid_shape_file exp/s2t_stats_raw_bpe50000/valid/text_shape.bpe --ngpu 8 --multiprocessing_distributed true --dist_launcher slurm --dist_init_method file:///scratch/bbjs/peng6/espnet-whisper-public/egs2/owsm_v3.1/s2t1/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/.dist_init_2e5d3388-5a62-4d9b-abf3-231f106e2517 +[gpuc04:0/16] 2024-01-16 12:22:23,285 (distributed_c10d:337) INFO: Waiting in store based barrier to initialize process group for rank: 0, key: store_based_barrier_key:1 (world_size=16, worker_count=8, timeout=0:30:00) +[gpuc04:0/16] 2024-01-16 12:22:27,832 (distributed_c10d:353) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 16 nodes. +[gpuc04:0/16] 2024-01-16 12:22:27,910 (s2t:464) INFO: Vocabulary size: 50002 +[gpuc04:0/16] 2024-01-16 12:22:35,227 (abs_task:1231) INFO: pytorch.version=1.13.1, cuda.available=True, cudnn.version=8500, cudnn.benchmark=False, cudnn.deterministic=True +[gpuc04:0/16] 2024-01-16 12:22:35,232 (abs_task:1232) INFO: Model structure: +ESPnetS2TModel( + (frontend): DefaultFrontend( + (stft): Stft(n_fft=512, win_length=400, hop_length=160, center=True, normalized=False, onesided=True) + (frontend): Frontend() + (logmel): LogMel(sr=16000, n_fft=512, n_mels=80, fmin=0, fmax=8000.0, htk=False) + ) + (specaug): SpecAug( + (freq_mask): MaskAlongAxis(mask_width_range=[0, 27], num_mask=1, axis=freq) + (time_mask): MaskAlongAxisVariableMaxWidth(mask_width_ratio_range=[0.0, 0.05], num_mask=1, axis=time) + ) + (normalize): GlobalMVN(stats_file=exp/s2t_stats_raw_bpe50000/train/feats_stats.npz, norm_means=True, norm_vars=True) + (encoder): EBranchformerEncoder( + (embed): Conv2dSubsampling( + (conv): Sequential( + (0): Conv2d(1, 384, kernel_size=(3, 3), stride=(2, 2)) + (1): ReLU() + (2): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2)) + (3): ReLU() + ) + (out): Sequential( + (0): Linear(in_features=7296, out_features=384, bias=True) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (encoders): MultiSequential( + (0): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (1): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (2): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (3): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (4): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + (5): EBranchformerEncoderLayer( + (attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (cgmlp): ConvolutionalGatingMLP( + (channel_proj1): Sequential( + (0): Linear(in_features=384, out_features=1536, bias=True) + (1): GELU(approximate='none') + ) + (csgu): ConvolutionalSpatialGatingUnit( + (norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) + (conv): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (act): Identity() + (dropout): Dropout(p=0.05, inplace=False) + ) + (channel_proj2): Linear(in_features=768, out_features=384, bias=True) + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (feed_forward_macaron): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): Swish() + ) + (norm_ff): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_ff_macaron): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mha): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_mlp): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm_final): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + (depthwise_conv_fusion): Conv1d(768, 768, kernel_size=(31,), stride=(1,), padding=(15,), groups=768) + (merge_proj): Linear(in_features=768, out_features=384, bias=True) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + ) + (decoder): TransformerDecoder( + (embed): Sequential( + (0): Embedding(50002, 384) + (1): PositionalEncoding( + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + (after_norm): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (output_layer): Linear(in_features=384, out_features=50002, bias=True) + (decoders): MultiSequential( + (0): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (1): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (2): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (3): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (4): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + (5): DecoderLayer( + (self_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (src_attn): MultiHeadedAttention( + (linear_q): Linear(in_features=384, out_features=384, bias=True) + (linear_k): Linear(in_features=384, out_features=384, bias=True) + (linear_v): Linear(in_features=384, out_features=384, bias=True) + (linear_out): Linear(in_features=384, out_features=384, bias=True) + (dropout): Identity() + (q_norm): Identity() + (k_norm): Identity() + ) + (feed_forward): PositionwiseFeedForward( + (w_1): Linear(in_features=384, out_features=1536, bias=True) + (w_2): Linear(in_features=1536, out_features=384, bias=True) + (dropout): Dropout(p=0.05, inplace=False) + (activation): ReLU() + ) + (norm1): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm2): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (norm3): LayerNorm((384,), eps=1e-12, elementwise_affine=True) + (dropout): Dropout(p=0.05, inplace=False) + ) + ) + ) + (criterion_att): LabelSmoothingLoss( + (criterion): KLDivLoss() + ) + (ctc): CTC( + (ctc_lo): Linear(in_features=384, out_features=50002, bias=True) + (ctc_loss): CTCLoss() + ) +) + +Model summary: + Class Name: ESPnetS2TModel + Total Number of model parameters: 101.18 M + Number of trainable parameters: 101.18 M (100.0%) + Size: 404.73 MB + Type: torch.float32 +[gpuc04:0/16] 2024-01-16 12:22:35,232 (abs_task:1235) INFO: Optimizer: +AdamW ( +Parameter Group 0 + amsgrad: False + betas: [0.9, 0.98] + capturable: False + eps: 1e-06 + foreach: None + initial_lr: 0.001 + lr: 3.3333333333333334e-09 + maximize: False + weight_decay: 0.0 +) +[gpuc04:0/16] 2024-01-16 12:22:35,232 (abs_task:1236) INFO: Scheduler: PiecewiseLinearWarmupLR(warmup_steps_list=[0, 30000, 60000], warmup_lr_list=[0.0, 0.0001, 0.001]) +[gpuc04:0/16] 2024-01-16 12:22:35,256 (abs_task:1245) INFO: Saving the configuration in exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml +[gpuc04:0/16] 2024-01-16 12:22:41,155 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 12:22:42,154 (abs_task:1616) INFO: [valid] dataset: +ESPnetDataset( + speech: {"path": "dump/raw/dev_v3/wav.scp", "type": "kaldi_ark"} + text_prev: {"path": "dump/raw/dev_v3/text.prev", "type": "text"} + text_ctc: {"path": "dump/raw/dev_v3/text.ctc", "type": "text"} + text: {"path": "dump/raw/dev_v3/text", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 12:22:42,154 (abs_task:1617) INFO: [valid] Batch sampler: UnsortedBatchSampler(N-batch=4671, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/valid/speech_shape, +[gpuc04:0/16] 2024-01-16 12:22:42,155 (abs_task:1618) INFO: [valid] mini-batch sizes summary: N-batch=4671, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 12:22:47,903 (trainer:159) INFO: The training was resumed using exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/checkpoint.pth +gpuc04:3119856:3119856 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119856:3119856 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119856:3119856 [0] NCCL INFO cudaDriverVersion 12020 +NCCL version 2.14.3+cuda11.7 +[gpuc04:0/16] 2024-01-16 12:22:56,194 (trainer:284) INFO: 34/45epoch started +[gpuc04:0/16] 2024-01-16 12:22:56,243 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-16 12:23:15,381 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 12:23:18,958 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 12:23:18,958 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-16 12:23:18,962 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +gpuc04:3119861:3119861 [5] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119861:3119861 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119861:3119861 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119861:3119979 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119861:3119979 [5] NCCL INFO Using network IB +gpuc04:3119861:3119979 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc04:3119861:3119979 [5] NCCL INFO Trees [0] 6/-1/-1->5->4 [1] 6/-1/-1->5->4 +gpuc04:3119861:3119979 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc04:3119861:3119979 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 6[c8000] via P2P/IPC/read +gpuc04:3119861:3119979 [5] NCCL INFO Connected all rings +gpuc04:3119861:3119979 [5] NCCL INFO Channel 00/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc04:3119861:3119979 [5] NCCL INFO Channel 01/0 : 5[8b000] -> 4[88000] via P2P/IPC/read +gpuc04:3119861:3119979 [5] NCCL INFO Connected all trees +gpuc04:3119861:3119979 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119861:3119979 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119861:3119979 [5] NCCL INFO comm 0x7fc3350 rank 5 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc04:3119862:3119862 [6] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119862:3119862 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119862:3119862 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119862:3119985 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119862:3119985 [6] NCCL INFO Using network IB +gpuc04:3119862:3119985 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc04:3119862:3119985 [6] NCCL INFO Trees [0] 7/-1/-1->6->5 [1] 7/-1/-1->6->5 +gpuc04:3119862:3119985 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc04:3119862:3119985 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 7[cb000] via P2P/IPC/read +gpuc04:3119862:3119985 [6] NCCL INFO Connected all rings +gpuc04:3119862:3119985 [6] NCCL INFO Channel 00/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc04:3119862:3119985 [6] NCCL INFO Channel 01/0 : 6[c8000] -> 5[8b000] via P2P/IPC/read +gpuc04:3119862:3119985 [6] NCCL INFO Connected all trees +gpuc04:3119862:3119985 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119862:3119985 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119862:3119985 [6] NCCL INFO comm 0x125d1780 rank 6 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc06:1624906:1624906 [0] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624906:1624906 [0] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624906:1624906 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624906:1624998 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624906:1624998 [0] NCCL INFO Using network IB +gpuc06:1624906:1624998 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc06:1624906:1624998 [0] NCCL INFO Trees [0] 9/-1/-1->8->0 [1] 9/0/-1->8->-1 +gpuc06:1624906:1624998 [0] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc06:1624906:1624998 [0] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [receive] via NET/IB/0 +gpuc06:1624906:1624998 [0] NCCL INFO Channel 00/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc06:1624906:1624998 [0] NCCL INFO Channel 01/0 : 8[7000] -> 9[b000] via P2P/IPC/read +gpuc06:1624906:1624998 [0] NCCL INFO Connected all rings +gpuc06:1624906:1624998 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc06:1624906:1624998 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [receive] via NET/IB/0 +gpuc06:1624906:1624998 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc06:1624906:1624998 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [send] via NET/IB/0 +gpuc06:1624906:1624998 [0] NCCL INFO Connected all trees +gpuc06:1624906:1624998 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624906:1624998 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624906:1624998 [0] NCCL INFO comm 0xf7092c0 rank 8 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc04:3119860:3119860 [4] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119860:3119860 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119860:3119860 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119860:3119986 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119860:3119986 [4] NCCL INFO Using network IB +gpuc04:3119860:3119986 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc04:3119860:3119986 [4] NCCL INFO Trees [0] 5/-1/-1->4->3 [1] 5/-1/-1->4->3 +gpuc04:3119860:3119986 [4] NCCL INFO Channel 00/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc04:3119860:3119986 [4] NCCL INFO Channel 01/0 : 4[88000] -> 5[8b000] via P2P/IPC/read +gpuc04:3119860:3119986 [4] NCCL INFO Connected all rings +gpuc04:3119860:3119986 [4] NCCL INFO Channel 00/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc04:3119860:3119986 [4] NCCL INFO Channel 01/0 : 4[88000] -> 3[4c000] via P2P/IPC/read +gpuc04:3119860:3119986 [4] NCCL INFO Connected all trees +gpuc04:3119860:3119986 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119860:3119986 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119860:3119986 [4] NCCL INFO comm 0xed6dc00 rank 4 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +gpuc04:3119859:3119859 [3] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119859:3119859 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119859:3119859 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119859:3119984 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119859:3119984 [3] NCCL INFO Using network IB +gpuc04:3119859:3119984 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc04:3119859:3119984 [3] NCCL INFO Trees [0] 4/-1/-1->3->2 [1] 4/-1/-1->3->2 +gpuc04:3119859:3119984 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc04:3119859:3119984 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 4[88000] via P2P/IPC/read +gpuc04:3119859:3119984 [3] NCCL INFO Connected all rings +gpuc04:3119859:3119984 [3] NCCL INFO Channel 00/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc04:3119859:3119984 [3] NCCL INFO Channel 01/0 : 3[4c000] -> 2[48000] via P2P/IPC/read +gpuc04:3119859:3119984 [3] NCCL INFO Connected all trees +gpuc04:3119859:3119984 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119859:3119984 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119859:3119984 [3] NCCL INFO comm 0x12119740 rank 3 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc04:3119857:3119857 [1] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119857:3119857 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119857:3119857 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119857:3119980 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119857:3119980 [1] NCCL INFO Using network IB +gpuc04:3119857:3119980 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc04:3119857:3119980 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0 +gpuc04:3119857:3119980 [1] NCCL INFO Channel 00/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc04:3119857:3119980 [1] NCCL INFO Channel 01/0 : 1[b000] -> 2[48000] via P2P/IPC/read +gpuc04:3119857:3119980 [1] NCCL INFO Connected all rings +gpuc04:3119857:3119980 [1] NCCL INFO Channel 00/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc04:3119857:3119980 [1] NCCL INFO Channel 01/0 : 1[b000] -> 0[7000] via P2P/IPC/read +gpuc04:3119857:3119980 [1] NCCL INFO Connected all trees +gpuc04:3119857:3119980 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119857:3119980 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119857:3119980 [1] NCCL INFO comm 0x58d82f80 rank 1 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc04:3119856:3119983 [0] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119856:3119983 [0] NCCL INFO Using network IB +gpuc04:3119856:3119983 [0] NCCL INFO Setting affinity for GPU 0 to ffff0000,00000000 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 00/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 01/02 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +gpuc04:3119856:3119983 [0] NCCL INFO Trees [0] 1/8/-1->0->-1 [1] 1/-1/-1->0->8 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [receive] via NET/IB/0 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 00/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc04:3119856:3119983 [0] NCCL INFO Channel 01/0 : 0[7000] -> 1[b000] via P2P/IPC/read +gpuc04:3119856:3119983 [0] NCCL INFO Connected all rings +gpuc04:3119856:3119983 [0] NCCL INFO Channel 00/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 01/0 : 8[7000] -> 0[7000] [receive] via NET/IB/0 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 00/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc04:3119856:3119983 [0] NCCL INFO Channel 01/0 : 0[7000] -> 8[7000] [send] via NET/IB/0 +gpuc04:3119856:3119983 [0] NCCL INFO Connected all trees +gpuc04:3119856:3119983 [0] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119856:3119983 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119856:3119983 [0] NCCL INFO comm 0xacef5c0 rank 0 nranks 16 cudaDev 0 busId 7000 - Init COMPLETE +gpuc06:1624907:1624907 [1] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624907:1624907 [1] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624907:1624907 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624907:1625001 [1] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624907:1625001 [1] NCCL INFO Using network IB +gpuc06:1624907:1625001 [1] NCCL INFO Setting affinity for GPU 1 to ffff0000,00000000 +gpuc06:1624907:1625001 [1] NCCL INFO Trees [0] 10/-1/-1->9->8 [1] 10/-1/-1->9->8 +gpuc06:1624907:1625001 [1] NCCL INFO Channel 00/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc06:1624907:1625001 [1] NCCL INFO Channel 01/0 : 9[b000] -> 10[48000] via P2P/IPC/read +gpuc06:1624907:1625001 [1] NCCL INFO Connected all rings +gpuc06:1624907:1625001 [1] NCCL INFO Channel 00/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc06:1624907:1625001 [1] NCCL INFO Channel 01/0 : 9[b000] -> 8[7000] via P2P/IPC/read +gpuc06:1624907:1625001 [1] NCCL INFO Connected all trees +gpuc06:1624907:1625001 [1] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624907:1625001 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624907:1625001 [1] NCCL INFO comm 0xfa6c470 rank 9 nranks 16 cudaDev 1 busId b000 - Init COMPLETE +gpuc06:1624911:1624911 [5] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624911:1624911 [5] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624911:1624911 [5] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624911:1624999 [5] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624911:1624999 [5] NCCL INFO Using network IB +gpuc06:1624911:1624999 [5] NCCL INFO Setting affinity for GPU 5 to ffff0000,00000000,00000000,00000000 +gpuc06:1624911:1624999 [5] NCCL INFO Trees [0] 14/-1/-1->13->12 [1] 14/-1/-1->13->12 +gpuc06:1624911:1624999 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc06:1624911:1624999 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 14[c8000] via P2P/IPC/read +gpuc06:1624911:1624999 [5] NCCL INFO Connected all rings +gpuc06:1624911:1624999 [5] NCCL INFO Channel 00/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc06:1624911:1624999 [5] NCCL INFO Channel 01/0 : 13[8b000] -> 12[88000] via P2P/IPC/read +gpuc06:1624911:1624999 [5] NCCL INFO Connected all trees +gpuc06:1624911:1624999 [5] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624911:1624999 [5] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624911:1624999 [5] NCCL INFO comm 0xf0ace60 rank 13 nranks 16 cudaDev 5 busId 8b000 - Init COMPLETE +gpuc06:1624912:1624912 [6] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624912:1624912 [6] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624912:1624912 [6] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624912:1624994 [6] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624912:1624994 [6] NCCL INFO Using network IB +gpuc06:1624912:1624994 [6] NCCL INFO Setting affinity for GPU 6 to ffff0000,00000000,00000000 +gpuc06:1624912:1624994 [6] NCCL INFO Trees [0] 15/-1/-1->14->13 [1] 15/-1/-1->14->13 +gpuc06:1624912:1624994 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc06:1624912:1624994 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 15[cb000] via P2P/IPC/read +gpuc06:1624912:1624994 [6] NCCL INFO Connected all rings +gpuc06:1624912:1624994 [6] NCCL INFO Channel 00/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc06:1624912:1624994 [6] NCCL INFO Channel 01/0 : 14[c8000] -> 13[8b000] via P2P/IPC/read +gpuc06:1624912:1624994 [6] NCCL INFO Connected all trees +gpuc06:1624912:1624994 [6] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624912:1624994 [6] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624912:1624994 [6] NCCL INFO comm 0x109e2e20 rank 14 nranks 16 cudaDev 6 busId c8000 - Init COMPLETE +gpuc04:3119858:3119858 [2] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119858:3119858 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119858:3119858 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119858:3119981 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119858:3119981 [2] NCCL INFO Using network IB +gpuc04:3119858:3119981 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc04:3119858:3119981 [2] NCCL INFO Trees [0] 3/-1/-1->2->1 [1] 3/-1/-1->2->1 +gpuc04:3119858:3119981 [2] NCCL INFO Channel 00/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc04:3119858:3119981 [2] NCCL INFO Channel 01/0 : 2[48000] -> 3[4c000] via P2P/IPC/read +gpuc04:3119858:3119981 [2] NCCL INFO Connected all rings +gpuc04:3119858:3119981 [2] NCCL INFO Channel 00/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc04:3119858:3119981 [2] NCCL INFO Channel 01/0 : 2[48000] -> 1[b000] via P2P/IPC/read +gpuc04:3119858:3119981 [2] NCCL INFO Connected all trees +gpuc04:3119858:3119981 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119858:3119981 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119858:3119981 [2] NCCL INFO comm 0x119f4e30 rank 2 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc06:1624913:1624913 [7] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624913:1624913 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624913:1624913 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624913:1625000 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624913:1625000 [7] NCCL INFO Using network IB +gpuc06:1624913:1625000 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc06:1624913:1625000 [7] NCCL INFO Trees [0] -1/-1/-1->15->14 [1] -1/-1/-1->15->14 +gpuc06:1624913:1625000 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc06:1624913:1625000 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 0[7000] [send] via NET/IB/0 +gpuc06:1624913:1625000 [7] NCCL INFO Connected all rings +gpuc06:1624913:1625000 [7] NCCL INFO Channel 00/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc06:1624913:1625000 [7] NCCL INFO Channel 01/0 : 15[cb000] -> 14[c8000] via P2P/IPC/read +gpuc06:1624913:1625000 [7] NCCL INFO Connected all trees +gpuc06:1624913:1625000 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624913:1625000 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624913:1625000 [7] NCCL INFO comm 0x52e33e00 rank 15 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +gpuc06:1624910:1624910 [4] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624910:1624910 [4] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624910:1624910 [4] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624910:1624996 [4] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624910:1624996 [4] NCCL INFO Using network IB +gpuc06:1624910:1624996 [4] NCCL INFO Setting affinity for GPU 4 to ffff0000,00000000,00000000,00000000 +gpuc06:1624910:1624996 [4] NCCL INFO Trees [0] 13/-1/-1->12->11 [1] 13/-1/-1->12->11 +gpuc06:1624910:1624996 [4] NCCL INFO Channel 00/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc06:1624910:1624996 [4] NCCL INFO Channel 01/0 : 12[88000] -> 13[8b000] via P2P/IPC/read +gpuc06:1624910:1624996 [4] NCCL INFO Connected all rings +gpuc06:1624910:1624996 [4] NCCL INFO Channel 00/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc06:1624910:1624996 [4] NCCL INFO Channel 01/0 : 12[88000] -> 11[4c000] via P2P/IPC/read +gpuc06:1624910:1624996 [4] NCCL INFO Connected all trees +gpuc06:1624910:1624996 [4] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624910:1624996 [4] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624910:1624996 [4] NCCL INFO comm 0xb764400 rank 12 nranks 16 cudaDev 4 busId 88000 - Init COMPLETE +gpuc06:1624908:1624908 [2] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624908:1624908 [2] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624908:1624908 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624908:1624995 [2] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624908:1624995 [2] NCCL INFO Using network IB +gpuc06:1624908:1624995 [2] NCCL INFO Setting affinity for GPU 2 to ffff0000 +gpuc06:1624908:1624995 [2] NCCL INFO Trees [0] 11/-1/-1->10->9 [1] 11/-1/-1->10->9 +gpuc06:1624908:1624995 [2] NCCL INFO Channel 00/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc06:1624908:1624995 [2] NCCL INFO Channel 01/0 : 10[48000] -> 11[4c000] via P2P/IPC/read +gpuc06:1624908:1624995 [2] NCCL INFO Connected all rings +gpuc06:1624908:1624995 [2] NCCL INFO Channel 00/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc06:1624908:1624995 [2] NCCL INFO Channel 01/0 : 10[48000] -> 9[b000] via P2P/IPC/read +gpuc06:1624908:1624995 [2] NCCL INFO Connected all trees +gpuc06:1624908:1624995 [2] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624908:1624995 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624908:1624995 [2] NCCL INFO comm 0x574b7630 rank 10 nranks 16 cudaDev 2 busId 48000 - Init COMPLETE +gpuc06:1624909:1624909 [3] NCCL INFO cudaDriverVersion 12020 +gpuc06:1624909:1624909 [3] NCCL INFO Bootstrap : Using eth0:172.28.23.206<0> +gpuc06:1624909:1624909 [3] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc06:1624909:1624997 [3] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.206<0> +gpuc06:1624909:1624997 [3] NCCL INFO Using network IB +gpuc06:1624909:1624997 [3] NCCL INFO Setting affinity for GPU 3 to ffff0000 +gpuc06:1624909:1624997 [3] NCCL INFO Trees [0] 12/-1/-1->11->10 [1] 12/-1/-1->11->10 +gpuc06:1624909:1624997 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc06:1624909:1624997 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 12[88000] via P2P/IPC/read +gpuc06:1624909:1624997 [3] NCCL INFO Connected all rings +gpuc06:1624909:1624997 [3] NCCL INFO Channel 00/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc06:1624909:1624997 [3] NCCL INFO Channel 01/0 : 11[4c000] -> 10[48000] via P2P/IPC/read +gpuc06:1624909:1624997 [3] NCCL INFO Connected all trees +gpuc06:1624909:1624997 [3] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc06:1624909:1624997 [3] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc06:1624909:1624997 [3] NCCL INFO comm 0x5305cf80 rank 11 nranks 16 cudaDev 3 busId 4c000 - Init COMPLETE +gpuc04:3119863:3119863 [7] NCCL INFO cudaDriverVersion 12020 +gpuc04:3119863:3119863 [7] NCCL INFO Bootstrap : Using eth0:172.28.23.204<0> +gpuc04:3119863:3119863 [7] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation +gpuc04:3119863:3119982 [7] NCCL INFO NET/IB : Using [0]mlx5_0:1/RoCE [RO]; OOB eth0:172.28.23.204<0> +gpuc04:3119863:3119982 [7] NCCL INFO Using network IB +gpuc04:3119863:3119982 [7] NCCL INFO Setting affinity for GPU 7 to ffff0000,00000000,00000000 +gpuc04:3119863:3119982 [7] NCCL INFO Trees [0] -1/-1/-1->7->6 [1] -1/-1/-1->7->6 +gpuc04:3119863:3119982 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc04:3119863:3119982 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 8[7000] [send] via NET/IB/0 +gpuc04:3119863:3119982 [7] NCCL INFO Connected all rings +gpuc04:3119863:3119982 [7] NCCL INFO Channel 00/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc04:3119863:3119982 [7] NCCL INFO Channel 01/0 : 7[cb000] -> 6[c8000] via P2P/IPC/read +gpuc04:3119863:3119982 [7] NCCL INFO Connected all trees +gpuc04:3119863:3119982 [7] NCCL INFO threadThresholds 8/8/64 | 128/8/64 | 512 | 512 +gpuc04:3119863:3119982 [7] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer +gpuc04:3119863:3119982 [7] NCCL INFO comm 0x577eca40 rank 7 nranks 16 cudaDev 7 busId cb000 - Init COMPLETE +[gpuc04:0/16] 2024-01-16 12:27:10,613 (distributed:1027) INFO: Reducer buckets have been rebuilt in this iteration. +[gpuc04:0/16] 2024-01-16 12:27:53,484 (trainer:737) INFO: 34epoch:train:1-100batch: iter_time=2.379, forward_time=0.220, loss_ctc=57.947, loss_att=64.361, acc=0.700, loss=62.437, backward_time=0.110, grad_norm=54.732, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.482e-04, train_time=2.972 +[gpuc04:0/16] 2024-01-16 12:28:36,634 (trainer:737) INFO: 34epoch:train:101-200batch: iter_time=1.017e-04, forward_time=0.102, loss_ctc=49.565, loss_att=50.286, acc=0.727, loss=50.070, backward_time=0.097, grad_norm=46.831, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.481e-04, train_time=0.432 +[gpuc04:0/16] 2024-01-16 12:29:18,061 (trainer:737) INFO: 34epoch:train:201-300batch: iter_time=1.174e-04, forward_time=0.100, loss_ctc=37.009, loss_att=39.557, acc=0.744, loss=38.792, backward_time=0.096, grad_norm=38.045, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.481e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 12:29:59,697 (trainer:737) INFO: 34epoch:train:301-400batch: iter_time=1.094e-04, forward_time=0.103, loss_ctc=44.880, loss_att=56.674, acc=0.720, loss=53.136, backward_time=0.097, grad_norm=44.740, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.481e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 12:30:41,111 (trainer:737) INFO: 34epoch:train:401-500batch: iter_time=1.057e-04, forward_time=0.102, loss_ctc=44.260, loss_att=48.030, acc=0.724, loss=46.899, backward_time=0.096, grad_norm=43.823, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.480e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 12:31:22,669 (trainer:737) INFO: 34epoch:train:501-600batch: iter_time=1.099e-04, forward_time=0.102, loss_ctc=44.207, loss_att=52.685, acc=0.733, loss=50.141, backward_time=0.096, grad_norm=48.258, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.480e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 12:32:04,325 (trainer:737) INFO: 34epoch:train:601-700batch: iter_time=1.073e-04, forward_time=0.102, loss_ctc=39.993, loss_att=51.189, acc=0.749, loss=47.830, backward_time=0.097, grad_norm=39.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.480e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 12:32:45,705 (trainer:737) INFO: 34epoch:train:701-800batch: iter_time=1.088e-04, forward_time=0.101, loss_ctc=34.050, loss_att=38.402, acc=0.773, loss=37.096, backward_time=0.096, grad_norm=35.335, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.479e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 12:33:27,156 (trainer:737) INFO: 34epoch:train:801-900batch: iter_time=1.036e-04, forward_time=0.101, loss_ctc=44.480, loss_att=46.207, acc=0.736, loss=45.689, backward_time=0.096, grad_norm=46.932, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.479e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 12:34:08,761 (trainer:737) INFO: 34epoch:train:901-1000batch: iter_time=1.090e-04, forward_time=0.102, loss_ctc=50.127, loss_att=56.351, acc=0.729, loss=54.484, backward_time=0.097, grad_norm=52.637, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.479e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 12:34:50,536 (trainer:737) INFO: 34epoch:train:1001-1100batch: iter_time=1.022e-04, forward_time=0.104, loss_ctc=43.226, loss_att=43.405, acc=0.749, loss=43.352, backward_time=0.096, grad_norm=48.175, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.478e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 12:35:32,002 (trainer:737) INFO: 34epoch:train:1101-1200batch: iter_time=9.983e-05, forward_time=0.102, loss_ctc=43.968, loss_att=44.742, acc=0.729, loss=44.510, backward_time=0.096, grad_norm=43.065, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.478e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 12:36:04,832 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-16 12:36:24,818 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 12:36:28,409 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 12:36:28,409 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-16 12:36:28,412 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 12:40:28,927 (trainer:737) INFO: 34epoch:train:1201-1300batch: iter_time=2.408, forward_time=0.103, loss_ctc=45.373, loss_att=54.476, acc=0.727, loss=51.745, backward_time=0.096, grad_norm=43.973, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.478e-04, train_time=2.969 +[gpuc04:0/16] 2024-01-16 12:41:10,916 (trainer:737) INFO: 34epoch:train:1301-1400batch: iter_time=9.258e-05, forward_time=0.103, loss_ctc=51.696, loss_att=56.843, acc=0.734, loss=55.299, backward_time=0.096, grad_norm=51.253, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.477e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 12:41:52,671 (trainer:737) INFO: 34epoch:train:1401-1500batch: iter_time=9.773e-05, forward_time=0.102, loss_ctc=41.554, loss_att=43.289, acc=0.738, loss=42.769, backward_time=0.095, grad_norm=38.798, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.477e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 12:42:37,084 (trainer:737) INFO: 34epoch:train:1501-1600batch: iter_time=9.513e-05, forward_time=0.101, loss_ctc=39.511, loss_att=42.134, acc=0.750, loss=41.347, backward_time=0.096, grad_norm=39.877, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.477e-04, train_time=0.444 +[gpuc04:0/16] 2024-01-16 12:43:19,588 (trainer:737) INFO: 34epoch:train:1601-1700batch: iter_time=1.007e-04, forward_time=0.103, loss_ctc=45.982, loss_att=57.980, acc=0.729, loss=54.381, backward_time=0.097, grad_norm=43.116, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.476e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 12:44:01,431 (trainer:737) INFO: 34epoch:train:1701-1800batch: iter_time=1.021e-04, forward_time=0.102, loss_ctc=44.968, loss_att=55.485, acc=0.714, loss=52.330, backward_time=0.096, grad_norm=43.293, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.476e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 12:44:43,372 (trainer:737) INFO: 34epoch:train:1801-1900batch: iter_time=9.788e-05, forward_time=0.103, loss_ctc=38.162, loss_att=46.586, acc=0.777, loss=44.059, backward_time=0.097, grad_norm=38.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.475e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 12:45:25,175 (trainer:737) INFO: 34epoch:train:1901-2000batch: iter_time=1.005e-04, forward_time=0.101, loss_ctc=37.443, loss_att=41.276, acc=0.778, loss=40.126, backward_time=0.096, grad_norm=36.289, clip=100.000, loss_scale=2.160e+34, optim_step_time=0.038, optim0_lr0=3.475e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 12:45:51,871 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 12:46:06,859 (trainer:737) INFO: 34epoch:train:2001-2100batch: iter_time=9.998e-05, forward_time=0.101, loss_ctc=39.907, loss_att=45.404, acc=0.747, loss=43.755, backward_time=0.095, grad_norm=42.217, clip=100.000, loss_scale=3.399e+34, optim_step_time=0.038, optim0_lr0=3.475e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 12:46:48,800 (trainer:737) INFO: 34epoch:train:2101-2200batch: iter_time=9.738e-05, forward_time=0.103, loss_ctc=45.229, loss_att=55.175, acc=0.731, loss=52.191, backward_time=0.096, grad_norm=44.477, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.474e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 12:47:30,758 (trainer:737) INFO: 34epoch:train:2201-2300batch: iter_time=9.855e-05, forward_time=0.104, loss_ctc=47.147, loss_att=51.940, acc=0.740, loss=50.502, backward_time=0.096, grad_norm=51.274, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.474e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 12:48:12,595 (trainer:737) INFO: 34epoch:train:2301-2400batch: iter_time=9.693e-05, forward_time=0.102, loss_ctc=39.274, loss_att=40.219, acc=0.760, loss=39.936, backward_time=0.096, grad_norm=40.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.474e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 12:48:54,278 (trainer:737) INFO: 34epoch:train:2401-2500batch: iter_time=8.664e-05, forward_time=0.102, loss_ctc=42.143, loss_att=45.280, acc=0.748, loss=44.339, backward_time=0.096, grad_norm=41.632, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.473e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 12:48:58,680 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-16 12:49:17,863 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 12:49:21,807 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 12:49:21,807 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-16 12:49:21,810 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 12:53:42,457 (trainer:737) INFO: 34epoch:train:2501-2600batch: iter_time=2.387, forward_time=0.103, loss_ctc=55.830, loss_att=63.261, acc=0.711, loss=61.032, backward_time=0.096, grad_norm=53.162, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.473e-04, train_time=2.882 +[gpuc04:0/16] 2024-01-16 12:54:24,432 (trainer:737) INFO: 34epoch:train:2601-2700batch: iter_time=1.068e-04, forward_time=0.102, loss_ctc=48.433, loss_att=50.384, acc=0.737, loss=49.799, backward_time=0.096, grad_norm=43.495, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.473e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 12:55:06,171 (trainer:737) INFO: 34epoch:train:2701-2800batch: iter_time=9.123e-05, forward_time=0.101, loss_ctc=35.911, loss_att=38.303, acc=0.753, loss=37.585, backward_time=0.095, grad_norm=36.023, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.472e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 12:55:19,565 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 12:55:48,187 (trainer:737) INFO: 34epoch:train:2801-2900batch: iter_time=9.593e-05, forward_time=0.103, loss_ctc=43.361, loss_att=56.225, acc=0.730, loss=52.366, backward_time=0.096, grad_norm=42.435, clip=100.000, loss_scale=1.364e+34, optim_step_time=0.038, optim0_lr0=3.472e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 12:56:29,992 (trainer:737) INFO: 34epoch:train:2901-3000batch: iter_time=1.009e-04, forward_time=0.102, loss_ctc=43.250, loss_att=47.075, acc=0.737, loss=45.928, backward_time=0.096, grad_norm=42.652, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.472e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 12:57:11,875 (trainer:737) INFO: 34epoch:train:3001-3100batch: iter_time=9.430e-05, forward_time=0.102, loss_ctc=43.257, loss_att=54.516, acc=0.738, loss=51.139, backward_time=0.096, grad_norm=47.525, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.471e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 12:57:56,103 (trainer:737) INFO: 34epoch:train:3101-3200batch: iter_time=9.688e-05, forward_time=0.103, loss_ctc=39.747, loss_att=49.840, acc=0.771, loss=46.812, backward_time=0.097, grad_norm=38.191, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.471e-04, train_time=0.442 +[gpuc04:0/16] 2024-01-16 12:58:38,254 (trainer:737) INFO: 34epoch:train:3201-3300batch: iter_time=1.004e-04, forward_time=0.101, loss_ctc=33.522, loss_att=36.957, acc=0.783, loss=35.927, backward_time=0.095, grad_norm=33.404, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.471e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 12:59:20,059 (trainer:737) INFO: 34epoch:train:3301-3400batch: iter_time=1.033e-04, forward_time=0.103, loss_ctc=43.356, loss_att=44.366, acc=0.748, loss=44.063, backward_time=0.096, grad_norm=42.705, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.470e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:00:02,392 (trainer:737) INFO: 34epoch:train:3401-3500batch: iter_time=1.050e-04, forward_time=0.104, loss_ctc=48.267, loss_att=60.350, acc=0.723, loss=56.725, backward_time=0.097, grad_norm=48.376, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.470e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 13:00:44,229 (trainer:737) INFO: 34epoch:train:3501-3600batch: iter_time=1.040e-04, forward_time=0.102, loss_ctc=41.908, loss_att=43.396, acc=0.755, loss=42.950, backward_time=0.096, grad_norm=45.877, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.470e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:01:26,071 (trainer:737) INFO: 34epoch:train:3601-3700batch: iter_time=1.028e-04, forward_time=0.103, loss_ctc=42.893, loss_att=43.216, acc=0.746, loss=43.119, backward_time=0.096, grad_norm=42.222, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.469e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:01:49,940 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-16 13:02:09,741 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 13:02:13,379 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 13:02:13,379 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-16 13:02:13,382 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 13:06:12,285 (trainer:737) INFO: 34epoch:train:3701-3800batch: iter_time=2.284, forward_time=0.103, loss_ctc=44.738, loss_att=54.283, acc=0.730, loss=51.419, backward_time=0.096, grad_norm=43.605, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.469e-04, train_time=2.862 +[gpuc04:0/16] 2024-01-16 13:06:54,091 (trainer:737) INFO: 34epoch:train:3801-3900batch: iter_time=9.132e-05, forward_time=0.102, loss_ctc=50.251, loss_att=54.246, acc=0.733, loss=53.048, backward_time=0.095, grad_norm=47.074, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.468e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:07:35,799 (trainer:737) INFO: 34epoch:train:3901-4000batch: iter_time=1.115e-04, forward_time=0.101, loss_ctc=40.983, loss_att=42.380, acc=0.737, loss=41.961, backward_time=0.095, grad_norm=38.381, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.468e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:08:17,544 (trainer:737) INFO: 34epoch:train:4001-4100batch: iter_time=1.026e-04, forward_time=0.101, loss_ctc=39.039, loss_att=41.788, acc=0.742, loss=40.963, backward_time=0.094, grad_norm=40.348, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.468e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:08:59,471 (trainer:737) INFO: 34epoch:train:4101-4200batch: iter_time=1.034e-04, forward_time=0.102, loss_ctc=45.615, loss_att=57.015, acc=0.727, loss=53.595, backward_time=0.096, grad_norm=43.538, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.467e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:09:41,191 (trainer:737) INFO: 34epoch:train:4201-4300batch: iter_time=1.014e-04, forward_time=0.102, loss_ctc=44.163, loss_att=53.779, acc=0.707, loss=50.894, backward_time=0.095, grad_norm=44.254, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.467e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:10:23,031 (trainer:737) INFO: 34epoch:train:4301-4400batch: iter_time=1.018e-04, forward_time=0.102, loss_ctc=37.576, loss_att=46.232, acc=0.771, loss=43.635, backward_time=0.095, grad_norm=40.416, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.467e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:11:04,718 (trainer:737) INFO: 34epoch:train:4401-4500batch: iter_time=1.100e-04, forward_time=0.102, loss_ctc=36.708, loss_att=42.645, acc=0.760, loss=40.864, backward_time=0.095, grad_norm=37.704, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.466e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:11:46,459 (trainer:737) INFO: 34epoch:train:4501-4600batch: iter_time=1.065e-04, forward_time=0.101, loss_ctc=38.956, loss_att=45.341, acc=0.744, loss=43.425, backward_time=0.095, grad_norm=41.195, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.466e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:12:28,402 (trainer:737) INFO: 34epoch:train:4601-4700batch: iter_time=1.035e-04, forward_time=0.102, loss_ctc=44.967, loss_att=52.683, acc=0.731, loss=50.369, backward_time=0.095, grad_norm=43.857, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.466e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:13:10,331 (trainer:737) INFO: 34epoch:train:4701-4800batch: iter_time=9.893e-05, forward_time=0.102, loss_ctc=45.566, loss_att=48.036, acc=0.745, loss=47.295, backward_time=0.096, grad_norm=48.644, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.465e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:13:53,485 (trainer:737) INFO: 34epoch:train:4801-4900batch: iter_time=9.778e-05, forward_time=0.102, loss_ctc=38.616, loss_att=39.399, acc=0.753, loss=39.165, backward_time=0.095, grad_norm=40.145, clip=100.000, loss_scale=1.745e+34, optim_step_time=0.037, optim0_lr0=3.465e-04, train_time=0.431 +[gpuc04:0/16] 2024-01-16 13:14:37,280 (trainer:737) INFO: 34epoch:train:4901-5000batch: iter_time=1.001e-04, forward_time=0.102, loss_ctc=40.990, loss_att=44.873, acc=0.737, loss=43.708, backward_time=0.096, grad_norm=42.436, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.465e-04, train_time=0.438 +[gpuc04:0/16] 2024-01-16 13:14:40,021 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-16 13:14:59,288 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 13:15:02,805 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 13:15:02,805 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-16 13:15:02,808 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 13:19:22,521 (trainer:737) INFO: 34epoch:train:5001-5100batch: iter_time=2.274, forward_time=0.103, loss_ctc=54.943, loss_att=63.768, acc=0.710, loss=61.121, backward_time=0.096, grad_norm=52.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.464e-04, train_time=2.852 +[gpuc04:0/16] 2024-01-16 13:20:04,494 (trainer:737) INFO: 34epoch:train:5101-5200batch: iter_time=1.012e-04, forward_time=0.102, loss_ctc=47.242, loss_att=51.104, acc=0.736, loss=49.945, backward_time=0.096, grad_norm=42.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.464e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 13:20:46,159 (trainer:737) INFO: 34epoch:train:5201-5300batch: iter_time=1.014e-04, forward_time=0.101, loss_ctc=35.908, loss_att=38.873, acc=0.755, loss=37.983, backward_time=0.095, grad_norm=36.301, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.464e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 13:21:28,280 (trainer:737) INFO: 34epoch:train:5301-5400batch: iter_time=9.608e-05, forward_time=0.102, loss_ctc=42.947, loss_att=55.979, acc=0.731, loss=52.069, backward_time=0.096, grad_norm=42.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.463e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 13:22:10,432 (trainer:737) INFO: 34epoch:train:5401-5500batch: iter_time=8.420e-05, forward_time=0.104, loss_ctc=42.271, loss_att=47.527, acc=0.736, loss=45.950, backward_time=0.096, grad_norm=41.884, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.463e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 13:22:52,403 (trainer:737) INFO: 34epoch:train:5501-5600batch: iter_time=9.270e-05, forward_time=0.102, loss_ctc=42.232, loss_att=53.257, acc=0.741, loss=49.949, backward_time=0.096, grad_norm=44.754, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.463e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:23:34,433 (trainer:737) INFO: 34epoch:train:5601-5700batch: iter_time=9.066e-05, forward_time=0.102, loss_ctc=38.960, loss_att=49.681, acc=0.771, loss=46.465, backward_time=0.096, grad_norm=39.017, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.462e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 13:24:16,188 (trainer:737) INFO: 34epoch:train:5701-5800batch: iter_time=9.883e-05, forward_time=0.101, loss_ctc=33.671, loss_att=36.107, acc=0.788, loss=35.376, backward_time=0.095, grad_norm=33.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.462e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:24:58,036 (trainer:737) INFO: 34epoch:train:5801-5900batch: iter_time=8.859e-05, forward_time=0.102, loss_ctc=42.142, loss_att=45.318, acc=0.744, loss=44.365, backward_time=0.095, grad_norm=43.368, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.462e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:25:40,095 (trainer:737) INFO: 34epoch:train:5901-6000batch: iter_time=9.581e-05, forward_time=0.103, loss_ctc=47.548, loss_att=59.719, acc=0.725, loss=56.068, backward_time=0.097, grad_norm=48.359, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.461e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 13:26:18,503 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 13:26:21,901 (trainer:737) INFO: 34epoch:train:6001-6100batch: iter_time=9.646e-05, forward_time=0.102, loss_ctc=40.944, loss_att=43.570, acc=0.754, loss=42.782, backward_time=0.095, grad_norm=42.461, clip=100.000, loss_scale=1.993e+34, optim_step_time=0.038, optim0_lr0=3.461e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:27:03,786 (trainer:737) INFO: 34epoch:train:6101-6200batch: iter_time=8.939e-05, forward_time=0.102, loss_ctc=42.586, loss_att=42.848, acc=0.747, loss=42.769, backward_time=0.095, grad_norm=40.674, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.461e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:27:27,425 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-16 13:27:46,647 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 13:27:50,290 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 13:27:50,290 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-16 13:27:50,293 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 13:31:52,817 (trainer:737) INFO: 34epoch:train:6201-6300batch: iter_time=2.303, forward_time=0.103, loss_ctc=44.703, loss_att=53.947, acc=0.729, loss=51.174, backward_time=0.096, grad_norm=43.249, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.460e-04, train_time=2.890 +[gpuc04:0/16] 2024-01-16 13:32:34,748 (trainer:737) INFO: 34epoch:train:6301-6400batch: iter_time=9.928e-05, forward_time=0.102, loss_ctc=50.455, loss_att=53.943, acc=0.735, loss=52.896, backward_time=0.096, grad_norm=48.900, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.460e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:33:16,487 (trainer:737) INFO: 34epoch:train:6401-6500batch: iter_time=9.868e-05, forward_time=0.102, loss_ctc=41.093, loss_att=42.498, acc=0.737, loss=42.076, backward_time=0.095, grad_norm=37.646, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.459e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:33:58,249 (trainer:737) INFO: 34epoch:train:6501-6600batch: iter_time=9.762e-05, forward_time=0.103, loss_ctc=38.929, loss_att=41.486, acc=0.745, loss=40.719, backward_time=0.095, grad_norm=38.592, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.459e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:34:40,212 (trainer:737) INFO: 34epoch:train:6601-6700batch: iter_time=1.072e-04, forward_time=0.103, loss_ctc=45.173, loss_att=56.776, acc=0.725, loss=53.295, backward_time=0.096, grad_norm=43.345, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.459e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:35:21,983 (trainer:737) INFO: 34epoch:train:6701-6800batch: iter_time=9.694e-05, forward_time=0.102, loss_ctc=43.904, loss_att=52.913, acc=0.713, loss=50.210, backward_time=0.095, grad_norm=44.628, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.458e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:36:03,874 (trainer:737) INFO: 34epoch:train:6801-6900batch: iter_time=9.444e-05, forward_time=0.102, loss_ctc=37.580, loss_att=45.912, acc=0.774, loss=43.412, backward_time=0.096, grad_norm=59.653, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.458e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:36:45,587 (trainer:737) INFO: 34epoch:train:6901-7000batch: iter_time=9.435e-05, forward_time=0.102, loss_ctc=36.355, loss_att=42.002, acc=0.763, loss=40.308, backward_time=0.095, grad_norm=37.069, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.458e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:37:27,245 (trainer:737) INFO: 34epoch:train:7001-7100batch: iter_time=9.160e-05, forward_time=0.102, loss_ctc=38.978, loss_att=45.543, acc=0.746, loss=43.574, backward_time=0.095, grad_norm=43.108, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.457e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 13:38:09,129 (trainer:737) INFO: 34epoch:train:7101-7200batch: iter_time=9.219e-05, forward_time=0.103, loss_ctc=44.759, loss_att=52.578, acc=0.731, loss=50.232, backward_time=0.096, grad_norm=42.344, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.457e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:38:50,972 (trainer:737) INFO: 34epoch:train:7201-7300batch: iter_time=9.550e-05, forward_time=0.103, loss_ctc=45.356, loss_att=46.675, acc=0.750, loss=46.279, backward_time=0.096, grad_norm=49.733, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.457e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:39:33,001 (trainer:737) INFO: 34epoch:train:7301-7400batch: iter_time=9.800e-05, forward_time=0.105, loss_ctc=38.280, loss_att=38.986, acc=0.757, loss=38.774, backward_time=0.095, grad_norm=38.924, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.456e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 13:40:14,614 (trainer:737) INFO: 34epoch:train:7401-7500batch: iter_time=9.142e-05, forward_time=0.102, loss_ctc=41.021, loss_att=44.608, acc=0.739, loss=43.532, backward_time=0.095, grad_norm=42.266, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.456e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 13:40:17,377 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-16 13:40:37,087 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 13:40:40,670 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 13:40:40,670 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-16 13:40:40,673 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 13:45:03,679 (trainer:737) INFO: 34epoch:train:7501-7600batch: iter_time=2.309, forward_time=0.108, loss_ctc=53.802, loss_att=62.565, acc=0.709, loss=59.936, backward_time=0.097, grad_norm=49.083, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.456e-04, train_time=2.890 +[gpuc04:0/16] 2024-01-16 13:45:45,508 (trainer:737) INFO: 34epoch:train:7601-7700batch: iter_time=9.551e-05, forward_time=0.102, loss_ctc=47.850, loss_att=47.368, acc=0.736, loss=47.512, backward_time=0.095, grad_norm=42.040, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.455e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:46:27,151 (trainer:737) INFO: 34epoch:train:7701-7800batch: iter_time=9.324e-05, forward_time=0.101, loss_ctc=35.330, loss_att=37.635, acc=0.750, loss=36.944, backward_time=0.094, grad_norm=36.043, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.455e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 13:47:09,370 (trainer:737) INFO: 34epoch:train:7801-7900batch: iter_time=1.714e-04, forward_time=0.103, loss_ctc=42.458, loss_att=54.504, acc=0.727, loss=50.890, backward_time=0.096, grad_norm=43.261, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.455e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 13:47:51,626 (trainer:737) INFO: 34epoch:train:7901-8000batch: iter_time=9.231e-05, forward_time=0.102, loss_ctc=42.528, loss_att=46.534, acc=0.730, loss=45.332, backward_time=0.095, grad_norm=41.454, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.454e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 13:48:35,130 (trainer:737) INFO: 34epoch:train:8001-8100batch: iter_time=1.151e-04, forward_time=0.102, loss_ctc=42.688, loss_att=51.573, acc=0.738, loss=48.908, backward_time=0.095, grad_norm=47.160, clip=100.000, loss_scale=1.122e+34, optim_step_time=0.038, optim0_lr0=3.454e-04, train_time=0.435 +[gpuc04:0/16] 2024-01-16 13:49:17,311 (trainer:737) INFO: 34epoch:train:8101-8200batch: iter_time=8.948e-05, forward_time=0.103, loss_ctc=38.681, loss_att=50.451, acc=0.753, loss=46.920, backward_time=0.096, grad_norm=38.033, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.454e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 13:49:58,860 (trainer:737) INFO: 34epoch:train:8201-8300batch: iter_time=9.542e-05, forward_time=0.102, loss_ctc=32.922, loss_att=36.954, acc=0.781, loss=35.745, backward_time=0.094, grad_norm=33.318, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.453e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 13:50:40,579 (trainer:737) INFO: 34epoch:train:8301-8400batch: iter_time=9.926e-05, forward_time=0.103, loss_ctc=42.029, loss_att=44.720, acc=0.740, loss=43.912, backward_time=0.095, grad_norm=42.363, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.453e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:51:22,535 (trainer:737) INFO: 34epoch:train:8401-8500batch: iter_time=9.190e-05, forward_time=0.103, loss_ctc=47.657, loss_att=54.228, acc=0.736, loss=52.257, backward_time=0.096, grad_norm=47.571, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.453e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 13:52:04,317 (trainer:737) INFO: 34epoch:train:8501-8600batch: iter_time=9.246e-05, forward_time=0.103, loss_ctc=40.703, loss_att=43.178, acc=0.751, loss=42.435, backward_time=0.095, grad_norm=43.298, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.452e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:52:46,038 (trainer:737) INFO: 34epoch:train:8601-8700batch: iter_time=9.407e-05, forward_time=0.103, loss_ctc=42.511, loss_att=43.075, acc=0.735, loss=42.906, backward_time=0.095, grad_norm=43.812, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.452e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 13:53:11,306 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-16 13:53:30,378 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 13:53:33,911 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 13:53:33,911 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-16 13:53:33,914 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 13:57:48,390 (trainer:737) INFO: 34epoch:train:8701-8800batch: iter_time=2.486, forward_time=0.102, loss_ctc=43.932, loss_att=53.004, acc=0.733, loss=50.282, backward_time=0.096, grad_norm=41.810, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.452e-04, train_time=3.023 +[gpuc04:0/16] 2024-01-16 13:58:30,402 (trainer:737) INFO: 34epoch:train:8801-8900batch: iter_time=8.076e-05, forward_time=0.102, loss_ctc=49.634, loss_att=55.945, acc=0.738, loss=54.051, backward_time=0.096, grad_norm=48.060, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.451e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 13:59:12,250 (trainer:737) INFO: 34epoch:train:8901-9000batch: iter_time=8.322e-05, forward_time=0.101, loss_ctc=41.095, loss_att=43.495, acc=0.740, loss=42.775, backward_time=0.096, grad_norm=41.473, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.451e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 13:59:54,142 (trainer:737) INFO: 34epoch:train:9001-9100batch: iter_time=7.881e-05, forward_time=0.102, loss_ctc=38.713, loss_att=41.503, acc=0.754, loss=40.666, backward_time=0.096, grad_norm=40.569, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.451e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:00:36,440 (trainer:737) INFO: 34epoch:train:9101-9200batch: iter_time=8.965e-05, forward_time=0.103, loss_ctc=45.046, loss_att=57.599, acc=0.733, loss=53.833, backward_time=0.096, grad_norm=43.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.450e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 14:01:18,277 (trainer:737) INFO: 34epoch:train:9201-9300batch: iter_time=9.353e-05, forward_time=0.101, loss_ctc=43.388, loss_att=55.637, acc=0.714, loss=51.962, backward_time=0.095, grad_norm=42.620, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.450e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:02:00,274 (trainer:737) INFO: 34epoch:train:9301-9400batch: iter_time=9.237e-05, forward_time=0.103, loss_ctc=37.490, loss_att=46.526, acc=0.779, loss=43.815, backward_time=0.097, grad_norm=48.919, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.450e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 14:02:42,121 (trainer:737) INFO: 34epoch:train:9401-9500batch: iter_time=9.419e-05, forward_time=0.102, loss_ctc=36.632, loss_att=40.786, acc=0.782, loss=39.540, backward_time=0.096, grad_norm=36.232, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.449e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:03:23,848 (trainer:737) INFO: 34epoch:train:9501-9600batch: iter_time=9.302e-05, forward_time=0.102, loss_ctc=38.042, loss_att=44.389, acc=0.754, loss=42.485, backward_time=0.096, grad_norm=41.078, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.449e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:04:05,885 (trainer:737) INFO: 34epoch:train:9601-9700batch: iter_time=9.822e-05, forward_time=0.103, loss_ctc=45.119, loss_att=55.390, acc=0.732, loss=52.308, backward_time=0.097, grad_norm=45.462, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.448e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 14:04:47,885 (trainer:737) INFO: 34epoch:train:9701-9800batch: iter_time=1.061e-04, forward_time=0.103, loss_ctc=44.773, loss_att=50.980, acc=0.741, loss=49.118, backward_time=0.097, grad_norm=49.129, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.448e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 14:05:29,811 (trainer:737) INFO: 34epoch:train:9801-9900batch: iter_time=9.956e-05, forward_time=0.102, loss_ctc=37.834, loss_att=39.214, acc=0.764, loss=38.800, backward_time=0.096, grad_norm=39.995, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.448e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:06:11,689 (trainer:737) INFO: 34epoch:train:9901-10000batch: iter_time=9.898e-05, forward_time=0.102, loss_ctc=40.632, loss_att=44.404, acc=0.749, loss=43.273, backward_time=0.096, grad_norm=41.007, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.447e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:06:14,530 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-16 14:06:33,910 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 14:06:37,541 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 14:06:37,541 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-16 14:06:37,545 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 14:11:03,320 (trainer:737) INFO: 34epoch:train:10001-10100batch: iter_time=2.266, forward_time=0.103, loss_ctc=53.350, loss_att=62.058, acc=0.714, loss=59.445, backward_time=0.096, grad_norm=52.083, clip=100.000, loss_scale=2.243e+34, optim_step_time=0.038, optim0_lr0=3.447e-04, train_time=2.916 +[gpuc04:0/16] 2024-01-16 14:11:34,729 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 14:11:45,196 (trainer:737) INFO: 34epoch:train:10101-10200batch: iter_time=9.080e-05, forward_time=0.103, loss_ctc=47.457, loss_att=49.826, acc=0.739, loss=49.116, backward_time=0.096, grad_norm=46.294, clip=100.000, loss_scale=3.629e+34, optim_step_time=0.038, optim0_lr0=3.447e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:12:26,894 (trainer:737) INFO: 34epoch:train:10201-10300batch: iter_time=1.084e-04, forward_time=0.101, loss_ctc=35.284, loss_att=37.923, acc=0.757, loss=37.131, backward_time=0.095, grad_norm=35.027, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.446e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:13:08,947 (trainer:737) INFO: 34epoch:train:10301-10400batch: iter_time=1.087e-04, forward_time=0.103, loss_ctc=42.415, loss_att=55.101, acc=0.732, loss=51.295, backward_time=0.097, grad_norm=42.497, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.446e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 14:13:15,201 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 14:13:50,714 (trainer:737) INFO: 34epoch:train:10401-10500batch: iter_time=9.509e-05, forward_time=0.102, loss_ctc=42.543, loss_att=46.686, acc=0.739, loss=45.443, backward_time=0.096, grad_norm=42.826, clip=100.000, loss_scale=1.185e+34, optim_step_time=0.038, optim0_lr0=3.446e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:14:32,502 (trainer:737) INFO: 34epoch:train:10501-10600batch: iter_time=9.640e-05, forward_time=0.103, loss_ctc=42.344, loss_att=53.455, acc=0.741, loss=50.122, backward_time=0.096, grad_norm=45.576, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.445e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:15:14,473 (trainer:737) INFO: 34epoch:train:10601-10700batch: iter_time=9.780e-05, forward_time=0.104, loss_ctc=38.778, loss_att=49.288, acc=0.774, loss=46.135, backward_time=0.097, grad_norm=38.020, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.445e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:15:56,119 (trainer:737) INFO: 34epoch:train:10701-10800batch: iter_time=9.335e-05, forward_time=0.102, loss_ctc=32.967, loss_att=36.730, acc=0.786, loss=35.601, backward_time=0.095, grad_norm=32.303, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.445e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:16:37,953 (trainer:737) INFO: 34epoch:train:10801-10900batch: iter_time=9.684e-05, forward_time=0.102, loss_ctc=41.371, loss_att=43.879, acc=0.751, loss=43.126, backward_time=0.095, grad_norm=42.097, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.444e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:17:19,975 (trainer:737) INFO: 34epoch:train:10901-11000batch: iter_time=9.205e-05, forward_time=0.103, loss_ctc=47.449, loss_att=59.330, acc=0.726, loss=55.766, backward_time=0.096, grad_norm=46.458, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.444e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 14:18:02,059 (trainer:737) INFO: 34epoch:train:11001-11100batch: iter_time=9.809e-05, forward_time=0.105, loss_ctc=40.873, loss_att=42.692, acc=0.758, loss=42.146, backward_time=0.096, grad_norm=42.799, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.444e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 14:18:43,843 (trainer:737) INFO: 34epoch:train:11101-11200batch: iter_time=9.579e-05, forward_time=0.102, loss_ctc=41.888, loss_att=42.563, acc=0.748, loss=42.361, backward_time=0.095, grad_norm=39.385, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.443e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:19:09,844 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-16 14:19:28,911 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 14:19:32,485 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 14:19:32,485 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-16 14:19:32,488 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 14:27:15,569 (trainer:737) INFO: 34epoch:train:11201-11300batch: iter_time=4.534, forward_time=0.220, loss_ctc=43.694, loss_att=51.793, acc=0.738, loss=49.363, backward_time=0.124, grad_norm=41.890, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.443e-04, train_time=5.117 +[gpuc04:0/16] 2024-01-16 14:27:58,035 (trainer:737) INFO: 34epoch:train:11301-11400batch: iter_time=1.127e-04, forward_time=0.103, loss_ctc=49.139, loss_att=53.895, acc=0.742, loss=52.468, backward_time=0.096, grad_norm=48.100, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.443e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 14:28:39,995 (trainer:737) INFO: 34epoch:train:11401-11500batch: iter_time=1.148e-04, forward_time=0.102, loss_ctc=40.851, loss_att=43.152, acc=0.740, loss=42.462, backward_time=0.095, grad_norm=41.020, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.442e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:29:22,225 (trainer:737) INFO: 34epoch:train:11501-11600batch: iter_time=1.213e-04, forward_time=0.103, loss_ctc=38.809, loss_att=40.468, acc=0.756, loss=39.970, backward_time=0.096, grad_norm=40.331, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.442e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 14:30:06,085 (trainer:737) INFO: 34epoch:train:11601-11700batch: iter_time=1.083e-04, forward_time=0.104, loss_ctc=45.050, loss_att=56.697, acc=0.735, loss=53.203, backward_time=0.096, grad_norm=42.119, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.442e-04, train_time=0.438 +[gpuc04:0/16] 2024-01-16 14:30:48,114 (trainer:737) INFO: 34epoch:train:11701-11800batch: iter_time=1.115e-04, forward_time=0.103, loss_ctc=43.329, loss_att=55.042, acc=0.715, loss=51.528, backward_time=0.095, grad_norm=44.639, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.037, optim0_lr0=3.441e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 14:31:30,293 (trainer:737) INFO: 34epoch:train:11801-11900batch: iter_time=1.125e-04, forward_time=0.104, loss_ctc=37.187, loss_att=45.882, acc=0.780, loss=43.274, backward_time=0.096, grad_norm=40.837, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.441e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 14:32:11,978 (trainer:737) INFO: 34epoch:train:11901-12000batch: iter_time=1.157e-04, forward_time=0.104, loss_ctc=36.358, loss_att=40.194, acc=0.785, loss=39.043, backward_time=0.095, grad_norm=35.657, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.441e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:32:53,623 (trainer:737) INFO: 34epoch:train:12001-12100batch: iter_time=1.186e-04, forward_time=0.102, loss_ctc=37.723, loss_att=44.179, acc=0.756, loss=42.242, backward_time=0.095, grad_norm=41.508, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.440e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:33:35,519 (trainer:737) INFO: 34epoch:train:12101-12200batch: iter_time=1.198e-04, forward_time=0.105, loss_ctc=44.644, loss_att=54.675, acc=0.733, loss=51.666, backward_time=0.097, grad_norm=42.322, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.440e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 14:34:17,608 (trainer:737) INFO: 34epoch:train:12201-12300batch: iter_time=1.980e-04, forward_time=0.106, loss_ctc=44.885, loss_att=50.161, acc=0.742, loss=48.578, backward_time=0.098, grad_norm=49.337, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.440e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 14:34:59,429 (trainer:737) INFO: 34epoch:train:12301-12400batch: iter_time=1.286e-04, forward_time=0.104, loss_ctc=37.614, loss_att=39.294, acc=0.764, loss=38.790, backward_time=0.096, grad_norm=36.462, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.439e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:35:41,046 (trainer:737) INFO: 34epoch:train:12401-12500batch: iter_time=1.030e-04, forward_time=0.104, loss_ctc=40.814, loss_att=44.025, acc=0.751, loss=43.062, backward_time=0.095, grad_norm=39.267, clip=100.000, loss_scale=1.921e+34, optim_step_time=0.038, optim0_lr0=3.439e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:35:49,843 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-16 14:36:11,035 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 14:36:14,800 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 14:36:14,800 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-16 14:36:14,803 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 14:40:43,540 (trainer:737) INFO: 34epoch:train:12501-12600batch: iter_time=2.605, forward_time=0.104, loss_ctc=53.255, loss_att=64.237, acc=0.706, loss=60.942, backward_time=0.096, grad_norm=51.141, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.439e-04, train_time=3.025 +[gpuc04:0/16] 2024-01-16 14:41:25,307 (trainer:737) INFO: 34epoch:train:12601-12700batch: iter_time=1.689e-04, forward_time=0.104, loss_ctc=47.029, loss_att=49.680, acc=0.732, loss=48.884, backward_time=0.096, grad_norm=43.015, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.438e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:42:06,769 (trainer:737) INFO: 34epoch:train:12701-12800batch: iter_time=1.274e-04, forward_time=0.102, loss_ctc=35.344, loss_att=38.310, acc=0.751, loss=37.420, backward_time=0.094, grad_norm=36.345, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.438e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 14:42:48,584 (trainer:737) INFO: 34epoch:train:12801-12900batch: iter_time=1.275e-04, forward_time=0.104, loss_ctc=42.200, loss_att=55.177, acc=0.727, loss=51.284, backward_time=0.096, grad_norm=42.918, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.438e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:43:30,180 (trainer:737) INFO: 34epoch:train:12901-13000batch: iter_time=1.275e-04, forward_time=0.103, loss_ctc=42.044, loss_att=47.112, acc=0.731, loss=45.591, backward_time=0.095, grad_norm=41.616, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.437e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:44:11,911 (trainer:737) INFO: 34epoch:train:13001-13100batch: iter_time=1.397e-04, forward_time=0.106, loss_ctc=42.369, loss_att=52.070, acc=0.739, loss=49.160, backward_time=0.095, grad_norm=44.537, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.437e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:44:53,624 (trainer:737) INFO: 34epoch:train:13101-13200batch: iter_time=1.414e-04, forward_time=0.106, loss_ctc=38.683, loss_att=50.264, acc=0.755, loss=46.790, backward_time=0.096, grad_norm=38.154, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.437e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:45:35,209 (trainer:737) INFO: 34epoch:train:13201-13300batch: iter_time=1.297e-04, forward_time=0.104, loss_ctc=33.696, loss_att=37.756, acc=0.777, loss=36.538, backward_time=0.095, grad_norm=33.017, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.436e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:46:16,774 (trainer:737) INFO: 34epoch:train:13301-13400batch: iter_time=1.402e-04, forward_time=0.103, loss_ctc=41.460, loss_att=44.564, acc=0.743, loss=43.633, backward_time=0.094, grad_norm=43.229, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.037, optim0_lr0=3.436e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 14:46:58,563 (trainer:737) INFO: 34epoch:train:13401-13500batch: iter_time=1.373e-04, forward_time=0.104, loss_ctc=46.978, loss_att=55.055, acc=0.733, loss=52.632, backward_time=0.096, grad_norm=44.518, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.037, optim0_lr0=3.436e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:47:40,168 (trainer:737) INFO: 34epoch:train:13501-13600batch: iter_time=1.268e-04, forward_time=0.103, loss_ctc=40.064, loss_att=42.060, acc=0.755, loss=41.461, backward_time=0.095, grad_norm=41.763, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.037, optim0_lr0=3.435e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:48:21,759 (trainer:737) INFO: 34epoch:train:13601-13700batch: iter_time=1.581e-04, forward_time=0.104, loss_ctc=41.835, loss_att=42.946, acc=0.735, loss=42.613, backward_time=0.095, grad_norm=40.821, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.037, optim0_lr0=3.435e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:48:46,252 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-16 14:49:05,777 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 14:49:09,370 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 14:49:09,370 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-16 14:49:09,373 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 14:53:19,789 (trainer:737) INFO: 34epoch:train:13701-13800batch: iter_time=2.559, forward_time=0.104, loss_ctc=43.632, loss_att=52.733, acc=0.731, loss=50.003, backward_time=0.096, grad_norm=43.244, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.435e-04, train_time=2.980 +[gpuc04:0/16] 2024-01-16 14:54:01,591 (trainer:737) INFO: 34epoch:train:13801-13900batch: iter_time=1.427e-04, forward_time=0.105, loss_ctc=49.062, loss_att=51.616, acc=0.738, loss=50.850, backward_time=0.096, grad_norm=46.673, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.434e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:54:43,221 (trainer:737) INFO: 34epoch:train:13901-14000batch: iter_time=1.293e-04, forward_time=0.103, loss_ctc=41.051, loss_att=41.794, acc=0.739, loss=41.571, backward_time=0.096, grad_norm=40.250, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.434e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:55:24,880 (trainer:737) INFO: 34epoch:train:14001-14100batch: iter_time=1.300e-04, forward_time=0.103, loss_ctc=38.205, loss_att=40.294, acc=0.748, loss=39.667, backward_time=0.096, grad_norm=38.828, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.434e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:56:06,748 (trainer:737) INFO: 34epoch:train:14101-14200batch: iter_time=1.446e-04, forward_time=0.104, loss_ctc=44.853, loss_att=55.198, acc=0.731, loss=52.094, backward_time=0.097, grad_norm=44.441, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.433e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:56:48,482 (trainer:737) INFO: 34epoch:train:14201-14300batch: iter_time=1.250e-04, forward_time=0.103, loss_ctc=43.569, loss_att=53.749, acc=0.711, loss=50.695, backward_time=0.096, grad_norm=44.570, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.037, optim0_lr0=3.433e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:57:30,305 (trainer:737) INFO: 34epoch:train:14301-14400batch: iter_time=1.092e-04, forward_time=0.102, loss_ctc=37.199, loss_att=45.915, acc=0.774, loss=43.300, backward_time=0.095, grad_norm=40.859, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.037, optim0_lr0=3.433e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 14:58:12,028 (trainer:737) INFO: 34epoch:train:14401-14500batch: iter_time=1.095e-04, forward_time=0.102, loss_ctc=36.579, loss_att=41.704, acc=0.765, loss=40.166, backward_time=0.095, grad_norm=36.535, clip=100.000, loss_scale=3.842e+34, optim_step_time=0.037, optim0_lr0=3.432e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 14:58:53,689 (trainer:737) INFO: 34epoch:train:14501-14600batch: iter_time=1.185e-04, forward_time=0.102, loss_ctc=37.330, loss_att=44.797, acc=0.746, loss=42.557, backward_time=0.095, grad_norm=42.464, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.037, optim0_lr0=3.432e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 14:59:35,486 (trainer:737) INFO: 34epoch:train:14601-14700batch: iter_time=1.065e-04, forward_time=0.102, loss_ctc=44.567, loss_att=51.944, acc=0.733, loss=49.731, backward_time=0.095, grad_norm=43.545, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.037, optim0_lr0=3.432e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 15:00:17,407 (trainer:737) INFO: 34epoch:train:14701-14800batch: iter_time=1.161e-04, forward_time=0.103, loss_ctc=44.874, loss_att=47.341, acc=0.748, loss=46.601, backward_time=0.095, grad_norm=50.615, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.037, optim0_lr0=3.431e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 15:00:59,072 (trainer:737) INFO: 34epoch:train:14801-14900batch: iter_time=1.082e-04, forward_time=0.102, loss_ctc=37.764, loss_att=39.072, acc=0.757, loss=38.680, backward_time=0.094, grad_norm=39.097, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.037, optim0_lr0=3.431e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 15:01:40,705 (trainer:737) INFO: 34epoch:train:14901-15000batch: iter_time=1.125e-04, forward_time=0.102, loss_ctc=40.661, loss_att=44.490, acc=0.739, loss=43.341, backward_time=0.095, grad_norm=42.005, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.037, optim0_lr0=3.431e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 15:21:35,585 (trainer:343) INFO: 34epoch results: [train] iter_time=0.205, forward_time=0.104, loss_ctc=42.404, loss_att=48.231, acc=0.743, loss=46.483, backward_time=0.096, grad_norm=42.737, clip=100.000, loss_scale=1.763e+34, optim_step_time=0.038, optim0_lr0=3.456e-04, train_time=0.635, time=2 hours, 38 minutes and 56.39 seconds, total_count=510000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=49.820, cer_ctc=0.257, loss_att=52.352, acc=0.596, cer=0.373, wer=0.998, loss=51.592, time=19 minutes and 42.71 seconds, total_count=158814, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-16 15:21:45,350 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-16 15:21:45,370 (trainer:272) INFO: 35/45epoch started. Estimated time to finish: 1 day, 8 hours and 47 minutes +[gpuc04:0/16] 2024-01-16 15:21:45,380 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-16 15:22:03,692 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 15:22:07,315 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 15:22:07,315 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-16 15:22:07,318 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 15:26:20,583 (trainer:737) INFO: 35epoch:train:1-100batch: iter_time=2.315, forward_time=0.106, loss_ctc=48.898, loss_att=61.071, acc=0.727, loss=57.419, backward_time=0.098, grad_norm=46.303, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.430e-04, train_time=2.752 +[gpuc04:0/16] 2024-01-16 15:27:02,326 (trainer:737) INFO: 35epoch:train:101-200batch: iter_time=1.182e-04, forward_time=0.104, loss_ctc=43.900, loss_att=45.204, acc=0.761, loss=44.813, backward_time=0.097, grad_norm=44.583, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.430e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 15:27:44,155 (trainer:737) INFO: 35epoch:train:201-300batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=43.133, loss_att=56.253, acc=0.722, loss=52.317, backward_time=0.098, grad_norm=44.293, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.430e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 15:28:43,155 (trainer:737) INFO: 35epoch:train:301-400batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=39.868, loss_att=46.432, acc=0.751, loss=44.463, backward_time=0.097, grad_norm=43.839, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.429e-04, train_time=0.590 +[gpuc04:0/16] 2024-01-16 15:29:25,499 (trainer:737) INFO: 35epoch:train:401-500batch: iter_time=1.090e-04, forward_time=0.106, loss_ctc=52.378, loss_att=62.016, acc=0.738, loss=59.124, backward_time=0.098, grad_norm=48.951, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.429e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 15:30:07,360 (trainer:737) INFO: 35epoch:train:501-600batch: iter_time=1.129e-04, forward_time=0.105, loss_ctc=42.770, loss_att=53.549, acc=0.739, loss=50.315, backward_time=0.098, grad_norm=46.426, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.429e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 15:30:24,892 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 15:30:52,300 (trainer:737) INFO: 35epoch:train:601-700batch: iter_time=1.155e-04, forward_time=0.124, loss_ctc=40.525, loss_att=45.252, acc=0.767, loss=43.834, backward_time=0.100, grad_norm=39.134, clip=100.000, loss_scale=2.937e+34, optim_step_time=0.042, optim0_lr0=3.428e-04, train_time=0.449 +[gpuc04:0/16] 2024-01-16 15:31:36,533 (trainer:737) INFO: 35epoch:train:701-800batch: iter_time=1.140e-04, forward_time=0.105, loss_ctc=44.195, loss_att=56.195, acc=0.723, loss=52.595, backward_time=0.097, grad_norm=46.569, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.428e-04, train_time=0.442 +[gpuc04:0/16] 2024-01-16 15:32:19,519 (trainer:737) INFO: 35epoch:train:801-900batch: iter_time=1.183e-04, forward_time=0.104, loss_ctc=37.393, loss_att=47.335, acc=0.710, loss=44.353, backward_time=0.097, grad_norm=41.816, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.428e-04, train_time=0.430 +[gpuc04:0/16] 2024-01-16 15:33:01,590 (trainer:737) INFO: 35epoch:train:901-1000batch: iter_time=1.131e-04, forward_time=0.105, loss_ctc=43.670, loss_att=50.036, acc=0.747, loss=48.126, backward_time=0.098, grad_norm=41.245, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.427e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 15:33:43,569 (trainer:737) INFO: 35epoch:train:1001-1100batch: iter_time=1.244e-04, forward_time=0.104, loss_ctc=42.077, loss_att=45.674, acc=0.737, loss=44.595, backward_time=0.097, grad_norm=45.765, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.427e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 15:34:25,935 (trainer:737) INFO: 35epoch:train:1101-1200batch: iter_time=1.155e-04, forward_time=0.105, loss_ctc=46.694, loss_att=51.014, acc=0.742, loss=49.718, backward_time=0.097, grad_norm=49.268, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.427e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 15:35:01,311 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-16 15:35:20,255 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 15:35:23,889 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 15:35:23,889 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-16 15:35:23,892 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 15:41:23,482 (trainer:737) INFO: 35epoch:train:1201-1300batch: iter_time=2.906, forward_time=0.106, loss_ctc=45.071, loss_att=58.145, acc=0.740, loss=54.223, backward_time=0.098, grad_norm=43.292, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.426e-04, train_time=4.175 +[gpuc04:0/16] 2024-01-16 15:42:05,746 (trainer:737) INFO: 35epoch:train:1301-1400batch: iter_time=1.178e-04, forward_time=0.107, loss_ctc=46.550, loss_att=54.405, acc=0.745, loss=52.049, backward_time=0.098, grad_norm=43.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.426e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 15:42:47,767 (trainer:737) INFO: 35epoch:train:1401-1500batch: iter_time=1.153e-04, forward_time=0.105, loss_ctc=43.670, loss_att=40.082, acc=0.753, loss=41.158, backward_time=0.096, grad_norm=42.641, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.425e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 15:43:30,319 (trainer:737) INFO: 35epoch:train:1501-1600batch: iter_time=1.336e-04, forward_time=0.110, loss_ctc=40.983, loss_att=56.581, acc=0.736, loss=51.902, backward_time=0.099, grad_norm=40.706, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.425e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 15:44:16,561 (trainer:737) INFO: 35epoch:train:1601-1700batch: iter_time=1.266e-04, forward_time=0.120, loss_ctc=46.120, loss_att=58.242, acc=0.726, loss=54.605, backward_time=0.114, grad_norm=50.745, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=3.425e-04, train_time=0.462 +[gpuc04:0/16] 2024-01-16 15:45:06,704 (trainer:737) INFO: 35epoch:train:1701-1800batch: iter_time=1.388e-04, forward_time=0.125, loss_ctc=44.730, loss_att=54.979, acc=0.765, loss=51.904, backward_time=0.109, grad_norm=41.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.049, optim0_lr0=3.424e-04, train_time=0.501 +[gpuc04:0/16] 2024-01-16 15:45:49,677 (trainer:737) INFO: 35epoch:train:1801-1900batch: iter_time=1.507e-04, forward_time=0.113, loss_ctc=39.877, loss_att=46.676, acc=0.757, loss=44.636, backward_time=0.099, grad_norm=43.395, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.424e-04, train_time=0.429 +[gpuc04:0/16] 2024-01-16 15:46:33,441 (trainer:737) INFO: 35epoch:train:1901-2000batch: iter_time=1.376e-04, forward_time=0.105, loss_ctc=44.094, loss_att=45.784, acc=0.749, loss=45.277, backward_time=0.097, grad_norm=42.730, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.424e-04, train_time=0.437 +[gpuc04:0/16] 2024-01-16 15:47:15,349 (trainer:737) INFO: 35epoch:train:2001-2100batch: iter_time=1.534e-04, forward_time=0.106, loss_ctc=40.229, loss_att=58.231, acc=0.705, loss=52.830, backward_time=0.097, grad_norm=41.038, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.423e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 15:47:57,326 (trainer:737) INFO: 35epoch:train:2101-2200batch: iter_time=1.527e-04, forward_time=0.105, loss_ctc=37.923, loss_att=47.328, acc=0.729, loss=44.507, backward_time=0.096, grad_norm=41.105, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.423e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 15:48:40,037 (trainer:737) INFO: 35epoch:train:2201-2300batch: iter_time=1.350e-04, forward_time=0.106, loss_ctc=41.849, loss_att=41.897, acc=0.749, loss=41.883, backward_time=0.096, grad_norm=40.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.423e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-16 15:49:23,341 (trainer:737) INFO: 35epoch:train:2301-2400batch: iter_time=1.245e-04, forward_time=0.106, loss_ctc=40.791, loss_att=44.951, acc=0.760, loss=43.703, backward_time=0.097, grad_norm=43.618, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.422e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-16 15:50:05,829 (trainer:737) INFO: 35epoch:train:2401-2500batch: iter_time=1.291e-04, forward_time=0.106, loss_ctc=50.535, loss_att=61.652, acc=0.721, loss=58.317, backward_time=0.097, grad_norm=51.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.422e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 15:50:30,686 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-16 15:50:49,851 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 15:50:53,930 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 15:50:53,930 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-16 15:50:53,933 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 15:58:08,694 (trainer:737) INFO: 35epoch:train:2501-2600batch: iter_time=4.218, forward_time=0.107, loss_ctc=46.656, loss_att=56.877, acc=0.737, loss=53.811, backward_time=0.099, grad_norm=44.421, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.422e-04, train_time=4.828 +[gpuc04:0/16] 2024-01-16 15:58:50,481 (trainer:737) INFO: 35epoch:train:2601-2700batch: iter_time=1.363e-04, forward_time=0.104, loss_ctc=42.863, loss_att=44.431, acc=0.764, loss=43.960, backward_time=0.096, grad_norm=43.164, clip=100.000, loss_scale=3.282e+34, optim_step_time=0.039, optim0_lr0=3.421e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 15:59:25,619 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 15:59:32,325 (trainer:737) INFO: 35epoch:train:2701-2800batch: iter_time=1.225e-04, forward_time=0.104, loss_ctc=42.040, loss_att=53.975, acc=0.729, loss=50.395, backward_time=0.096, grad_norm=43.376, clip=100.000, loss_scale=3.818e+34, optim_step_time=0.039, optim0_lr0=3.421e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 16:00:14,140 (trainer:737) INFO: 35epoch:train:2801-2900batch: iter_time=1.264e-04, forward_time=0.103, loss_ctc=39.497, loss_att=46.235, acc=0.753, loss=44.213, backward_time=0.096, grad_norm=41.439, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.421e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 16:00:56,147 (trainer:737) INFO: 35epoch:train:2901-3000batch: iter_time=1.447e-04, forward_time=0.104, loss_ctc=50.176, loss_att=61.596, acc=0.741, loss=58.170, backward_time=0.097, grad_norm=45.873, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.420e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 16:01:38,029 (trainer:737) INFO: 35epoch:train:3001-3100batch: iter_time=1.321e-04, forward_time=0.104, loss_ctc=41.688, loss_att=52.283, acc=0.743, loss=49.105, backward_time=0.097, grad_norm=42.660, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.420e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 16:02:19,782 (trainer:737) INFO: 35epoch:train:3101-3200batch: iter_time=1.475e-04, forward_time=0.104, loss_ctc=40.660, loss_att=44.778, acc=0.770, loss=43.543, backward_time=0.096, grad_norm=38.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.420e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:03:01,555 (trainer:737) INFO: 35epoch:train:3201-3300batch: iter_time=1.647e-04, forward_time=0.104, loss_ctc=43.493, loss_att=56.015, acc=0.723, loss=52.259, backward_time=0.096, grad_norm=47.348, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.419e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 16:03:43,036 (trainer:737) INFO: 35epoch:train:3301-3400batch: iter_time=1.569e-04, forward_time=0.103, loss_ctc=36.491, loss_att=46.005, acc=0.715, loss=43.151, backward_time=0.095, grad_norm=40.393, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.419e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:04:25,002 (trainer:737) INFO: 35epoch:train:3401-3500batch: iter_time=1.478e-04, forward_time=0.104, loss_ctc=42.932, loss_att=49.373, acc=0.749, loss=47.441, backward_time=0.096, grad_norm=39.996, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.419e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 16:05:06,528 (trainer:737) INFO: 35epoch:train:3501-3600batch: iter_time=1.403e-04, forward_time=0.103, loss_ctc=40.048, loss_att=44.433, acc=0.738, loss=43.117, backward_time=0.095, grad_norm=44.713, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.418e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:05:48,271 (trainer:737) INFO: 35epoch:train:3601-3700batch: iter_time=1.426e-04, forward_time=0.104, loss_ctc=45.149, loss_att=50.003, acc=0.745, loss=48.547, backward_time=0.096, grad_norm=45.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.418e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:06:15,461 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-16 16:06:34,980 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 16:06:38,528 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 16:06:38,529 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-16 16:06:38,532 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 16:10:43,496 (trainer:737) INFO: 35epoch:train:3701-3800batch: iter_time=2.533, forward_time=0.104, loss_ctc=44.185, loss_att=59.870, acc=0.732, loss=55.165, backward_time=0.097, grad_norm=44.119, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.418e-04, train_time=2.952 +[gpuc04:0/16] 2024-01-16 16:11:25,803 (trainer:737) INFO: 35epoch:train:3801-3900batch: iter_time=1.597e-04, forward_time=0.110, loss_ctc=46.172, loss_att=57.348, acc=0.729, loss=53.995, backward_time=0.097, grad_norm=43.965, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.417e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 16:12:07,416 (trainer:737) INFO: 35epoch:train:3901-4000batch: iter_time=1.875e-04, forward_time=0.104, loss_ctc=42.897, loss_att=40.145, acc=0.751, loss=40.971, backward_time=0.096, grad_norm=41.264, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.417e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:12:49,184 (trainer:737) INFO: 35epoch:train:4001-4100batch: iter_time=1.699e-04, forward_time=0.105, loss_ctc=40.295, loss_att=54.416, acc=0.726, loss=50.180, backward_time=0.097, grad_norm=41.174, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.417e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:13:30,940 (trainer:737) INFO: 35epoch:train:4101-4200batch: iter_time=1.442e-04, forward_time=0.104, loss_ctc=45.030, loss_att=56.742, acc=0.718, loss=53.229, backward_time=0.096, grad_norm=47.998, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.416e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:14:12,705 (trainer:737) INFO: 35epoch:train:4201-4300batch: iter_time=1.330e-04, forward_time=0.104, loss_ctc=44.960, loss_att=55.943, acc=0.755, loss=52.648, backward_time=0.096, grad_norm=42.662, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.416e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:14:54,371 (trainer:737) INFO: 35epoch:train:4301-4400batch: iter_time=1.240e-04, forward_time=0.103, loss_ctc=39.423, loss_att=46.743, acc=0.748, loss=44.547, backward_time=0.096, grad_norm=42.011, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.416e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:15:35,948 (trainer:737) INFO: 35epoch:train:4401-4500batch: iter_time=1.252e-04, forward_time=0.104, loss_ctc=43.139, loss_att=44.617, acc=0.742, loss=44.173, backward_time=0.096, grad_norm=47.145, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.415e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:16:17,507 (trainer:737) INFO: 35epoch:train:4501-4600batch: iter_time=1.171e-04, forward_time=0.104, loss_ctc=39.832, loss_att=56.246, acc=0.702, loss=51.322, backward_time=0.095, grad_norm=40.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.415e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:16:58,956 (trainer:737) INFO: 35epoch:train:4601-4700batch: iter_time=1.316e-04, forward_time=0.103, loss_ctc=37.814, loss_att=46.869, acc=0.714, loss=44.152, backward_time=0.095, grad_norm=41.655, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.415e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 16:17:40,471 (trainer:737) INFO: 35epoch:train:4701-4800batch: iter_time=1.196e-04, forward_time=0.103, loss_ctc=41.103, loss_att=42.398, acc=0.742, loss=42.009, backward_time=0.095, grad_norm=38.641, clip=100.000, loss_scale=2.409e+34, optim_step_time=0.038, optim0_lr0=3.415e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:18:22,029 (trainer:737) INFO: 35epoch:train:4801-4900batch: iter_time=1.187e-04, forward_time=0.103, loss_ctc=40.125, loss_att=43.252, acc=0.757, loss=42.314, backward_time=0.095, grad_norm=42.677, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.414e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:18:40,354 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 16:19:03,693 (trainer:737) INFO: 35epoch:train:4901-5000batch: iter_time=1.340e-04, forward_time=0.104, loss_ctc=49.664, loss_att=61.493, acc=0.718, loss=57.944, backward_time=0.097, grad_norm=49.689, clip=100.000, loss_scale=2.979e+34, optim_step_time=0.038, optim0_lr0=3.414e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:19:10,890 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-16 16:19:30,216 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 16:19:33,765 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 16:19:33,765 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-16 16:19:33,769 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 16:23:59,100 (trainer:737) INFO: 35epoch:train:5001-5100batch: iter_time=2.441, forward_time=0.106, loss_ctc=46.621, loss_att=57.066, acc=0.727, loss=53.933, backward_time=0.097, grad_norm=44.631, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.414e-04, train_time=2.954 +[gpuc04:0/16] 2024-01-16 16:24:40,807 (trainer:737) INFO: 35epoch:train:5101-5200batch: iter_time=1.803e-04, forward_time=0.104, loss_ctc=42.299, loss_att=44.235, acc=0.757, loss=43.654, backward_time=0.096, grad_norm=43.290, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.413e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:25:22,795 (trainer:737) INFO: 35epoch:train:5201-5300batch: iter_time=1.617e-04, forward_time=0.105, loss_ctc=41.632, loss_att=54.746, acc=0.717, loss=50.812, backward_time=0.097, grad_norm=42.996, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.413e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 16:26:04,551 (trainer:737) INFO: 35epoch:train:5301-5400batch: iter_time=1.483e-04, forward_time=0.104, loss_ctc=39.501, loss_att=45.008, acc=0.743, loss=43.356, backward_time=0.096, grad_norm=41.086, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.413e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:26:46,692 (trainer:737) INFO: 35epoch:train:5401-5500batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=49.240, loss_att=60.611, acc=0.733, loss=57.200, backward_time=0.097, grad_norm=48.904, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.412e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 16:27:28,669 (trainer:737) INFO: 35epoch:train:5501-5600batch: iter_time=1.314e-04, forward_time=0.104, loss_ctc=41.151, loss_att=51.832, acc=0.734, loss=48.628, backward_time=0.097, grad_norm=48.454, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.412e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 16:28:10,265 (trainer:737) INFO: 35epoch:train:5601-5700batch: iter_time=1.365e-04, forward_time=0.104, loss_ctc=40.445, loss_att=42.887, acc=0.762, loss=42.154, backward_time=0.096, grad_norm=39.601, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.412e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:28:51,915 (trainer:737) INFO: 35epoch:train:5701-5800batch: iter_time=1.357e-04, forward_time=0.104, loss_ctc=42.189, loss_att=55.265, acc=0.716, loss=51.342, backward_time=0.096, grad_norm=44.875, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.411e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:29:33,579 (trainer:737) INFO: 35epoch:train:5801-5900batch: iter_time=1.141e-04, forward_time=0.105, loss_ctc=35.893, loss_att=45.317, acc=0.705, loss=42.490, backward_time=0.095, grad_norm=39.838, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.411e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:30:15,256 (trainer:737) INFO: 35epoch:train:5901-6000batch: iter_time=1.069e-04, forward_time=0.103, loss_ctc=42.764, loss_att=47.767, acc=0.741, loss=46.266, backward_time=0.096, grad_norm=39.573, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.411e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:30:56,718 (trainer:737) INFO: 35epoch:train:6001-6100batch: iter_time=1.221e-04, forward_time=0.103, loss_ctc=39.296, loss_att=43.160, acc=0.729, loss=42.001, backward_time=0.095, grad_norm=43.605, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.410e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 16:31:38,391 (trainer:737) INFO: 35epoch:train:6101-6200batch: iter_time=1.333e-04, forward_time=0.103, loss_ctc=44.392, loss_att=49.523, acc=0.739, loss=47.983, backward_time=0.096, grad_norm=45.879, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.410e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:32:02,834 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-16 16:32:22,391 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 16:32:25,995 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 16:32:25,995 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-16 16:32:25,998 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 16:36:34,775 (trainer:737) INFO: 35epoch:train:6201-6300batch: iter_time=2.419, forward_time=0.104, loss_ctc=44.228, loss_att=56.588, acc=0.740, loss=52.880, backward_time=0.097, grad_norm=43.326, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.410e-04, train_time=2.964 +[gpuc04:0/16] 2024-01-16 16:37:16,544 (trainer:737) INFO: 35epoch:train:6301-6400batch: iter_time=1.111e-04, forward_time=0.104, loss_ctc=45.514, loss_att=55.570, acc=0.734, loss=52.553, backward_time=0.096, grad_norm=44.977, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.409e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:37:58,176 (trainer:737) INFO: 35epoch:train:6401-6500batch: iter_time=1.316e-04, forward_time=0.103, loss_ctc=42.767, loss_att=40.079, acc=0.751, loss=40.886, backward_time=0.095, grad_norm=43.299, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.409e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:38:40,092 (trainer:737) INFO: 35epoch:train:6501-6600batch: iter_time=1.233e-04, forward_time=0.104, loss_ctc=40.462, loss_att=53.735, acc=0.726, loss=49.753, backward_time=0.096, grad_norm=40.498, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.409e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 16:39:21,886 (trainer:737) INFO: 35epoch:train:6601-6700batch: iter_time=1.144e-04, forward_time=0.104, loss_ctc=44.638, loss_att=56.157, acc=0.717, loss=52.701, backward_time=0.096, grad_norm=47.658, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.408e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 16:40:03,979 (trainer:737) INFO: 35epoch:train:6701-6800batch: iter_time=1.157e-04, forward_time=0.103, loss_ctc=44.187, loss_att=54.880, acc=0.756, loss=51.672, backward_time=0.096, grad_norm=42.582, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.408e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 16:40:47,064 (trainer:737) INFO: 35epoch:train:6801-6900batch: iter_time=1.247e-04, forward_time=0.103, loss_ctc=39.480, loss_att=46.231, acc=0.751, loss=44.206, backward_time=0.096, grad_norm=41.434, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.408e-04, train_time=0.431 +[gpuc04:0/16] 2024-01-16 16:41:20,774 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 16:41:29,548 (trainer:737) INFO: 35epoch:train:6901-7000batch: iter_time=1.182e-04, forward_time=0.104, loss_ctc=42.841, loss_att=44.286, acc=0.743, loss=43.853, backward_time=0.096, grad_norm=45.303, clip=100.000, loss_scale=2.790e+34, optim_step_time=0.038, optim0_lr0=3.407e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 16:42:11,784 (trainer:737) INFO: 35epoch:train:7001-7100batch: iter_time=1.139e-04, forward_time=0.104, loss_ctc=39.375, loss_att=56.132, acc=0.700, loss=51.105, backward_time=0.096, grad_norm=41.299, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.407e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 16:42:53,312 (trainer:737) INFO: 35epoch:train:7101-7200batch: iter_time=1.143e-04, forward_time=0.102, loss_ctc=37.451, loss_att=45.627, acc=0.718, loss=43.174, backward_time=0.095, grad_norm=40.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.407e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:43:34,907 (trainer:737) INFO: 35epoch:train:7201-7300batch: iter_time=1.083e-04, forward_time=0.103, loss_ctc=40.366, loss_att=42.896, acc=0.739, loss=42.137, backward_time=0.095, grad_norm=39.068, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.406e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:44:16,831 (trainer:737) INFO: 35epoch:train:7301-7400batch: iter_time=1.211e-04, forward_time=0.103, loss_ctc=39.715, loss_att=42.545, acc=0.758, loss=41.696, backward_time=0.096, grad_norm=44.015, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.406e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 16:44:59,011 (trainer:737) INFO: 35epoch:train:7401-7500batch: iter_time=1.076e-04, forward_time=0.104, loss_ctc=49.405, loss_att=61.081, acc=0.719, loss=57.578, backward_time=0.096, grad_norm=51.226, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.406e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 16:45:03,881 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-16 16:45:23,080 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 16:45:26,643 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 16:45:26,644 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-16 16:45:26,647 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 16:49:56,452 (trainer:737) INFO: 35epoch:train:7501-7600batch: iter_time=2.456, forward_time=0.106, loss_ctc=46.205, loss_att=56.346, acc=0.728, loss=53.304, backward_time=0.097, grad_norm=43.945, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.405e-04, train_time=2.974 +[gpuc04:0/16] 2024-01-16 16:50:38,119 (trainer:737) INFO: 35epoch:train:7601-7700batch: iter_time=1.271e-04, forward_time=0.104, loss_ctc=42.969, loss_att=44.342, acc=0.758, loss=43.930, backward_time=0.096, grad_norm=44.475, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.405e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:51:19,856 (trainer:737) INFO: 35epoch:train:7701-7800batch: iter_time=1.220e-04, forward_time=0.103, loss_ctc=41.874, loss_att=54.094, acc=0.722, loss=50.428, backward_time=0.096, grad_norm=42.287, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.405e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:52:01,569 (trainer:737) INFO: 35epoch:train:7801-7900batch: iter_time=1.190e-04, forward_time=0.104, loss_ctc=39.220, loss_att=42.812, acc=0.751, loss=41.735, backward_time=0.096, grad_norm=40.952, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.404e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:52:43,344 (trainer:737) INFO: 35epoch:train:7901-8000batch: iter_time=1.317e-04, forward_time=0.104, loss_ctc=49.001, loss_att=60.851, acc=0.735, loss=57.296, backward_time=0.097, grad_norm=48.695, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.404e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 16:53:25,089 (trainer:737) INFO: 35epoch:train:8001-8100batch: iter_time=1.186e-04, forward_time=0.104, loss_ctc=41.404, loss_att=51.204, acc=0.738, loss=48.264, backward_time=0.096, grad_norm=44.807, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.404e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:54:06,750 (trainer:737) INFO: 35epoch:train:8101-8200batch: iter_time=1.194e-04, forward_time=0.103, loss_ctc=40.050, loss_att=42.436, acc=0.764, loss=41.720, backward_time=0.096, grad_norm=38.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.403e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 16:54:48,718 (trainer:737) INFO: 35epoch:train:8201-8300batch: iter_time=1.302e-04, forward_time=0.104, loss_ctc=42.357, loss_att=54.671, acc=0.721, loss=50.977, backward_time=0.096, grad_norm=44.648, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.403e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 16:55:30,139 (trainer:737) INFO: 35epoch:train:8301-8400batch: iter_time=1.305e-04, forward_time=0.103, loss_ctc=35.811, loss_att=44.642, acc=0.707, loss=41.993, backward_time=0.095, grad_norm=39.015, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.403e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 16:56:11,852 (trainer:737) INFO: 35epoch:train:8401-8500batch: iter_time=1.308e-04, forward_time=0.104, loss_ctc=42.662, loss_att=48.029, acc=0.740, loss=46.419, backward_time=0.096, grad_norm=40.150, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.402e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:56:53,356 (trainer:737) INFO: 35epoch:train:8501-8600batch: iter_time=1.175e-04, forward_time=0.104, loss_ctc=38.722, loss_att=42.364, acc=0.734, loss=41.272, backward_time=0.094, grad_norm=44.090, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.402e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 16:57:35,052 (trainer:737) INFO: 35epoch:train:8601-8700batch: iter_time=1.194e-04, forward_time=0.104, loss_ctc=44.499, loss_att=48.666, acc=0.744, loss=47.416, backward_time=0.095, grad_norm=46.665, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.402e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 16:58:00,852 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-16 16:58:19,840 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 16:58:23,438 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 16:58:23,438 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-16 16:58:23,441 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 17:02:32,408 (trainer:737) INFO: 35epoch:train:8701-8800batch: iter_time=2.415, forward_time=0.104, loss_ctc=43.544, loss_att=60.164, acc=0.741, loss=55.178, backward_time=0.097, grad_norm=44.597, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.401e-04, train_time=2.973 +[gpuc04:0/16] 2024-01-16 17:03:14,179 (trainer:737) INFO: 35epoch:train:8801-8900batch: iter_time=1.220e-04, forward_time=0.104, loss_ctc=45.348, loss_att=55.601, acc=0.744, loss=52.525, backward_time=0.097, grad_norm=42.489, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.401e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:03:55,772 (trainer:737) INFO: 35epoch:train:8901-9000batch: iter_time=1.114e-04, forward_time=0.103, loss_ctc=41.989, loss_att=38.911, acc=0.758, loss=39.834, backward_time=0.096, grad_norm=41.087, clip=100.000, loss_scale=2.513e+34, optim_step_time=0.038, optim0_lr0=3.401e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:04:37,733 (trainer:737) INFO: 35epoch:train:9001-9100batch: iter_time=1.129e-04, forward_time=0.105, loss_ctc=40.023, loss_att=56.531, acc=0.737, loss=51.579, backward_time=0.097, grad_norm=40.696, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.400e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 17:05:04,132 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 17:05:19,654 (trainer:737) INFO: 35epoch:train:9101-9200batch: iter_time=1.062e-04, forward_time=0.104, loss_ctc=44.392, loss_att=58.119, acc=0.727, loss=54.001, backward_time=0.097, grad_norm=47.492, clip=100.000, loss_scale=3.378e+34, optim_step_time=0.038, optim0_lr0=3.400e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 17:06:01,546 (trainer:737) INFO: 35epoch:train:9201-9300batch: iter_time=1.205e-04, forward_time=0.104, loss_ctc=44.451, loss_att=55.705, acc=0.765, loss=52.329, backward_time=0.097, grad_norm=40.862, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.400e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 17:06:43,309 (trainer:737) INFO: 35epoch:train:9301-9400batch: iter_time=1.131e-04, forward_time=0.104, loss_ctc=39.152, loss_att=46.746, acc=0.759, loss=44.468, backward_time=0.097, grad_norm=41.575, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.399e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:07:25,009 (trainer:737) INFO: 35epoch:train:9401-9500batch: iter_time=1.258e-04, forward_time=0.103, loss_ctc=43.475, loss_att=46.030, acc=0.750, loss=45.263, backward_time=0.096, grad_norm=42.518, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.399e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:08:06,718 (trainer:737) INFO: 35epoch:train:9501-9600batch: iter_time=1.485e-04, forward_time=0.104, loss_ctc=39.452, loss_att=58.308, acc=0.706, loss=52.651, backward_time=0.096, grad_norm=39.002, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.399e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:08:48,298 (trainer:737) INFO: 35epoch:train:9601-9700batch: iter_time=1.540e-04, forward_time=0.103, loss_ctc=37.053, loss_att=47.209, acc=0.732, loss=44.162, backward_time=0.096, grad_norm=38.480, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.398e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:09:30,162 (trainer:737) INFO: 35epoch:train:9701-9800batch: iter_time=1.458e-04, forward_time=0.106, loss_ctc=39.951, loss_att=41.227, acc=0.753, loss=40.844, backward_time=0.096, grad_norm=37.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.398e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:10:11,837 (trainer:737) INFO: 35epoch:train:9801-9900batch: iter_time=1.474e-04, forward_time=0.103, loss_ctc=39.328, loss_att=44.531, acc=0.763, loss=42.970, backward_time=0.096, grad_norm=41.564, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.398e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:10:53,681 (trainer:737) INFO: 35epoch:train:9901-10000batch: iter_time=1.231e-04, forward_time=0.104, loss_ctc=48.858, loss_att=61.511, acc=0.724, loss=57.716, backward_time=0.097, grad_norm=48.022, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.397e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:10:58,055 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-16 17:11:17,294 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 17:11:20,881 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 17:11:20,881 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-16 17:11:20,884 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 17:15:47,199 (trainer:737) INFO: 35epoch:train:10001-10100batch: iter_time=2.496, forward_time=0.104, loss_ctc=46.004, loss_att=58.541, acc=0.724, loss=54.780, backward_time=0.096, grad_norm=42.493, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.397e-04, train_time=2.935 +[gpuc04:0/16] 2024-01-16 17:16:29,735 (trainer:737) INFO: 35epoch:train:10101-10200batch: iter_time=9.113e-05, forward_time=0.104, loss_ctc=42.659, loss_att=44.778, acc=0.758, loss=44.142, backward_time=0.095, grad_norm=43.251, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.397e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 17:17:11,473 (trainer:737) INFO: 35epoch:train:10201-10300batch: iter_time=1.098e-04, forward_time=0.104, loss_ctc=41.453, loss_att=54.399, acc=0.719, loss=50.515, backward_time=0.096, grad_norm=41.448, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.396e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:17:53,702 (trainer:737) INFO: 35epoch:train:10301-10400batch: iter_time=1.104e-04, forward_time=0.104, loss_ctc=38.960, loss_att=44.550, acc=0.745, loss=42.873, backward_time=0.095, grad_norm=41.742, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.396e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 17:18:35,781 (trainer:737) INFO: 35epoch:train:10401-10500batch: iter_time=1.267e-04, forward_time=0.105, loss_ctc=48.403, loss_att=60.197, acc=0.735, loss=56.659, backward_time=0.096, grad_norm=46.916, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.396e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 17:19:18,321 (trainer:737) INFO: 35epoch:train:10501-10600batch: iter_time=1.045e-04, forward_time=0.105, loss_ctc=41.084, loss_att=51.705, acc=0.737, loss=48.519, backward_time=0.096, grad_norm=45.423, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.395e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 17:19:34,511 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 17:19:59,891 (trainer:737) INFO: 35epoch:train:10601-10700batch: iter_time=1.047e-04, forward_time=0.104, loss_ctc=40.069, loss_att=42.716, acc=0.763, loss=41.922, backward_time=0.095, grad_norm=40.667, clip=100.000, loss_scale=1.437e+34, optim_step_time=0.038, optim0_lr0=3.395e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 17:20:41,805 (trainer:737) INFO: 35epoch:train:10701-10800batch: iter_time=9.513e-05, forward_time=0.104, loss_ctc=41.989, loss_att=55.434, acc=0.717, loss=51.401, backward_time=0.095, grad_norm=48.212, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.395e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 17:21:23,154 (trainer:737) INFO: 35epoch:train:10801-10900batch: iter_time=1.074e-04, forward_time=0.103, loss_ctc=35.509, loss_att=45.197, acc=0.706, loss=42.291, backward_time=0.094, grad_norm=37.252, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.394e-04, train_time=0.413 +[gpuc04:0/16] 2024-01-16 17:22:05,068 (trainer:737) INFO: 35epoch:train:10901-11000batch: iter_time=1.059e-04, forward_time=0.105, loss_ctc=42.211, loss_att=47.593, acc=0.742, loss=45.978, backward_time=0.095, grad_norm=37.543, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.394e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 17:22:46,790 (trainer:737) INFO: 35epoch:train:11001-11100batch: iter_time=9.831e-05, forward_time=0.104, loss_ctc=38.474, loss_att=42.709, acc=0.732, loss=41.439, backward_time=0.094, grad_norm=42.824, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.394e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:23:28,407 (trainer:737) INFO: 35epoch:train:11101-11200batch: iter_time=9.648e-05, forward_time=0.104, loss_ctc=44.218, loss_att=49.304, acc=0.741, loss=47.778, backward_time=0.095, grad_norm=43.027, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.393e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:23:53,876 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-16 17:24:13,131 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 17:24:16,795 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 17:24:16,795 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-16 17:24:16,799 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 17:28:30,151 (trainer:737) INFO: 35epoch:train:11201-11300batch: iter_time=2.418, forward_time=0.108, loss_ctc=43.276, loss_att=58.436, acc=0.744, loss=53.888, backward_time=0.097, grad_norm=42.756, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.393e-04, train_time=3.017 +[gpuc04:0/16] 2024-01-16 17:29:11,957 (trainer:737) INFO: 35epoch:train:11301-11400batch: iter_time=1.052e-04, forward_time=0.104, loss_ctc=44.889, loss_att=55.652, acc=0.742, loss=52.423, backward_time=0.096, grad_norm=43.652, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.393e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:29:53,542 (trainer:737) INFO: 35epoch:train:11401-11500batch: iter_time=1.115e-04, forward_time=0.104, loss_ctc=42.258, loss_att=39.456, acc=0.757, loss=40.297, backward_time=0.095, grad_norm=41.848, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.393e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:30:35,371 (trainer:737) INFO: 35epoch:train:11501-11600batch: iter_time=1.080e-04, forward_time=0.105, loss_ctc=39.754, loss_att=56.829, acc=0.737, loss=51.706, backward_time=0.096, grad_norm=40.946, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.392e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:31:17,187 (trainer:737) INFO: 35epoch:train:11601-11700batch: iter_time=1.210e-04, forward_time=0.105, loss_ctc=43.654, loss_att=56.196, acc=0.730, loss=52.433, backward_time=0.096, grad_norm=47.350, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.392e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:31:59,034 (trainer:737) INFO: 35epoch:train:11701-11800batch: iter_time=1.211e-04, forward_time=0.105, loss_ctc=43.963, loss_att=54.792, acc=0.767, loss=51.544, backward_time=0.096, grad_norm=40.636, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.392e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:32:40,772 (trainer:737) INFO: 35epoch:train:11801-11900batch: iter_time=1.343e-04, forward_time=0.105, loss_ctc=38.723, loss_att=46.672, acc=0.759, loss=44.288, backward_time=0.096, grad_norm=42.257, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.391e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:33:22,698 (trainer:737) INFO: 35epoch:train:11901-12000batch: iter_time=1.398e-04, forward_time=0.104, loss_ctc=42.724, loss_att=46.342, acc=0.747, loss=45.256, backward_time=0.095, grad_norm=47.903, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.391e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 17:34:04,399 (trainer:737) INFO: 35epoch:train:12001-12100batch: iter_time=1.215e-04, forward_time=0.104, loss_ctc=38.895, loss_att=58.172, acc=0.704, loss=52.389, backward_time=0.096, grad_norm=40.386, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.391e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:34:45,948 (trainer:737) INFO: 35epoch:train:12101-12200batch: iter_time=1.362e-04, forward_time=0.103, loss_ctc=36.805, loss_att=46.205, acc=0.734, loss=43.385, backward_time=0.095, grad_norm=40.130, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.390e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 17:35:27,558 (trainer:737) INFO: 35epoch:train:12201-12300batch: iter_time=1.303e-04, forward_time=0.103, loss_ctc=39.676, loss_att=41.509, acc=0.755, loss=40.959, backward_time=0.095, grad_norm=37.922, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.390e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:36:10,210 (trainer:737) INFO: 35epoch:train:12301-12400batch: iter_time=1.362e-04, forward_time=0.104, loss_ctc=39.283, loss_att=44.766, acc=0.763, loss=43.121, backward_time=0.096, grad_norm=41.822, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.390e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-16 17:36:52,649 (trainer:737) INFO: 35epoch:train:12401-12500batch: iter_time=1.380e-04, forward_time=0.104, loss_ctc=48.456, loss_att=61.909, acc=0.721, loss=57.873, backward_time=0.096, grad_norm=48.896, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.389e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 17:36:58,276 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-16 17:37:17,263 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 17:37:20,877 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 17:37:20,878 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-16 17:37:20,881 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 17:41:45,104 (trainer:737) INFO: 35epoch:train:12501-12600batch: iter_time=2.416, forward_time=0.106, loss_ctc=46.163, loss_att=56.418, acc=0.740, loss=53.342, backward_time=0.097, grad_norm=43.267, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.389e-04, train_time=2.924 +[gpuc04:0/16] 2024-01-16 17:42:26,733 (trainer:737) INFO: 35epoch:train:12601-12700batch: iter_time=1.094e-04, forward_time=0.105, loss_ctc=42.611, loss_att=43.636, acc=0.768, loss=43.329, backward_time=0.096, grad_norm=43.415, clip=100.000, loss_scale=1.672e+34, optim_step_time=0.038, optim0_lr0=3.389e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:43:08,472 (trainer:737) INFO: 35epoch:train:12701-12800batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=41.026, loss_att=53.502, acc=0.733, loss=49.759, backward_time=0.097, grad_norm=42.498, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.388e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:43:50,202 (trainer:737) INFO: 35epoch:train:12801-12900batch: iter_time=1.202e-04, forward_time=0.104, loss_ctc=38.669, loss_att=45.916, acc=0.755, loss=43.742, backward_time=0.097, grad_norm=41.679, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.388e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:44:32,040 (trainer:737) INFO: 35epoch:train:12901-13000batch: iter_time=9.897e-05, forward_time=0.105, loss_ctc=48.376, loss_att=60.833, acc=0.739, loss=57.096, backward_time=0.097, grad_norm=48.237, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.388e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:45:13,814 (trainer:737) INFO: 35epoch:train:13001-13100batch: iter_time=1.147e-04, forward_time=0.104, loss_ctc=40.896, loss_att=51.538, acc=0.748, loss=48.345, backward_time=0.097, grad_norm=43.807, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.387e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:45:55,443 (trainer:737) INFO: 35epoch:train:13101-13200batch: iter_time=1.155e-04, forward_time=0.104, loss_ctc=40.145, loss_att=44.146, acc=0.773, loss=42.946, backward_time=0.096, grad_norm=38.911, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.387e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:46:37,181 (trainer:737) INFO: 35epoch:train:13201-13300batch: iter_time=1.156e-04, forward_time=0.104, loss_ctc=41.481, loss_att=54.405, acc=0.732, loss=50.528, backward_time=0.097, grad_norm=46.678, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.387e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:47:18,644 (trainer:737) INFO: 35epoch:train:13301-13400batch: iter_time=1.082e-04, forward_time=0.104, loss_ctc=35.402, loss_att=46.237, acc=0.715, loss=42.986, backward_time=0.096, grad_norm=37.928, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.386e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 17:48:00,366 (trainer:737) INFO: 35epoch:train:13401-13500batch: iter_time=1.099e-04, forward_time=0.105, loss_ctc=42.375, loss_att=49.979, acc=0.748, loss=47.698, backward_time=0.096, grad_norm=39.259, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.386e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:48:41,849 (trainer:737) INFO: 35epoch:train:13501-13600batch: iter_time=1.107e-04, forward_time=0.103, loss_ctc=38.074, loss_att=44.035, acc=0.740, loss=42.247, backward_time=0.095, grad_norm=43.218, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.386e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 17:49:23,544 (trainer:737) INFO: 35epoch:train:13601-13700batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=43.880, loss_att=49.336, acc=0.749, loss=47.699, backward_time=0.096, grad_norm=45.185, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.385e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:49:49,289 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-16 17:50:08,488 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 17:50:12,489 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 17:50:12,489 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-16 17:50:12,492 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 17:54:20,771 (trainer:737) INFO: 35epoch:train:13701-13800batch: iter_time=2.472, forward_time=0.106, loss_ctc=43.365, loss_att=59.242, acc=0.734, loss=54.479, backward_time=0.097, grad_norm=43.908, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.385e-04, train_time=2.972 +[gpuc04:0/16] 2024-01-16 17:55:03,453 (trainer:737) INFO: 35epoch:train:13801-13900batch: iter_time=9.515e-05, forward_time=0.104, loss_ctc=45.038, loss_att=56.648, acc=0.732, loss=53.165, backward_time=0.096, grad_norm=43.664, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.385e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-16 17:55:45,861 (trainer:737) INFO: 35epoch:train:13901-14000batch: iter_time=1.025e-04, forward_time=0.104, loss_ctc=42.297, loss_att=39.629, acc=0.754, loss=40.429, backward_time=0.095, grad_norm=42.602, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.384e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 17:56:27,582 (trainer:737) INFO: 35epoch:train:14001-14100batch: iter_time=1.040e-04, forward_time=0.105, loss_ctc=40.235, loss_att=54.645, acc=0.728, loss=50.322, backward_time=0.096, grad_norm=41.355, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.384e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 17:57:09,575 (trainer:737) INFO: 35epoch:train:14101-14200batch: iter_time=1.035e-04, forward_time=0.105, loss_ctc=43.953, loss_att=56.773, acc=0.721, loss=52.927, backward_time=0.096, grad_norm=49.075, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.384e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 17:57:52,024 (trainer:737) INFO: 35epoch:train:14201-14300batch: iter_time=1.156e-04, forward_time=0.104, loss_ctc=44.073, loss_att=54.987, acc=0.757, loss=51.713, backward_time=0.096, grad_norm=41.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.383e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 17:58:33,647 (trainer:737) INFO: 35epoch:train:14301-14400batch: iter_time=1.069e-04, forward_time=0.104, loss_ctc=38.564, loss_att=45.712, acc=0.752, loss=43.568, backward_time=0.096, grad_norm=42.114, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.383e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 17:59:15,513 (trainer:737) INFO: 35epoch:train:14401-14500batch: iter_time=1.074e-04, forward_time=0.104, loss_ctc=42.614, loss_att=43.812, acc=0.743, loss=43.453, backward_time=0.095, grad_norm=46.774, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.383e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 17:59:57,677 (trainer:737) INFO: 35epoch:train:14501-14600batch: iter_time=1.200e-04, forward_time=0.104, loss_ctc=38.958, loss_att=55.328, acc=0.704, loss=50.417, backward_time=0.095, grad_norm=40.932, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.382e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 18:00:39,111 (trainer:737) INFO: 35epoch:train:14601-14700batch: iter_time=1.086e-04, forward_time=0.103, loss_ctc=36.686, loss_att=45.985, acc=0.717, loss=43.196, backward_time=0.095, grad_norm=40.028, clip=100.000, loss_scale=3.344e+34, optim_step_time=0.038, optim0_lr0=3.382e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 18:01:01,954 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 18:01:20,480 (trainer:737) INFO: 35epoch:train:14701-14800batch: iter_time=1.031e-04, forward_time=0.103, loss_ctc=39.410, loss_att=41.986, acc=0.744, loss=41.213, backward_time=0.095, grad_norm=39.265, clip=100.000, loss_scale=3.210e+34, optim_step_time=0.038, optim0_lr0=3.382e-04, train_time=0.413 +[gpuc04:0/16] 2024-01-16 18:02:02,055 (trainer:737) INFO: 35epoch:train:14801-14900batch: iter_time=1.022e-04, forward_time=0.104, loss_ctc=39.487, loss_att=42.949, acc=0.759, loss=41.910, backward_time=0.095, grad_norm=42.129, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.381e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:02:43,729 (trainer:737) INFO: 35epoch:train:14901-15000batch: iter_time=9.961e-05, forward_time=0.104, loss_ctc=48.982, loss_att=61.039, acc=0.720, loss=57.422, backward_time=0.096, grad_norm=51.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.381e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 18:22:43,373 (trainer:343) INFO: 35epoch results: [train] iter_time=0.210, forward_time=0.105, loss_ctc=42.320, loss_att=50.654, acc=0.739, loss=48.154, backward_time=0.096, grad_norm=43.219, clip=100.000, loss_scale=2.115e+34, optim_step_time=0.038, optim0_lr0=3.406e-04, train_time=0.644, time=2 hours, 41 minutes and 7.39 seconds, total_count=525000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=50.705, cer_ctc=0.256, loss_att=52.693, acc=0.602, cer=0.363, wer=0.999, loss=52.096, time=19 minutes and 50.46 seconds, total_count=163485, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-16 18:22:48,282 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-16 18:22:48,339 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/25epoch.pth, exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/30epoch.pth +[gpuc04:0/16] 2024-01-16 18:22:48,339 (trainer:272) INFO: 36/45epoch started. Estimated time to finish: 1 day, 5 hours and 59 minutes +[gpuc04:0/16] 2024-01-16 18:22:48,348 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-16 18:23:07,162 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 18:23:10,753 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 18:23:10,753 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-16 18:23:10,756 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 18:27:28,524 (trainer:737) INFO: 36epoch:train:1-100batch: iter_time=2.383, forward_time=0.104, loss_ctc=55.215, loss_att=61.154, acc=0.706, loss=59.372, backward_time=0.097, grad_norm=62.519, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.381e-04, train_time=2.801 +[gpuc04:0/16] 2024-01-16 18:28:10,132 (trainer:737) INFO: 36epoch:train:101-200batch: iter_time=1.015e-04, forward_time=0.103, loss_ctc=47.460, loss_att=52.279, acc=0.719, loss=50.833, backward_time=0.097, grad_norm=48.675, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.381e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:28:51,645 (trainer:737) INFO: 36epoch:train:201-300batch: iter_time=1.008e-04, forward_time=0.103, loss_ctc=54.556, loss_att=45.518, acc=0.729, loss=48.229, backward_time=0.096, grad_norm=50.056, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.380e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 18:29:33,360 (trainer:737) INFO: 36epoch:train:301-400batch: iter_time=9.875e-05, forward_time=0.104, loss_ctc=45.377, loss_att=58.747, acc=0.718, loss=54.736, backward_time=0.098, grad_norm=49.077, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.380e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 18:30:17,300 (trainer:737) INFO: 36epoch:train:401-500batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=45.085, loss_att=56.824, acc=0.723, loss=53.302, backward_time=0.098, grad_norm=45.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.380e-04, train_time=0.439 +[gpuc04:0/16] 2024-01-16 18:31:00,645 (trainer:737) INFO: 36epoch:train:501-600batch: iter_time=1.100e-04, forward_time=0.112, loss_ctc=46.440, loss_att=58.282, acc=0.733, loss=54.729, backward_time=0.101, grad_norm=48.045, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.379e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-16 18:31:42,431 (trainer:737) INFO: 36epoch:train:601-700batch: iter_time=1.007e-04, forward_time=0.104, loss_ctc=53.496, loss_att=55.476, acc=0.731, loss=54.882, backward_time=0.098, grad_norm=53.476, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.379e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 18:32:23,852 (trainer:737) INFO: 36epoch:train:701-800batch: iter_time=1.086e-04, forward_time=0.104, loss_ctc=43.566, loss_att=47.415, acc=0.733, loss=46.260, backward_time=0.097, grad_norm=46.832, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.379e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 18:33:19,939 (trainer:737) INFO: 36epoch:train:801-900batch: iter_time=1.114e-04, forward_time=0.123, loss_ctc=52.152, loss_att=59.095, acc=0.732, loss=57.012, backward_time=0.102, grad_norm=51.356, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.378e-04, train_time=0.561 +[gpuc04:0/16] 2024-01-16 18:34:10,648 (trainer:737) INFO: 36epoch:train:901-1000batch: iter_time=1.105e-04, forward_time=0.160, loss_ctc=51.569, loss_att=53.415, acc=0.722, loss=52.861, backward_time=0.104, grad_norm=58.047, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.045, optim0_lr0=3.378e-04, train_time=0.506 +[gpuc04:0/16] 2024-01-16 18:34:52,228 (trainer:737) INFO: 36epoch:train:1001-1100batch: iter_time=1.098e-04, forward_time=0.104, loss_ctc=48.907, loss_att=51.253, acc=0.719, loss=50.549, backward_time=0.096, grad_norm=48.600, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.378e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:35:35,611 (trainer:737) INFO: 36epoch:train:1101-1200batch: iter_time=1.107e-04, forward_time=0.104, loss_ctc=44.179, loss_att=50.361, acc=0.717, loss=48.507, backward_time=0.097, grad_norm=47.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.377e-04, train_time=0.434 +[gpuc04:0/16] 2024-01-16 18:36:16,083 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-16 18:36:35,097 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 18:36:39,026 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 18:36:39,026 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-16 18:36:39,030 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 18:42:51,590 (trainer:737) INFO: 36epoch:train:1201-1300batch: iter_time=3.867, forward_time=0.103, loss_ctc=45.752, loss_att=59.699, acc=0.693, loss=55.515, backward_time=0.097, grad_norm=52.368, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.377e-04, train_time=4.360 +[gpuc04:0/16] 2024-01-16 18:43:33,771 (trainer:737) INFO: 36epoch:train:1301-1400batch: iter_time=1.538e-04, forward_time=0.106, loss_ctc=54.903, loss_att=58.012, acc=0.719, loss=57.079, backward_time=0.098, grad_norm=69.167, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.377e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 18:44:15,434 (trainer:737) INFO: 36epoch:train:1401-1500batch: iter_time=1.605e-04, forward_time=0.106, loss_ctc=54.780, loss_att=51.982, acc=0.722, loss=52.822, backward_time=0.098, grad_norm=48.882, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.376e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:44:57,061 (trainer:737) INFO: 36epoch:train:1501-1600batch: iter_time=2.016e-04, forward_time=0.105, loss_ctc=41.498, loss_att=44.418, acc=0.729, loss=43.542, backward_time=0.096, grad_norm=41.669, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.376e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:45:38,914 (trainer:737) INFO: 36epoch:train:1601-1700batch: iter_time=1.685e-04, forward_time=0.106, loss_ctc=48.448, loss_att=66.978, acc=0.709, loss=61.419, backward_time=0.098, grad_norm=49.833, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.376e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 18:46:20,594 (trainer:737) INFO: 36epoch:train:1701-1800batch: iter_time=1.513e-04, forward_time=0.104, loss_ctc=42.230, loss_att=52.733, acc=0.747, loss=49.582, backward_time=0.097, grad_norm=47.894, clip=100.000, loss_scale=3.012e+34, optim_step_time=0.038, optim0_lr0=3.375e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 18:46:43,107 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 18:47:02,287 (trainer:737) INFO: 36epoch:train:1801-1900batch: iter_time=1.556e-04, forward_time=0.104, loss_ctc=52.294, loss_att=60.256, acc=0.718, loss=57.867, backward_time=0.097, grad_norm=51.690, clip=100.000, loss_scale=3.189e+34, optim_step_time=0.039, optim0_lr0=3.375e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 18:47:43,827 (trainer:737) INFO: 36epoch:train:1901-2000batch: iter_time=1.641e-04, forward_time=0.103, loss_ctc=43.916, loss_att=47.411, acc=0.740, loss=46.362, backward_time=0.096, grad_norm=44.664, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.375e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 18:48:25,595 (trainer:737) INFO: 36epoch:train:2001-2100batch: iter_time=1.436e-04, forward_time=0.104, loss_ctc=45.816, loss_att=53.732, acc=0.728, loss=51.357, backward_time=0.096, grad_norm=47.926, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.374e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 18:49:07,488 (trainer:737) INFO: 36epoch:train:2101-2200batch: iter_time=1.467e-04, forward_time=0.104, loss_ctc=52.213, loss_att=55.488, acc=0.739, loss=54.506, backward_time=0.096, grad_norm=48.901, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.374e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 18:49:48,918 (trainer:737) INFO: 36epoch:train:2201-2300batch: iter_time=1.416e-04, forward_time=0.103, loss_ctc=47.737, loss_att=51.472, acc=0.729, loss=50.351, backward_time=0.095, grad_norm=54.052, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.374e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 18:50:30,383 (trainer:737) INFO: 36epoch:train:2301-2400batch: iter_time=1.607e-04, forward_time=0.103, loss_ctc=44.649, loss_att=49.094, acc=0.710, loss=47.760, backward_time=0.096, grad_norm=47.116, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.373e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 18:51:11,958 (trainer:737) INFO: 36epoch:train:2401-2500batch: iter_time=1.478e-04, forward_time=0.103, loss_ctc=46.071, loss_att=57.815, acc=0.708, loss=54.292, backward_time=0.096, grad_norm=48.236, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.373e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:51:16,589 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-16 18:51:35,556 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 18:51:39,125 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 18:51:39,125 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-16 18:51:39,128 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 18:56:07,197 (trainer:737) INFO: 36epoch:train:2501-2600batch: iter_time=2.528, forward_time=0.103, loss_ctc=53.811, loss_att=64.962, acc=0.710, loss=61.617, backward_time=0.096, grad_norm=61.583, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.373e-04, train_time=2.952 +[gpuc04:0/16] 2024-01-16 18:56:48,791 (trainer:737) INFO: 36epoch:train:2601-2700batch: iter_time=1.153e-04, forward_time=0.103, loss_ctc=45.938, loss_att=52.770, acc=0.736, loss=50.720, backward_time=0.096, grad_norm=46.066, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.373e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 18:57:30,631 (trainer:737) INFO: 36epoch:train:2701-2800batch: iter_time=1.126e-04, forward_time=0.105, loss_ctc=52.058, loss_att=47.253, acc=0.739, loss=48.695, backward_time=0.096, grad_norm=47.505, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.372e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 18:58:13,441 (trainer:737) INFO: 36epoch:train:2801-2900batch: iter_time=1.343e-04, forward_time=0.103, loss_ctc=44.136, loss_att=58.086, acc=0.733, loss=53.901, backward_time=0.096, grad_norm=44.980, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.372e-04, train_time=0.428 +[gpuc04:0/16] 2024-01-16 18:58:55,517 (trainer:737) INFO: 36epoch:train:2901-3000batch: iter_time=1.225e-04, forward_time=0.104, loss_ctc=44.007, loss_att=57.224, acc=0.734, loss=53.259, backward_time=0.096, grad_norm=43.502, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.372e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 18:59:37,349 (trainer:737) INFO: 36epoch:train:3001-3100batch: iter_time=1.230e-04, forward_time=0.104, loss_ctc=45.587, loss_att=58.210, acc=0.737, loss=54.423, backward_time=0.096, grad_norm=46.848, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.371e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:00:19,184 (trainer:737) INFO: 36epoch:train:3101-3200batch: iter_time=1.254e-04, forward_time=0.104, loss_ctc=50.233, loss_att=53.972, acc=0.741, loss=52.851, backward_time=0.097, grad_norm=48.750, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.371e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:01:00,743 (trainer:737) INFO: 36epoch:train:3201-3300batch: iter_time=1.487e-04, forward_time=0.103, loss_ctc=42.348, loss_att=47.663, acc=0.739, loss=46.068, backward_time=0.095, grad_norm=46.678, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.371e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:01:42,549 (trainer:737) INFO: 36epoch:train:3301-3400batch: iter_time=1.237e-04, forward_time=0.104, loss_ctc=50.339, loss_att=58.094, acc=0.739, loss=55.768, backward_time=0.097, grad_norm=49.492, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.370e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:02:25,343 (trainer:737) INFO: 36epoch:train:3401-3500batch: iter_time=1.154e-04, forward_time=0.107, loss_ctc=49.221, loss_att=53.882, acc=0.733, loss=52.484, backward_time=0.100, grad_norm=54.890, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.370e-04, train_time=0.428 +[gpuc04:0/16] 2024-01-16 19:03:10,943 (trainer:737) INFO: 36epoch:train:3501-3600batch: iter_time=1.135e-04, forward_time=0.125, loss_ctc=47.500, loss_att=50.629, acc=0.733, loss=49.690, backward_time=0.098, grad_norm=47.255, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.370e-04, train_time=0.456 +[gpuc04:0/16] 2024-01-16 19:03:54,157 (trainer:737) INFO: 36epoch:train:3601-3700batch: iter_time=1.302e-04, forward_time=0.111, loss_ctc=42.434, loss_att=48.216, acc=0.742, loss=46.481, backward_time=0.099, grad_norm=46.737, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.369e-04, train_time=0.432 +[gpuc04:0/16] 2024-01-16 19:04:26,850 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-16 19:04:46,255 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 19:04:49,946 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 19:04:49,946 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-16 19:04:49,950 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 19:10:46,318 (trainer:737) INFO: 36epoch:train:3701-3800batch: iter_time=3.008, forward_time=0.104, loss_ctc=44.611, loss_att=60.118, acc=0.702, loss=55.466, backward_time=0.096, grad_norm=50.848, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.369e-04, train_time=4.121 +[gpuc04:0/16] 2024-01-16 19:11:27,987 (trainer:737) INFO: 36epoch:train:3801-3900batch: iter_time=1.286e-04, forward_time=0.104, loss_ctc=54.112, loss_att=59.112, acc=0.719, loss=57.612, backward_time=0.096, grad_norm=65.843, clip=100.000, loss_scale=3.032e+34, optim_step_time=0.038, optim0_lr0=3.369e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:11:35,638 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 19:12:10,028 (trainer:737) INFO: 36epoch:train:3901-4000batch: iter_time=1.386e-04, forward_time=0.104, loss_ctc=52.592, loss_att=51.705, acc=0.725, loss=51.971, backward_time=0.096, grad_norm=45.677, clip=100.000, loss_scale=2.434e+34, optim_step_time=0.038, optim0_lr0=3.368e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 19:12:51,975 (trainer:737) INFO: 36epoch:train:4001-4100batch: iter_time=1.533e-04, forward_time=0.104, loss_ctc=41.421, loss_att=44.551, acc=0.731, loss=43.612, backward_time=0.096, grad_norm=42.180, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.368e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 19:13:34,538 (trainer:737) INFO: 36epoch:train:4101-4200batch: iter_time=1.653e-04, forward_time=0.105, loss_ctc=48.097, loss_att=67.731, acc=0.709, loss=61.841, backward_time=0.097, grad_norm=50.400, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.368e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 19:14:16,406 (trainer:737) INFO: 36epoch:train:4201-4300batch: iter_time=1.693e-04, forward_time=0.105, loss_ctc=41.620, loss_att=53.534, acc=0.747, loss=49.960, backward_time=0.096, grad_norm=42.815, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.367e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:14:58,079 (trainer:737) INFO: 36epoch:train:4301-4400batch: iter_time=1.601e-04, forward_time=0.104, loss_ctc=51.100, loss_att=58.583, acc=0.724, loss=56.338, backward_time=0.096, grad_norm=50.268, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.367e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:15:40,457 (trainer:737) INFO: 36epoch:train:4401-4500batch: iter_time=1.501e-04, forward_time=0.104, loss_ctc=42.765, loss_att=47.166, acc=0.740, loss=45.846, backward_time=0.096, grad_norm=42.601, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.367e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 19:16:22,355 (trainer:737) INFO: 36epoch:train:4501-4600batch: iter_time=1.658e-04, forward_time=0.105, loss_ctc=45.066, loss_att=52.864, acc=0.731, loss=50.525, backward_time=0.096, grad_norm=49.090, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.366e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 19:17:04,568 (trainer:737) INFO: 36epoch:train:4601-4700batch: iter_time=1.561e-04, forward_time=0.107, loss_ctc=51.690, loss_att=55.212, acc=0.740, loss=54.155, backward_time=0.096, grad_norm=49.427, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.366e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 19:17:46,066 (trainer:737) INFO: 36epoch:train:4701-4800batch: iter_time=1.519e-04, forward_time=0.104, loss_ctc=46.990, loss_att=51.240, acc=0.729, loss=49.965, backward_time=0.096, grad_norm=53.376, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.366e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:18:27,618 (trainer:737) INFO: 36epoch:train:4801-4900batch: iter_time=1.475e-04, forward_time=0.104, loss_ctc=44.641, loss_att=49.678, acc=0.708, loss=48.167, backward_time=0.096, grad_norm=46.199, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.366e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:19:09,273 (trainer:737) INFO: 36epoch:train:4901-5000batch: iter_time=1.283e-04, forward_time=0.104, loss_ctc=45.446, loss_att=57.257, acc=0.709, loss=53.714, backward_time=0.097, grad_norm=47.412, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.365e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:19:13,878 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-16 19:19:33,016 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 19:19:36,571 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 19:19:36,571 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-16 19:19:36,575 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 19:24:06,393 (trainer:737) INFO: 36epoch:train:5001-5100batch: iter_time=2.527, forward_time=0.105, loss_ctc=52.788, loss_att=62.996, acc=0.715, loss=59.933, backward_time=0.097, grad_norm=58.022, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.365e-04, train_time=2.971 +[gpuc04:0/16] 2024-01-16 19:24:48,024 (trainer:737) INFO: 36epoch:train:5101-5200batch: iter_time=1.380e-04, forward_time=0.105, loss_ctc=45.545, loss_att=52.392, acc=0.735, loss=50.338, backward_time=0.096, grad_norm=45.910, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.365e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:25:14,601 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 19:25:29,573 (trainer:737) INFO: 36epoch:train:5201-5300batch: iter_time=1.358e-04, forward_time=0.105, loss_ctc=51.249, loss_att=45.837, acc=0.748, loss=47.461, backward_time=0.095, grad_norm=46.541, clip=100.000, loss_scale=1.699e+34, optim_step_time=0.038, optim0_lr0=3.364e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:26:11,301 (trainer:737) INFO: 36epoch:train:5301-5400batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=43.892, loss_att=58.592, acc=0.730, loss=54.182, backward_time=0.096, grad_norm=44.578, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.364e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:26:53,349 (trainer:737) INFO: 36epoch:train:5401-5500batch: iter_time=1.352e-04, forward_time=0.106, loss_ctc=43.388, loss_att=56.761, acc=0.735, loss=52.750, backward_time=0.096, grad_norm=44.718, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.364e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 19:27:35,277 (trainer:737) INFO: 36epoch:train:5501-5600batch: iter_time=1.546e-04, forward_time=0.105, loss_ctc=44.502, loss_att=57.502, acc=0.739, loss=53.602, backward_time=0.096, grad_norm=44.307, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.363e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 19:28:17,261 (trainer:737) INFO: 36epoch:train:5601-5700batch: iter_time=1.349e-04, forward_time=0.106, loss_ctc=50.386, loss_att=53.728, acc=0.741, loss=52.726, backward_time=0.096, grad_norm=58.778, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.363e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 19:28:59,213 (trainer:737) INFO: 36epoch:train:5701-5800batch: iter_time=1.474e-04, forward_time=0.105, loss_ctc=41.856, loss_att=47.180, acc=0.743, loss=45.583, backward_time=0.095, grad_norm=44.456, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.363e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 19:29:41,300 (trainer:737) INFO: 36epoch:train:5801-5900batch: iter_time=1.420e-04, forward_time=0.105, loss_ctc=50.055, loss_att=58.474, acc=0.739, loss=55.948, backward_time=0.096, grad_norm=48.397, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.362e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 19:30:23,431 (trainer:737) INFO: 36epoch:train:5901-6000batch: iter_time=1.280e-04, forward_time=0.104, loss_ctc=48.129, loss_att=53.641, acc=0.733, loss=51.988, backward_time=0.096, grad_norm=52.281, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.362e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 19:31:05,579 (trainer:737) INFO: 36epoch:train:6001-6100batch: iter_time=1.297e-04, forward_time=0.104, loss_ctc=47.333, loss_att=50.984, acc=0.734, loss=49.889, backward_time=0.096, grad_norm=46.892, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.362e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 19:31:47,180 (trainer:737) INFO: 36epoch:train:6101-6200batch: iter_time=1.349e-04, forward_time=0.105, loss_ctc=42.349, loss_att=48.866, acc=0.740, loss=46.910, backward_time=0.096, grad_norm=45.984, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.361e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:32:15,121 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-16 19:32:34,148 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 19:32:37,835 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 19:32:37,835 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-16 19:32:37,838 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 19:36:53,349 (trainer:737) INFO: 36epoch:train:6201-6300batch: iter_time=2.641, forward_time=0.105, loss_ctc=43.663, loss_att=58.302, acc=0.710, loss=53.910, backward_time=0.096, grad_norm=48.991, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.361e-04, train_time=3.061 +[gpuc04:0/16] 2024-01-16 19:37:35,205 (trainer:737) INFO: 36epoch:train:6301-6400batch: iter_time=1.844e-04, forward_time=0.105, loss_ctc=54.611, loss_att=59.697, acc=0.731, loss=58.171, backward_time=0.097, grad_norm=67.666, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.361e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:38:16,883 (trainer:737) INFO: 36epoch:train:6401-6500batch: iter_time=1.581e-04, forward_time=0.104, loss_ctc=52.530, loss_att=53.152, acc=0.739, loss=52.966, backward_time=0.096, grad_norm=44.753, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.360e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:38:58,392 (trainer:737) INFO: 36epoch:train:6501-6600batch: iter_time=1.530e-04, forward_time=0.103, loss_ctc=41.035, loss_att=43.234, acc=0.746, loss=42.574, backward_time=0.095, grad_norm=38.998, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.360e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:39:40,560 (trainer:737) INFO: 36epoch:train:6601-6700batch: iter_time=1.586e-04, forward_time=0.105, loss_ctc=47.715, loss_att=67.268, acc=0.718, loss=61.402, backward_time=0.097, grad_norm=48.836, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.360e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 19:40:22,256 (trainer:737) INFO: 36epoch:train:6701-6800batch: iter_time=1.696e-04, forward_time=0.104, loss_ctc=41.477, loss_att=52.210, acc=0.760, loss=48.990, backward_time=0.096, grad_norm=45.345, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.359e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:41:03,911 (trainer:737) INFO: 36epoch:train:6801-6900batch: iter_time=1.583e-04, forward_time=0.104, loss_ctc=50.237, loss_att=59.706, acc=0.718, loss=56.865, backward_time=0.096, grad_norm=50.473, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.359e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:41:45,518 (trainer:737) INFO: 36epoch:train:6901-7000batch: iter_time=1.451e-04, forward_time=0.104, loss_ctc=43.038, loss_att=47.142, acc=0.746, loss=45.911, backward_time=0.096, grad_norm=42.876, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.359e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:42:27,147 (trainer:737) INFO: 36epoch:train:7001-7100batch: iter_time=1.725e-04, forward_time=0.104, loss_ctc=45.171, loss_att=52.982, acc=0.737, loss=50.639, backward_time=0.096, grad_norm=47.133, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.359e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:43:08,899 (trainer:737) INFO: 36epoch:train:7101-7200batch: iter_time=1.558e-04, forward_time=0.104, loss_ctc=51.162, loss_att=55.346, acc=0.750, loss=54.091, backward_time=0.096, grad_norm=47.986, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.358e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:43:50,386 (trainer:737) INFO: 36epoch:train:7201-7300batch: iter_time=1.541e-04, forward_time=0.104, loss_ctc=46.210, loss_att=50.772, acc=0.738, loss=49.403, backward_time=0.096, grad_norm=53.958, clip=100.000, loss_scale=1.412e+34, optim_step_time=0.039, optim0_lr0=3.358e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:44:32,195 (trainer:737) INFO: 36epoch:train:7301-7400batch: iter_time=1.490e-04, forward_time=0.104, loss_ctc=44.106, loss_att=48.689, acc=0.729, loss=47.314, backward_time=0.096, grad_norm=45.153, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.358e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:44:41,347 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 19:45:14,149 (trainer:737) INFO: 36epoch:train:7401-7500batch: iter_time=1.347e-04, forward_time=0.104, loss_ctc=45.275, loss_att=58.139, acc=0.725, loss=54.280, backward_time=0.097, grad_norm=47.954, clip=100.000, loss_scale=1.259e+34, optim_step_time=0.038, optim0_lr0=3.357e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 19:45:18,485 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-16 19:45:37,877 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 19:45:41,614 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 19:45:41,614 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-16 19:45:41,617 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 19:50:13,713 (trainer:737) INFO: 36epoch:train:7501-7600batch: iter_time=2.516, forward_time=0.114, loss_ctc=51.188, loss_att=60.716, acc=0.716, loss=57.858, backward_time=0.100, grad_norm=57.987, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.357e-04, train_time=2.995 +[gpuc04:0/16] 2024-01-16 19:50:55,816 (trainer:737) INFO: 36epoch:train:7601-7700batch: iter_time=1.253e-04, forward_time=0.106, loss_ctc=44.824, loss_att=49.890, acc=0.742, loss=48.370, backward_time=0.097, grad_norm=44.366, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.357e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 19:51:37,540 (trainer:737) INFO: 36epoch:train:7701-7800batch: iter_time=1.260e-04, forward_time=0.105, loss_ctc=50.479, loss_att=46.409, acc=0.742, loss=47.630, backward_time=0.097, grad_norm=45.673, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.356e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:52:19,331 (trainer:737) INFO: 36epoch:train:7801-7900batch: iter_time=1.702e-04, forward_time=0.106, loss_ctc=43.630, loss_att=56.972, acc=0.736, loss=52.970, backward_time=0.097, grad_norm=43.784, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.356e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:53:01,079 (trainer:737) INFO: 36epoch:train:7901-8000batch: iter_time=1.324e-04, forward_time=0.105, loss_ctc=43.231, loss_att=55.562, acc=0.738, loss=51.863, backward_time=0.097, grad_norm=42.260, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.356e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:53:42,775 (trainer:737) INFO: 36epoch:train:8001-8100batch: iter_time=1.198e-04, forward_time=0.106, loss_ctc=44.578, loss_att=57.583, acc=0.738, loss=53.681, backward_time=0.097, grad_norm=47.234, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.355e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 19:54:24,586 (trainer:737) INFO: 36epoch:train:8101-8200batch: iter_time=1.327e-04, forward_time=0.106, loss_ctc=50.078, loss_att=53.058, acc=0.744, loss=52.164, backward_time=0.097, grad_norm=49.580, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.355e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 19:55:06,636 (trainer:737) INFO: 36epoch:train:8201-8300batch: iter_time=1.139e-04, forward_time=0.110, loss_ctc=41.336, loss_att=47.165, acc=0.742, loss=45.416, backward_time=0.096, grad_norm=44.755, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.355e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 19:55:48,563 (trainer:737) INFO: 36epoch:train:8301-8400batch: iter_time=1.129e-04, forward_time=0.106, loss_ctc=49.441, loss_att=58.231, acc=0.739, loss=55.594, backward_time=0.096, grad_norm=50.730, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.354e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 19:56:30,216 (trainer:737) INFO: 36epoch:train:8401-8500batch: iter_time=1.537e-04, forward_time=0.106, loss_ctc=47.511, loss_att=52.590, acc=0.736, loss=51.066, backward_time=0.096, grad_norm=52.410, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.354e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:57:11,771 (trainer:737) INFO: 36epoch:train:8501-8600batch: iter_time=1.406e-04, forward_time=0.105, loss_ctc=47.006, loss_att=50.243, acc=0.736, loss=49.271, backward_time=0.096, grad_norm=46.190, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.354e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 19:57:53,434 (trainer:737) INFO: 36epoch:train:8601-8700batch: iter_time=1.293e-04, forward_time=0.105, loss_ctc=41.919, loss_att=47.199, acc=0.744, loss=45.615, backward_time=0.096, grad_norm=45.523, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.354e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 19:58:20,127 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-16 19:58:39,726 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 19:58:43,343 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 19:58:43,343 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-16 19:58:43,347 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 20:02:55,070 (trainer:737) INFO: 36epoch:train:8701-8800batch: iter_time=2.592, forward_time=0.105, loss_ctc=42.991, loss_att=59.946, acc=0.702, loss=54.860, backward_time=0.096, grad_norm=51.408, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.353e-04, train_time=3.016 +[gpuc04:0/16] 2024-01-16 20:03:36,859 (trainer:737) INFO: 36epoch:train:8801-8900batch: iter_time=1.448e-04, forward_time=0.105, loss_ctc=53.591, loss_att=60.223, acc=0.716, loss=58.233, backward_time=0.097, grad_norm=58.855, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.353e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:04:19,063 (trainer:737) INFO: 36epoch:train:8901-9000batch: iter_time=1.562e-04, forward_time=0.105, loss_ctc=51.385, loss_att=52.514, acc=0.720, loss=52.175, backward_time=0.097, grad_norm=44.790, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.353e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 20:05:00,899 (trainer:737) INFO: 36epoch:train:9001-9100batch: iter_time=1.687e-04, forward_time=0.104, loss_ctc=40.867, loss_att=45.157, acc=0.729, loss=43.870, backward_time=0.096, grad_norm=39.765, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.352e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:05:43,010 (trainer:737) INFO: 36epoch:train:9101-9200batch: iter_time=1.392e-04, forward_time=0.106, loss_ctc=47.039, loss_att=67.487, acc=0.710, loss=61.352, backward_time=0.097, grad_norm=46.466, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.352e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 20:06:24,769 (trainer:737) INFO: 36epoch:train:9201-9300batch: iter_time=1.477e-04, forward_time=0.105, loss_ctc=41.547, loss_att=53.584, acc=0.748, loss=49.973, backward_time=0.096, grad_norm=44.775, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.352e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:07:06,993 (trainer:737) INFO: 36epoch:train:9301-9400batch: iter_time=1.469e-04, forward_time=0.104, loss_ctc=50.782, loss_att=58.414, acc=0.723, loss=56.124, backward_time=0.096, grad_norm=49.917, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.351e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 20:07:48,926 (trainer:737) INFO: 36epoch:train:9401-9500batch: iter_time=1.383e-04, forward_time=0.104, loss_ctc=42.359, loss_att=47.527, acc=0.742, loss=45.977, backward_time=0.096, grad_norm=42.759, clip=100.000, loss_scale=1.848e+34, optim_step_time=0.039, optim0_lr0=3.351e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 20:08:31,190 (trainer:737) INFO: 36epoch:train:9501-9600batch: iter_time=1.465e-04, forward_time=0.106, loss_ctc=44.351, loss_att=53.349, acc=0.730, loss=50.650, backward_time=0.096, grad_norm=47.881, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.351e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 20:09:13,204 (trainer:737) INFO: 36epoch:train:9601-9700batch: iter_time=1.390e-04, forward_time=0.106, loss_ctc=50.824, loss_att=55.340, acc=0.740, loss=53.985, backward_time=0.096, grad_norm=62.621, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.350e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 20:09:55,051 (trainer:737) INFO: 36epoch:train:9701-9800batch: iter_time=1.465e-04, forward_time=0.105, loss_ctc=45.505, loss_att=50.693, acc=0.732, loss=49.137, backward_time=0.095, grad_norm=50.724, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.350e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:10:36,635 (trainer:737) INFO: 36epoch:train:9801-9900batch: iter_time=1.503e-04, forward_time=0.104, loss_ctc=43.927, loss_att=49.730, acc=0.710, loss=47.989, backward_time=0.095, grad_norm=47.307, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.350e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 20:11:18,324 (trainer:737) INFO: 36epoch:train:9901-10000batch: iter_time=1.330e-04, forward_time=0.104, loss_ctc=44.688, loss_att=57.315, acc=0.711, loss=53.527, backward_time=0.096, grad_norm=47.846, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.349e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:11:22,917 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-16 20:11:42,790 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 20:11:46,403 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 20:11:46,403 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-16 20:11:46,406 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 20:16:11,309 (trainer:737) INFO: 36epoch:train:10001-10100batch: iter_time=2.498, forward_time=0.105, loss_ctc=51.656, loss_att=61.756, acc=0.717, loss=58.726, backward_time=0.097, grad_norm=65.333, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.349e-04, train_time=2.930 +[gpuc04:0/16] 2024-01-16 20:16:53,104 (trainer:737) INFO: 36epoch:train:10101-10200batch: iter_time=1.335e-04, forward_time=0.104, loss_ctc=44.973, loss_att=52.266, acc=0.737, loss=50.078, backward_time=0.096, grad_norm=45.822, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.349e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:17:34,830 (trainer:737) INFO: 36epoch:train:10201-10300batch: iter_time=1.460e-04, forward_time=0.105, loss_ctc=50.352, loss_att=45.400, acc=0.750, loss=46.886, backward_time=0.096, grad_norm=43.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.348e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:18:16,733 (trainer:737) INFO: 36epoch:train:10301-10400batch: iter_time=1.742e-04, forward_time=0.107, loss_ctc=43.460, loss_att=58.039, acc=0.733, loss=53.665, backward_time=0.097, grad_norm=43.687, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.348e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 20:18:58,627 (trainer:737) INFO: 36epoch:train:10401-10500batch: iter_time=1.807e-04, forward_time=0.105, loss_ctc=43.190, loss_att=56.102, acc=0.736, loss=52.228, backward_time=0.097, grad_norm=43.296, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.348e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 20:19:40,438 (trainer:737) INFO: 36epoch:train:10501-10600batch: iter_time=1.778e-04, forward_time=0.105, loss_ctc=44.446, loss_att=56.842, acc=0.740, loss=53.123, backward_time=0.097, grad_norm=46.302, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.348e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:20:22,390 (trainer:737) INFO: 36epoch:train:10601-10700batch: iter_time=1.708e-04, forward_time=0.106, loss_ctc=50.254, loss_att=53.403, acc=0.744, loss=52.458, backward_time=0.097, grad_norm=47.817, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.347e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 20:21:04,079 (trainer:737) INFO: 36epoch:train:10701-10800batch: iter_time=1.804e-04, forward_time=0.106, loss_ctc=40.953, loss_att=46.700, acc=0.744, loss=44.976, backward_time=0.096, grad_norm=44.804, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.347e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:21:46,812 (trainer:737) INFO: 36epoch:train:10801-10900batch: iter_time=1.627e-04, forward_time=0.105, loss_ctc=49.695, loss_att=58.426, acc=0.740, loss=55.806, backward_time=0.097, grad_norm=50.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.347e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-16 20:22:28,848 (trainer:737) INFO: 36epoch:train:10901-11000batch: iter_time=1.791e-04, forward_time=0.106, loss_ctc=48.112, loss_att=52.410, acc=0.735, loss=51.121, backward_time=0.097, grad_norm=50.432, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.346e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 20:23:10,567 (trainer:737) INFO: 36epoch:train:11001-11100batch: iter_time=1.978e-04, forward_time=0.106, loss_ctc=46.980, loss_att=50.844, acc=0.735, loss=49.685, backward_time=0.097, grad_norm=46.865, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.346e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:23:52,941 (trainer:737) INFO: 36epoch:train:11101-11200batch: iter_time=1.814e-04, forward_time=0.106, loss_ctc=41.912, loss_att=48.297, acc=0.741, loss=46.382, backward_time=0.098, grad_norm=46.361, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.346e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 20:24:17,886 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-16 20:24:38,132 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 20:24:41,715 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 20:24:41,715 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-16 20:24:41,719 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 20:28:44,241 (trainer:737) INFO: 36epoch:train:11201-11300batch: iter_time=2.464, forward_time=0.105, loss_ctc=43.037, loss_att=58.995, acc=0.705, loss=54.208, backward_time=0.097, grad_norm=48.632, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.345e-04, train_time=2.913 +[gpuc04:0/16] 2024-01-16 20:29:26,003 (trainer:737) INFO: 36epoch:train:11301-11400batch: iter_time=1.355e-04, forward_time=0.106, loss_ctc=53.444, loss_att=58.948, acc=0.720, loss=57.297, backward_time=0.096, grad_norm=68.623, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.345e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:30:07,657 (trainer:737) INFO: 36epoch:train:11401-11500batch: iter_time=1.208e-04, forward_time=0.105, loss_ctc=51.552, loss_att=51.764, acc=0.726, loss=51.700, backward_time=0.096, grad_norm=46.056, clip=100.000, loss_scale=3.697e+34, optim_step_time=0.039, optim0_lr0=3.345e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 20:30:49,270 (trainer:737) INFO: 36epoch:train:11501-11600batch: iter_time=1.419e-04, forward_time=0.105, loss_ctc=40.605, loss_att=44.258, acc=0.733, loss=43.162, backward_time=0.096, grad_norm=40.418, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.344e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 20:30:53,026 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 20:31:31,125 (trainer:737) INFO: 36epoch:train:11601-11700batch: iter_time=1.358e-04, forward_time=0.107, loss_ctc=46.734, loss_att=67.624, acc=0.710, loss=61.357, backward_time=0.097, grad_norm=46.162, clip=100.000, loss_scale=2.245e+34, optim_step_time=0.039, optim0_lr0=3.344e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:32:12,915 (trainer:737) INFO: 36epoch:train:11701-11800batch: iter_time=1.315e-04, forward_time=0.106, loss_ctc=40.839, loss_att=52.538, acc=0.750, loss=49.028, backward_time=0.097, grad_norm=42.236, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.344e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:32:54,727 (trainer:737) INFO: 36epoch:train:11801-11900batch: iter_time=1.189e-04, forward_time=0.106, loss_ctc=49.824, loss_att=57.645, acc=0.726, loss=55.298, backward_time=0.097, grad_norm=48.610, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.343e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:33:36,487 (trainer:737) INFO: 36epoch:train:11901-12000batch: iter_time=1.259e-04, forward_time=0.105, loss_ctc=42.531, loss_att=47.667, acc=0.741, loss=46.126, backward_time=0.097, grad_norm=42.472, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.343e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:34:18,203 (trainer:737) INFO: 36epoch:train:12001-12100batch: iter_time=1.320e-04, forward_time=0.106, loss_ctc=44.665, loss_att=52.900, acc=0.732, loss=50.430, backward_time=0.097, grad_norm=47.191, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.343e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:35:00,034 (trainer:737) INFO: 36epoch:train:12101-12200batch: iter_time=1.218e-04, forward_time=0.106, loss_ctc=50.768, loss_att=54.983, acc=0.741, loss=53.719, backward_time=0.096, grad_norm=49.624, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.343e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 20:35:41,670 (trainer:737) INFO: 36epoch:train:12201-12300batch: iter_time=1.315e-04, forward_time=0.104, loss_ctc=45.912, loss_att=50.481, acc=0.732, loss=49.110, backward_time=0.095, grad_norm=51.681, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.342e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 20:36:23,390 (trainer:737) INFO: 36epoch:train:12301-12400batch: iter_time=1.323e-04, forward_time=0.105, loss_ctc=44.085, loss_att=49.709, acc=0.709, loss=48.022, backward_time=0.096, grad_norm=47.410, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.342e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:37:05,421 (trainer:737) INFO: 36epoch:train:12401-12500batch: iter_time=1.103e-04, forward_time=0.108, loss_ctc=44.270, loss_att=57.669, acc=0.710, loss=53.650, backward_time=0.096, grad_norm=47.187, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.342e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 20:37:10,932 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-16 20:37:29,866 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 20:37:33,476 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 20:37:33,476 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-16 20:37:33,479 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 20:42:02,777 (trainer:737) INFO: 36epoch:train:12501-12600batch: iter_time=2.467, forward_time=0.107, loss_ctc=51.408, loss_att=63.154, acc=0.713, loss=59.630, backward_time=0.097, grad_norm=63.597, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.341e-04, train_time=2.973 +[gpuc04:0/16] 2024-01-16 20:42:44,882 (trainer:737) INFO: 36epoch:train:12601-12700batch: iter_time=1.463e-04, forward_time=0.106, loss_ctc=43.882, loss_att=51.017, acc=0.739, loss=48.876, backward_time=0.096, grad_norm=45.149, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.341e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 20:43:26,588 (trainer:737) INFO: 36epoch:train:12701-12800batch: iter_time=1.633e-04, forward_time=0.106, loss_ctc=49.800, loss_att=46.698, acc=0.742, loss=47.629, backward_time=0.097, grad_norm=46.063, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.341e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:44:08,507 (trainer:737) INFO: 36epoch:train:12801-12900batch: iter_time=1.760e-04, forward_time=0.107, loss_ctc=43.418, loss_att=57.503, acc=0.736, loss=53.278, backward_time=0.097, grad_norm=42.919, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.340e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 20:44:50,967 (trainer:737) INFO: 36epoch:train:12901-13000batch: iter_time=1.384e-04, forward_time=0.106, loss_ctc=42.671, loss_att=56.251, acc=0.738, loss=52.177, backward_time=0.097, grad_norm=44.628, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.340e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 20:45:33,373 (trainer:737) INFO: 36epoch:train:13001-13100batch: iter_time=1.885e-04, forward_time=0.106, loss_ctc=44.237, loss_att=57.029, acc=0.740, loss=53.191, backward_time=0.097, grad_norm=44.725, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.340e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 20:46:15,259 (trainer:737) INFO: 36epoch:train:13101-13200batch: iter_time=1.812e-04, forward_time=0.106, loss_ctc=50.266, loss_att=53.111, acc=0.746, loss=52.258, backward_time=0.097, grad_norm=50.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.339e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 20:46:48,557 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 20:46:56,915 (trainer:737) INFO: 36epoch:train:13201-13300batch: iter_time=1.875e-04, forward_time=0.106, loss_ctc=40.908, loss_att=47.623, acc=0.742, loss=45.609, backward_time=0.097, grad_norm=43.934, clip=100.000, loss_scale=1.867e+34, optim_step_time=0.039, optim0_lr0=3.339e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 20:47:39,482 (trainer:737) INFO: 36epoch:train:13301-13400batch: iter_time=1.637e-04, forward_time=0.107, loss_ctc=48.861, loss_att=57.872, acc=0.739, loss=55.169, backward_time=0.097, grad_norm=48.656, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.339e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 20:48:21,229 (trainer:737) INFO: 36epoch:train:13401-13500batch: iter_time=1.995e-04, forward_time=0.106, loss_ctc=47.626, loss_att=52.539, acc=0.736, loss=51.065, backward_time=0.096, grad_norm=50.358, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.339e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:49:02,955 (trainer:737) INFO: 36epoch:train:13501-13600batch: iter_time=1.760e-04, forward_time=0.105, loss_ctc=46.688, loss_att=50.585, acc=0.736, loss=49.416, backward_time=0.096, grad_norm=46.314, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.338e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:49:45,554 (trainer:737) INFO: 36epoch:train:13601-13700batch: iter_time=1.701e-04, forward_time=0.107, loss_ctc=41.795, loss_att=48.089, acc=0.746, loss=46.201, backward_time=0.098, grad_norm=46.866, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.338e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-16 20:50:11,636 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-16 20:50:30,985 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 20:50:34,660 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 20:50:34,660 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-16 20:50:34,664 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 20:54:40,159 (trainer:737) INFO: 36epoch:train:13701-13800batch: iter_time=2.485, forward_time=0.108, loss_ctc=43.027, loss_att=59.566, acc=0.703, loss=54.604, backward_time=0.097, grad_norm=48.440, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.338e-04, train_time=2.946 +[gpuc04:0/16] 2024-01-16 20:55:21,913 (trainer:737) INFO: 36epoch:train:13801-13900batch: iter_time=1.356e-04, forward_time=0.106, loss_ctc=53.119, loss_att=58.787, acc=0.717, loss=57.087, backward_time=0.096, grad_norm=63.645, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.337e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:56:03,565 (trainer:737) INFO: 36epoch:train:13901-14000batch: iter_time=1.384e-04, forward_time=0.104, loss_ctc=50.558, loss_att=52.344, acc=0.723, loss=51.808, backward_time=0.096, grad_norm=43.511, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.337e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 20:56:45,076 (trainer:737) INFO: 36epoch:train:14001-14100batch: iter_time=1.409e-04, forward_time=0.105, loss_ctc=40.254, loss_att=44.299, acc=0.732, loss=43.085, backward_time=0.095, grad_norm=40.629, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.337e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 20:57:27,190 (trainer:737) INFO: 36epoch:train:14101-14200batch: iter_time=1.537e-04, forward_time=0.110, loss_ctc=46.694, loss_att=67.029, acc=0.713, loss=60.929, backward_time=0.097, grad_norm=45.664, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.336e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 20:58:08,959 (trainer:737) INFO: 36epoch:train:14201-14300batch: iter_time=1.307e-04, forward_time=0.106, loss_ctc=40.926, loss_att=52.208, acc=0.749, loss=48.824, backward_time=0.096, grad_norm=44.370, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.336e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:58:50,694 (trainer:737) INFO: 36epoch:train:14301-14400batch: iter_time=1.327e-04, forward_time=0.105, loss_ctc=49.884, loss_att=58.009, acc=0.725, loss=55.572, backward_time=0.096, grad_norm=49.360, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.336e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 20:59:32,354 (trainer:737) INFO: 36epoch:train:14401-14500batch: iter_time=1.373e-04, forward_time=0.106, loss_ctc=42.163, loss_att=47.177, acc=0.743, loss=45.673, backward_time=0.096, grad_norm=44.743, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.335e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 21:00:14,090 (trainer:737) INFO: 36epoch:train:14501-14600batch: iter_time=1.497e-04, forward_time=0.106, loss_ctc=44.150, loss_att=53.100, acc=0.731, loss=50.415, backward_time=0.096, grad_norm=47.766, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.335e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 21:00:55,841 (trainer:737) INFO: 36epoch:train:14601-14700batch: iter_time=1.298e-04, forward_time=0.106, loss_ctc=50.234, loss_att=54.997, acc=0.742, loss=53.568, backward_time=0.096, grad_norm=49.645, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.335e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 21:01:37,717 (trainer:737) INFO: 36epoch:train:14701-14800batch: iter_time=1.365e-04, forward_time=0.105, loss_ctc=44.800, loss_att=49.819, acc=0.733, loss=48.314, backward_time=0.095, grad_norm=50.169, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.335e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 21:02:19,394 (trainer:737) INFO: 36epoch:train:14801-14900batch: iter_time=1.569e-04, forward_time=0.106, loss_ctc=43.702, loss_att=49.619, acc=0.711, loss=47.844, backward_time=0.096, grad_norm=46.139, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.334e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 21:03:01,681 (trainer:737) INFO: 36epoch:train:14901-15000batch: iter_time=1.241e-04, forward_time=0.105, loss_ctc=44.260, loss_att=57.031, acc=0.713, loss=53.199, backward_time=0.096, grad_norm=46.913, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.334e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 21:23:03,497 (trainer:343) INFO: 36epoch results: [train] iter_time=0.213, forward_time=0.106, loss_ctc=46.723, loss_att=54.068, acc=0.730, loss=51.865, backward_time=0.097, grad_norm=48.632, clip=100.000, loss_scale=1.729e+34, optim_step_time=0.039, optim0_lr0=3.357e-04, train_time=0.641, time=2 hours, 40 minutes and 23.45 seconds, total_count=540000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=50.071, cer_ctc=0.261, loss_att=52.086, acc=0.595, cer=0.409, wer=0.999, loss=51.481, time=19 minutes and 51.51 seconds, total_count=168156, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-16 21:23:08,638 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-16 21:23:08,677 (trainer:272) INFO: 37/45epoch started. Estimated time to finish: 1 day, 3 hours and 37.45 seconds +[gpuc04:0/16] 2024-01-16 21:23:08,688 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-16 21:23:27,752 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 21:23:31,319 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 21:23:31,320 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-16 21:23:31,323 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 21:27:48,705 (trainer:737) INFO: 37epoch:train:1-100batch: iter_time=2.281, forward_time=0.106, loss_ctc=45.833, loss_att=49.373, acc=0.729, loss=48.311, backward_time=0.097, grad_norm=47.416, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.334e-04, train_time=2.800 +[gpuc04:0/16] 2024-01-16 21:28:30,731 (trainer:737) INFO: 37epoch:train:101-200batch: iter_time=1.076e-04, forward_time=0.104, loss_ctc=46.739, loss_att=45.259, acc=0.743, loss=45.703, backward_time=0.097, grad_norm=44.009, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.333e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 21:29:12,940 (trainer:737) INFO: 37epoch:train:201-300batch: iter_time=1.162e-04, forward_time=0.105, loss_ctc=45.447, loss_att=55.730, acc=0.731, loss=52.645, backward_time=0.097, grad_norm=46.977, clip=100.000, loss_scale=1.246e+34, optim_step_time=0.039, optim0_lr0=3.333e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 21:29:54,679 (trainer:737) INFO: 37epoch:train:301-400batch: iter_time=1.163e-04, forward_time=0.107, loss_ctc=51.893, loss_att=50.916, acc=0.736, loss=51.209, backward_time=0.097, grad_norm=55.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.333e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 21:30:38,382 (trainer:737) INFO: 37epoch:train:401-500batch: iter_time=1.125e-04, forward_time=0.119, loss_ctc=50.783, loss_att=59.721, acc=0.714, loss=57.040, backward_time=0.099, grad_norm=56.433, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.332e-04, train_time=0.436 +[gpuc04:0/16] 2024-01-16 21:31:20,020 (trainer:737) INFO: 37epoch:train:501-600batch: iter_time=1.138e-04, forward_time=0.105, loss_ctc=44.775, loss_att=56.820, acc=0.716, loss=53.206, backward_time=0.097, grad_norm=45.342, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.332e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 21:32:02,418 (trainer:737) INFO: 37epoch:train:601-700batch: iter_time=1.070e-04, forward_time=0.107, loss_ctc=47.200, loss_att=54.073, acc=0.723, loss=52.011, backward_time=0.096, grad_norm=48.459, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.332e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 21:32:43,810 (trainer:737) INFO: 37epoch:train:701-800batch: iter_time=1.195e-04, forward_time=0.104, loss_ctc=39.940, loss_att=37.850, acc=0.765, loss=38.477, backward_time=0.096, grad_norm=39.400, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.331e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 21:33:25,305 (trainer:737) INFO: 37epoch:train:801-900batch: iter_time=1.105e-04, forward_time=0.104, loss_ctc=43.175, loss_att=45.560, acc=0.725, loss=44.844, backward_time=0.096, grad_norm=44.261, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.331e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 21:34:16,252 (trainer:737) INFO: 37epoch:train:901-1000batch: iter_time=1.071e-04, forward_time=0.157, loss_ctc=44.127, loss_att=55.118, acc=0.728, loss=51.821, backward_time=0.125, grad_norm=44.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=3.331e-04, train_time=0.509 +[gpuc04:0/16] 2024-01-16 21:35:00,836 (trainer:737) INFO: 37epoch:train:1001-1100batch: iter_time=1.091e-04, forward_time=0.113, loss_ctc=44.911, loss_att=48.270, acc=0.745, loss=47.262, backward_time=0.098, grad_norm=44.195, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.330e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-16 21:35:42,468 (trainer:737) INFO: 37epoch:train:1101-1200batch: iter_time=1.100e-04, forward_time=0.106, loss_ctc=41.064, loss_att=43.284, acc=0.736, loss=42.618, backward_time=0.096, grad_norm=40.172, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.330e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 21:36:33,940 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-16 21:36:52,586 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 21:36:55,997 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 21:36:55,997 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-16 21:36:56,000 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 21:43:47,444 (trainer:737) INFO: 37epoch:train:1201-1300batch: iter_time=4.150, forward_time=0.104, loss_ctc=42.801, loss_att=48.946, acc=0.739, loss=47.102, backward_time=0.096, grad_norm=48.145, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.330e-04, train_time=4.850 +[gpuc04:0/16] 2024-01-16 21:44:29,779 (trainer:737) INFO: 37epoch:train:1301-1400batch: iter_time=1.071e-04, forward_time=0.106, loss_ctc=45.236, loss_att=47.231, acc=0.736, loss=46.632, backward_time=0.097, grad_norm=45.570, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.330e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 21:45:11,916 (trainer:737) INFO: 37epoch:train:1401-1500batch: iter_time=1.212e-04, forward_time=0.105, loss_ctc=45.365, loss_att=57.734, acc=0.740, loss=54.023, backward_time=0.097, grad_norm=46.505, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.329e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 21:45:53,855 (trainer:737) INFO: 37epoch:train:1501-1600batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=46.356, loss_att=49.009, acc=0.758, loss=48.213, backward_time=0.096, grad_norm=49.820, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.329e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 21:46:36,344 (trainer:737) INFO: 37epoch:train:1601-1700batch: iter_time=1.122e-04, forward_time=0.105, loss_ctc=52.938, loss_att=57.517, acc=0.736, loss=56.143, backward_time=0.097, grad_norm=55.182, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.329e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-16 21:47:18,395 (trainer:737) INFO: 37epoch:train:1701-1800batch: iter_time=1.128e-04, forward_time=0.106, loss_ctc=47.254, loss_att=57.346, acc=0.731, loss=54.318, backward_time=0.097, grad_norm=48.414, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.328e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 21:48:00,004 (trainer:737) INFO: 37epoch:train:1801-1900batch: iter_time=1.014e-04, forward_time=0.105, loss_ctc=43.989, loss_att=53.732, acc=0.721, loss=50.809, backward_time=0.097, grad_norm=51.178, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.328e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 21:48:41,733 (trainer:737) INFO: 37epoch:train:1901-2000batch: iter_time=1.161e-04, forward_time=0.105, loss_ctc=43.821, loss_att=49.585, acc=0.757, loss=47.856, backward_time=0.097, grad_norm=44.009, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.328e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 21:49:23,355 (trainer:737) INFO: 37epoch:train:2001-2100batch: iter_time=1.138e-04, forward_time=0.105, loss_ctc=45.845, loss_att=45.516, acc=0.751, loss=45.615, backward_time=0.097, grad_norm=44.906, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.327e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 21:50:05,191 (trainer:737) INFO: 37epoch:train:2101-2200batch: iter_time=1.156e-04, forward_time=0.107, loss_ctc=37.161, loss_att=41.554, acc=0.752, loss=40.236, backward_time=0.097, grad_norm=39.723, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.327e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 21:50:47,069 (trainer:737) INFO: 37epoch:train:2201-2300batch: iter_time=9.643e-05, forward_time=0.105, loss_ctc=47.157, loss_att=57.393, acc=0.745, loss=54.322, backward_time=0.098, grad_norm=48.143, clip=100.000, loss_scale=2.492e+34, optim_step_time=0.039, optim0_lr0=3.327e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 21:51:28,599 (trainer:737) INFO: 37epoch:train:2301-2400batch: iter_time=1.040e-04, forward_time=0.104, loss_ctc=35.220, loss_att=38.906, acc=0.765, loss=37.800, backward_time=0.097, grad_norm=35.788, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.327e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 21:52:10,157 (trainer:737) INFO: 37epoch:train:2401-2500batch: iter_time=1.035e-04, forward_time=0.104, loss_ctc=46.064, loss_att=49.307, acc=0.729, loss=48.334, backward_time=0.097, grad_norm=46.247, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.326e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 21:52:12,487 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-16 21:52:32,660 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 21:52:36,368 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 21:52:36,368 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-16 21:52:36,372 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 21:57:42,257 (trainer:737) INFO: 37epoch:train:2501-2600batch: iter_time=2.310, forward_time=0.105, loss_ctc=44.519, loss_att=46.963, acc=0.752, loss=46.230, backward_time=0.097, grad_norm=43.842, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.326e-04, train_time=3.321 +[gpuc04:0/16] 2024-01-16 21:58:24,080 (trainer:737) INFO: 37epoch:train:2601-2700batch: iter_time=1.124e-04, forward_time=0.104, loss_ctc=45.955, loss_att=45.324, acc=0.750, loss=45.513, backward_time=0.096, grad_norm=43.188, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.326e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 21:58:53,148 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 21:59:06,358 (trainer:737) INFO: 37epoch:train:2701-2800batch: iter_time=1.017e-04, forward_time=0.105, loss_ctc=44.595, loss_att=56.703, acc=0.745, loss=53.070, backward_time=0.097, grad_norm=43.439, clip=100.000, loss_scale=3.503e+34, optim_step_time=0.038, optim0_lr0=3.325e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 21:59:47,989 (trainer:737) INFO: 37epoch:train:2801-2900batch: iter_time=1.085e-04, forward_time=0.104, loss_ctc=50.208, loss_att=49.569, acc=0.753, loss=49.761, backward_time=0.096, grad_norm=51.268, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.325e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:00:30,263 (trainer:737) INFO: 37epoch:train:2901-3000batch: iter_time=1.182e-04, forward_time=0.105, loss_ctc=48.545, loss_att=59.929, acc=0.722, loss=56.514, backward_time=0.097, grad_norm=51.430, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.325e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-16 22:01:12,532 (trainer:737) INFO: 37epoch:train:3001-3100batch: iter_time=1.302e-04, forward_time=0.105, loss_ctc=44.452, loss_att=55.404, acc=0.744, loss=52.119, backward_time=0.097, grad_norm=45.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.324e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 22:01:54,211 (trainer:737) INFO: 37epoch:train:3101-3200batch: iter_time=1.223e-04, forward_time=0.105, loss_ctc=46.264, loss_att=55.296, acc=0.727, loss=52.586, backward_time=0.097, grad_norm=48.599, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.324e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:02:36,443 (trainer:737) INFO: 37epoch:train:3201-3300batch: iter_time=1.236e-04, forward_time=0.105, loss_ctc=39.475, loss_att=37.705, acc=0.775, loss=38.236, backward_time=0.096, grad_norm=38.780, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.324e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 22:03:18,248 (trainer:737) INFO: 37epoch:train:3301-3400batch: iter_time=1.045e-04, forward_time=0.105, loss_ctc=42.658, loss_att=44.384, acc=0.741, loss=43.866, backward_time=0.096, grad_norm=44.447, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.323e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 22:03:59,894 (trainer:737) INFO: 37epoch:train:3401-3500batch: iter_time=9.641e-05, forward_time=0.106, loss_ctc=42.336, loss_att=53.989, acc=0.737, loss=50.493, backward_time=0.097, grad_norm=43.335, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.323e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:04:41,565 (trainer:737) INFO: 37epoch:train:3501-3600batch: iter_time=1.020e-04, forward_time=0.106, loss_ctc=44.437, loss_att=49.501, acc=0.753, loss=47.982, backward_time=0.097, grad_norm=44.823, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.323e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:05:23,066 (trainer:737) INFO: 37epoch:train:3601-3700batch: iter_time=1.014e-04, forward_time=0.105, loss_ctc=39.138, loss_att=41.464, acc=0.750, loss=40.766, backward_time=0.095, grad_norm=38.256, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.323e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 22:05:46,283 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-16 22:06:06,628 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 22:06:10,602 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 22:06:10,602 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-16 22:06:10,605 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 22:10:20,236 (trainer:737) INFO: 37epoch:train:3701-3800batch: iter_time=2.305, forward_time=0.103, loss_ctc=42.775, loss_att=49.694, acc=0.736, loss=47.618, backward_time=0.096, grad_norm=46.717, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.322e-04, train_time=2.971 +[gpuc04:0/16] 2024-01-16 22:11:01,993 (trainer:737) INFO: 37epoch:train:3801-3900batch: iter_time=9.791e-05, forward_time=0.104, loss_ctc=44.693, loss_att=46.988, acc=0.730, loss=46.300, backward_time=0.095, grad_norm=44.343, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.322e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:11:43,629 (trainer:737) INFO: 37epoch:train:3901-4000batch: iter_time=1.098e-04, forward_time=0.105, loss_ctc=44.899, loss_att=57.671, acc=0.730, loss=53.840, backward_time=0.096, grad_norm=44.919, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.322e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:12:25,742 (trainer:737) INFO: 37epoch:train:4001-4100batch: iter_time=9.666e-05, forward_time=0.105, loss_ctc=46.739, loss_att=50.136, acc=0.749, loss=49.117, backward_time=0.096, grad_norm=49.116, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.321e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 22:13:07,341 (trainer:737) INFO: 37epoch:train:4101-4200batch: iter_time=1.046e-04, forward_time=0.105, loss_ctc=50.901, loss_att=56.667, acc=0.731, loss=54.938, backward_time=0.096, grad_norm=51.642, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.321e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:13:49,567 (trainer:737) INFO: 37epoch:train:4201-4300batch: iter_time=9.719e-05, forward_time=0.105, loss_ctc=46.632, loss_att=56.638, acc=0.723, loss=53.636, backward_time=0.096, grad_norm=45.927, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.321e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 22:14:31,412 (trainer:737) INFO: 37epoch:train:4301-4400batch: iter_time=1.038e-04, forward_time=0.104, loss_ctc=43.453, loss_att=54.325, acc=0.704, loss=51.063, backward_time=0.095, grad_norm=52.024, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.320e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 22:15:13,376 (trainer:737) INFO: 37epoch:train:4401-4500batch: iter_time=1.031e-04, forward_time=0.104, loss_ctc=43.403, loss_att=48.525, acc=0.754, loss=46.988, backward_time=0.096, grad_norm=42.621, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.320e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 22:15:55,205 (trainer:737) INFO: 37epoch:train:4501-4600batch: iter_time=9.998e-05, forward_time=0.104, loss_ctc=45.502, loss_att=45.693, acc=0.740, loss=45.636, backward_time=0.096, grad_norm=45.321, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.320e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 22:16:36,962 (trainer:737) INFO: 37epoch:train:4601-4700batch: iter_time=9.146e-05, forward_time=0.104, loss_ctc=36.559, loss_att=41.787, acc=0.750, loss=40.219, backward_time=0.095, grad_norm=39.593, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.319e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:17:19,200 (trainer:737) INFO: 37epoch:train:4701-4800batch: iter_time=1.019e-04, forward_time=0.105, loss_ctc=46.873, loss_att=56.877, acc=0.738, loss=53.876, backward_time=0.097, grad_norm=50.032, clip=100.000, loss_scale=2.721e+34, optim_step_time=0.039, optim0_lr0=3.319e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 22:17:48,182 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 22:18:00,622 (trainer:737) INFO: 37epoch:train:4801-4900batch: iter_time=1.086e-04, forward_time=0.104, loss_ctc=35.121, loss_att=38.548, acc=0.760, loss=37.520, backward_time=0.095, grad_norm=37.110, clip=100.000, loss_scale=3.524e+34, optim_step_time=0.039, optim0_lr0=3.319e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 22:18:42,551 (trainer:737) INFO: 37epoch:train:4901-5000batch: iter_time=8.846e-05, forward_time=0.104, loss_ctc=44.837, loss_att=49.778, acc=0.715, loss=48.295, backward_time=0.096, grad_norm=45.812, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.319e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 22:18:45,030 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-16 22:19:05,305 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 22:19:08,889 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 22:19:08,889 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-16 22:19:08,892 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 22:24:10,281 (trainer:737) INFO: 37epoch:train:5001-5100batch: iter_time=2.459, forward_time=0.105, loss_ctc=44.134, loss_att=47.298, acc=0.738, loss=46.349, backward_time=0.097, grad_norm=45.443, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.318e-04, train_time=3.277 +[gpuc04:0/16] 2024-01-16 22:24:52,025 (trainer:737) INFO: 37epoch:train:5101-5200batch: iter_time=1.135e-04, forward_time=0.104, loss_ctc=45.457, loss_att=44.873, acc=0.745, loss=45.048, backward_time=0.096, grad_norm=43.649, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.318e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:25:34,251 (trainer:737) INFO: 37epoch:train:5201-5300batch: iter_time=9.797e-05, forward_time=0.108, loss_ctc=44.157, loss_att=55.520, acc=0.737, loss=52.111, backward_time=0.096, grad_norm=44.183, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.318e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 22:26:16,041 (trainer:737) INFO: 37epoch:train:5301-5400batch: iter_time=1.086e-04, forward_time=0.104, loss_ctc=48.377, loss_att=50.642, acc=0.738, loss=49.963, backward_time=0.096, grad_norm=51.226, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.317e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 22:26:57,697 (trainer:737) INFO: 37epoch:train:5401-5500batch: iter_time=1.083e-04, forward_time=0.105, loss_ctc=48.185, loss_att=57.668, acc=0.724, loss=54.823, backward_time=0.097, grad_norm=50.398, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.317e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:27:39,866 (trainer:737) INFO: 37epoch:train:5501-5600batch: iter_time=1.129e-04, forward_time=0.106, loss_ctc=44.031, loss_att=56.485, acc=0.722, loss=52.749, backward_time=0.097, grad_norm=45.446, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.317e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 22:28:21,606 (trainer:737) INFO: 37epoch:train:5601-5700batch: iter_time=1.113e-04, forward_time=0.105, loss_ctc=44.929, loss_att=53.071, acc=0.729, loss=50.628, backward_time=0.096, grad_norm=46.020, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.316e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:29:03,304 (trainer:737) INFO: 37epoch:train:5701-5800batch: iter_time=1.134e-04, forward_time=0.104, loss_ctc=39.305, loss_att=37.696, acc=0.770, loss=38.179, backward_time=0.095, grad_norm=38.484, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.316e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:29:45,120 (trainer:737) INFO: 37epoch:train:5801-5900batch: iter_time=1.202e-04, forward_time=0.104, loss_ctc=42.411, loss_att=45.184, acc=0.731, loss=44.352, backward_time=0.096, grad_norm=40.746, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.316e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 22:30:27,050 (trainer:737) INFO: 37epoch:train:5901-6000batch: iter_time=1.030e-04, forward_time=0.104, loss_ctc=42.018, loss_att=53.874, acc=0.731, loss=50.317, backward_time=0.097, grad_norm=44.210, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.316e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 22:31:09,001 (trainer:737) INFO: 37epoch:train:6001-6100batch: iter_time=1.131e-04, forward_time=0.106, loss_ctc=44.080, loss_att=48.530, acc=0.748, loss=47.195, backward_time=0.097, grad_norm=46.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.315e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 22:31:50,743 (trainer:737) INFO: 37epoch:train:6101-6200batch: iter_time=1.135e-04, forward_time=0.104, loss_ctc=39.484, loss_att=42.550, acc=0.740, loss=41.630, backward_time=0.096, grad_norm=38.706, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.315e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:32:13,891 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-16 22:32:33,504 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 22:32:37,162 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 22:32:37,162 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-16 22:32:37,165 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 22:36:50,187 (trainer:737) INFO: 37epoch:train:6201-6300batch: iter_time=2.284, forward_time=0.103, loss_ctc=42.230, loss_att=45.610, acc=0.741, loss=44.596, backward_time=0.096, grad_norm=45.996, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.315e-04, train_time=2.994 +[gpuc04:0/16] 2024-01-16 22:37:31,670 (trainer:737) INFO: 37epoch:train:6301-6400batch: iter_time=1.068e-04, forward_time=0.104, loss_ctc=43.984, loss_att=43.804, acc=0.738, loss=43.858, backward_time=0.096, grad_norm=42.411, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.314e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 22:38:13,340 (trainer:737) INFO: 37epoch:train:6401-6500batch: iter_time=1.107e-04, forward_time=0.104, loss_ctc=44.861, loss_att=55.785, acc=0.735, loss=52.507, backward_time=0.096, grad_norm=43.141, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.314e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:38:54,963 (trainer:737) INFO: 37epoch:train:6501-6600batch: iter_time=1.005e-04, forward_time=0.104, loss_ctc=46.049, loss_att=48.810, acc=0.751, loss=47.981, backward_time=0.096, grad_norm=47.337, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.314e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:39:36,591 (trainer:737) INFO: 37epoch:train:6601-6700batch: iter_time=1.043e-04, forward_time=0.104, loss_ctc=50.946, loss_att=56.029, acc=0.734, loss=54.504, backward_time=0.096, grad_norm=49.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.313e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:40:18,300 (trainer:737) INFO: 37epoch:train:6701-6800batch: iter_time=1.051e-04, forward_time=0.105, loss_ctc=46.364, loss_att=56.284, acc=0.724, loss=53.308, backward_time=0.096, grad_norm=46.100, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.313e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:40:59,806 (trainer:737) INFO: 37epoch:train:6801-6900batch: iter_time=9.373e-05, forward_time=0.104, loss_ctc=43.001, loss_att=53.619, acc=0.704, loss=50.434, backward_time=0.095, grad_norm=50.490, clip=100.000, loss_scale=2.700e+34, optim_step_time=0.038, optim0_lr0=3.313e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 22:41:41,387 (trainer:737) INFO: 37epoch:train:6901-7000batch: iter_time=9.584e-05, forward_time=0.105, loss_ctc=43.048, loss_att=47.956, acc=0.757, loss=46.484, backward_time=0.096, grad_norm=41.841, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.312e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:41:48,777 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 22:42:22,892 (trainer:737) INFO: 37epoch:train:7001-7100batch: iter_time=9.721e-05, forward_time=0.104, loss_ctc=44.930, loss_att=45.149, acc=0.742, loss=45.083, backward_time=0.095, grad_norm=42.434, clip=100.000, loss_scale=2.434e+34, optim_step_time=0.038, optim0_lr0=3.312e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 22:43:04,439 (trainer:737) INFO: 37epoch:train:7101-7200batch: iter_time=9.305e-05, forward_time=0.104, loss_ctc=36.023, loss_att=41.266, acc=0.754, loss=39.693, backward_time=0.095, grad_norm=40.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.312e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 22:43:46,202 (trainer:737) INFO: 37epoch:train:7201-7300batch: iter_time=9.296e-05, forward_time=0.106, loss_ctc=46.679, loss_att=56.209, acc=0.743, loss=53.350, backward_time=0.096, grad_norm=50.304, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.312e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:44:27,661 (trainer:737) INFO: 37epoch:train:7301-7400batch: iter_time=1.033e-04, forward_time=0.104, loss_ctc=34.999, loss_att=37.758, acc=0.763, loss=36.931, backward_time=0.095, grad_norm=36.550, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.311e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 22:45:09,612 (trainer:737) INFO: 37epoch:train:7401-7500batch: iter_time=1.070e-04, forward_time=0.107, loss_ctc=44.509, loss_att=49.349, acc=0.716, loss=47.897, backward_time=0.095, grad_norm=45.815, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.311e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 22:45:12,130 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-16 22:45:31,810 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 22:45:35,435 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 22:45:35,435 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-16 22:45:35,438 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 22:50:12,441 (trainer:737) INFO: 37epoch:train:7501-7600batch: iter_time=2.241, forward_time=0.105, loss_ctc=43.952, loss_att=51.740, acc=0.748, loss=49.404, backward_time=0.096, grad_norm=46.809, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.311e-04, train_time=3.028 +[gpuc04:0/16] 2024-01-16 22:50:47,362 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 22:50:54,472 (trainer:737) INFO: 37epoch:train:7601-7700batch: iter_time=1.038e-04, forward_time=0.104, loss_ctc=45.184, loss_att=46.191, acc=0.747, loss=45.889, backward_time=0.095, grad_norm=41.934, clip=100.000, loss_scale=1.899e+34, optim_step_time=0.038, optim0_lr0=3.310e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 22:51:36,241 (trainer:737) INFO: 37epoch:train:7701-7800batch: iter_time=1.181e-04, forward_time=0.105, loss_ctc=43.826, loss_att=57.454, acc=0.743, loss=53.365, backward_time=0.096, grad_norm=45.282, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.310e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:52:18,142 (trainer:737) INFO: 37epoch:train:7801-7900batch: iter_time=1.063e-04, forward_time=0.104, loss_ctc=48.054, loss_att=50.275, acc=0.754, loss=49.608, backward_time=0.096, grad_norm=49.817, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.310e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 22:53:00,143 (trainer:737) INFO: 37epoch:train:7901-8000batch: iter_time=1.038e-04, forward_time=0.105, loss_ctc=48.127, loss_att=60.059, acc=0.723, loss=56.480, backward_time=0.096, grad_norm=51.010, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.309e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 22:53:42,540 (trainer:737) INFO: 37epoch:train:8001-8100batch: iter_time=1.029e-04, forward_time=0.105, loss_ctc=43.480, loss_att=55.892, acc=0.743, loss=52.168, backward_time=0.096, grad_norm=44.522, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.309e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-16 22:54:24,225 (trainer:737) INFO: 37epoch:train:8101-8200batch: iter_time=9.942e-05, forward_time=0.104, loss_ctc=44.894, loss_att=53.857, acc=0.733, loss=51.168, backward_time=0.096, grad_norm=46.283, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.309e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:55:05,919 (trainer:737) INFO: 37epoch:train:8201-8300batch: iter_time=9.848e-05, forward_time=0.103, loss_ctc=39.263, loss_att=38.277, acc=0.774, loss=38.573, backward_time=0.095, grad_norm=40.008, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.309e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:55:47,534 (trainer:737) INFO: 37epoch:train:8301-8400batch: iter_time=9.742e-05, forward_time=0.103, loss_ctc=42.147, loss_att=44.414, acc=0.742, loss=43.734, backward_time=0.095, grad_norm=42.803, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.308e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 22:56:29,242 (trainer:737) INFO: 37epoch:train:8401-8500batch: iter_time=1.067e-04, forward_time=0.105, loss_ctc=41.202, loss_att=54.015, acc=0.740, loss=50.171, backward_time=0.096, grad_norm=43.452, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.308e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:57:10,984 (trainer:737) INFO: 37epoch:train:8501-8600batch: iter_time=1.193e-04, forward_time=0.106, loss_ctc=43.536, loss_att=49.510, acc=0.753, loss=47.718, backward_time=0.097, grad_norm=45.748, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.308e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 22:57:52,443 (trainer:737) INFO: 37epoch:train:8601-8700batch: iter_time=1.106e-04, forward_time=0.105, loss_ctc=38.641, loss_att=41.448, acc=0.753, loss=40.606, backward_time=0.095, grad_norm=39.468, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.307e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 22:58:15,635 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-16 22:58:35,561 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 22:58:39,521 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 22:58:39,521 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-16 22:58:39,525 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 23:02:55,410 (trainer:737) INFO: 37epoch:train:8701-8800batch: iter_time=2.263, forward_time=0.106, loss_ctc=42.236, loss_att=45.816, acc=0.752, loss=44.742, backward_time=0.096, grad_norm=44.655, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.307e-04, train_time=3.029 +[gpuc04:0/16] 2024-01-16 23:03:36,924 (trainer:737) INFO: 37epoch:train:8801-8900batch: iter_time=1.087e-04, forward_time=0.104, loss_ctc=43.628, loss_att=44.308, acc=0.744, loss=44.104, backward_time=0.096, grad_norm=42.820, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.307e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:04:19,191 (trainer:737) INFO: 37epoch:train:8901-9000batch: iter_time=1.000e-04, forward_time=0.105, loss_ctc=44.853, loss_att=56.242, acc=0.747, loss=52.825, backward_time=0.097, grad_norm=45.590, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.306e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 23:05:00,909 (trainer:737) INFO: 37epoch:train:9001-9100batch: iter_time=1.139e-04, forward_time=0.104, loss_ctc=45.722, loss_att=49.363, acc=0.761, loss=48.271, backward_time=0.097, grad_norm=48.335, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.306e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:05:42,621 (trainer:737) INFO: 37epoch:train:9101-9200batch: iter_time=1.038e-04, forward_time=0.104, loss_ctc=50.369, loss_att=56.298, acc=0.741, loss=54.519, backward_time=0.096, grad_norm=50.970, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.306e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:06:24,712 (trainer:737) INFO: 37epoch:train:9201-9300batch: iter_time=1.149e-04, forward_time=0.106, loss_ctc=45.731, loss_att=56.015, acc=0.735, loss=52.930, backward_time=0.097, grad_norm=44.999, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.306e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 23:07:06,323 (trainer:737) INFO: 37epoch:train:9301-9400batch: iter_time=1.077e-04, forward_time=0.104, loss_ctc=43.445, loss_att=53.718, acc=0.720, loss=50.636, backward_time=0.096, grad_norm=51.492, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.305e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:07:48,592 (trainer:737) INFO: 37epoch:train:9401-9500batch: iter_time=1.137e-04, forward_time=0.104, loss_ctc=44.033, loss_att=48.729, acc=0.761, loss=47.320, backward_time=0.096, grad_norm=40.842, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.305e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 23:08:30,716 (trainer:737) INFO: 37epoch:train:9501-9600batch: iter_time=1.063e-04, forward_time=0.104, loss_ctc=44.819, loss_att=45.085, acc=0.755, loss=45.006, backward_time=0.096, grad_norm=43.282, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.305e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 23:09:12,824 (trainer:737) INFO: 37epoch:train:9601-9700batch: iter_time=9.746e-05, forward_time=0.104, loss_ctc=35.998, loss_att=41.406, acc=0.754, loss=39.784, backward_time=0.096, grad_norm=41.104, clip=100.000, loss_scale=1.215e+34, optim_step_time=0.039, optim0_lr0=3.304e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 23:09:54,685 (trainer:737) INFO: 37epoch:train:9701-9800batch: iter_time=1.137e-04, forward_time=0.105, loss_ctc=46.062, loss_att=56.610, acc=0.747, loss=53.445, backward_time=0.097, grad_norm=49.205, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.304e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:10:36,149 (trainer:737) INFO: 37epoch:train:9801-9900batch: iter_time=1.000e-04, forward_time=0.104, loss_ctc=34.672, loss_att=38.409, acc=0.771, loss=37.287, backward_time=0.096, grad_norm=35.659, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.304e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 23:11:17,929 (trainer:737) INFO: 37epoch:train:9901-10000batch: iter_time=9.270e-05, forward_time=0.104, loss_ctc=44.938, loss_att=48.853, acc=0.729, loss=47.679, backward_time=0.096, grad_norm=47.087, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.303e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:11:20,322 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-16 23:11:39,987 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 23:11:43,587 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 23:11:43,587 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-16 23:11:43,590 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 23:16:28,047 (trainer:737) INFO: 37epoch:train:10001-10100batch: iter_time=2.279, forward_time=0.105, loss_ctc=43.251, loss_att=45.967, acc=0.758, loss=45.152, backward_time=0.097, grad_norm=44.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.303e-04, train_time=3.101 +[gpuc04:0/16] 2024-01-16 23:17:09,592 (trainer:737) INFO: 37epoch:train:10101-10200batch: iter_time=1.078e-04, forward_time=0.104, loss_ctc=44.909, loss_att=44.734, acc=0.751, loss=44.786, backward_time=0.096, grad_norm=43.261, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.303e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:17:51,348 (trainer:737) INFO: 37epoch:train:10201-10300batch: iter_time=1.046e-04, forward_time=0.106, loss_ctc=44.048, loss_att=55.583, acc=0.749, loss=52.122, backward_time=0.097, grad_norm=43.332, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.303e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:18:32,935 (trainer:737) INFO: 37epoch:train:10301-10400batch: iter_time=1.018e-04, forward_time=0.105, loss_ctc=48.241, loss_att=48.882, acc=0.756, loss=48.690, backward_time=0.097, grad_norm=50.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.302e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:19:14,715 (trainer:737) INFO: 37epoch:train:10401-10500batch: iter_time=1.024e-04, forward_time=0.105, loss_ctc=47.853, loss_att=59.291, acc=0.725, loss=55.859, backward_time=0.097, grad_norm=49.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.302e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:19:56,462 (trainer:737) INFO: 37epoch:train:10501-10600batch: iter_time=9.949e-05, forward_time=0.105, loss_ctc=43.560, loss_att=55.521, acc=0.745, loss=51.933, backward_time=0.097, grad_norm=44.954, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.302e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:20:38,129 (trainer:737) INFO: 37epoch:train:10601-10700batch: iter_time=1.114e-04, forward_time=0.105, loss_ctc=44.956, loss_att=54.287, acc=0.731, loss=51.488, backward_time=0.097, grad_norm=48.537, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.301e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:21:19,639 (trainer:737) INFO: 37epoch:train:10701-10800batch: iter_time=1.113e-04, forward_time=0.104, loss_ctc=39.410, loss_att=37.499, acc=0.777, loss=38.072, backward_time=0.096, grad_norm=39.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.301e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:22:01,573 (trainer:737) INFO: 37epoch:train:10801-10900batch: iter_time=1.107e-04, forward_time=0.104, loss_ctc=41.977, loss_att=44.231, acc=0.743, loss=43.555, backward_time=0.096, grad_norm=43.178, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.301e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 23:22:43,395 (trainer:737) INFO: 37epoch:train:10901-11000batch: iter_time=1.028e-04, forward_time=0.105, loss_ctc=41.241, loss_att=53.870, acc=0.739, loss=50.081, backward_time=0.097, grad_norm=44.992, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.300e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:23:25,152 (trainer:737) INFO: 37epoch:train:11001-11100batch: iter_time=1.009e-04, forward_time=0.106, loss_ctc=43.408, loss_att=48.971, acc=0.755, loss=47.302, backward_time=0.097, grad_norm=45.471, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.300e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:24:07,185 (trainer:737) INFO: 37epoch:train:11101-11200batch: iter_time=1.199e-04, forward_time=0.104, loss_ctc=38.535, loss_att=41.392, acc=0.752, loss=40.535, backward_time=0.096, grad_norm=38.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.300e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 23:24:32,346 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-16 23:24:52,186 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 23:24:55,842 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 23:24:55,842 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-16 23:24:55,845 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 23:29:31,671 (trainer:737) INFO: 37epoch:train:11201-11300batch: iter_time=2.464, forward_time=0.111, loss_ctc=41.422, loss_att=49.110, acc=0.741, loss=46.804, backward_time=0.097, grad_norm=45.605, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.300e-04, train_time=3.245 +[gpuc04:0/16] 2024-01-16 23:30:13,462 (trainer:737) INFO: 37epoch:train:11301-11400batch: iter_time=1.156e-04, forward_time=0.104, loss_ctc=43.420, loss_att=46.317, acc=0.733, loss=45.448, backward_time=0.095, grad_norm=43.079, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.299e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:30:55,693 (trainer:737) INFO: 37epoch:train:11401-11500batch: iter_time=1.024e-04, forward_time=0.104, loss_ctc=44.314, loss_att=56.785, acc=0.734, loss=53.043, backward_time=0.096, grad_norm=44.757, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.299e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 23:31:38,528 (trainer:737) INFO: 37epoch:train:11501-11600batch: iter_time=1.058e-04, forward_time=0.104, loss_ctc=45.120, loss_att=48.870, acc=0.753, loss=47.745, backward_time=0.096, grad_norm=48.834, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.299e-04, train_time=0.428 +[gpuc04:0/16] 2024-01-16 23:32:20,165 (trainer:737) INFO: 37epoch:train:11601-11700batch: iter_time=1.059e-04, forward_time=0.104, loss_ctc=49.910, loss_att=56.446, acc=0.733, loss=54.485, backward_time=0.096, grad_norm=49.812, clip=100.000, loss_scale=2.430e+34, optim_step_time=0.039, optim0_lr0=3.298e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:33:01,881 (trainer:737) INFO: 37epoch:train:11701-11800batch: iter_time=1.059e-04, forward_time=0.105, loss_ctc=46.182, loss_att=57.169, acc=0.724, loss=53.873, backward_time=0.097, grad_norm=44.803, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.298e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:33:06,809 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 23:33:43,377 (trainer:737) INFO: 37epoch:train:11801-11900batch: iter_time=1.081e-04, forward_time=0.104, loss_ctc=42.665, loss_att=54.630, acc=0.702, loss=51.041, backward_time=0.096, grad_norm=49.900, clip=100.000, loss_scale=2.308e+34, optim_step_time=0.039, optim0_lr0=3.298e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:34:25,309 (trainer:737) INFO: 37epoch:train:11901-12000batch: iter_time=1.065e-04, forward_time=0.104, loss_ctc=43.098, loss_att=48.080, acc=0.758, loss=46.585, backward_time=0.096, grad_norm=41.236, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.297e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 23:35:06,896 (trainer:737) INFO: 37epoch:train:12001-12100batch: iter_time=1.147e-04, forward_time=0.104, loss_ctc=44.675, loss_att=45.146, acc=0.743, loss=45.005, backward_time=0.095, grad_norm=43.883, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.297e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:35:48,458 (trainer:737) INFO: 37epoch:train:12101-12200batch: iter_time=9.842e-05, forward_time=0.104, loss_ctc=35.747, loss_att=40.897, acc=0.755, loss=39.352, backward_time=0.095, grad_norm=39.123, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.297e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:36:30,271 (trainer:737) INFO: 37epoch:train:12201-12300batch: iter_time=1.016e-04, forward_time=0.106, loss_ctc=45.874, loss_att=56.358, acc=0.741, loss=53.213, backward_time=0.097, grad_norm=50.030, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.297e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:37:11,741 (trainer:737) INFO: 37epoch:train:12301-12400batch: iter_time=1.007e-04, forward_time=0.104, loss_ctc=34.766, loss_att=37.694, acc=0.763, loss=36.816, backward_time=0.095, grad_norm=35.827, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.296e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-16 23:37:55,364 (trainer:737) INFO: 37epoch:train:12401-12500batch: iter_time=2.396e-04, forward_time=0.108, loss_ctc=44.219, loss_att=49.571, acc=0.717, loss=47.965, backward_time=0.096, grad_norm=45.459, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.296e-04, train_time=0.436 +[gpuc04:0/16] 2024-01-16 23:37:58,569 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-16 23:38:18,372 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 23:38:22,031 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 23:38:22,031 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-16 23:38:22,035 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 23:42:53,699 (trainer:737) INFO: 37epoch:train:12501-12600batch: iter_time=2.307, forward_time=0.104, loss_ctc=43.246, loss_att=49.698, acc=0.751, loss=47.762, backward_time=0.097, grad_norm=45.596, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.296e-04, train_time=2.983 +[gpuc04:0/16] 2024-01-16 23:43:35,196 (trainer:737) INFO: 37epoch:train:12601-12700batch: iter_time=1.024e-04, forward_time=0.104, loss_ctc=44.969, loss_att=45.812, acc=0.747, loss=45.559, backward_time=0.097, grad_norm=43.466, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.295e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:44:16,943 (trainer:737) INFO: 37epoch:train:12701-12800batch: iter_time=1.098e-04, forward_time=0.105, loss_ctc=43.496, loss_att=56.429, acc=0.747, loss=52.549, backward_time=0.098, grad_norm=42.849, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.295e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:44:58,827 (trainer:737) INFO: 37epoch:train:12801-12900batch: iter_time=1.166e-04, forward_time=0.108, loss_ctc=47.894, loss_att=49.760, acc=0.756, loss=49.200, backward_time=0.097, grad_norm=49.830, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.295e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-16 23:45:40,935 (trainer:737) INFO: 37epoch:train:12901-13000batch: iter_time=1.072e-04, forward_time=0.105, loss_ctc=47.275, loss_att=58.874, acc=0.728, loss=55.394, backward_time=0.098, grad_norm=51.512, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.294e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 23:46:22,728 (trainer:737) INFO: 37epoch:train:13001-13100batch: iter_time=1.014e-04, forward_time=0.105, loss_ctc=43.150, loss_att=55.158, acc=0.746, loss=51.556, backward_time=0.098, grad_norm=45.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.294e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:47:04,741 (trainer:737) INFO: 37epoch:train:13101-13200batch: iter_time=1.049e-04, forward_time=0.105, loss_ctc=44.517, loss_att=53.600, acc=0.735, loss=50.875, backward_time=0.097, grad_norm=47.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.294e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-16 23:47:46,539 (trainer:737) INFO: 37epoch:train:13201-13300batch: iter_time=1.101e-04, forward_time=0.104, loss_ctc=39.056, loss_att=37.886, acc=0.775, loss=38.237, backward_time=0.097, grad_norm=40.461, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.294e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:48:28,702 (trainer:737) INFO: 37epoch:train:13301-13400batch: iter_time=1.043e-04, forward_time=0.105, loss_ctc=41.913, loss_att=43.893, acc=0.743, loss=43.299, backward_time=0.097, grad_norm=40.687, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.293e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 23:48:35,303 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-16 23:49:10,294 (trainer:737) INFO: 37epoch:train:13401-13500batch: iter_time=1.118e-04, forward_time=0.105, loss_ctc=41.007, loss_att=53.662, acc=0.740, loss=49.866, backward_time=0.097, grad_norm=43.941, clip=100.000, loss_scale=1.196e+34, optim_step_time=0.039, optim0_lr0=3.293e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:49:52,565 (trainer:737) INFO: 37epoch:train:13501-13600batch: iter_time=9.524e-05, forward_time=0.104, loss_ctc=43.034, loss_att=49.002, acc=0.755, loss=47.212, backward_time=0.097, grad_norm=44.477, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.293e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-16 23:50:34,668 (trainer:737) INFO: 37epoch:train:13601-13700batch: iter_time=9.774e-05, forward_time=0.104, loss_ctc=38.605, loss_att=41.511, acc=0.754, loss=40.639, backward_time=0.096, grad_norm=39.179, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.292e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-16 23:50:58,114 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-16 23:51:18,532 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-16 23:51:22,196 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-16 23:51:22,196 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-16 23:51:22,199 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-16 23:55:47,323 (trainer:737) INFO: 37epoch:train:13701-13800batch: iter_time=2.317, forward_time=0.104, loss_ctc=41.608, loss_att=47.729, acc=0.744, loss=45.893, backward_time=0.096, grad_norm=45.725, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.292e-04, train_time=3.126 +[gpuc04:0/16] 2024-01-16 23:56:28,817 (trainer:737) INFO: 37epoch:train:13801-13900batch: iter_time=1.394e-04, forward_time=0.104, loss_ctc=43.597, loss_att=45.962, acc=0.734, loss=45.252, backward_time=0.096, grad_norm=43.500, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.292e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-16 23:57:10,659 (trainer:737) INFO: 37epoch:train:13901-14000batch: iter_time=1.172e-04, forward_time=0.105, loss_ctc=44.813, loss_att=56.731, acc=0.734, loss=53.156, backward_time=0.097, grad_norm=46.007, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.291e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-16 23:57:52,287 (trainer:737) INFO: 37epoch:train:14001-14100batch: iter_time=1.205e-04, forward_time=0.105, loss_ctc=46.007, loss_att=48.631, acc=0.753, loss=47.844, backward_time=0.097, grad_norm=50.219, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.291e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:58:33,951 (trainer:737) INFO: 37epoch:train:14101-14200batch: iter_time=1.507e-04, forward_time=0.105, loss_ctc=49.978, loss_att=56.256, acc=0.733, loss=54.372, backward_time=0.097, grad_norm=50.507, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.291e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-16 23:59:15,715 (trainer:737) INFO: 37epoch:train:14201-14300batch: iter_time=1.208e-04, forward_time=0.105, loss_ctc=46.021, loss_att=56.684, acc=0.724, loss=53.485, backward_time=0.097, grad_norm=51.386, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.291e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-16 23:59:57,236 (trainer:737) INFO: 37epoch:train:14301-14400batch: iter_time=1.243e-04, forward_time=0.104, loss_ctc=42.655, loss_att=54.060, acc=0.704, loss=50.639, backward_time=0.096, grad_norm=51.621, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.290e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:00:38,866 (trainer:737) INFO: 37epoch:train:14401-14500batch: iter_time=1.203e-04, forward_time=0.104, loss_ctc=42.526, loss_att=47.271, acc=0.759, loss=45.848, backward_time=0.096, grad_norm=42.592, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.290e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 00:01:20,420 (trainer:737) INFO: 37epoch:train:14501-14600batch: iter_time=1.135e-04, forward_time=0.105, loss_ctc=44.451, loss_att=45.066, acc=0.743, loss=44.882, backward_time=0.096, grad_norm=43.700, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.290e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:02:01,958 (trainer:737) INFO: 37epoch:train:14601-14700batch: iter_time=1.211e-04, forward_time=0.104, loss_ctc=35.774, loss_att=40.884, acc=0.754, loss=39.351, backward_time=0.096, grad_norm=37.795, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.289e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:02:43,706 (trainer:737) INFO: 37epoch:train:14701-14800batch: iter_time=1.087e-04, forward_time=0.105, loss_ctc=45.559, loss_att=55.927, acc=0.742, loss=52.816, backward_time=0.097, grad_norm=49.950, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.289e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 00:03:25,144 (trainer:737) INFO: 37epoch:train:14801-14900batch: iter_time=1.101e-04, forward_time=0.104, loss_ctc=34.556, loss_att=37.699, acc=0.762, loss=36.756, backward_time=0.096, grad_norm=36.163, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.289e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 00:04:07,214 (trainer:737) INFO: 37epoch:train:14901-15000batch: iter_time=1.024e-04, forward_time=0.103, loss_ctc=44.270, loss_att=49.556, acc=0.716, loss=47.971, backward_time=0.095, grad_norm=44.870, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.289e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 00:24:10,524 (trainer:343) INFO: 37epoch results: [train] iter_time=0.198, forward_time=0.105, loss_ctc=43.839, loss_att=49.702, acc=0.742, loss=47.943, backward_time=0.096, grad_norm=45.203, clip=100.000, loss_scale=1.929e+34, optim_step_time=0.039, optim0_lr0=3.311e-04, train_time=0.644, time=2 hours, 41 minutes and 9.25 seconds, total_count=555000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=49.405, cer_ctc=0.255, loss_att=51.889, acc=0.610, cer=0.354, wer=0.997, loss=51.144, time=19 minutes and 52.42 seconds, total_count=172827, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 00:24:15,919 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 00:24:15,968 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/29epoch.pth +[gpuc04:0/16] 2024-01-17 00:24:15,968 (trainer:272) INFO: 38/45epoch started. Estimated time to finish: 1 day, 2 minutes and 39.55 seconds +[gpuc04:0/16] 2024-01-17 00:24:15,978 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 00:24:34,395 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 00:24:37,855 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 00:24:37,856 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 00:24:37,859 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 00:29:02,697 (trainer:737) INFO: 38epoch:train:1-100batch: iter_time=2.277, forward_time=0.105, loss_ctc=47.484, loss_att=59.513, acc=0.711, loss=55.904, backward_time=0.098, grad_norm=51.575, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.288e-04, train_time=2.867 +[gpuc04:0/16] 2024-01-17 00:29:44,259 (trainer:737) INFO: 38epoch:train:101-200batch: iter_time=1.072e-04, forward_time=0.104, loss_ctc=35.804, loss_att=45.585, acc=0.751, loss=42.650, backward_time=0.097, grad_norm=38.604, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.288e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:30:28,101 (trainer:737) INFO: 38epoch:train:201-300batch: iter_time=1.103e-04, forward_time=0.105, loss_ctc=47.453, loss_att=62.661, acc=0.717, loss=58.099, backward_time=0.098, grad_norm=50.570, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.288e-04, train_time=0.438 +[gpuc04:0/16] 2024-01-17 00:31:12,706 (trainer:737) INFO: 38epoch:train:301-400batch: iter_time=1.135e-04, forward_time=0.115, loss_ctc=52.418, loss_att=57.959, acc=0.729, loss=56.297, backward_time=0.112, grad_norm=57.749, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.287e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-17 00:31:54,981 (trainer:737) INFO: 38epoch:train:401-500batch: iter_time=1.174e-04, forward_time=0.105, loss_ctc=45.399, loss_att=55.402, acc=0.742, loss=52.401, backward_time=0.098, grad_norm=43.609, clip=100.000, loss_scale=1.911e+34, optim_step_time=0.039, optim0_lr0=3.287e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 00:32:37,252 (trainer:737) INFO: 38epoch:train:501-600batch: iter_time=1.206e-04, forward_time=0.105, loss_ctc=39.869, loss_att=46.529, acc=0.753, loss=44.531, backward_time=0.097, grad_norm=47.136, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.287e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 00:33:21,222 (trainer:737) INFO: 38epoch:train:601-700batch: iter_time=1.133e-04, forward_time=0.112, loss_ctc=59.326, loss_att=60.631, acc=0.719, loss=60.239, backward_time=0.102, grad_norm=65.947, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.286e-04, train_time=0.438 +[gpuc04:0/16] 2024-01-17 00:34:04,842 (trainer:737) INFO: 38epoch:train:701-800batch: iter_time=1.085e-04, forward_time=0.119, loss_ctc=39.243, loss_att=44.466, acc=0.741, loss=42.899, backward_time=0.097, grad_norm=42.512, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.286e-04, train_time=0.437 +[gpuc04:0/16] 2024-01-17 00:34:46,670 (trainer:737) INFO: 38epoch:train:801-900batch: iter_time=9.915e-05, forward_time=0.105, loss_ctc=54.099, loss_att=53.563, acc=0.756, loss=53.724, backward_time=0.098, grad_norm=60.603, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.286e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 00:35:31,496 (trainer:737) INFO: 38epoch:train:901-1000batch: iter_time=1.105e-04, forward_time=0.111, loss_ctc=51.822, loss_att=54.099, acc=0.741, loss=53.416, backward_time=0.097, grad_norm=52.306, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.286e-04, train_time=0.448 +[gpuc04:0/16] 2024-01-17 00:36:13,340 (trainer:737) INFO: 38epoch:train:1001-1100batch: iter_time=2.133e-04, forward_time=0.105, loss_ctc=43.370, loss_att=53.518, acc=0.726, loss=50.474, backward_time=0.097, grad_norm=48.405, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.285e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 00:36:55,478 (trainer:737) INFO: 38epoch:train:1101-1200batch: iter_time=1.139e-04, forward_time=0.106, loss_ctc=49.455, loss_att=54.350, acc=0.731, loss=52.882, backward_time=0.101, grad_norm=50.970, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.285e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 00:37:30,318 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 00:37:50,174 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 00:37:53,745 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 00:37:53,745 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 00:37:53,748 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 00:43:24,238 (trainer:737) INFO: 38epoch:train:1201-1300batch: iter_time=3.182, forward_time=0.141, loss_ctc=45.136, loss_att=52.911, acc=0.729, loss=50.578, backward_time=0.101, grad_norm=45.870, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.285e-04, train_time=3.887 +[gpuc04:0/16] 2024-01-17 00:44:05,805 (trainer:737) INFO: 38epoch:train:1301-1400batch: iter_time=1.543e-04, forward_time=0.105, loss_ctc=40.466, loss_att=55.045, acc=0.714, loss=50.671, backward_time=0.097, grad_norm=44.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.284e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:44:47,565 (trainer:737) INFO: 38epoch:train:1401-1500batch: iter_time=1.595e-04, forward_time=0.105, loss_ctc=39.291, loss_att=51.210, acc=0.740, loss=47.634, backward_time=0.096, grad_norm=42.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.284e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 00:45:29,235 (trainer:737) INFO: 38epoch:train:1501-1600batch: iter_time=1.290e-04, forward_time=0.106, loss_ctc=47.590, loss_att=50.345, acc=0.745, loss=49.519, backward_time=0.097, grad_norm=54.644, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.284e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 00:46:11,916 (trainer:737) INFO: 38epoch:train:1601-1700batch: iter_time=1.530e-04, forward_time=0.104, loss_ctc=47.111, loss_att=57.667, acc=0.715, loss=54.500, backward_time=0.097, grad_norm=50.308, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.284e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-17 00:46:54,027 (trainer:737) INFO: 38epoch:train:1701-1800batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=41.702, loss_att=49.541, acc=0.745, loss=47.190, backward_time=0.097, grad_norm=41.805, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.283e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 00:47:35,583 (trainer:737) INFO: 38epoch:train:1801-1900batch: iter_time=1.431e-04, forward_time=0.104, loss_ctc=42.580, loss_att=44.980, acc=0.740, loss=44.260, backward_time=0.096, grad_norm=44.903, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.283e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:48:17,555 (trainer:737) INFO: 38epoch:train:1901-2000batch: iter_time=1.545e-04, forward_time=0.103, loss_ctc=52.572, loss_att=55.331, acc=0.726, loss=54.503, backward_time=0.096, grad_norm=60.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.283e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 00:48:59,312 (trainer:737) INFO: 38epoch:train:2001-2100batch: iter_time=1.419e-04, forward_time=0.104, loss_ctc=49.505, loss_att=45.769, acc=0.751, loss=46.890, backward_time=0.096, grad_norm=52.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.282e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 00:49:41,206 (trainer:737) INFO: 38epoch:train:2101-2200batch: iter_time=1.320e-04, forward_time=0.105, loss_ctc=50.598, loss_att=58.225, acc=0.727, loss=55.937, backward_time=0.097, grad_norm=60.998, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.282e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 00:50:22,655 (trainer:737) INFO: 38epoch:train:2201-2300batch: iter_time=1.594e-04, forward_time=0.104, loss_ctc=40.684, loss_att=40.557, acc=0.749, loss=40.595, backward_time=0.095, grad_norm=43.182, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.282e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 00:51:04,222 (trainer:737) INFO: 38epoch:train:2301-2400batch: iter_time=1.560e-04, forward_time=0.105, loss_ctc=44.903, loss_att=53.967, acc=0.715, loss=51.248, backward_time=0.096, grad_norm=49.825, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.281e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 00:51:45,800 (trainer:737) INFO: 38epoch:train:2401-2500batch: iter_time=1.239e-04, forward_time=0.105, loss_ctc=45.596, loss_att=52.041, acc=0.741, loss=50.108, backward_time=0.096, grad_norm=46.918, clip=100.000, loss_scale=3.822e+34, optim_step_time=0.039, optim0_lr0=3.281e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 00:51:48,180 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 00:52:07,628 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 00:52:11,426 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 00:52:11,426 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 00:52:11,429 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 00:56:55,093 (trainer:737) INFO: 38epoch:train:2501-2600batch: iter_time=2.314, forward_time=0.105, loss_ctc=45.900, loss_att=54.093, acc=0.715, loss=51.635, backward_time=0.097, grad_norm=45.237, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.281e-04, train_time=3.093 +[gpuc04:0/16] 2024-01-17 00:57:36,515 (trainer:737) INFO: 38epoch:train:2601-2700batch: iter_time=9.832e-05, forward_time=0.104, loss_ctc=34.893, loss_att=41.341, acc=0.750, loss=39.407, backward_time=0.096, grad_norm=36.682, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.281e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 00:58:18,107 (trainer:737) INFO: 38epoch:train:2701-2800batch: iter_time=9.969e-05, forward_time=0.105, loss_ctc=45.517, loss_att=59.838, acc=0.718, loss=55.542, backward_time=0.097, grad_norm=48.140, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.280e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 00:59:00,216 (trainer:737) INFO: 38epoch:train:2801-2900batch: iter_time=1.053e-04, forward_time=0.105, loss_ctc=50.245, loss_att=53.945, acc=0.730, loss=52.835, backward_time=0.097, grad_norm=54.927, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.280e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 00:59:43,825 (trainer:737) INFO: 38epoch:train:2901-3000batch: iter_time=1.140e-04, forward_time=0.121, loss_ctc=43.838, loss_att=52.622, acc=0.740, loss=49.987, backward_time=0.098, grad_norm=41.986, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.280e-04, train_time=0.436 +[gpuc04:0/16] 2024-01-17 01:00:25,877 (trainer:737) INFO: 38epoch:train:3001-3100batch: iter_time=1.176e-04, forward_time=0.105, loss_ctc=39.683, loss_att=46.027, acc=0.750, loss=44.124, backward_time=0.097, grad_norm=45.603, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.279e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 01:01:07,465 (trainer:737) INFO: 38epoch:train:3101-3200batch: iter_time=1.155e-04, forward_time=0.105, loss_ctc=53.787, loss_att=55.317, acc=0.716, loss=54.858, backward_time=0.097, grad_norm=61.128, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.279e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:01:14,904 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 01:01:49,646 (trainer:737) INFO: 38epoch:train:3201-3300batch: iter_time=1.144e-04, forward_time=0.105, loss_ctc=38.565, loss_att=43.153, acc=0.742, loss=41.776, backward_time=0.096, grad_norm=42.247, clip=100.000, loss_scale=2.434e+34, optim_step_time=0.039, optim0_lr0=3.279e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 01:02:31,864 (trainer:737) INFO: 38epoch:train:3301-3400batch: iter_time=1.043e-04, forward_time=0.106, loss_ctc=49.234, loss_att=49.510, acc=0.757, loss=49.427, backward_time=0.097, grad_norm=53.484, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.279e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 01:03:13,518 (trainer:737) INFO: 38epoch:train:3401-3500batch: iter_time=1.227e-04, forward_time=0.105, loss_ctc=49.606, loss_att=50.437, acc=0.744, loss=50.188, backward_time=0.097, grad_norm=51.029, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.278e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:03:55,427 (trainer:737) INFO: 38epoch:train:3501-3600batch: iter_time=1.244e-04, forward_time=0.105, loss_ctc=41.985, loss_att=51.837, acc=0.715, loss=48.882, backward_time=0.096, grad_norm=45.508, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.278e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 01:04:37,243 (trainer:737) INFO: 38epoch:train:3601-3700batch: iter_time=1.094e-04, forward_time=0.105, loss_ctc=47.748, loss_att=52.517, acc=0.727, loss=51.086, backward_time=0.097, grad_norm=52.816, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.278e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:05:00,671 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 01:05:20,327 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 01:05:24,066 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 01:05:24,066 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 01:05:24,069 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 01:10:14,234 (trainer:737) INFO: 38epoch:train:3701-3800batch: iter_time=2.510, forward_time=0.105, loss_ctc=45.030, loss_att=52.010, acc=0.735, loss=49.916, backward_time=0.097, grad_norm=45.646, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.277e-04, train_time=3.370 +[gpuc04:0/16] 2024-01-17 01:10:56,159 (trainer:737) INFO: 38epoch:train:3801-3900batch: iter_time=1.295e-04, forward_time=0.105, loss_ctc=39.825, loss_att=55.313, acc=0.727, loss=50.666, backward_time=0.097, grad_norm=42.941, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.277e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 01:11:37,997 (trainer:737) INFO: 38epoch:train:3901-4000batch: iter_time=1.219e-04, forward_time=0.104, loss_ctc=38.294, loss_att=53.109, acc=0.742, loss=48.664, backward_time=0.096, grad_norm=50.188, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.277e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:12:19,773 (trainer:737) INFO: 38epoch:train:4001-4100batch: iter_time=1.026e-04, forward_time=0.105, loss_ctc=46.253, loss_att=53.783, acc=0.746, loss=51.524, backward_time=0.098, grad_norm=50.204, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.276e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:13:01,578 (trainer:737) INFO: 38epoch:train:4101-4200batch: iter_time=1.024e-04, forward_time=0.105, loss_ctc=46.794, loss_att=58.507, acc=0.726, loss=54.993, backward_time=0.098, grad_norm=46.462, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.276e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:13:43,249 (trainer:737) INFO: 38epoch:train:4201-4300batch: iter_time=1.130e-04, forward_time=0.104, loss_ctc=41.193, loss_att=49.582, acc=0.754, loss=47.065, backward_time=0.097, grad_norm=42.951, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.276e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:14:24,940 (trainer:737) INFO: 38epoch:train:4301-4400batch: iter_time=1.084e-04, forward_time=0.104, loss_ctc=42.539, loss_att=45.041, acc=0.748, loss=44.290, backward_time=0.097, grad_norm=46.328, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.276e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:15:07,105 (trainer:737) INFO: 38epoch:train:4401-4500batch: iter_time=1.091e-04, forward_time=0.103, loss_ctc=50.574, loss_att=54.924, acc=0.735, loss=53.619, backward_time=0.097, grad_norm=59.532, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.275e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 01:15:49,302 (trainer:737) INFO: 38epoch:train:4501-4600batch: iter_time=1.215e-04, forward_time=0.104, loss_ctc=48.752, loss_att=47.311, acc=0.753, loss=47.743, backward_time=0.096, grad_norm=53.423, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.275e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 01:16:31,233 (trainer:737) INFO: 38epoch:train:4601-4700batch: iter_time=1.113e-04, forward_time=0.105, loss_ctc=49.476, loss_att=61.419, acc=0.732, loss=57.836, backward_time=0.098, grad_norm=58.904, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.275e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 01:17:13,311 (trainer:737) INFO: 38epoch:train:4701-4800batch: iter_time=1.140e-04, forward_time=0.104, loss_ctc=40.152, loss_att=42.747, acc=0.751, loss=41.968, backward_time=0.096, grad_norm=40.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.274e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 01:17:55,580 (trainer:737) INFO: 38epoch:train:4801-4900batch: iter_time=1.045e-04, forward_time=0.105, loss_ctc=44.609, loss_att=53.995, acc=0.730, loss=51.179, backward_time=0.097, grad_norm=50.842, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.274e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 01:18:37,800 (trainer:737) INFO: 38epoch:train:4901-5000batch: iter_time=1.056e-04, forward_time=0.104, loss_ctc=45.067, loss_att=52.590, acc=0.749, loss=50.333, backward_time=0.097, grad_norm=45.934, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.274e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 01:18:43,039 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 01:19:02,052 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 01:19:05,605 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 01:19:05,605 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 01:19:05,609 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 01:24:19,867 (trainer:737) INFO: 38epoch:train:5001-5100batch: iter_time=2.612, forward_time=0.105, loss_ctc=45.550, loss_att=57.102, acc=0.708, loss=53.637, backward_time=0.097, grad_norm=45.361, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.274e-04, train_time=3.420 +[gpuc04:0/16] 2024-01-17 01:25:01,531 (trainer:737) INFO: 38epoch:train:5101-5200batch: iter_time=1.058e-04, forward_time=0.104, loss_ctc=34.578, loss_att=41.393, acc=0.751, loss=39.348, backward_time=0.095, grad_norm=37.005, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.273e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:25:43,185 (trainer:737) INFO: 38epoch:train:5201-5300batch: iter_time=9.833e-05, forward_time=0.105, loss_ctc=45.144, loss_att=59.395, acc=0.720, loss=55.120, backward_time=0.097, grad_norm=48.222, clip=100.000, loss_scale=3.780e+34, optim_step_time=0.038, optim0_lr0=3.273e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:26:24,820 (trainer:737) INFO: 38epoch:train:5301-5400batch: iter_time=1.005e-04, forward_time=0.105, loss_ctc=50.026, loss_att=54.802, acc=0.728, loss=53.369, backward_time=0.096, grad_norm=52.848, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.273e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:27:06,629 (trainer:737) INFO: 38epoch:train:5401-5500batch: iter_time=1.041e-04, forward_time=0.105, loss_ctc=43.432, loss_att=53.765, acc=0.736, loss=50.665, backward_time=0.096, grad_norm=43.368, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.272e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:27:48,154 (trainer:737) INFO: 38epoch:train:5501-5600batch: iter_time=1.017e-04, forward_time=0.104, loss_ctc=39.651, loss_att=45.978, acc=0.752, loss=44.080, backward_time=0.095, grad_norm=45.004, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.272e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 01:27:54,380 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 01:28:29,946 (trainer:737) INFO: 38epoch:train:5601-5700batch: iter_time=1.134e-04, forward_time=0.105, loss_ctc=52.733, loss_att=55.133, acc=0.720, loss=54.413, backward_time=0.096, grad_norm=59.657, clip=100.000, loss_scale=2.371e+34, optim_step_time=0.038, optim0_lr0=3.272e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:29:11,761 (trainer:737) INFO: 38epoch:train:5701-5800batch: iter_time=1.207e-04, forward_time=0.104, loss_ctc=38.254, loss_att=42.568, acc=0.743, loss=41.274, backward_time=0.096, grad_norm=40.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.271e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:29:53,521 (trainer:737) INFO: 38epoch:train:5801-5900batch: iter_time=1.385e-04, forward_time=0.106, loss_ctc=48.282, loss_att=48.887, acc=0.758, loss=48.705, backward_time=0.097, grad_norm=53.418, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.271e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:30:35,506 (trainer:737) INFO: 38epoch:train:5901-6000batch: iter_time=1.063e-04, forward_time=0.108, loss_ctc=48.786, loss_att=49.905, acc=0.745, loss=49.569, backward_time=0.097, grad_norm=53.402, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.271e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 01:31:17,052 (trainer:737) INFO: 38epoch:train:6001-6100batch: iter_time=9.369e-05, forward_time=0.104, loss_ctc=41.559, loss_att=51.514, acc=0.719, loss=48.528, backward_time=0.096, grad_norm=45.497, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.271e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 01:31:58,601 (trainer:737) INFO: 38epoch:train:6101-6200batch: iter_time=9.884e-05, forward_time=0.104, loss_ctc=47.267, loss_att=53.059, acc=0.726, loss=51.321, backward_time=0.096, grad_norm=49.206, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.270e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 01:32:26,081 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 01:32:45,609 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 01:32:49,244 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 01:32:49,244 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 01:32:49,248 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 01:37:02,281 (trainer:737) INFO: 38epoch:train:6201-6300batch: iter_time=2.334, forward_time=0.105, loss_ctc=44.753, loss_att=50.423, acc=0.732, loss=48.722, backward_time=0.096, grad_norm=43.941, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.270e-04, train_time=3.037 +[gpuc04:0/16] 2024-01-17 01:37:44,145 (trainer:737) INFO: 38epoch:train:6301-6400batch: iter_time=9.604e-05, forward_time=0.105, loss_ctc=39.534, loss_att=51.599, acc=0.723, loss=47.980, backward_time=0.096, grad_norm=43.079, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.270e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:38:26,009 (trainer:737) INFO: 38epoch:train:6401-6500batch: iter_time=1.293e-04, forward_time=0.105, loss_ctc=38.168, loss_att=50.528, acc=0.743, loss=46.820, backward_time=0.095, grad_norm=40.934, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.269e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:39:08,108 (trainer:737) INFO: 38epoch:train:6501-6600batch: iter_time=1.115e-04, forward_time=0.106, loss_ctc=45.402, loss_att=48.590, acc=0.751, loss=47.634, backward_time=0.096, grad_norm=47.901, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.269e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 01:39:49,881 (trainer:737) INFO: 38epoch:train:6601-6700batch: iter_time=1.138e-04, forward_time=0.106, loss_ctc=46.328, loss_att=55.714, acc=0.718, loss=52.898, backward_time=0.096, grad_norm=47.269, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.269e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:40:31,534 (trainer:737) INFO: 38epoch:train:6701-6800batch: iter_time=1.316e-04, forward_time=0.106, loss_ctc=40.563, loss_att=49.126, acc=0.749, loss=46.557, backward_time=0.096, grad_norm=41.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.269e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:41:13,192 (trainer:737) INFO: 38epoch:train:6801-6900batch: iter_time=1.212e-04, forward_time=0.105, loss_ctc=42.303, loss_att=43.696, acc=0.744, loss=43.278, backward_time=0.096, grad_norm=45.237, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.268e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:41:54,862 (trainer:737) INFO: 38epoch:train:6901-7000batch: iter_time=1.057e-04, forward_time=0.105, loss_ctc=50.315, loss_att=55.935, acc=0.730, loss=54.249, backward_time=0.095, grad_norm=64.171, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.268e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:42:36,565 (trainer:737) INFO: 38epoch:train:7001-7100batch: iter_time=1.013e-04, forward_time=0.106, loss_ctc=47.992, loss_att=46.078, acc=0.754, loss=46.652, backward_time=0.095, grad_norm=51.756, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.268e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:43:18,492 (trainer:737) INFO: 38epoch:train:7101-7200batch: iter_time=1.025e-04, forward_time=0.106, loss_ctc=49.414, loss_att=58.030, acc=0.728, loss=55.445, backward_time=0.096, grad_norm=55.417, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.267e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 01:43:59,994 (trainer:737) INFO: 38epoch:train:7201-7300batch: iter_time=1.130e-04, forward_time=0.105, loss_ctc=39.887, loss_att=40.029, acc=0.751, loss=39.987, backward_time=0.095, grad_norm=41.702, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.267e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 01:44:41,702 (trainer:737) INFO: 38epoch:train:7301-7400batch: iter_time=1.101e-04, forward_time=0.106, loss_ctc=44.296, loss_att=53.332, acc=0.719, loss=50.621, backward_time=0.096, grad_norm=50.610, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.267e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:45:23,397 (trainer:737) INFO: 38epoch:train:7401-7500batch: iter_time=9.397e-05, forward_time=0.105, loss_ctc=44.992, loss_att=51.327, acc=0.744, loss=49.427, backward_time=0.096, grad_norm=47.287, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.267e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:45:25,786 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 01:45:45,462 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 01:45:49,120 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 01:45:49,120 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 01:45:49,124 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 01:50:31,006 (trainer:737) INFO: 38epoch:train:7501-7600batch: iter_time=2.408, forward_time=0.106, loss_ctc=44.770, loss_att=57.882, acc=0.718, loss=53.948, backward_time=0.097, grad_norm=46.519, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.266e-04, train_time=3.076 +[gpuc04:0/16] 2024-01-17 01:51:12,853 (trainer:737) INFO: 38epoch:train:7601-7700batch: iter_time=1.679e-04, forward_time=0.105, loss_ctc=33.876, loss_att=43.587, acc=0.757, loss=40.674, backward_time=0.096, grad_norm=36.864, clip=100.000, loss_scale=3.842e+34, optim_step_time=0.038, optim0_lr0=3.266e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:51:26,647 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 01:51:54,846 (trainer:737) INFO: 38epoch:train:7701-7800batch: iter_time=1.616e-04, forward_time=0.107, loss_ctc=45.217, loss_att=61.904, acc=0.723, loss=56.898, backward_time=0.097, grad_norm=47.795, clip=100.000, loss_scale=2.748e+34, optim_step_time=0.038, optim0_lr0=3.266e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 01:52:36,636 (trainer:737) INFO: 38epoch:train:7801-7900batch: iter_time=1.468e-04, forward_time=0.107, loss_ctc=49.037, loss_att=55.584, acc=0.735, loss=53.619, backward_time=0.097, grad_norm=52.399, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.265e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:53:18,645 (trainer:737) INFO: 38epoch:train:7901-8000batch: iter_time=1.520e-04, forward_time=0.106, loss_ctc=43.239, loss_att=54.936, acc=0.745, loss=51.427, backward_time=0.097, grad_norm=44.242, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.265e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 01:54:00,511 (trainer:737) INFO: 38epoch:train:8001-8100batch: iter_time=1.592e-04, forward_time=0.105, loss_ctc=39.280, loss_att=45.750, acc=0.757, loss=43.809, backward_time=0.096, grad_norm=44.952, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.265e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:54:42,822 (trainer:737) INFO: 38epoch:train:8101-8200batch: iter_time=1.378e-04, forward_time=0.107, loss_ctc=52.146, loss_att=56.503, acc=0.724, loss=55.196, backward_time=0.096, grad_norm=58.826, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.265e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 01:55:24,465 (trainer:737) INFO: 38epoch:train:8201-8300batch: iter_time=1.489e-04, forward_time=0.106, loss_ctc=37.983, loss_att=44.269, acc=0.745, loss=42.384, backward_time=0.096, grad_norm=39.049, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.264e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 01:56:06,280 (trainer:737) INFO: 38epoch:train:8301-8400batch: iter_time=1.533e-04, forward_time=0.106, loss_ctc=48.378, loss_att=51.283, acc=0.762, loss=50.411, backward_time=0.096, grad_norm=52.620, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.264e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 01:56:48,701 (trainer:737) INFO: 38epoch:train:8401-8500batch: iter_time=1.730e-04, forward_time=0.107, loss_ctc=48.920, loss_att=52.648, acc=0.745, loss=51.529, backward_time=0.097, grad_norm=53.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.264e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 01:57:30,389 (trainer:737) INFO: 38epoch:train:8501-8600batch: iter_time=1.627e-04, forward_time=0.106, loss_ctc=40.904, loss_att=52.495, acc=0.731, loss=49.018, backward_time=0.096, grad_norm=43.903, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.263e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:58:12,134 (trainer:737) INFO: 38epoch:train:8601-8700batch: iter_time=1.588e-04, forward_time=0.107, loss_ctc=47.285, loss_att=53.374, acc=0.736, loss=51.548, backward_time=0.096, grad_norm=49.444, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.263e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 01:58:38,676 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 01:58:58,050 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 01:59:01,550 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 01:59:01,551 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 01:59:01,554 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 02:03:29,634 (trainer:737) INFO: 38epoch:train:8701-8800batch: iter_time=2.491, forward_time=0.106, loss_ctc=44.573, loss_att=52.650, acc=0.734, loss=50.227, backward_time=0.096, grad_norm=44.678, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.263e-04, train_time=3.175 +[gpuc04:0/16] 2024-01-17 02:04:11,544 (trainer:737) INFO: 38epoch:train:8801-8900batch: iter_time=1.483e-04, forward_time=0.106, loss_ctc=39.590, loss_att=54.030, acc=0.718, loss=49.698, backward_time=0.096, grad_norm=42.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.262e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:04:53,123 (trainer:737) INFO: 38epoch:train:8901-9000batch: iter_time=1.581e-04, forward_time=0.106, loss_ctc=38.185, loss_att=51.239, acc=0.741, loss=47.323, backward_time=0.096, grad_norm=41.185, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.262e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 02:05:34,847 (trainer:737) INFO: 38epoch:train:9001-9100batch: iter_time=1.600e-04, forward_time=0.107, loss_ctc=45.285, loss_att=48.843, acc=0.750, loss=47.776, backward_time=0.097, grad_norm=48.867, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.262e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:06:16,564 (trainer:737) INFO: 38epoch:train:9101-9200batch: iter_time=1.608e-04, forward_time=0.107, loss_ctc=45.798, loss_att=55.796, acc=0.721, loss=52.796, backward_time=0.097, grad_norm=47.916, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.262e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:06:58,154 (trainer:737) INFO: 38epoch:train:9201-9300batch: iter_time=1.496e-04, forward_time=0.106, loss_ctc=40.806, loss_att=48.734, acc=0.750, loss=46.356, backward_time=0.096, grad_norm=41.633, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.261e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 02:07:39,925 (trainer:737) INFO: 38epoch:train:9301-9400batch: iter_time=1.954e-04, forward_time=0.106, loss_ctc=42.311, loss_att=44.988, acc=0.739, loss=44.185, backward_time=0.099, grad_norm=46.769, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.261e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:08:21,648 (trainer:737) INFO: 38epoch:train:9401-9500batch: iter_time=1.966e-04, forward_time=0.106, loss_ctc=48.764, loss_att=53.364, acc=0.731, loss=51.984, backward_time=0.099, grad_norm=60.862, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.261e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:09:04,034 (trainer:737) INFO: 38epoch:train:9501-9600batch: iter_time=1.784e-04, forward_time=0.107, loss_ctc=47.680, loss_att=48.088, acc=0.754, loss=47.965, backward_time=0.097, grad_norm=52.668, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.260e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 02:09:46,724 (trainer:737) INFO: 38epoch:train:9601-9700batch: iter_time=1.704e-04, forward_time=0.110, loss_ctc=49.090, loss_att=58.074, acc=0.726, loss=55.379, backward_time=0.097, grad_norm=55.431, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.260e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-17 02:10:01,629 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 02:10:28,159 (trainer:737) INFO: 38epoch:train:9701-9800batch: iter_time=1.400e-04, forward_time=0.106, loss_ctc=39.374, loss_att=39.821, acc=0.752, loss=39.687, backward_time=0.096, grad_norm=41.369, clip=100.000, loss_scale=2.119e+34, optim_step_time=0.038, optim0_lr0=3.260e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 02:11:10,085 (trainer:737) INFO: 38epoch:train:9801-9900batch: iter_time=1.741e-04, forward_time=0.106, loss_ctc=43.870, loss_att=52.717, acc=0.719, loss=50.063, backward_time=0.096, grad_norm=49.389, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.260e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:11:51,798 (trainer:737) INFO: 38epoch:train:9901-10000batch: iter_time=1.599e-04, forward_time=0.106, loss_ctc=44.385, loss_att=51.253, acc=0.745, loss=49.193, backward_time=0.097, grad_norm=44.012, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.259e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:11:57,686 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 02:12:16,854 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 02:12:20,489 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 02:12:20,489 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 02:12:20,493 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 02:16:56,684 (trainer:737) INFO: 38epoch:train:10001-10100batch: iter_time=2.626, forward_time=0.107, loss_ctc=44.945, loss_att=57.083, acc=0.719, loss=53.442, backward_time=0.098, grad_norm=45.386, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.259e-04, train_time=3.049 +[gpuc04:0/16] 2024-01-17 02:17:38,384 (trainer:737) INFO: 38epoch:train:10101-10200batch: iter_time=1.643e-04, forward_time=0.105, loss_ctc=34.148, loss_att=43.657, acc=0.759, loss=40.804, backward_time=0.096, grad_norm=38.008, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.259e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:18:20,285 (trainer:737) INFO: 38epoch:train:10201-10300batch: iter_time=1.779e-04, forward_time=0.107, loss_ctc=44.718, loss_att=61.927, acc=0.724, loss=56.765, backward_time=0.097, grad_norm=48.938, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.258e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:19:02,164 (trainer:737) INFO: 38epoch:train:10301-10400batch: iter_time=1.845e-04, forward_time=0.107, loss_ctc=48.715, loss_att=54.937, acc=0.740, loss=53.071, backward_time=0.097, grad_norm=51.987, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.258e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:19:43,990 (trainer:737) INFO: 38epoch:train:10401-10500batch: iter_time=1.838e-04, forward_time=0.106, loss_ctc=43.046, loss_att=53.570, acc=0.751, loss=50.413, backward_time=0.097, grad_norm=44.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.258e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:20:25,650 (trainer:737) INFO: 38epoch:train:10501-10600batch: iter_time=1.535e-04, forward_time=0.105, loss_ctc=38.859, loss_att=45.437, acc=0.758, loss=43.464, backward_time=0.097, grad_norm=45.110, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.258e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 02:21:07,363 (trainer:737) INFO: 38epoch:train:10601-10700batch: iter_time=1.706e-04, forward_time=0.106, loss_ctc=51.275, loss_att=54.942, acc=0.728, loss=53.842, backward_time=0.097, grad_norm=64.944, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.257e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:21:49,057 (trainer:737) INFO: 38epoch:train:10701-10800batch: iter_time=1.781e-04, forward_time=0.106, loss_ctc=37.923, loss_att=44.449, acc=0.744, loss=42.491, backward_time=0.096, grad_norm=41.266, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.257e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:22:30,910 (trainer:737) INFO: 38epoch:train:10801-10900batch: iter_time=1.600e-04, forward_time=0.107, loss_ctc=47.447, loss_att=50.165, acc=0.767, loss=49.350, backward_time=0.097, grad_norm=52.469, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.257e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:23:13,563 (trainer:737) INFO: 38epoch:train:10901-11000batch: iter_time=1.412e-04, forward_time=0.106, loss_ctc=48.183, loss_att=51.621, acc=0.747, loss=50.590, backward_time=0.097, grad_norm=50.344, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.256e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-17 02:23:55,323 (trainer:737) INFO: 38epoch:train:11001-11100batch: iter_time=1.387e-04, forward_time=0.105, loss_ctc=41.155, loss_att=51.896, acc=0.731, loss=48.673, backward_time=0.097, grad_norm=44.958, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.256e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:24:37,036 (trainer:737) INFO: 38epoch:train:11101-11200batch: iter_time=1.530e-04, forward_time=0.106, loss_ctc=47.173, loss_att=53.439, acc=0.736, loss=51.559, backward_time=0.097, grad_norm=50.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.256e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:25:03,728 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 02:25:23,144 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 02:25:26,780 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 02:25:26,780 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 02:25:26,784 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 02:29:54,574 (trainer:737) INFO: 38epoch:train:11201-11300batch: iter_time=2.517, forward_time=0.106, loss_ctc=44.276, loss_att=49.932, acc=0.743, loss=48.235, backward_time=0.097, grad_norm=43.553, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.256e-04, train_time=3.175 +[gpuc04:0/16] 2024-01-17 02:30:36,451 (trainer:737) INFO: 38epoch:train:11301-11400batch: iter_time=1.578e-04, forward_time=0.106, loss_ctc=39.631, loss_att=52.799, acc=0.733, loss=48.849, backward_time=0.097, grad_norm=43.304, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.255e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:31:18,972 (trainer:737) INFO: 38epoch:train:11401-11500batch: iter_time=1.256e-04, forward_time=0.105, loss_ctc=38.165, loss_att=52.400, acc=0.746, loss=48.130, backward_time=0.096, grad_norm=40.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.255e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 02:32:00,842 (trainer:737) INFO: 38epoch:train:11501-11600batch: iter_time=1.618e-04, forward_time=0.107, loss_ctc=45.309, loss_att=52.420, acc=0.748, loss=50.287, backward_time=0.097, grad_norm=48.090, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.255e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:32:43,272 (trainer:737) INFO: 38epoch:train:11601-11700batch: iter_time=1.571e-04, forward_time=0.107, loss_ctc=46.206, loss_att=56.077, acc=0.735, loss=53.115, backward_time=0.097, grad_norm=46.876, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.254e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 02:33:24,924 (trainer:737) INFO: 38epoch:train:11701-11800batch: iter_time=1.589e-04, forward_time=0.106, loss_ctc=40.641, loss_att=49.224, acc=0.756, loss=46.649, backward_time=0.096, grad_norm=41.626, clip=100.000, loss_scale=3.406e+34, optim_step_time=0.038, optim0_lr0=3.254e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 02:33:39,939 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 02:34:07,060 (trainer:737) INFO: 38epoch:train:11801-11900batch: iter_time=1.540e-04, forward_time=0.109, loss_ctc=41.608, loss_att=44.595, acc=0.751, loss=43.699, backward_time=0.098, grad_norm=45.179, clip=100.000, loss_scale=2.790e+34, optim_step_time=0.038, optim0_lr0=3.254e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 02:34:48,986 (trainer:737) INFO: 38epoch:train:11901-12000batch: iter_time=1.460e-04, forward_time=0.106, loss_ctc=48.559, loss_att=54.512, acc=0.736, loss=52.726, backward_time=0.096, grad_norm=57.496, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.254e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:35:30,934 (trainer:737) INFO: 38epoch:train:12001-12100batch: iter_time=1.577e-04, forward_time=0.105, loss_ctc=47.597, loss_att=45.568, acc=0.757, loss=46.176, backward_time=0.096, grad_norm=49.632, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.253e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:36:12,872 (trainer:737) INFO: 38epoch:train:12101-12200batch: iter_time=1.529e-04, forward_time=0.108, loss_ctc=48.651, loss_att=59.781, acc=0.737, loss=56.442, backward_time=0.097, grad_norm=55.298, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.253e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:36:54,412 (trainer:737) INFO: 38epoch:train:12201-12300batch: iter_time=1.748e-04, forward_time=0.106, loss_ctc=39.352, loss_att=41.823, acc=0.755, loss=41.082, backward_time=0.096, grad_norm=41.353, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.253e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 02:37:36,174 (trainer:737) INFO: 38epoch:train:12301-12400batch: iter_time=1.527e-04, forward_time=0.106, loss_ctc=43.548, loss_att=52.653, acc=0.732, loss=49.921, backward_time=0.096, grad_norm=48.152, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.252e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:38:19,473 (trainer:737) INFO: 38epoch:train:12401-12500batch: iter_time=3.795e-04, forward_time=0.107, loss_ctc=45.146, loss_att=52.201, acc=0.752, loss=50.084, backward_time=0.101, grad_norm=45.854, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.252e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-17 02:38:26,706 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 02:38:46,934 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 02:38:50,563 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 02:38:50,563 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 02:38:50,567 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 02:43:33,438 (trainer:737) INFO: 38epoch:train:12501-12600batch: iter_time=2.593, forward_time=0.107, loss_ctc=44.863, loss_att=57.529, acc=0.710, loss=53.729, backward_time=0.098, grad_norm=46.256, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.252e-04, train_time=3.139 +[gpuc04:0/16] 2024-01-17 02:44:15,034 (trainer:737) INFO: 38epoch:train:12601-12700batch: iter_time=1.370e-04, forward_time=0.105, loss_ctc=34.246, loss_att=42.209, acc=0.749, loss=39.820, backward_time=0.096, grad_norm=36.629, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.252e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 02:44:56,784 (trainer:737) INFO: 38epoch:train:12701-12800batch: iter_time=1.317e-04, forward_time=0.105, loss_ctc=43.976, loss_att=59.659, acc=0.719, loss=54.954, backward_time=0.097, grad_norm=47.719, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.251e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:45:38,599 (trainer:737) INFO: 38epoch:train:12801-12900batch: iter_time=1.305e-04, forward_time=0.106, loss_ctc=48.685, loss_att=55.327, acc=0.730, loss=53.334, backward_time=0.097, grad_norm=51.282, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.251e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:46:21,737 (trainer:737) INFO: 38epoch:train:12901-13000batch: iter_time=1.304e-04, forward_time=0.106, loss_ctc=43.453, loss_att=53.208, acc=0.739, loss=50.282, backward_time=0.097, grad_norm=42.009, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.251e-04, train_time=0.431 +[gpuc04:0/16] 2024-01-17 02:47:03,316 (trainer:737) INFO: 38epoch:train:13001-13100batch: iter_time=1.322e-04, forward_time=0.105, loss_ctc=39.257, loss_att=45.738, acc=0.753, loss=43.794, backward_time=0.096, grad_norm=45.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.250e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 02:47:45,087 (trainer:737) INFO: 38epoch:train:13101-13200batch: iter_time=1.576e-04, forward_time=0.106, loss_ctc=51.175, loss_att=55.308, acc=0.719, loss=54.068, backward_time=0.096, grad_norm=59.172, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.250e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 02:48:27,355 (trainer:737) INFO: 38epoch:train:13201-13300batch: iter_time=1.507e-04, forward_time=0.106, loss_ctc=37.528, loss_att=42.802, acc=0.745, loss=41.220, backward_time=0.096, grad_norm=39.921, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.250e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 02:49:09,274 (trainer:737) INFO: 38epoch:train:13301-13400batch: iter_time=1.550e-04, forward_time=0.107, loss_ctc=47.964, loss_att=49.405, acc=0.758, loss=48.973, backward_time=0.096, grad_norm=51.111, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.250e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 02:49:51,760 (trainer:737) INFO: 38epoch:train:13401-13500batch: iter_time=1.720e-04, forward_time=0.107, loss_ctc=47.933, loss_att=49.685, acc=0.745, loss=49.160, backward_time=0.098, grad_norm=49.639, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.249e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 02:50:33,533 (trainer:737) INFO: 38epoch:train:13501-13600batch: iter_time=1.624e-04, forward_time=0.107, loss_ctc=40.661, loss_att=51.835, acc=0.718, loss=48.483, backward_time=0.097, grad_norm=45.482, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.249e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:51:19,365 (trainer:737) INFO: 38epoch:train:13601-13700batch: iter_time=1.522e-04, forward_time=0.127, loss_ctc=46.780, loss_att=52.703, acc=0.728, loss=50.926, backward_time=0.108, grad_norm=50.365, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.249e-04, train_time=0.458 +[gpuc04:0/16] 2024-01-17 02:51:46,815 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 02:52:07,139 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 02:52:11,178 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 02:52:11,179 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 02:52:11,182 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 02:56:21,582 (trainer:737) INFO: 38epoch:train:13701-13800batch: iter_time=2.603, forward_time=0.106, loss_ctc=43.873, loss_att=51.075, acc=0.740, loss=48.915, backward_time=0.097, grad_norm=43.404, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.248e-04, train_time=3.022 +[gpuc04:0/16] 2024-01-17 02:57:03,449 (trainer:737) INFO: 38epoch:train:13801-13900batch: iter_time=1.214e-04, forward_time=0.105, loss_ctc=39.262, loss_att=54.626, acc=0.730, loss=50.017, backward_time=0.097, grad_norm=42.904, clip=100.000, loss_scale=3.427e+34, optim_step_time=0.039, optim0_lr0=3.248e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:57:45,250 (trainer:737) INFO: 38epoch:train:13901-14000batch: iter_time=1.052e-04, forward_time=0.105, loss_ctc=37.663, loss_att=52.560, acc=0.747, loss=48.091, backward_time=0.096, grad_norm=40.209, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.248e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:57:51,482 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 02:58:27,061 (trainer:737) INFO: 38epoch:train:14001-14100batch: iter_time=1.117e-04, forward_time=0.107, loss_ctc=46.121, loss_att=53.920, acc=0.749, loss=51.580, backward_time=0.098, grad_norm=46.829, clip=100.000, loss_scale=2.371e+34, optim_step_time=0.039, optim0_lr0=3.248e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:59:08,918 (trainer:737) INFO: 38epoch:train:14101-14200batch: iter_time=1.252e-04, forward_time=0.107, loss_ctc=46.226, loss_att=55.971, acc=0.734, loss=53.047, backward_time=0.097, grad_norm=49.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.247e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 02:59:50,689 (trainer:737) INFO: 38epoch:train:14201-14300batch: iter_time=1.323e-04, forward_time=0.106, loss_ctc=40.674, loss_att=49.062, acc=0.757, loss=46.546, backward_time=0.097, grad_norm=40.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.247e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 03:00:32,445 (trainer:737) INFO: 38epoch:train:14301-14400batch: iter_time=1.130e-04, forward_time=0.106, loss_ctc=41.781, loss_att=44.479, acc=0.751, loss=43.670, backward_time=0.097, grad_norm=45.695, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.247e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 03:01:14,159 (trainer:737) INFO: 38epoch:train:14401-14500batch: iter_time=1.239e-04, forward_time=0.105, loss_ctc=48.727, loss_att=55.983, acc=0.736, loss=53.807, backward_time=0.097, grad_norm=59.415, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.246e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 03:01:55,843 (trainer:737) INFO: 38epoch:train:14501-14600batch: iter_time=1.151e-04, forward_time=0.105, loss_ctc=47.576, loss_att=45.501, acc=0.756, loss=46.123, backward_time=0.097, grad_norm=49.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.246e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 03:02:37,808 (trainer:737) INFO: 38epoch:train:14601-14700batch: iter_time=1.322e-04, forward_time=0.106, loss_ctc=48.413, loss_att=60.535, acc=0.737, loss=56.899, backward_time=0.098, grad_norm=56.651, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.246e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 03:03:19,406 (trainer:737) INFO: 38epoch:train:14701-14800batch: iter_time=1.268e-04, forward_time=0.106, loss_ctc=39.408, loss_att=42.193, acc=0.754, loss=41.357, backward_time=0.096, grad_norm=40.288, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.246e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 03:04:01,498 (trainer:737) INFO: 38epoch:train:14801-14900batch: iter_time=1.412e-04, forward_time=0.107, loss_ctc=44.528, loss_att=53.398, acc=0.731, loss=50.737, backward_time=0.097, grad_norm=52.055, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.245e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 03:04:43,739 (trainer:737) INFO: 38epoch:train:14901-15000batch: iter_time=1.391e-04, forward_time=0.107, loss_ctc=44.960, loss_att=52.027, acc=0.751, loss=49.907, backward_time=0.097, grad_norm=45.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.245e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 03:24:50,691 (trainer:343) INFO: 38epoch results: [train] iter_time=0.203, forward_time=0.106, loss_ctc=44.500, loss_att=51.589, acc=0.738, loss=49.463, backward_time=0.097, grad_norm=48.028, clip=100.000, loss_scale=2.269e+34, optim_step_time=0.039, optim0_lr0=3.266e-04, train_time=0.642, time=2 hours, 40 minutes and 40.59 seconds, total_count=570000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=49.233, cer_ctc=0.256, loss_att=50.201, acc=0.605, cer=0.358, wer=0.998, loss=49.911, time=19 minutes and 53.88 seconds, total_count=177498, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 03:24:55,579 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 03:24:55,589 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/33epoch.pth +[gpuc04:0/16] 2024-01-17 03:24:55,589 (trainer:272) INFO: 39/45epoch started. Estimated time to finish: 21 hours, 2 minutes and 47.15 seconds +[gpuc04:0/16] 2024-01-17 03:24:55,600 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 03:25:15,497 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 03:25:19,352 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 03:25:19,352 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 03:25:19,355 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 03:29:47,569 (trainer:737) INFO: 39epoch:train:1-100batch: iter_time=2.452, forward_time=0.106, loss_ctc=48.877, loss_att=51.655, acc=0.738, loss=50.822, backward_time=0.098, grad_norm=48.699, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.245e-04, train_time=2.919 +[gpuc04:0/16] 2024-01-17 03:30:30,631 (trainer:737) INFO: 39epoch:train:101-200batch: iter_time=1.042e-04, forward_time=0.116, loss_ctc=42.690, loss_att=41.853, acc=0.772, loss=42.105, backward_time=0.099, grad_norm=45.351, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.244e-04, train_time=0.430 +[gpuc04:0/16] 2024-01-17 03:31:12,922 (trainer:737) INFO: 39epoch:train:201-300batch: iter_time=1.033e-04, forward_time=0.106, loss_ctc=51.609, loss_att=61.421, acc=0.733, loss=58.477, backward_time=0.099, grad_norm=60.206, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.244e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 03:31:55,377 (trainer:737) INFO: 39epoch:train:301-400batch: iter_time=1.229e-04, forward_time=0.109, loss_ctc=55.540, loss_att=54.038, acc=0.741, loss=54.489, backward_time=0.098, grad_norm=53.380, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.244e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 03:32:40,005 (trainer:737) INFO: 39epoch:train:401-500batch: iter_time=1.242e-04, forward_time=0.115, loss_ctc=40.230, loss_att=42.162, acc=0.754, loss=41.583, backward_time=0.108, grad_norm=43.450, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.244e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-17 03:33:25,243 (trainer:737) INFO: 39epoch:train:501-600batch: iter_time=1.230e-04, forward_time=0.106, loss_ctc=47.953, loss_att=59.158, acc=0.710, loss=55.797, backward_time=0.098, grad_norm=49.848, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.243e-04, train_time=0.452 +[gpuc04:0/16] 2024-01-17 03:34:07,520 (trainer:737) INFO: 39epoch:train:601-700batch: iter_time=1.236e-04, forward_time=0.105, loss_ctc=36.792, loss_att=47.904, acc=0.760, loss=44.571, backward_time=0.097, grad_norm=39.526, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.243e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 03:34:51,154 (trainer:737) INFO: 39epoch:train:701-800batch: iter_time=1.281e-04, forward_time=0.106, loss_ctc=43.693, loss_att=50.244, acc=0.747, loss=48.278, backward_time=0.098, grad_norm=45.985, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.243e-04, train_time=0.436 +[gpuc04:0/16] 2024-01-17 03:35:38,807 (trainer:737) INFO: 39epoch:train:801-900batch: iter_time=1.248e-04, forward_time=0.125, loss_ctc=47.425, loss_att=40.679, acc=0.744, loss=42.703, backward_time=0.100, grad_norm=48.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.242e-04, train_time=0.476 +[gpuc04:0/16] 2024-01-17 03:36:23,654 (trainer:737) INFO: 39epoch:train:901-1000batch: iter_time=1.284e-04, forward_time=0.112, loss_ctc=47.188, loss_att=52.536, acc=0.743, loss=50.932, backward_time=0.098, grad_norm=56.377, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.242e-04, train_time=0.448 +[gpuc04:0/16] 2024-01-17 03:36:35,193 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 03:37:08,629 (trainer:737) INFO: 39epoch:train:1001-1100batch: iter_time=1.318e-04, forward_time=0.105, loss_ctc=36.016, loss_att=38.253, acc=0.756, loss=37.582, backward_time=0.096, grad_norm=40.428, clip=100.000, loss_scale=2.329e+34, optim_step_time=0.039, optim0_lr0=3.242e-04, train_time=0.450 +[gpuc04:0/16] 2024-01-17 03:37:51,181 (trainer:737) INFO: 39epoch:train:1101-1200batch: iter_time=1.351e-04, forward_time=0.106, loss_ctc=37.903, loss_att=49.473, acc=0.740, loss=46.002, backward_time=0.097, grad_norm=39.554, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.242e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 03:38:38,136 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 03:38:56,940 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 03:39:00,836 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 03:39:00,837 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 03:39:00,840 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 03:44:20,204 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 03:44:20,624 (trainer:737) INFO: 39epoch:train:1201-1300batch: iter_time=3.452, forward_time=0.105, loss_ctc=41.170, loss_att=41.590, acc=0.773, loss=41.464, backward_time=0.096, grad_norm=42.603, clip=100.000, loss_scale=2.066e+34, optim_step_time=0.039, optim0_lr0=3.241e-04, train_time=3.894 +[gpuc04:0/16] 2024-01-17 03:45:02,991 (trainer:737) INFO: 39epoch:train:1301-1400batch: iter_time=1.356e-04, forward_time=0.105, loss_ctc=41.721, loss_att=50.435, acc=0.750, loss=47.821, backward_time=0.097, grad_norm=45.802, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.241e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 03:45:45,264 (trainer:737) INFO: 39epoch:train:1401-1500batch: iter_time=1.418e-04, forward_time=0.106, loss_ctc=43.994, loss_att=45.989, acc=0.768, loss=45.391, backward_time=0.097, grad_norm=45.402, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.241e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 03:46:27,192 (trainer:737) INFO: 39epoch:train:1501-1600batch: iter_time=1.542e-04, forward_time=0.106, loss_ctc=55.970, loss_att=59.888, acc=0.739, loss=58.713, backward_time=0.098, grad_norm=54.286, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.240e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 03:47:09,191 (trainer:737) INFO: 39epoch:train:1601-1700batch: iter_time=1.441e-04, forward_time=0.105, loss_ctc=49.304, loss_att=53.100, acc=0.743, loss=51.961, backward_time=0.097, grad_norm=52.924, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.240e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 03:47:50,769 (trainer:737) INFO: 39epoch:train:1701-1800batch: iter_time=1.501e-04, forward_time=0.105, loss_ctc=40.101, loss_att=46.658, acc=0.734, loss=44.691, backward_time=0.096, grad_norm=42.556, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.240e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 03:48:33,236 (trainer:737) INFO: 39epoch:train:1801-1900batch: iter_time=1.267e-04, forward_time=0.104, loss_ctc=42.899, loss_att=55.767, acc=0.734, loss=51.906, backward_time=0.096, grad_norm=45.348, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.240e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 03:49:15,269 (trainer:737) INFO: 39epoch:train:1901-2000batch: iter_time=1.383e-04, forward_time=0.105, loss_ctc=42.554, loss_att=52.290, acc=0.755, loss=49.369, backward_time=0.097, grad_norm=42.336, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.239e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 03:49:57,001 (trainer:737) INFO: 39epoch:train:2001-2100batch: iter_time=1.391e-04, forward_time=0.103, loss_ctc=38.076, loss_att=38.949, acc=0.746, loss=38.687, backward_time=0.095, grad_norm=41.381, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.239e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 03:50:38,585 (trainer:737) INFO: 39epoch:train:2101-2200batch: iter_time=1.457e-04, forward_time=0.104, loss_ctc=51.079, loss_att=50.863, acc=0.742, loss=50.928, backward_time=0.096, grad_norm=59.239, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.239e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 03:51:20,343 (trainer:737) INFO: 39epoch:train:2201-2300batch: iter_time=1.646e-04, forward_time=0.104, loss_ctc=36.156, loss_att=38.636, acc=0.764, loss=37.892, backward_time=0.096, grad_norm=38.177, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.238e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 03:52:02,332 (trainer:737) INFO: 39epoch:train:2301-2400batch: iter_time=1.599e-04, forward_time=0.104, loss_ctc=37.841, loss_att=43.263, acc=0.743, loss=41.636, backward_time=0.096, grad_norm=39.834, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.238e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 03:52:43,937 (trainer:737) INFO: 39epoch:train:2401-2500batch: iter_time=1.552e-04, forward_time=0.104, loss_ctc=37.466, loss_att=47.325, acc=0.769, loss=44.367, backward_time=0.096, grad_norm=37.972, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.238e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 03:53:00,471 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 03:53:20,007 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 03:53:23,629 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 03:53:23,629 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 03:53:23,632 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 03:59:13,932 (trainer:737) INFO: 39epoch:train:2501-2600batch: iter_time=3.361, forward_time=0.138, loss_ctc=47.747, loss_att=55.585, acc=0.724, loss=53.234, backward_time=0.103, grad_norm=48.167, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.238e-04, train_time=3.900 +[gpuc04:0/16] 2024-01-17 03:59:55,541 (trainer:737) INFO: 39epoch:train:2601-2700batch: iter_time=1.280e-04, forward_time=0.105, loss_ctc=41.490, loss_att=42.471, acc=0.764, loss=42.177, backward_time=0.096, grad_norm=45.538, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.237e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:00:37,322 (trainer:737) INFO: 39epoch:train:2701-2800batch: iter_time=1.355e-04, forward_time=0.107, loss_ctc=49.522, loss_att=62.556, acc=0.728, loss=58.646, backward_time=0.097, grad_norm=55.515, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.237e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:01:21,939 (trainer:737) INFO: 39epoch:train:2801-2900batch: iter_time=3.862e-04, forward_time=0.120, loss_ctc=51.586, loss_att=52.219, acc=0.730, loss=52.029, backward_time=0.097, grad_norm=48.406, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.042, optim0_lr0=3.237e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-17 04:02:03,785 (trainer:737) INFO: 39epoch:train:2901-3000batch: iter_time=1.516e-04, forward_time=0.105, loss_ctc=38.943, loss_att=42.353, acc=0.749, loss=41.330, backward_time=0.096, grad_norm=40.150, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.236e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:02:45,652 (trainer:737) INFO: 39epoch:train:3001-3100batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=46.126, loss_att=57.816, acc=0.708, loss=54.309, backward_time=0.096, grad_norm=47.576, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.236e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:03:27,543 (trainer:737) INFO: 39epoch:train:3101-3200batch: iter_time=1.460e-04, forward_time=0.106, loss_ctc=36.053, loss_att=47.631, acc=0.756, loss=44.158, backward_time=0.096, grad_norm=38.412, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.236e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 04:04:09,803 (trainer:737) INFO: 39epoch:train:3201-3300batch: iter_time=1.328e-04, forward_time=0.106, loss_ctc=42.457, loss_att=51.094, acc=0.739, loss=48.503, backward_time=0.096, grad_norm=42.795, clip=100.000, loss_scale=1.049e+34, optim_step_time=0.039, optim0_lr0=3.236e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 04:04:51,246 (trainer:737) INFO: 39epoch:train:3301-3400batch: iter_time=1.398e-04, forward_time=0.104, loss_ctc=45.419, loss_att=40.597, acc=0.739, loss=42.044, backward_time=0.095, grad_norm=45.799, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.235e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 04:05:33,640 (trainer:737) INFO: 39epoch:train:3401-3500batch: iter_time=1.505e-04, forward_time=0.105, loss_ctc=45.289, loss_att=52.036, acc=0.741, loss=50.012, backward_time=0.096, grad_norm=52.825, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.235e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 04:06:15,040 (trainer:737) INFO: 39epoch:train:3501-3600batch: iter_time=1.394e-04, forward_time=0.104, loss_ctc=35.434, loss_att=37.405, acc=0.757, loss=36.814, backward_time=0.095, grad_norm=38.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.235e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 04:06:57,016 (trainer:737) INFO: 39epoch:train:3601-3700batch: iter_time=1.588e-04, forward_time=0.105, loss_ctc=36.858, loss_att=50.384, acc=0.724, loss=46.326, backward_time=0.096, grad_norm=38.770, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.234e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 04:07:25,831 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 04:07:45,729 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 04:07:49,341 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 04:07:49,341 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 04:07:49,344 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 04:12:16,980 (trainer:737) INFO: 39epoch:train:3701-3800batch: iter_time=2.766, forward_time=0.105, loss_ctc=41.205, loss_att=42.328, acc=0.770, loss=41.991, backward_time=0.096, grad_norm=42.523, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.234e-04, train_time=3.199 +[gpuc04:0/16] 2024-01-17 04:12:58,596 (trainer:737) INFO: 39epoch:train:3801-3900batch: iter_time=1.410e-04, forward_time=0.105, loss_ctc=40.855, loss_att=51.341, acc=0.746, loss=48.195, backward_time=0.097, grad_norm=44.729, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.234e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:13:40,640 (trainer:737) INFO: 39epoch:train:3901-4000batch: iter_time=1.358e-04, forward_time=0.106, loss_ctc=43.460, loss_att=45.913, acc=0.769, loss=45.177, backward_time=0.097, grad_norm=46.097, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.234e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 04:14:22,368 (trainer:737) INFO: 39epoch:train:4001-4100batch: iter_time=1.377e-04, forward_time=0.105, loss_ctc=54.417, loss_att=60.587, acc=0.736, loss=58.736, backward_time=0.097, grad_norm=56.917, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.233e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:15:03,998 (trainer:737) INFO: 39epoch:train:4101-4200batch: iter_time=1.460e-04, forward_time=0.106, loss_ctc=47.791, loss_att=52.665, acc=0.744, loss=51.203, backward_time=0.097, grad_norm=52.108, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.233e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:15:46,402 (trainer:737) INFO: 39epoch:train:4201-4300batch: iter_time=2.074e-04, forward_time=0.106, loss_ctc=39.956, loss_att=47.075, acc=0.732, loss=44.940, backward_time=0.100, grad_norm=41.439, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.233e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 04:16:28,185 (trainer:737) INFO: 39epoch:train:4301-4400batch: iter_time=1.982e-04, forward_time=0.107, loss_ctc=42.846, loss_att=55.138, acc=0.737, loss=51.450, backward_time=0.096, grad_norm=44.097, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.233e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:17:10,385 (trainer:737) INFO: 39epoch:train:4401-4500batch: iter_time=2.053e-04, forward_time=0.107, loss_ctc=42.220, loss_att=52.371, acc=0.757, loss=49.325, backward_time=0.099, grad_norm=43.369, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.232e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 04:17:52,643 (trainer:737) INFO: 39epoch:train:4501-4600batch: iter_time=1.875e-04, forward_time=0.108, loss_ctc=37.114, loss_att=38.447, acc=0.748, loss=38.047, backward_time=0.098, grad_norm=39.307, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.232e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 04:18:34,641 (trainer:737) INFO: 39epoch:train:4601-4700batch: iter_time=1.820e-04, forward_time=0.107, loss_ctc=49.853, loss_att=52.094, acc=0.739, loss=51.422, backward_time=0.096, grad_norm=58.590, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.232e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 04:19:16,535 (trainer:737) INFO: 39epoch:train:4701-4800batch: iter_time=1.691e-04, forward_time=0.106, loss_ctc=36.114, loss_att=39.231, acc=0.761, loss=38.296, backward_time=0.096, grad_norm=40.548, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.231e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 04:19:58,118 (trainer:737) INFO: 39epoch:train:4801-4900batch: iter_time=1.896e-04, forward_time=0.107, loss_ctc=37.492, loss_att=42.895, acc=0.746, loss=41.274, backward_time=0.096, grad_norm=38.515, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.231e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:20:39,827 (trainer:737) INFO: 39epoch:train:4901-5000batch: iter_time=2.096e-04, forward_time=0.106, loss_ctc=37.017, loss_att=47.866, acc=0.767, loss=44.612, backward_time=0.097, grad_norm=38.501, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.231e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:20:47,281 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 04:21:06,349 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 04:21:09,971 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 04:21:09,971 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 04:21:09,974 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 04:26:06,454 (trainer:737) INFO: 39epoch:train:5001-5100batch: iter_time=2.524, forward_time=0.120, loss_ctc=47.157, loss_att=51.378, acc=0.743, loss=50.112, backward_time=0.098, grad_norm=48.189, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.231e-04, train_time=3.266 +[gpuc04:0/16] 2024-01-17 04:26:48,185 (trainer:737) INFO: 39epoch:train:5101-5200batch: iter_time=1.336e-04, forward_time=0.105, loss_ctc=40.550, loss_att=41.099, acc=0.776, loss=40.934, backward_time=0.097, grad_norm=44.168, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.230e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:27:30,031 (trainer:737) INFO: 39epoch:train:5201-5300batch: iter_time=1.881e-04, forward_time=0.107, loss_ctc=49.085, loss_att=62.403, acc=0.738, loss=58.408, backward_time=0.097, grad_norm=55.414, clip=100.000, loss_scale=2.098e+34, optim_step_time=0.039, optim0_lr0=3.230e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:28:11,621 (trainer:737) INFO: 39epoch:train:5301-5400batch: iter_time=1.888e-04, forward_time=0.106, loss_ctc=50.842, loss_att=53.090, acc=0.743, loss=52.416, backward_time=0.097, grad_norm=50.062, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.230e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:28:53,498 (trainer:737) INFO: 39epoch:train:5401-5500batch: iter_time=1.733e-04, forward_time=0.106, loss_ctc=39.256, loss_att=43.090, acc=0.754, loss=41.940, backward_time=0.097, grad_norm=41.109, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.229e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 04:29:35,328 (trainer:737) INFO: 39epoch:train:5501-5600batch: iter_time=1.647e-04, forward_time=0.108, loss_ctc=45.954, loss_att=57.900, acc=0.716, loss=54.317, backward_time=0.096, grad_norm=46.944, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.229e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:30:17,460 (trainer:737) INFO: 39epoch:train:5601-5700batch: iter_time=1.619e-04, forward_time=0.108, loss_ctc=35.620, loss_att=46.245, acc=0.766, loss=43.057, backward_time=0.096, grad_norm=37.286, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.229e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 04:30:59,268 (trainer:737) INFO: 39epoch:train:5701-5800batch: iter_time=1.721e-04, forward_time=0.107, loss_ctc=41.865, loss_att=49.891, acc=0.749, loss=47.484, backward_time=0.097, grad_norm=43.093, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.229e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:31:40,860 (trainer:737) INFO: 39epoch:train:5801-5900batch: iter_time=1.636e-04, forward_time=0.106, loss_ctc=44.914, loss_att=40.311, acc=0.746, loss=41.692, backward_time=0.095, grad_norm=44.576, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.228e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:32:22,590 (trainer:737) INFO: 39epoch:train:5901-6000batch: iter_time=1.448e-04, forward_time=0.106, loss_ctc=45.088, loss_att=52.073, acc=0.743, loss=49.977, backward_time=0.096, grad_norm=51.842, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.228e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:32:44,909 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 04:33:03,994 (trainer:737) INFO: 39epoch:train:6001-6100batch: iter_time=1.458e-04, forward_time=0.105, loss_ctc=35.435, loss_att=37.762, acc=0.760, loss=37.064, backward_time=0.095, grad_norm=38.704, clip=100.000, loss_scale=3.189e+34, optim_step_time=0.039, optim0_lr0=3.228e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 04:33:45,655 (trainer:737) INFO: 39epoch:train:6101-6200batch: iter_time=1.576e-04, forward_time=0.107, loss_ctc=36.733, loss_att=49.767, acc=0.740, loss=45.857, backward_time=0.096, grad_norm=39.320, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.227e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:34:11,427 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 04:34:31,211 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 04:34:35,235 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 04:34:35,236 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 04:34:35,239 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 04:38:55,070 (trainer:737) INFO: 39epoch:train:6201-6300batch: iter_time=2.519, forward_time=0.118, loss_ctc=40.401, loss_att=42.003, acc=0.773, loss=41.523, backward_time=0.096, grad_norm=40.509, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.227e-04, train_time=3.094 +[gpuc04:0/16] 2024-01-17 04:39:37,032 (trainer:737) INFO: 39epoch:train:6301-6400batch: iter_time=1.171e-04, forward_time=0.105, loss_ctc=40.676, loss_att=52.921, acc=0.731, loss=49.247, backward_time=0.096, grad_norm=48.774, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.227e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 04:40:19,034 (trainer:737) INFO: 39epoch:train:6401-6500batch: iter_time=1.322e-04, forward_time=0.106, loss_ctc=43.430, loss_att=46.218, acc=0.761, loss=45.382, backward_time=0.097, grad_norm=45.145, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.227e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 04:41:01,179 (trainer:737) INFO: 39epoch:train:6501-6600batch: iter_time=1.517e-04, forward_time=0.106, loss_ctc=54.608, loss_att=62.564, acc=0.729, loss=60.177, backward_time=0.097, grad_norm=56.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.226e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 04:41:42,872 (trainer:737) INFO: 39epoch:train:6601-6700batch: iter_time=1.512e-04, forward_time=0.106, loss_ctc=46.679, loss_att=51.306, acc=0.734, loss=49.918, backward_time=0.096, grad_norm=51.622, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.226e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:42:24,459 (trainer:737) INFO: 39epoch:train:6701-6800batch: iter_time=1.423e-04, forward_time=0.105, loss_ctc=39.552, loss_att=45.753, acc=0.738, loss=43.892, backward_time=0.096, grad_norm=40.464, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.226e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:43:06,659 (trainer:737) INFO: 39epoch:train:6801-6900batch: iter_time=1.532e-04, forward_time=0.107, loss_ctc=42.321, loss_att=55.517, acc=0.731, loss=51.558, backward_time=0.096, grad_norm=43.598, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.226e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 04:43:48,460 (trainer:737) INFO: 39epoch:train:6901-7000batch: iter_time=1.386e-04, forward_time=0.107, loss_ctc=41.674, loss_att=52.328, acc=0.749, loss=49.132, backward_time=0.097, grad_norm=42.565, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.225e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:44:30,293 (trainer:737) INFO: 39epoch:train:7001-7100batch: iter_time=1.480e-04, forward_time=0.106, loss_ctc=37.027, loss_att=39.301, acc=0.735, loss=38.619, backward_time=0.095, grad_norm=39.279, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.225e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:45:11,957 (trainer:737) INFO: 39epoch:train:7101-7200batch: iter_time=1.436e-04, forward_time=0.107, loss_ctc=49.319, loss_att=50.440, acc=0.745, loss=50.104, backward_time=0.096, grad_norm=55.726, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.225e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:45:53,481 (trainer:737) INFO: 39epoch:train:7201-7300batch: iter_time=1.440e-04, forward_time=0.105, loss_ctc=35.563, loss_att=38.539, acc=0.756, loss=37.646, backward_time=0.095, grad_norm=39.638, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.224e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 04:46:35,254 (trainer:737) INFO: 39epoch:train:7301-7400batch: iter_time=1.583e-04, forward_time=0.106, loss_ctc=36.863, loss_att=41.906, acc=0.744, loss=40.393, backward_time=0.095, grad_norm=38.550, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.224e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:47:16,852 (trainer:737) INFO: 39epoch:train:7401-7500batch: iter_time=1.430e-04, forward_time=0.105, loss_ctc=36.628, loss_att=48.327, acc=0.757, loss=44.817, backward_time=0.096, grad_norm=40.540, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.224e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:47:21,867 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 04:47:41,829 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 04:47:45,482 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 04:47:45,482 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 04:47:45,485 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 04:52:29,747 (trainer:737) INFO: 39epoch:train:7501-7600batch: iter_time=2.520, forward_time=0.105, loss_ctc=47.742, loss_att=51.252, acc=0.736, loss=50.199, backward_time=0.096, grad_norm=49.050, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.224e-04, train_time=3.129 +[gpuc04:0/16] 2024-01-17 04:53:11,384 (trainer:737) INFO: 39epoch:train:7601-7700batch: iter_time=1.517e-04, forward_time=0.105, loss_ctc=40.153, loss_att=40.966, acc=0.767, loss=40.722, backward_time=0.097, grad_norm=41.791, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.223e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 04:53:53,153 (trainer:737) INFO: 39epoch:train:7701-7800batch: iter_time=1.565e-04, forward_time=0.105, loss_ctc=48.269, loss_att=60.657, acc=0.732, loss=56.940, backward_time=0.097, grad_norm=54.304, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.223e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:54:34,997 (trainer:737) INFO: 39epoch:train:7801-7900batch: iter_time=1.718e-04, forward_time=0.105, loss_ctc=50.236, loss_att=50.686, acc=0.735, loss=50.551, backward_time=0.096, grad_norm=50.224, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.223e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 04:55:16,557 (trainer:737) INFO: 39epoch:train:7901-8000batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=39.070, loss_att=42.130, acc=0.751, loss=41.212, backward_time=0.096, grad_norm=40.577, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.222e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 04:55:58,470 (trainer:737) INFO: 39epoch:train:8001-8100batch: iter_time=1.424e-04, forward_time=0.108, loss_ctc=45.609, loss_att=57.879, acc=0.706, loss=54.198, backward_time=0.096, grad_norm=47.451, clip=100.000, loss_scale=3.032e+34, optim_step_time=0.039, optim0_lr0=3.222e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 04:56:40,824 (trainer:737) INFO: 39epoch:train:8101-8200batch: iter_time=1.364e-04, forward_time=0.105, loss_ctc=35.855, loss_att=46.504, acc=0.759, loss=43.309, backward_time=0.096, grad_norm=39.102, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.222e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 04:57:22,864 (trainer:737) INFO: 39epoch:train:8201-8300batch: iter_time=1.545e-04, forward_time=0.106, loss_ctc=41.509, loss_att=50.079, acc=0.743, loss=47.508, backward_time=0.097, grad_norm=44.048, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.222e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 04:58:04,604 (trainer:737) INFO: 39epoch:train:8301-8400batch: iter_time=1.760e-04, forward_time=0.106, loss_ctc=44.241, loss_att=40.461, acc=0.741, loss=41.595, backward_time=0.095, grad_norm=44.648, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.221e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 04:58:04,983 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 04:58:46,150 (trainer:737) INFO: 39epoch:train:8401-8500batch: iter_time=1.668e-04, forward_time=0.106, loss_ctc=43.603, loss_att=50.545, acc=0.741, loss=48.462, backward_time=0.095, grad_norm=50.646, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.221e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 04:59:08,031 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 04:59:27,768 (trainer:737) INFO: 39epoch:train:8501-8600batch: iter_time=1.575e-04, forward_time=0.106, loss_ctc=35.047, loss_att=37.389, acc=0.758, loss=36.686, backward_time=0.095, grad_norm=38.011, clip=100.000, loss_scale=1.584e+34, optim_step_time=0.038, optim0_lr0=3.221e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:00:09,374 (trainer:737) INFO: 39epoch:train:8601-8700batch: iter_time=1.502e-04, forward_time=0.107, loss_ctc=36.296, loss_att=49.439, acc=0.729, loss=45.497, backward_time=0.095, grad_norm=39.465, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.220e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:00:35,347 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 05:00:54,763 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 05:00:58,441 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 05:00:58,441 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 05:00:58,444 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 05:05:15,958 (trainer:737) INFO: 39epoch:train:8701-8800batch: iter_time=2.563, forward_time=0.110, loss_ctc=40.931, loss_att=42.617, acc=0.769, loss=42.111, backward_time=0.095, grad_norm=42.096, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.220e-04, train_time=3.066 +[gpuc04:0/16] 2024-01-17 05:05:57,601 (trainer:737) INFO: 39epoch:train:8801-8900batch: iter_time=1.872e-04, forward_time=0.106, loss_ctc=39.899, loss_att=51.963, acc=0.745, loss=48.344, backward_time=0.096, grad_norm=46.175, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.220e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:06:39,433 (trainer:737) INFO: 39epoch:train:8901-9000batch: iter_time=1.932e-04, forward_time=0.106, loss_ctc=42.977, loss_att=46.038, acc=0.769, loss=45.120, backward_time=0.098, grad_norm=46.474, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.220e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 05:07:21,184 (trainer:737) INFO: 39epoch:train:9001-9100batch: iter_time=1.972e-04, forward_time=0.106, loss_ctc=53.761, loss_att=60.789, acc=0.737, loss=58.680, backward_time=0.098, grad_norm=56.868, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.219e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:08:02,883 (trainer:737) INFO: 39epoch:train:9101-9200batch: iter_time=1.333e-04, forward_time=0.106, loss_ctc=47.063, loss_att=52.873, acc=0.745, loss=51.130, backward_time=0.097, grad_norm=47.943, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.219e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:08:44,442 (trainer:737) INFO: 39epoch:train:9201-9300batch: iter_time=1.742e-04, forward_time=0.106, loss_ctc=38.731, loss_att=46.213, acc=0.736, loss=43.968, backward_time=0.096, grad_norm=40.279, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.219e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:09:26,104 (trainer:737) INFO: 39epoch:train:9301-9400batch: iter_time=1.636e-04, forward_time=0.106, loss_ctc=42.327, loss_att=55.511, acc=0.740, loss=51.556, backward_time=0.097, grad_norm=43.880, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.219e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:10:08,066 (trainer:737) INFO: 39epoch:train:9401-9500batch: iter_time=1.561e-04, forward_time=0.106, loss_ctc=41.870, loss_att=52.279, acc=0.759, loss=49.156, backward_time=0.098, grad_norm=46.393, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.218e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 05:10:50,140 (trainer:737) INFO: 39epoch:train:9501-9600batch: iter_time=1.740e-04, forward_time=0.105, loss_ctc=36.906, loss_att=38.816, acc=0.749, loss=38.243, backward_time=0.097, grad_norm=39.468, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.218e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 05:11:31,995 (trainer:737) INFO: 39epoch:train:9601-9700batch: iter_time=1.774e-04, forward_time=0.106, loss_ctc=49.054, loss_att=51.624, acc=0.741, loss=50.853, backward_time=0.096, grad_norm=55.440, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.218e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 05:12:13,519 (trainer:737) INFO: 39epoch:train:9701-9800batch: iter_time=1.656e-04, forward_time=0.106, loss_ctc=35.575, loss_att=39.302, acc=0.763, loss=38.184, backward_time=0.096, grad_norm=38.642, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.217e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:12:55,247 (trainer:737) INFO: 39epoch:train:9801-9900batch: iter_time=1.742e-04, forward_time=0.106, loss_ctc=37.094, loss_att=42.850, acc=0.748, loss=41.123, backward_time=0.095, grad_norm=39.876, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.217e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:13:36,926 (trainer:737) INFO: 39epoch:train:9901-10000batch: iter_time=1.477e-04, forward_time=0.105, loss_ctc=36.739, loss_att=48.565, acc=0.767, loss=45.017, backward_time=0.096, grad_norm=38.678, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.217e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:13:43,995 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 05:14:03,322 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 05:14:07,193 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 05:14:07,193 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 05:14:07,197 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 05:18:52,068 (trainer:737) INFO: 39epoch:train:10001-10100batch: iter_time=2.724, forward_time=0.106, loss_ctc=46.547, loss_att=52.840, acc=0.733, loss=50.952, backward_time=0.096, grad_norm=48.404, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.217e-04, train_time=3.151 +[gpuc04:0/16] 2024-01-17 05:19:34,027 (trainer:737) INFO: 39epoch:train:10101-10200batch: iter_time=1.870e-04, forward_time=0.107, loss_ctc=40.435, loss_att=41.805, acc=0.766, loss=41.394, backward_time=0.096, grad_norm=45.564, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.216e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 05:20:15,738 (trainer:737) INFO: 39epoch:train:10201-10300batch: iter_time=1.856e-04, forward_time=0.106, loss_ctc=47.784, loss_att=60.623, acc=0.732, loss=56.771, backward_time=0.097, grad_norm=54.577, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.216e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:20:57,216 (trainer:737) INFO: 39epoch:train:10301-10400batch: iter_time=2.309e-04, forward_time=0.105, loss_ctc=49.944, loss_att=51.065, acc=0.734, loss=50.728, backward_time=0.096, grad_norm=52.123, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.216e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:21:38,945 (trainer:737) INFO: 39epoch:train:10401-10500batch: iter_time=1.703e-04, forward_time=0.105, loss_ctc=38.466, loss_att=42.491, acc=0.751, loss=41.284, backward_time=0.096, grad_norm=39.096, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.215e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:22:20,569 (trainer:737) INFO: 39epoch:train:10501-10600batch: iter_time=1.487e-04, forward_time=0.106, loss_ctc=45.092, loss_att=58.030, acc=0.707, loss=54.149, backward_time=0.097, grad_norm=48.692, clip=100.000, loss_scale=1.527e+34, optim_step_time=0.039, optim0_lr0=3.215e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:23:02,141 (trainer:737) INFO: 39epoch:train:10601-10700batch: iter_time=1.781e-04, forward_time=0.105, loss_ctc=35.958, loss_att=47.244, acc=0.759, loss=43.858, backward_time=0.096, grad_norm=40.024, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.215e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:23:44,100 (trainer:737) INFO: 39epoch:train:10701-10800batch: iter_time=1.662e-04, forward_time=0.106, loss_ctc=41.497, loss_att=50.369, acc=0.742, loss=47.708, backward_time=0.096, grad_norm=44.323, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.215e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 05:24:25,766 (trainer:737) INFO: 39epoch:train:10801-10900batch: iter_time=1.922e-04, forward_time=0.105, loss_ctc=44.086, loss_att=40.537, acc=0.742, loss=41.601, backward_time=0.095, grad_norm=44.186, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.214e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:25:07,346 (trainer:737) INFO: 39epoch:train:10901-11000batch: iter_time=1.629e-04, forward_time=0.105, loss_ctc=42.674, loss_att=50.414, acc=0.743, loss=48.092, backward_time=0.096, grad_norm=49.268, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.214e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:25:48,704 (trainer:737) INFO: 39epoch:train:11001-11100batch: iter_time=1.819e-04, forward_time=0.104, loss_ctc=35.084, loss_att=37.363, acc=0.760, loss=36.679, backward_time=0.095, grad_norm=36.391, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.214e-04, train_time=0.413 +[gpuc04:0/16] 2024-01-17 05:26:30,183 (trainer:737) INFO: 39epoch:train:11101-11200batch: iter_time=1.763e-04, forward_time=0.105, loss_ctc=35.721, loss_att=49.429, acc=0.730, loss=45.316, backward_time=0.095, grad_norm=38.551, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.214e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:26:56,770 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 05:27:16,476 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 05:27:20,098 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 05:27:20,098 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 05:27:20,101 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 05:31:31,662 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 05:31:45,858 (trainer:737) INFO: 39epoch:train:11201-11300batch: iter_time=2.654, forward_time=0.126, loss_ctc=40.422, loss_att=41.896, acc=0.771, loss=41.454, backward_time=0.099, grad_norm=41.389, clip=100.000, loss_scale=1.720e+34, optim_step_time=0.039, optim0_lr0=3.213e-04, train_time=3.156 +[gpuc04:0/16] 2024-01-17 05:32:27,528 (trainer:737) INFO: 39epoch:train:11301-11400batch: iter_time=1.602e-04, forward_time=0.104, loss_ctc=40.355, loss_att=51.558, acc=0.749, loss=48.197, backward_time=0.097, grad_norm=48.684, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.213e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:33:09,263 (trainer:737) INFO: 39epoch:train:11401-11500batch: iter_time=1.600e-04, forward_time=0.105, loss_ctc=42.525, loss_att=45.890, acc=0.770, loss=44.880, backward_time=0.097, grad_norm=44.475, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.213e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:33:51,283 (trainer:737) INFO: 39epoch:train:11501-11600batch: iter_time=1.582e-04, forward_time=0.105, loss_ctc=52.871, loss_att=59.382, acc=0.743, loss=57.429, backward_time=0.098, grad_norm=55.762, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.212e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 05:34:33,460 (trainer:737) INFO: 39epoch:train:11601-11700batch: iter_time=1.491e-04, forward_time=0.105, loss_ctc=46.811, loss_att=53.378, acc=0.745, loss=51.408, backward_time=0.097, grad_norm=49.107, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.212e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 05:35:15,314 (trainer:737) INFO: 39epoch:train:11701-11800batch: iter_time=1.558e-04, forward_time=0.104, loss_ctc=39.031, loss_att=46.295, acc=0.739, loss=44.116, backward_time=0.097, grad_norm=41.390, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.212e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 05:35:56,967 (trainer:737) INFO: 39epoch:train:11801-11900batch: iter_time=1.371e-04, forward_time=0.105, loss_ctc=42.065, loss_att=55.325, acc=0.737, loss=51.347, backward_time=0.097, grad_norm=43.453, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.212e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:36:39,113 (trainer:737) INFO: 39epoch:train:11901-12000batch: iter_time=1.369e-04, forward_time=0.106, loss_ctc=41.378, loss_att=52.356, acc=0.758, loss=49.062, backward_time=0.098, grad_norm=42.873, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.211e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 05:37:20,582 (trainer:737) INFO: 39epoch:train:12001-12100batch: iter_time=1.280e-04, forward_time=0.105, loss_ctc=36.563, loss_att=38.308, acc=0.749, loss=37.785, backward_time=0.097, grad_norm=38.145, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.211e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 05:38:02,762 (trainer:737) INFO: 39epoch:train:12101-12200batch: iter_time=1.108e-04, forward_time=0.108, loss_ctc=48.114, loss_att=50.436, acc=0.748, loss=49.739, backward_time=0.097, grad_norm=56.282, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.211e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 05:38:44,301 (trainer:737) INFO: 39epoch:train:12201-12300batch: iter_time=1.088e-04, forward_time=0.105, loss_ctc=35.463, loss_att=38.447, acc=0.768, loss=37.552, backward_time=0.097, grad_norm=40.437, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.211e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:39:27,539 (trainer:737) INFO: 39epoch:train:12301-12400batch: iter_time=1.138e-04, forward_time=0.104, loss_ctc=36.951, loss_att=42.634, acc=0.747, loss=40.929, backward_time=0.096, grad_norm=39.320, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.210e-04, train_time=0.432 +[gpuc04:0/16] 2024-01-17 05:40:09,414 (trainer:737) INFO: 39epoch:train:12401-12500batch: iter_time=1.115e-04, forward_time=0.105, loss_ctc=36.480, loss_att=47.060, acc=0.771, loss=43.886, backward_time=0.097, grad_norm=38.795, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.210e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 05:40:21,130 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 05:40:40,388 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 05:40:44,033 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 05:40:44,033 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 05:40:44,037 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 05:46:22,402 (trainer:737) INFO: 39epoch:train:12501-12600batch: iter_time=3.306, forward_time=0.108, loss_ctc=46.719, loss_att=53.497, acc=0.731, loss=51.464, backward_time=0.096, grad_norm=46.944, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.210e-04, train_time=3.730 +[gpuc04:0/16] 2024-01-17 05:47:04,109 (trainer:737) INFO: 39epoch:train:12601-12700batch: iter_time=1.227e-04, forward_time=0.104, loss_ctc=40.185, loss_att=41.494, acc=0.768, loss=41.101, backward_time=0.097, grad_norm=43.788, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.209e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 05:47:45,883 (trainer:737) INFO: 39epoch:train:12701-12800batch: iter_time=1.391e-04, forward_time=0.105, loss_ctc=47.186, loss_att=61.059, acc=0.733, loss=56.897, backward_time=0.098, grad_norm=54.833, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.209e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 05:48:27,441 (trainer:737) INFO: 39epoch:train:12801-12900batch: iter_time=1.494e-04, forward_time=0.105, loss_ctc=49.175, loss_att=51.319, acc=0.734, loss=50.676, backward_time=0.096, grad_norm=50.621, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.209e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:49:08,943 (trainer:737) INFO: 39epoch:train:12901-13000batch: iter_time=1.251e-04, forward_time=0.105, loss_ctc=38.429, loss_att=41.715, acc=0.754, loss=40.729, backward_time=0.097, grad_norm=40.907, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.209e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:49:50,518 (trainer:737) INFO: 39epoch:train:13001-13100batch: iter_time=1.201e-04, forward_time=0.105, loss_ctc=45.154, loss_att=56.949, acc=0.711, loss=53.411, backward_time=0.097, grad_norm=47.510, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.208e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:50:32,110 (trainer:737) INFO: 39epoch:train:13101-13200batch: iter_time=1.219e-04, forward_time=0.105, loss_ctc=35.399, loss_att=46.959, acc=0.759, loss=43.491, backward_time=0.097, grad_norm=38.194, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.208e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:51:14,404 (trainer:737) INFO: 39epoch:train:13201-13300batch: iter_time=1.178e-04, forward_time=0.105, loss_ctc=41.420, loss_att=50.148, acc=0.741, loss=47.530, backward_time=0.098, grad_norm=43.141, clip=100.000, loss_scale=1.392e+34, optim_step_time=0.039, optim0_lr0=3.208e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 05:51:56,483 (trainer:737) INFO: 39epoch:train:13301-13400batch: iter_time=1.113e-04, forward_time=0.103, loss_ctc=44.667, loss_att=40.415, acc=0.743, loss=41.691, backward_time=0.095, grad_norm=47.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.207e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 05:52:38,109 (trainer:737) INFO: 39epoch:train:13401-13500batch: iter_time=1.126e-04, forward_time=0.103, loss_ctc=42.716, loss_att=50.586, acc=0.744, loss=48.225, backward_time=0.096, grad_norm=48.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.207e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:53:19,764 (trainer:737) INFO: 39epoch:train:13501-13600batch: iter_time=1.168e-04, forward_time=0.103, loss_ctc=34.744, loss_att=36.976, acc=0.759, loss=36.306, backward_time=0.095, grad_norm=38.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.207e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 05:54:01,247 (trainer:737) INFO: 39epoch:train:13601-13700batch: iter_time=1.089e-04, forward_time=0.104, loss_ctc=35.749, loss_att=49.491, acc=0.729, loss=45.368, backward_time=0.096, grad_norm=39.277, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.207e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 05:54:33,133 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 05:54:52,484 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 05:54:56,225 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 05:54:56,226 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 05:54:56,229 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 05:59:12,326 (trainer:737) INFO: 39epoch:train:13701-13800batch: iter_time=2.684, forward_time=0.109, loss_ctc=40.329, loss_att=40.645, acc=0.775, loss=40.550, backward_time=0.097, grad_norm=41.154, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.206e-04, train_time=3.111 +[gpuc04:0/16] 2024-01-17 05:59:54,664 (trainer:737) INFO: 39epoch:train:13801-13900batch: iter_time=2.703e-04, forward_time=0.107, loss_ctc=39.644, loss_att=49.461, acc=0.738, loss=46.516, backward_time=0.098, grad_norm=45.820, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.206e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 06:00:36,491 (trainer:737) INFO: 39epoch:train:13901-14000batch: iter_time=2.231e-04, forward_time=0.106, loss_ctc=43.386, loss_att=45.418, acc=0.764, loss=44.809, backward_time=0.098, grad_norm=45.056, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.206e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 06:01:18,141 (trainer:737) INFO: 39epoch:train:14001-14100batch: iter_time=1.756e-04, forward_time=0.105, loss_ctc=54.386, loss_att=61.396, acc=0.732, loss=59.293, backward_time=0.097, grad_norm=56.126, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.206e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 06:01:59,643 (trainer:737) INFO: 39epoch:train:14101-14200batch: iter_time=2.181e-04, forward_time=0.105, loss_ctc=45.702, loss_att=50.199, acc=0.739, loss=48.850, backward_time=0.096, grad_norm=50.192, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.205e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 06:02:41,455 (trainer:737) INFO: 39epoch:train:14201-14300batch: iter_time=2.147e-04, forward_time=0.105, loss_ctc=39.241, loss_att=46.414, acc=0.735, loss=44.262, backward_time=0.096, grad_norm=40.929, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.205e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 06:03:23,008 (trainer:737) INFO: 39epoch:train:14301-14400batch: iter_time=2.331e-04, forward_time=0.105, loss_ctc=41.780, loss_att=55.378, acc=0.728, loss=51.299, backward_time=0.097, grad_norm=44.209, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.205e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 06:04:04,910 (trainer:737) INFO: 39epoch:train:14401-14500batch: iter_time=2.058e-04, forward_time=0.106, loss_ctc=41.555, loss_att=51.728, acc=0.752, loss=48.676, backward_time=0.097, grad_norm=43.276, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.204e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 06:04:46,353 (trainer:737) INFO: 39epoch:train:14501-14600batch: iter_time=2.310e-04, forward_time=0.104, loss_ctc=36.295, loss_att=38.865, acc=0.737, loss=38.094, backward_time=0.096, grad_norm=38.817, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.204e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 06:05:27,846 (trainer:737) INFO: 39epoch:train:14601-14700batch: iter_time=1.958e-04, forward_time=0.104, loss_ctc=48.667, loss_att=50.624, acc=0.742, loss=50.037, backward_time=0.096, grad_norm=55.885, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.204e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 06:06:11,760 (trainer:737) INFO: 39epoch:train:14701-14800batch: iter_time=1.799e-04, forward_time=0.104, loss_ctc=35.258, loss_att=37.510, acc=0.759, loss=36.834, backward_time=0.096, grad_norm=38.111, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.204e-04, train_time=0.439 +[gpuc04:0/16] 2024-01-17 06:06:53,492 (trainer:737) INFO: 39epoch:train:14801-14900batch: iter_time=1.890e-04, forward_time=0.104, loss_ctc=36.767, loss_att=41.965, acc=0.745, loss=40.406, backward_time=0.096, grad_norm=39.172, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.203e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 06:07:35,030 (trainer:737) INFO: 39epoch:train:14901-15000batch: iter_time=1.831e-04, forward_time=0.104, loss_ctc=36.472, loss_att=48.002, acc=0.757, loss=44.543, backward_time=0.097, grad_norm=39.619, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.203e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 06:27:39,336 (trainer:343) INFO: 39epoch results: [train] iter_time=0.224, forward_time=0.106, loss_ctc=42.351, loss_att=48.381, acc=0.746, loss=46.572, backward_time=0.097, grad_norm=45.154, clip=100.000, loss_scale=1.815e+34, optim_step_time=0.039, optim0_lr0=3.224e-04, train_time=0.650, time=2 hours, 42 minutes and 52.81 seconds, total_count=585000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=51.773, cer_ctc=0.261, loss_att=55.145, acc=0.590, cer=0.372, wer=1.000, loss=54.133, time=19 minutes and 50.76 seconds, total_count=182169, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 06:27:44,200 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 06:27:44,208 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/34epoch.pth +[gpuc04:0/16] 2024-01-17 06:27:44,208 (trainer:272) INFO: 40/45epoch started. Estimated time to finish: 18 hours, 4 minutes and 48.01 seconds +[gpuc04:0/16] 2024-01-17 06:27:44,217 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 06:28:03,016 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 06:28:06,459 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 06:28:06,459 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 06:28:06,462 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 06:32:39,255 (trainer:737) INFO: 40epoch:train:1-100batch: iter_time=2.528, forward_time=0.108, loss_ctc=45.041, loss_att=42.798, acc=0.765, loss=43.471, backward_time=0.097, grad_norm=45.143, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.203e-04, train_time=2.950 +[gpuc04:0/16] 2024-01-17 06:33:23,031 (trainer:737) INFO: 40epoch:train:101-200batch: iter_time=1.380e-04, forward_time=0.116, loss_ctc=42.313, loss_att=57.449, acc=0.721, loss=52.908, backward_time=0.105, grad_norm=53.721, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.203e-04, train_time=0.438 +[gpuc04:0/16] 2024-01-17 06:34:05,312 (trainer:737) INFO: 40epoch:train:201-300batch: iter_time=1.282e-04, forward_time=0.108, loss_ctc=36.310, loss_att=37.797, acc=0.770, loss=37.351, backward_time=0.100, grad_norm=40.059, clip=100.000, loss_scale=2.783e+34, optim_step_time=0.039, optim0_lr0=3.202e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 06:34:47,225 (trainer:737) INFO: 40epoch:train:301-400batch: iter_time=1.311e-04, forward_time=0.107, loss_ctc=56.689, loss_att=62.337, acc=0.710, loss=60.642, backward_time=0.098, grad_norm=58.267, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.202e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 06:35:29,403 (trainer:737) INFO: 40epoch:train:401-500batch: iter_time=1.271e-04, forward_time=0.108, loss_ctc=50.109, loss_att=57.470, acc=0.718, loss=55.262, backward_time=0.097, grad_norm=52.808, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=3.202e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 06:35:44,501 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 06:36:11,593 (trainer:737) INFO: 40epoch:train:501-600batch: iter_time=1.254e-04, forward_time=0.106, loss_ctc=42.573, loss_att=49.140, acc=0.770, loss=47.170, backward_time=0.098, grad_norm=43.364, clip=100.000, loss_scale=2.790e+34, optim_step_time=0.039, optim0_lr0=3.201e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 06:36:56,028 (trainer:737) INFO: 40epoch:train:601-700batch: iter_time=1.256e-04, forward_time=0.117, loss_ctc=47.440, loss_att=54.665, acc=0.743, loss=52.498, backward_time=0.103, grad_norm=52.989, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.201e-04, train_time=0.444 +[gpuc04:0/16] 2024-01-17 06:37:39,008 (trainer:737) INFO: 40epoch:train:701-800batch: iter_time=1.237e-04, forward_time=0.115, loss_ctc=42.118, loss_att=49.046, acc=0.746, loss=46.968, backward_time=0.100, grad_norm=43.655, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.201e-04, train_time=0.430 +[gpuc04:0/16] 2024-01-17 06:38:23,271 (trainer:737) INFO: 40epoch:train:801-900batch: iter_time=1.378e-04, forward_time=0.105, loss_ctc=43.605, loss_att=44.666, acc=0.750, loss=44.348, backward_time=0.097, grad_norm=43.976, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.201e-04, train_time=0.442 +[gpuc04:0/16] 2024-01-17 06:39:05,599 (trainer:737) INFO: 40epoch:train:901-1000batch: iter_time=1.423e-04, forward_time=0.107, loss_ctc=52.138, loss_att=60.745, acc=0.721, loss=58.163, backward_time=0.098, grad_norm=57.410, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.200e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 06:39:50,768 (trainer:737) INFO: 40epoch:train:1001-1100batch: iter_time=1.292e-04, forward_time=0.107, loss_ctc=48.152, loss_att=54.223, acc=0.738, loss=52.402, backward_time=0.098, grad_norm=52.911, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.200e-04, train_time=0.451 +[gpuc04:0/16] 2024-01-17 06:40:35,155 (trainer:737) INFO: 40epoch:train:1101-1200batch: iter_time=1.174e-04, forward_time=0.115, loss_ctc=46.738, loss_att=51.885, acc=0.742, loss=50.341, backward_time=0.102, grad_norm=46.523, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.200e-04, train_time=0.443 +[gpuc04:0/16] 2024-01-17 06:41:16,501 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 06:41:35,792 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 06:41:39,421 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 06:41:39,421 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 06:41:39,425 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 06:47:24,224 (trainer:737) INFO: 40epoch:train:1201-1300batch: iter_time=3.658, forward_time=0.105, loss_ctc=40.858, loss_att=45.504, acc=0.754, loss=44.110, backward_time=0.096, grad_norm=42.683, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.200e-04, train_time=4.091 +[gpuc04:0/16] 2024-01-17 06:48:05,934 (trainer:737) INFO: 40epoch:train:1301-1400batch: iter_time=1.376e-04, forward_time=0.106, loss_ctc=41.152, loss_att=52.964, acc=0.735, loss=49.421, backward_time=0.097, grad_norm=45.713, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.199e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 06:48:48,024 (trainer:737) INFO: 40epoch:train:1401-1500batch: iter_time=1.245e-04, forward_time=0.104, loss_ctc=38.221, loss_att=44.485, acc=0.736, loss=42.606, backward_time=0.095, grad_norm=47.418, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.199e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 06:49:29,717 (trainer:737) INFO: 40epoch:train:1501-1600batch: iter_time=1.460e-04, forward_time=0.105, loss_ctc=40.459, loss_att=44.402, acc=0.739, loss=43.219, backward_time=0.095, grad_norm=42.633, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.199e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 06:49:39,309 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 06:50:11,618 (trainer:737) INFO: 40epoch:train:1601-1700batch: iter_time=1.507e-04, forward_time=0.104, loss_ctc=47.621, loss_att=58.579, acc=0.722, loss=55.292, backward_time=0.096, grad_norm=54.356, clip=100.000, loss_scale=1.269e+34, optim_step_time=0.038, optim0_lr0=3.198e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 06:50:53,695 (trainer:737) INFO: 40epoch:train:1701-1800batch: iter_time=1.407e-04, forward_time=0.108, loss_ctc=51.024, loss_att=52.024, acc=0.729, loss=51.724, backward_time=0.096, grad_norm=51.930, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.198e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 06:51:35,423 (trainer:737) INFO: 40epoch:train:1801-1900batch: iter_time=1.428e-04, forward_time=0.106, loss_ctc=46.818, loss_att=53.378, acc=0.749, loss=51.410, backward_time=0.096, grad_norm=48.585, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.198e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 06:52:18,091 (trainer:737) INFO: 40epoch:train:1901-2000batch: iter_time=1.390e-04, forward_time=0.105, loss_ctc=40.661, loss_att=47.078, acc=0.748, loss=45.153, backward_time=0.096, grad_norm=43.194, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.198e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-17 06:52:59,583 (trainer:737) INFO: 40epoch:train:2001-2100batch: iter_time=1.589e-04, forward_time=0.106, loss_ctc=40.844, loss_att=42.836, acc=0.754, loss=42.238, backward_time=0.096, grad_norm=43.254, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.197e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 06:53:41,163 (trainer:737) INFO: 40epoch:train:2101-2200batch: iter_time=1.276e-04, forward_time=0.105, loss_ctc=44.919, loss_att=50.482, acc=0.740, loss=48.813, backward_time=0.097, grad_norm=47.467, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.197e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 06:54:22,691 (trainer:737) INFO: 40epoch:train:2201-2300batch: iter_time=1.426e-04, forward_time=0.106, loss_ctc=49.256, loss_att=55.408, acc=0.715, loss=53.562, backward_time=0.096, grad_norm=56.015, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.197e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 06:55:04,400 (trainer:737) INFO: 40epoch:train:2301-2400batch: iter_time=1.303e-04, forward_time=0.107, loss_ctc=47.832, loss_att=56.323, acc=0.733, loss=53.776, backward_time=0.097, grad_norm=50.108, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.197e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 06:55:46,299 (trainer:737) INFO: 40epoch:train:2401-2500batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=40.515, loss_att=48.751, acc=0.747, loss=46.281, backward_time=0.096, grad_norm=43.636, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.196e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 06:55:52,054 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 06:56:11,673 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 06:56:15,275 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 06:56:15,275 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 06:56:15,279 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 07:00:57,545 (trainer:737) INFO: 40epoch:train:2501-2600batch: iter_time=2.604, forward_time=0.105, loss_ctc=42.836, loss_att=40.292, acc=0.762, loss=41.055, backward_time=0.097, grad_norm=41.329, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.196e-04, train_time=3.112 +[gpuc04:0/16] 2024-01-17 07:01:39,159 (trainer:737) INFO: 40epoch:train:2601-2700batch: iter_time=1.798e-04, forward_time=0.105, loss_ctc=39.501, loss_att=51.779, acc=0.720, loss=48.096, backward_time=0.097, grad_norm=48.345, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.196e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:02:20,597 (trainer:737) INFO: 40epoch:train:2701-2800batch: iter_time=1.838e-04, forward_time=0.105, loss_ctc=35.764, loss_att=36.600, acc=0.769, loss=36.349, backward_time=0.096, grad_norm=40.129, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.195e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 07:03:02,304 (trainer:737) INFO: 40epoch:train:2801-2900batch: iter_time=1.683e-04, forward_time=0.106, loss_ctc=53.038, loss_att=61.442, acc=0.705, loss=58.921, backward_time=0.097, grad_norm=57.370, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.195e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:03:44,339 (trainer:737) INFO: 40epoch:train:2901-3000batch: iter_time=1.893e-04, forward_time=0.106, loss_ctc=47.615, loss_att=53.940, acc=0.721, loss=52.042, backward_time=0.096, grad_norm=50.278, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.195e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:04:26,509 (trainer:737) INFO: 40epoch:train:3001-3100batch: iter_time=1.856e-04, forward_time=0.106, loss_ctc=41.451, loss_att=48.042, acc=0.764, loss=46.065, backward_time=0.097, grad_norm=41.457, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.195e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 07:05:08,395 (trainer:737) INFO: 40epoch:train:3101-3200batch: iter_time=1.641e-04, forward_time=0.105, loss_ctc=45.544, loss_att=52.075, acc=0.742, loss=50.115, backward_time=0.097, grad_norm=46.787, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.194e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:05:50,254 (trainer:737) INFO: 40epoch:train:3201-3300batch: iter_time=1.646e-04, forward_time=0.106, loss_ctc=41.351, loss_att=47.997, acc=0.745, loss=46.003, backward_time=0.096, grad_norm=43.440, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.194e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 07:06:32,198 (trainer:737) INFO: 40epoch:train:3301-3400batch: iter_time=1.866e-04, forward_time=0.105, loss_ctc=41.172, loss_att=42.818, acc=0.748, loss=42.324, backward_time=0.096, grad_norm=43.736, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.194e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:07:13,946 (trainer:737) INFO: 40epoch:train:3401-3500batch: iter_time=1.744e-04, forward_time=0.106, loss_ctc=50.565, loss_att=58.027, acc=0.724, loss=55.788, backward_time=0.097, grad_norm=57.585, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.194e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:07:57,187 (trainer:737) INFO: 40epoch:train:3501-3600batch: iter_time=2.418e-04, forward_time=0.107, loss_ctc=46.679, loss_att=51.771, acc=0.730, loss=50.243, backward_time=0.097, grad_norm=53.104, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.193e-04, train_time=0.432 +[gpuc04:0/16] 2024-01-17 07:08:39,098 (trainer:737) INFO: 40epoch:train:3601-3700batch: iter_time=1.779e-04, forward_time=0.109, loss_ctc=45.834, loss_att=50.954, acc=0.745, loss=49.418, backward_time=0.097, grad_norm=45.007, clip=100.000, loss_scale=1.838e+34, optim_step_time=0.039, optim0_lr0=3.193e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:09:07,149 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 07:09:26,802 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 07:09:30,669 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 07:09:30,669 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 07:09:30,672 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 07:13:57,383 (trainer:737) INFO: 40epoch:train:3701-3800batch: iter_time=2.696, forward_time=0.132, loss_ctc=39.720, loss_att=43.463, acc=0.754, loss=42.340, backward_time=0.099, grad_norm=42.354, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.193e-04, train_time=3.183 +[gpuc04:0/16] 2024-01-17 07:14:39,642 (trainer:737) INFO: 40epoch:train:3801-3900batch: iter_time=1.739e-04, forward_time=0.105, loss_ctc=41.023, loss_att=50.687, acc=0.742, loss=47.788, backward_time=0.097, grad_norm=46.817, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.192e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 07:15:21,222 (trainer:737) INFO: 40epoch:train:3901-4000batch: iter_time=1.957e-04, forward_time=0.104, loss_ctc=38.197, loss_att=43.822, acc=0.736, loss=42.135, backward_time=0.095, grad_norm=46.272, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.192e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:16:02,873 (trainer:737) INFO: 40epoch:train:4001-4100batch: iter_time=1.582e-04, forward_time=0.104, loss_ctc=40.282, loss_att=44.221, acc=0.741, loss=43.040, backward_time=0.096, grad_norm=42.147, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.192e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:16:44,779 (trainer:737) INFO: 40epoch:train:4101-4200batch: iter_time=1.734e-04, forward_time=0.106, loss_ctc=45.391, loss_att=57.960, acc=0.726, loss=54.189, backward_time=0.096, grad_norm=53.490, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.192e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:17:26,813 (trainer:737) INFO: 40epoch:train:4201-4300batch: iter_time=1.767e-04, forward_time=0.106, loss_ctc=50.058, loss_att=50.999, acc=0.731, loss=50.717, backward_time=0.096, grad_norm=51.389, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.191e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:18:08,547 (trainer:737) INFO: 40epoch:train:4301-4400batch: iter_time=1.619e-04, forward_time=0.106, loss_ctc=45.829, loss_att=52.589, acc=0.752, loss=50.561, backward_time=0.097, grad_norm=45.840, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.191e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:18:50,245 (trainer:737) INFO: 40epoch:train:4401-4500batch: iter_time=1.690e-04, forward_time=0.105, loss_ctc=40.118, loss_att=46.078, acc=0.751, loss=44.290, backward_time=0.096, grad_norm=40.473, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.191e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:19:32,242 (trainer:737) INFO: 40epoch:train:4501-4600batch: iter_time=1.556e-04, forward_time=0.105, loss_ctc=40.439, loss_att=42.299, acc=0.756, loss=41.741, backward_time=0.096, grad_norm=41.780, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.191e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:20:14,479 (trainer:737) INFO: 40epoch:train:4601-4700batch: iter_time=1.633e-04, forward_time=0.105, loss_ctc=44.028, loss_att=50.113, acc=0.741, loss=48.287, backward_time=0.097, grad_norm=46.786, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.190e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 07:20:56,547 (trainer:737) INFO: 40epoch:train:4701-4800batch: iter_time=1.521e-04, forward_time=0.105, loss_ctc=48.841, loss_att=53.863, acc=0.717, loss=52.356, backward_time=0.096, grad_norm=55.055, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.190e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:21:38,628 (trainer:737) INFO: 40epoch:train:4801-4900batch: iter_time=1.446e-04, forward_time=0.106, loss_ctc=47.797, loss_att=55.265, acc=0.734, loss=53.025, backward_time=0.097, grad_norm=53.726, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.190e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 07:22:20,481 (trainer:737) INFO: 40epoch:train:4901-5000batch: iter_time=1.477e-04, forward_time=0.105, loss_ctc=39.883, loss_att=48.578, acc=0.749, loss=45.970, backward_time=0.096, grad_norm=43.843, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.190e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 07:22:25,413 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 07:22:46,223 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 07:22:50,028 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 07:22:50,028 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 07:22:50,031 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 07:27:33,132 (trainer:737) INFO: 40epoch:train:5001-5100batch: iter_time=2.699, forward_time=0.105, loss_ctc=41.367, loss_att=41.920, acc=0.768, loss=41.754, backward_time=0.096, grad_norm=41.697, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.189e-04, train_time=3.126 +[gpuc04:0/16] 2024-01-17 07:28:14,975 (trainer:737) INFO: 40epoch:train:5101-5200batch: iter_time=1.344e-04, forward_time=0.105, loss_ctc=38.651, loss_att=53.099, acc=0.731, loss=48.764, backward_time=0.096, grad_norm=50.591, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.189e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 07:28:56,473 (trainer:737) INFO: 40epoch:train:5201-5300batch: iter_time=1.506e-04, forward_time=0.104, loss_ctc=35.684, loss_att=37.364, acc=0.773, loss=36.860, backward_time=0.095, grad_norm=38.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.189e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 07:29:38,295 (trainer:737) INFO: 40epoch:train:5301-5400batch: iter_time=1.617e-04, forward_time=0.105, loss_ctc=51.523, loss_att=60.487, acc=0.717, loss=57.798, backward_time=0.096, grad_norm=54.796, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.188e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 07:30:20,456 (trainer:737) INFO: 40epoch:train:5401-5500batch: iter_time=1.514e-04, forward_time=0.104, loss_ctc=46.813, loss_att=56.143, acc=0.724, loss=53.344, backward_time=0.096, grad_norm=49.441, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.188e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 07:31:02,254 (trainer:737) INFO: 40epoch:train:5501-5600batch: iter_time=1.508e-04, forward_time=0.105, loss_ctc=41.164, loss_att=48.138, acc=0.774, loss=46.046, backward_time=0.097, grad_norm=43.539, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.188e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 07:31:41,498 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 07:31:44,431 (trainer:737) INFO: 40epoch:train:5601-5700batch: iter_time=1.569e-04, forward_time=0.104, loss_ctc=45.202, loss_att=53.916, acc=0.748, loss=51.302, backward_time=0.096, grad_norm=51.125, clip=100.000, loss_scale=3.524e+34, optim_step_time=0.038, optim0_lr0=3.188e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 07:32:26,107 (trainer:737) INFO: 40epoch:train:5701-5800batch: iter_time=1.553e-04, forward_time=0.104, loss_ctc=40.597, loss_att=47.883, acc=0.751, loss=45.697, backward_time=0.096, grad_norm=40.238, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.187e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:33:07,671 (trainer:737) INFO: 40epoch:train:5801-5900batch: iter_time=1.393e-04, forward_time=0.104, loss_ctc=40.821, loss_att=43.983, acc=0.756, loss=43.034, backward_time=0.096, grad_norm=42.676, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.187e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 07:33:49,713 (trainer:737) INFO: 40epoch:train:5901-6000batch: iter_time=1.433e-04, forward_time=0.104, loss_ctc=49.156, loss_att=59.090, acc=0.725, loss=56.110, backward_time=0.096, grad_norm=61.229, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.187e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:34:31,720 (trainer:737) INFO: 40epoch:train:6001-6100batch: iter_time=1.390e-04, forward_time=0.105, loss_ctc=46.396, loss_att=53.264, acc=0.742, loss=51.203, backward_time=0.097, grad_norm=50.652, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.187e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:35:13,417 (trainer:737) INFO: 40epoch:train:6101-6200batch: iter_time=1.521e-04, forward_time=0.105, loss_ctc=45.173, loss_att=50.640, acc=0.746, loss=49.000, backward_time=0.096, grad_norm=43.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.186e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:35:40,490 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 07:36:00,518 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 07:36:04,319 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 07:36:04,319 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 07:36:04,323 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 07:40:17,507 (trainer:737) INFO: 40epoch:train:6201-6300batch: iter_time=2.617, forward_time=0.105, loss_ctc=38.718, loss_att=43.902, acc=0.762, loss=42.347, backward_time=0.096, grad_norm=39.811, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.186e-04, train_time=3.041 +[gpuc04:0/16] 2024-01-17 07:40:59,405 (trainer:737) INFO: 40epoch:train:6301-6400batch: iter_time=1.615e-04, forward_time=0.105, loss_ctc=40.592, loss_att=50.272, acc=0.759, loss=47.368, backward_time=0.097, grad_norm=45.076, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.186e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:41:41,033 (trainer:737) INFO: 40epoch:train:6401-6500batch: iter_time=1.476e-04, forward_time=0.105, loss_ctc=37.976, loss_att=45.830, acc=0.743, loss=43.474, backward_time=0.095, grad_norm=46.151, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.185e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:42:22,700 (trainer:737) INFO: 40epoch:train:6501-6600batch: iter_time=1.630e-04, forward_time=0.106, loss_ctc=39.811, loss_att=43.696, acc=0.749, loss=42.530, backward_time=0.096, grad_norm=42.502, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.185e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:43:04,328 (trainer:737) INFO: 40epoch:train:6601-6700batch: iter_time=1.694e-04, forward_time=0.105, loss_ctc=45.206, loss_att=60.506, acc=0.729, loss=55.916, backward_time=0.096, grad_norm=52.746, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.185e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:43:46,060 (trainer:737) INFO: 40epoch:train:6701-6800batch: iter_time=1.705e-04, forward_time=0.106, loss_ctc=49.125, loss_att=50.242, acc=0.741, loss=49.907, backward_time=0.096, grad_norm=48.707, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.185e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:44:27,796 (trainer:737) INFO: 40epoch:train:6801-6900batch: iter_time=1.482e-04, forward_time=0.107, loss_ctc=45.241, loss_att=52.041, acc=0.759, loss=50.001, backward_time=0.096, grad_norm=46.242, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.184e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:45:09,768 (trainer:737) INFO: 40epoch:train:6901-7000batch: iter_time=1.477e-04, forward_time=0.106, loss_ctc=40.172, loss_att=48.502, acc=0.756, loss=46.003, backward_time=0.096, grad_norm=39.866, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.184e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:45:51,444 (trainer:737) INFO: 40epoch:train:7001-7100batch: iter_time=1.607e-04, forward_time=0.106, loss_ctc=40.308, loss_att=43.208, acc=0.761, loss=42.338, backward_time=0.096, grad_norm=42.284, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.184e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:46:33,499 (trainer:737) INFO: 40epoch:train:7101-7200batch: iter_time=1.290e-04, forward_time=0.108, loss_ctc=43.465, loss_att=50.535, acc=0.746, loss=48.414, backward_time=0.097, grad_norm=48.272, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.184e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 07:47:15,703 (trainer:737) INFO: 40epoch:train:7201-7300batch: iter_time=1.523e-04, forward_time=0.106, loss_ctc=48.776, loss_att=55.853, acc=0.726, loss=53.730, backward_time=0.096, grad_norm=58.124, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.183e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 07:47:57,626 (trainer:737) INFO: 40epoch:train:7301-7400batch: iter_time=1.468e-04, forward_time=0.106, loss_ctc=47.352, loss_att=55.897, acc=0.741, loss=53.334, backward_time=0.097, grad_norm=49.608, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.183e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:48:39,247 (trainer:737) INFO: 40epoch:train:7401-7500batch: iter_time=1.373e-04, forward_time=0.105, loss_ctc=39.480, loss_att=49.227, acc=0.749, loss=46.303, backward_time=0.096, grad_norm=42.494, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.183e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 07:48:44,199 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 07:49:03,422 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 07:49:06,977 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 07:49:06,977 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 07:49:06,980 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 07:53:43,723 (trainer:737) INFO: 40epoch:train:7501-7600batch: iter_time=2.620, forward_time=0.106, loss_ctc=41.048, loss_att=39.695, acc=0.776, loss=40.101, backward_time=0.097, grad_norm=39.239, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.182e-04, train_time=3.045 +[gpuc04:0/16] 2024-01-17 07:54:25,917 (trainer:737) INFO: 40epoch:train:7601-7700batch: iter_time=1.262e-04, forward_time=0.106, loss_ctc=38.617, loss_att=50.381, acc=0.740, loss=46.852, backward_time=0.096, grad_norm=49.534, clip=100.000, loss_scale=2.222e+34, optim_step_time=0.038, optim0_lr0=3.182e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 07:55:07,640 (trainer:737) INFO: 40epoch:train:7701-7800batch: iter_time=1.159e-04, forward_time=0.106, loss_ctc=35.367, loss_att=36.533, acc=0.775, loss=36.183, backward_time=0.096, grad_norm=38.073, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.182e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:55:49,888 (trainer:737) INFO: 40epoch:train:7801-7900batch: iter_time=1.376e-04, forward_time=0.107, loss_ctc=51.694, loss_att=60.070, acc=0.720, loss=57.557, backward_time=0.096, grad_norm=52.804, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.182e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 07:56:31,808 (trainer:737) INFO: 40epoch:train:7901-8000batch: iter_time=1.453e-04, forward_time=0.106, loss_ctc=46.735, loss_att=56.662, acc=0.722, loss=53.684, backward_time=0.096, grad_norm=48.605, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.181e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 07:56:35,120 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 07:57:13,895 (trainer:737) INFO: 40epoch:train:8001-8100batch: iter_time=1.376e-04, forward_time=0.106, loss_ctc=41.281, loss_att=47.665, acc=0.774, loss=45.749, backward_time=0.097, grad_norm=42.740, clip=100.000, loss_scale=2.224e+34, optim_step_time=0.038, optim0_lr0=3.181e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 07:57:56,279 (trainer:737) INFO: 40epoch:train:8101-8200batch: iter_time=1.534e-04, forward_time=0.106, loss_ctc=45.465, loss_att=54.526, acc=0.746, loss=51.808, backward_time=0.097, grad_norm=49.232, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.181e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 07:58:37,973 (trainer:737) INFO: 40epoch:train:8201-8300batch: iter_time=1.516e-04, forward_time=0.106, loss_ctc=40.439, loss_att=46.923, acc=0.755, loss=44.978, backward_time=0.096, grad_norm=41.657, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.181e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 07:59:19,633 (trainer:737) INFO: 40epoch:train:8301-8400batch: iter_time=1.416e-04, forward_time=0.106, loss_ctc=40.395, loss_att=43.017, acc=0.757, loss=42.230, backward_time=0.096, grad_norm=43.585, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.180e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:00:01,443 (trainer:737) INFO: 40epoch:train:8401-8500batch: iter_time=1.425e-04, forward_time=0.106, loss_ctc=49.183, loss_att=59.674, acc=0.726, loss=56.527, backward_time=0.096, grad_norm=59.624, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.180e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:00:43,292 (trainer:737) INFO: 40epoch:train:8501-8600batch: iter_time=1.352e-04, forward_time=0.106, loss_ctc=46.326, loss_att=52.964, acc=0.743, loss=50.973, backward_time=0.096, grad_norm=51.201, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.180e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:01:25,031 (trainer:737) INFO: 40epoch:train:8601-8700batch: iter_time=1.384e-04, forward_time=0.107, loss_ctc=44.823, loss_att=50.507, acc=0.749, loss=48.802, backward_time=0.096, grad_norm=42.868, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.180e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:01:49,757 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 08:02:09,237 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 08:02:12,914 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 08:02:12,914 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 08:02:12,917 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 08:06:35,797 (trainer:737) INFO: 40epoch:train:8701-8800batch: iter_time=2.688, forward_time=0.105, loss_ctc=38.362, loss_att=44.868, acc=0.758, loss=42.916, backward_time=0.096, grad_norm=40.206, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.179e-04, train_time=3.107 +[gpuc04:0/16] 2024-01-17 08:07:17,824 (trainer:737) INFO: 40epoch:train:8801-8900batch: iter_time=1.446e-04, forward_time=0.105, loss_ctc=40.226, loss_att=53.255, acc=0.739, loss=49.346, backward_time=0.096, grad_norm=45.395, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.179e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 08:07:59,254 (trainer:737) INFO: 40epoch:train:8901-9000batch: iter_time=1.502e-04, forward_time=0.104, loss_ctc=37.297, loss_att=43.949, acc=0.737, loss=41.953, backward_time=0.095, grad_norm=45.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.179e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 08:08:40,809 (trainer:737) INFO: 40epoch:train:9001-9100batch: iter_time=1.487e-04, forward_time=0.105, loss_ctc=39.623, loss_att=43.643, acc=0.743, loss=42.437, backward_time=0.095, grad_norm=42.189, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.178e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 08:09:22,725 (trainer:737) INFO: 40epoch:train:9101-9200batch: iter_time=1.654e-04, forward_time=0.106, loss_ctc=45.248, loss_att=58.552, acc=0.725, loss=54.561, backward_time=0.096, grad_norm=52.968, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.178e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 08:10:04,692 (trainer:737) INFO: 40epoch:train:9201-9300batch: iter_time=1.836e-04, forward_time=0.105, loss_ctc=49.361, loss_att=50.938, acc=0.734, loss=50.464, backward_time=0.096, grad_norm=48.629, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.178e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 08:10:46,346 (trainer:737) INFO: 40epoch:train:9301-9400batch: iter_time=1.507e-04, forward_time=0.105, loss_ctc=45.792, loss_att=53.017, acc=0.752, loss=50.850, backward_time=0.096, grad_norm=46.108, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.178e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:11:27,966 (trainer:737) INFO: 40epoch:train:9401-9500batch: iter_time=1.741e-04, forward_time=0.104, loss_ctc=40.158, loss_att=46.859, acc=0.750, loss=44.849, backward_time=0.096, grad_norm=39.442, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.177e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:12:09,557 (trainer:737) INFO: 40epoch:train:9501-9600batch: iter_time=1.734e-04, forward_time=0.104, loss_ctc=39.769, loss_att=42.485, acc=0.758, loss=41.670, backward_time=0.096, grad_norm=41.588, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.177e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:12:51,846 (trainer:737) INFO: 40epoch:train:9601-9700batch: iter_time=1.502e-04, forward_time=0.104, loss_ctc=42.921, loss_att=50.129, acc=0.743, loss=47.966, backward_time=0.096, grad_norm=46.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.177e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 08:13:33,617 (trainer:737) INFO: 40epoch:train:9701-9800batch: iter_time=1.615e-04, forward_time=0.103, loss_ctc=48.022, loss_att=55.385, acc=0.716, loss=53.176, backward_time=0.095, grad_norm=58.467, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.177e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:14:15,425 (trainer:737) INFO: 40epoch:train:9801-9900batch: iter_time=1.520e-04, forward_time=0.105, loss_ctc=47.227, loss_att=55.985, acc=0.733, loss=53.358, backward_time=0.097, grad_norm=48.051, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.176e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:14:57,364 (trainer:737) INFO: 40epoch:train:9901-10000batch: iter_time=1.457e-04, forward_time=0.103, loss_ctc=39.582, loss_att=48.667, acc=0.748, loss=45.942, backward_time=0.096, grad_norm=41.874, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.176e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 08:15:04,632 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 08:15:24,227 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 08:15:27,956 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 08:15:27,956 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 08:15:27,959 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 08:20:01,328 (trainer:737) INFO: 40epoch:train:10001-10100batch: iter_time=2.607, forward_time=0.104, loss_ctc=40.953, loss_att=40.751, acc=0.774, loss=40.812, backward_time=0.096, grad_norm=41.490, clip=100.000, loss_scale=3.988e+34, optim_step_time=0.039, optim0_lr0=3.176e-04, train_time=3.039 +[gpuc04:0/16] 2024-01-17 08:20:28,010 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 08:20:42,953 (trainer:737) INFO: 40epoch:train:10101-10200batch: iter_time=1.407e-04, forward_time=0.106, loss_ctc=38.318, loss_att=50.820, acc=0.741, loss=47.069, backward_time=0.097, grad_norm=48.796, clip=100.000, loss_scale=3.399e+34, optim_step_time=0.039, optim0_lr0=3.176e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:21:24,800 (trainer:737) INFO: 40epoch:train:10201-10300batch: iter_time=1.451e-04, forward_time=0.105, loss_ctc=35.087, loss_att=36.653, acc=0.776, loss=36.183, backward_time=0.096, grad_norm=38.455, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.175e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:22:06,556 (trainer:737) INFO: 40epoch:train:10301-10400batch: iter_time=1.640e-04, forward_time=0.105, loss_ctc=50.840, loss_att=59.476, acc=0.721, loss=56.885, backward_time=0.097, grad_norm=54.303, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.175e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:22:48,238 (trainer:737) INFO: 40epoch:train:10401-10500batch: iter_time=1.718e-04, forward_time=0.105, loss_ctc=46.134, loss_att=56.621, acc=0.722, loss=53.475, backward_time=0.097, grad_norm=49.166, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.175e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:23:30,393 (trainer:737) INFO: 40epoch:train:10501-10600batch: iter_time=1.746e-04, forward_time=0.107, loss_ctc=41.560, loss_att=47.949, acc=0.774, loss=46.032, backward_time=0.097, grad_norm=41.845, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.174e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 08:24:12,187 (trainer:737) INFO: 40epoch:train:10601-10700batch: iter_time=1.473e-04, forward_time=0.106, loss_ctc=44.479, loss_att=53.884, acc=0.748, loss=51.063, backward_time=0.097, grad_norm=47.502, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.174e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:24:54,245 (trainer:737) INFO: 40epoch:train:10701-10800batch: iter_time=1.607e-04, forward_time=0.106, loss_ctc=40.137, loss_att=46.815, acc=0.755, loss=44.812, backward_time=0.097, grad_norm=41.544, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.174e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 08:25:35,899 (trainer:737) INFO: 40epoch:train:10801-10900batch: iter_time=1.473e-04, forward_time=0.106, loss_ctc=39.930, loss_att=43.209, acc=0.757, loss=42.225, backward_time=0.097, grad_norm=41.279, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.174e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:26:18,009 (trainer:737) INFO: 40epoch:train:10901-11000batch: iter_time=1.739e-04, forward_time=0.106, loss_ctc=50.137, loss_att=61.319, acc=0.727, loss=57.965, backward_time=0.097, grad_norm=56.329, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.173e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 08:27:00,170 (trainer:737) INFO: 40epoch:train:11001-11100batch: iter_time=1.691e-04, forward_time=0.107, loss_ctc=45.369, loss_att=52.895, acc=0.743, loss=50.637, backward_time=0.097, grad_norm=50.113, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.173e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 08:27:42,359 (trainer:737) INFO: 40epoch:train:11101-11200batch: iter_time=1.949e-04, forward_time=0.110, loss_ctc=44.840, loss_att=50.979, acc=0.747, loss=49.138, backward_time=0.097, grad_norm=44.560, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.173e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 08:28:10,246 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 08:28:29,416 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 08:28:33,031 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 08:28:33,031 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 08:28:33,034 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 08:32:49,468 (trainer:737) INFO: 40epoch:train:11201-11300batch: iter_time=2.593, forward_time=0.105, loss_ctc=38.064, loss_att=44.295, acc=0.758, loss=42.426, backward_time=0.097, grad_norm=40.576, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.173e-04, train_time=3.071 +[gpuc04:0/16] 2024-01-17 08:33:31,240 (trainer:737) INFO: 40epoch:train:11301-11400batch: iter_time=1.412e-04, forward_time=0.106, loss_ctc=40.290, loss_att=52.490, acc=0.741, loss=48.830, backward_time=0.097, grad_norm=44.747, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.172e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:34:12,790 (trainer:737) INFO: 40epoch:train:11401-11500batch: iter_time=1.565e-04, forward_time=0.105, loss_ctc=37.085, loss_att=44.593, acc=0.737, loss=42.340, backward_time=0.096, grad_norm=46.106, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.172e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 08:34:54,618 (trainer:737) INFO: 40epoch:train:11501-11600batch: iter_time=1.414e-04, forward_time=0.104, loss_ctc=39.454, loss_att=43.276, acc=0.744, loss=42.129, backward_time=0.096, grad_norm=40.475, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.172e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:35:36,847 (trainer:737) INFO: 40epoch:train:11601-11700batch: iter_time=1.530e-04, forward_time=0.106, loss_ctc=44.665, loss_att=58.504, acc=0.726, loss=54.352, backward_time=0.096, grad_norm=52.602, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.172e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 08:36:18,609 (trainer:737) INFO: 40epoch:train:11701-11800batch: iter_time=1.675e-04, forward_time=0.106, loss_ctc=48.993, loss_att=50.414, acc=0.735, loss=49.988, backward_time=0.097, grad_norm=47.480, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.171e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:37:00,875 (trainer:737) INFO: 40epoch:train:11801-11900batch: iter_time=1.900e-04, forward_time=0.106, loss_ctc=45.410, loss_att=53.018, acc=0.752, loss=50.736, backward_time=0.096, grad_norm=48.393, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.171e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 08:37:42,516 (trainer:737) INFO: 40epoch:train:11901-12000batch: iter_time=1.841e-04, forward_time=0.105, loss_ctc=39.500, loss_att=46.590, acc=0.750, loss=44.463, backward_time=0.096, grad_norm=39.758, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.171e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:38:24,142 (trainer:737) INFO: 40epoch:train:12001-12100batch: iter_time=1.809e-04, forward_time=0.104, loss_ctc=39.861, loss_att=42.386, acc=0.758, loss=41.629, backward_time=0.096, grad_norm=40.451, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.170e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:38:48,669 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 08:39:05,775 (trainer:737) INFO: 40epoch:train:12101-12200batch: iter_time=1.560e-04, forward_time=0.105, loss_ctc=43.260, loss_att=50.084, acc=0.743, loss=48.037, backward_time=0.096, grad_norm=46.337, clip=100.000, loss_scale=1.647e+34, optim_step_time=0.038, optim0_lr0=3.170e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 08:39:47,325 (trainer:737) INFO: 40epoch:train:12201-12300batch: iter_time=1.940e-04, forward_time=0.104, loss_ctc=46.739, loss_att=54.158, acc=0.717, loss=51.932, backward_time=0.096, grad_norm=57.700, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.170e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 08:40:29,126 (trainer:737) INFO: 40epoch:train:12301-12400batch: iter_time=1.887e-04, forward_time=0.106, loss_ctc=46.781, loss_att=55.765, acc=0.735, loss=53.070, backward_time=0.097, grad_norm=50.045, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.170e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:41:10,663 (trainer:737) INFO: 40epoch:train:12401-12500batch: iter_time=1.409e-04, forward_time=0.104, loss_ctc=39.157, loss_att=48.647, acc=0.750, loss=45.800, backward_time=0.096, grad_norm=42.489, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.169e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 08:41:17,692 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 08:41:37,138 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 08:41:40,886 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 08:41:40,886 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 08:41:40,890 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 08:46:25,495 (trainer:737) INFO: 40epoch:train:12501-12600batch: iter_time=2.708, forward_time=0.105, loss_ctc=40.405, loss_att=40.773, acc=0.773, loss=40.663, backward_time=0.096, grad_norm=42.412, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.169e-04, train_time=3.148 +[gpuc04:0/16] 2024-01-17 08:47:07,168 (trainer:737) INFO: 40epoch:train:12601-12700batch: iter_time=1.581e-04, forward_time=0.105, loss_ctc=37.979, loss_att=51.051, acc=0.739, loss=47.130, backward_time=0.096, grad_norm=49.250, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.169e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:47:48,977 (trainer:737) INFO: 40epoch:train:12701-12800batch: iter_time=1.427e-04, forward_time=0.107, loss_ctc=35.409, loss_att=36.483, acc=0.775, loss=36.161, backward_time=0.096, grad_norm=39.012, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.169e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:48:30,960 (trainer:737) INFO: 40epoch:train:12801-12900batch: iter_time=1.667e-04, forward_time=0.105, loss_ctc=51.117, loss_att=59.296, acc=0.722, loss=56.842, backward_time=0.097, grad_norm=55.306, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.168e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 08:49:12,905 (trainer:737) INFO: 40epoch:train:12901-13000batch: iter_time=1.571e-04, forward_time=0.105, loss_ctc=45.455, loss_att=56.313, acc=0.723, loss=53.056, backward_time=0.096, grad_norm=48.007, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.168e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 08:49:54,753 (trainer:737) INFO: 40epoch:train:13001-13100batch: iter_time=1.916e-04, forward_time=0.107, loss_ctc=40.884, loss_att=47.957, acc=0.775, loss=45.835, backward_time=0.097, grad_norm=42.968, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.168e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:50:36,497 (trainer:737) INFO: 40epoch:train:13101-13200batch: iter_time=1.742e-04, forward_time=0.106, loss_ctc=44.370, loss_att=54.059, acc=0.747, loss=51.152, backward_time=0.097, grad_norm=46.346, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.168e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 08:51:18,394 (trainer:737) INFO: 40epoch:train:13201-13300batch: iter_time=1.818e-04, forward_time=0.105, loss_ctc=40.514, loss_att=46.894, acc=0.755, loss=44.980, backward_time=0.097, grad_norm=41.127, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.167e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 08:52:00,232 (trainer:737) INFO: 40epoch:train:13301-13400batch: iter_time=1.652e-04, forward_time=0.106, loss_ctc=40.201, loss_att=43.113, acc=0.758, loss=42.239, backward_time=0.097, grad_norm=42.206, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.167e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 08:52:42,436 (trainer:737) INFO: 40epoch:train:13401-13500batch: iter_time=1.709e-04, forward_time=0.107, loss_ctc=50.088, loss_att=59.840, acc=0.727, loss=56.914, backward_time=0.097, grad_norm=59.196, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.167e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 08:53:24,557 (trainer:737) INFO: 40epoch:train:13501-13600batch: iter_time=1.786e-04, forward_time=0.106, loss_ctc=45.610, loss_att=52.541, acc=0.742, loss=50.461, backward_time=0.097, grad_norm=47.890, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.167e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 08:54:06,832 (trainer:737) INFO: 40epoch:train:13601-13700batch: iter_time=1.572e-04, forward_time=0.107, loss_ctc=45.160, loss_att=50.863, acc=0.747, loss=49.152, backward_time=0.097, grad_norm=44.798, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.166e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 08:54:36,861 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 08:54:56,286 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 08:54:59,954 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 08:54:59,954 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 08:54:59,957 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 08:59:42,339 (trainer:737) INFO: 40epoch:train:13701-13800batch: iter_time=2.676, forward_time=0.106, loss_ctc=38.051, loss_att=44.283, acc=0.759, loss=42.413, backward_time=0.096, grad_norm=42.709, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.166e-04, train_time=3.355 +[gpuc04:0/16] 2024-01-17 09:00:24,094 (trainer:737) INFO: 40epoch:train:13801-13900batch: iter_time=1.440e-04, forward_time=0.105, loss_ctc=39.993, loss_att=51.787, acc=0.741, loss=48.249, backward_time=0.098, grad_norm=43.517, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.166e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 09:01:05,585 (trainer:737) INFO: 40epoch:train:13901-14000batch: iter_time=1.489e-04, forward_time=0.104, loss_ctc=36.829, loss_att=43.352, acc=0.741, loss=41.395, backward_time=0.096, grad_norm=45.021, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.165e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 09:01:47,543 (trainer:737) INFO: 40epoch:train:14001-14100batch: iter_time=1.855e-04, forward_time=0.105, loss_ctc=39.198, loss_att=43.422, acc=0.744, loss=42.155, backward_time=0.096, grad_norm=40.721, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.165e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 09:02:29,227 (trainer:737) INFO: 40epoch:train:14101-14200batch: iter_time=2.195e-04, forward_time=0.107, loss_ctc=44.452, loss_att=58.514, acc=0.726, loss=54.295, backward_time=0.097, grad_norm=52.107, clip=100.000, loss_scale=1.464e+34, optim_step_time=0.039, optim0_lr0=3.165e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 09:03:11,015 (trainer:737) INFO: 40epoch:train:14201-14300batch: iter_time=1.723e-04, forward_time=0.107, loss_ctc=48.554, loss_att=50.645, acc=0.736, loss=50.017, backward_time=0.097, grad_norm=48.823, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.165e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 09:03:52,850 (trainer:737) INFO: 40epoch:train:14301-14400batch: iter_time=1.723e-04, forward_time=0.106, loss_ctc=45.216, loss_att=52.683, acc=0.753, loss=50.443, backward_time=0.097, grad_norm=77.835, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.164e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 09:04:34,630 (trainer:737) INFO: 40epoch:train:14401-14500batch: iter_time=1.903e-04, forward_time=0.106, loss_ctc=39.833, loss_att=46.507, acc=0.750, loss=44.505, backward_time=0.097, grad_norm=39.456, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.164e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 09:05:16,630 (trainer:737) INFO: 40epoch:train:14501-14600batch: iter_time=1.859e-04, forward_time=0.107, loss_ctc=39.627, loss_att=41.865, acc=0.759, loss=41.194, backward_time=0.096, grad_norm=41.978, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.164e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:05:58,497 (trainer:737) INFO: 40epoch:train:14601-14700batch: iter_time=1.670e-04, forward_time=0.108, loss_ctc=43.126, loss_att=50.459, acc=0.743, loss=48.259, backward_time=0.097, grad_norm=45.682, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.164e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 09:06:40,134 (trainer:737) INFO: 40epoch:train:14701-14800batch: iter_time=1.940e-04, forward_time=0.106, loss_ctc=48.136, loss_att=54.280, acc=0.719, loss=52.437, backward_time=0.097, grad_norm=57.723, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.163e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 09:07:22,331 (trainer:737) INFO: 40epoch:train:14801-14900batch: iter_time=1.776e-04, forward_time=0.108, loss_ctc=46.693, loss_att=56.087, acc=0.734, loss=53.269, backward_time=0.097, grad_norm=49.347, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.163e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 09:08:04,505 (trainer:737) INFO: 40epoch:train:14901-15000batch: iter_time=1.369e-04, forward_time=0.106, loss_ctc=38.822, loss_att=48.131, acc=0.751, loss=45.338, backward_time=0.096, grad_norm=41.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.163e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 09:28:06,965 (trainer:343) INFO: 40epoch results: [train] iter_time=0.218, forward_time=0.106, loss_ctc=43.352, loss_att=49.993, acc=0.744, loss=48.001, backward_time=0.097, grad_norm=46.993, clip=100.000, loss_scale=1.912e+34, optim_step_time=0.039, optim0_lr0=3.183e-04, train_time=0.641, time=2 hours, 40 minutes and 30.59 seconds, total_count=600000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=49.201, cer_ctc=0.259, loss_att=51.146, acc=0.601, cer=0.378, wer=0.999, loss=50.563, time=19 minutes and 52 seconds, total_count=186840, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 09:28:11,872 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 09:28:11,928 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/35epoch.pth +[gpuc04:0/16] 2024-01-17 09:28:11,928 (trainer:272) INFO: 41/45epoch started. Estimated time to finish: 15 hours, 3 minutes and 45.52 seconds +[gpuc04:0/16] 2024-01-17 09:28:11,938 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 09:28:31,483 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 09:28:35,074 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 09:28:35,074 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 09:28:35,078 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 09:33:07,229 (trainer:737) INFO: 41epoch:train:1-100batch: iter_time=2.442, forward_time=0.105, loss_ctc=43.273, loss_att=50.474, acc=0.722, loss=48.314, backward_time=0.098, grad_norm=46.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.163e-04, train_time=2.953 +[gpuc04:0/16] 2024-01-17 09:33:49,269 (trainer:737) INFO: 41epoch:train:101-200batch: iter_time=9.775e-05, forward_time=0.106, loss_ctc=48.471, loss_att=51.739, acc=0.732, loss=50.759, backward_time=0.098, grad_norm=50.480, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.162e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:34:33,634 (trainer:737) INFO: 41epoch:train:201-300batch: iter_time=1.191e-04, forward_time=0.116, loss_ctc=41.070, loss_att=55.660, acc=0.733, loss=51.283, backward_time=0.104, grad_norm=48.984, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.162e-04, train_time=0.443 +[gpuc04:0/16] 2024-01-17 09:35:16,382 (trainer:737) INFO: 41epoch:train:301-400batch: iter_time=1.060e-04, forward_time=0.108, loss_ctc=40.625, loss_att=44.246, acc=0.748, loss=43.160, backward_time=0.098, grad_norm=42.787, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.162e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-17 09:36:00,583 (trainer:737) INFO: 41epoch:train:401-500batch: iter_time=1.098e-04, forward_time=0.108, loss_ctc=45.724, loss_att=51.204, acc=0.744, loss=49.560, backward_time=0.102, grad_norm=50.150, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.161e-04, train_time=0.442 +[gpuc04:0/16] 2024-01-17 09:36:45,241 (trainer:737) INFO: 41epoch:train:501-600batch: iter_time=1.032e-04, forward_time=0.111, loss_ctc=44.593, loss_att=43.741, acc=0.751, loss=43.996, backward_time=0.101, grad_norm=48.397, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.161e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-17 09:37:27,462 (trainer:737) INFO: 41epoch:train:601-700batch: iter_time=1.101e-04, forward_time=0.105, loss_ctc=42.339, loss_att=52.992, acc=0.719, loss=49.796, backward_time=0.097, grad_norm=45.485, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.161e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 09:38:09,517 (trainer:737) INFO: 41epoch:train:701-800batch: iter_time=1.039e-04, forward_time=0.106, loss_ctc=41.458, loss_att=45.407, acc=0.759, loss=44.223, backward_time=0.097, grad_norm=41.606, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.161e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:38:54,820 (trainer:737) INFO: 41epoch:train:801-900batch: iter_time=1.057e-04, forward_time=0.116, loss_ctc=42.803, loss_att=53.372, acc=0.730, loss=50.201, backward_time=0.104, grad_norm=47.115, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.160e-04, train_time=0.453 +[gpuc04:0/16] 2024-01-17 09:39:37,587 (trainer:737) INFO: 41epoch:train:901-1000batch: iter_time=1.120e-04, forward_time=0.106, loss_ctc=40.576, loss_att=52.034, acc=0.745, loss=48.597, backward_time=0.098, grad_norm=43.004, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.160e-04, train_time=0.427 +[gpuc04:0/16] 2024-01-17 09:40:22,366 (trainer:737) INFO: 41epoch:train:1001-1100batch: iter_time=1.029e-04, forward_time=0.119, loss_ctc=50.317, loss_att=56.874, acc=0.712, loss=54.907, backward_time=0.098, grad_norm=56.752, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.044, optim0_lr0=3.160e-04, train_time=0.448 +[gpuc04:0/16] 2024-01-17 09:40:58,315 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 09:41:07,071 (trainer:737) INFO: 41epoch:train:1101-1200batch: iter_time=1.092e-04, forward_time=0.107, loss_ctc=52.685, loss_att=55.496, acc=0.726, loss=54.653, backward_time=0.097, grad_norm=56.001, clip=100.000, loss_scale=2.476e+34, optim_step_time=0.039, optim0_lr0=3.160e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-17 09:41:32,890 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 09:41:52,877 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 09:41:56,539 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 09:41:56,539 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 09:41:56,543 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 09:47:48,380 (trainer:737) INFO: 41epoch:train:1201-1300batch: iter_time=2.941, forward_time=0.105, loss_ctc=45.757, loss_att=52.190, acc=0.733, loss=50.260, backward_time=0.097, grad_norm=50.041, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.159e-04, train_time=4.013 +[gpuc04:0/16] 2024-01-17 09:48:30,015 (trainer:737) INFO: 41epoch:train:1301-1400batch: iter_time=1.472e-04, forward_time=0.105, loss_ctc=43.745, loss_att=48.821, acc=0.745, loss=47.298, backward_time=0.097, grad_norm=47.030, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.159e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 09:49:12,018 (trainer:737) INFO: 41epoch:train:1401-1500batch: iter_time=1.411e-04, forward_time=0.105, loss_ctc=39.943, loss_att=48.882, acc=0.750, loss=46.200, backward_time=0.096, grad_norm=44.146, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.159e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:49:53,700 (trainer:737) INFO: 41epoch:train:1501-1600batch: iter_time=1.713e-04, forward_time=0.106, loss_ctc=42.413, loss_att=57.519, acc=0.732, loss=52.987, backward_time=0.096, grad_norm=47.968, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.159e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 09:50:35,813 (trainer:737) INFO: 41epoch:train:1601-1700batch: iter_time=1.419e-04, forward_time=0.106, loss_ctc=43.735, loss_att=51.493, acc=0.745, loss=49.166, backward_time=0.096, grad_norm=46.278, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.158e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 09:51:17,883 (trainer:737) INFO: 41epoch:train:1701-1800batch: iter_time=1.680e-04, forward_time=0.106, loss_ctc=42.091, loss_att=47.226, acc=0.752, loss=45.685, backward_time=0.096, grad_norm=44.877, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.158e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:51:59,452 (trainer:737) INFO: 41epoch:train:1801-1900batch: iter_time=1.444e-04, forward_time=0.106, loss_ctc=45.075, loss_att=44.992, acc=0.753, loss=45.017, backward_time=0.096, grad_norm=45.043, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.158e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 09:52:41,454 (trainer:737) INFO: 41epoch:train:1901-2000batch: iter_time=1.567e-04, forward_time=0.106, loss_ctc=39.449, loss_att=46.051, acc=0.755, loss=44.070, backward_time=0.096, grad_norm=40.117, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.158e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:53:23,468 (trainer:737) INFO: 41epoch:train:2001-2100batch: iter_time=1.906e-04, forward_time=0.107, loss_ctc=42.200, loss_att=54.747, acc=0.755, loss=50.983, backward_time=0.097, grad_norm=45.079, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.157e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 09:54:05,166 (trainer:737) INFO: 41epoch:train:2101-2200batch: iter_time=1.790e-04, forward_time=0.105, loss_ctc=40.869, loss_att=47.253, acc=0.749, loss=45.337, backward_time=0.097, grad_norm=42.320, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.157e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 09:54:47,363 (trainer:737) INFO: 41epoch:train:2201-2300batch: iter_time=1.610e-04, forward_time=0.109, loss_ctc=49.316, loss_att=55.769, acc=0.742, loss=53.833, backward_time=0.097, grad_norm=48.082, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.157e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 09:55:29,059 (trainer:737) INFO: 41epoch:train:2301-2400batch: iter_time=1.472e-04, forward_time=0.106, loss_ctc=40.299, loss_att=52.106, acc=0.731, loss=48.564, backward_time=0.096, grad_norm=50.169, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.157e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 09:56:10,610 (trainer:737) INFO: 41epoch:train:2401-2500batch: iter_time=1.300e-04, forward_time=0.106, loss_ctc=54.085, loss_att=56.359, acc=0.737, loss=55.677, backward_time=0.096, grad_norm=63.299, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.156e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 09:56:18,379 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 09:56:37,581 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 09:56:41,246 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 09:56:41,246 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 09:56:41,249 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 10:02:00,776 (trainer:737) INFO: 41epoch:train:2501-2600batch: iter_time=2.558, forward_time=0.106, loss_ctc=42.264, loss_att=50.831, acc=0.724, loss=48.261, backward_time=0.096, grad_norm=46.255, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.156e-04, train_time=3.501 +[gpuc04:0/16] 2024-01-17 10:02:42,751 (trainer:737) INFO: 41epoch:train:2601-2700batch: iter_time=1.061e-04, forward_time=0.105, loss_ctc=47.189, loss_att=51.556, acc=0.738, loss=50.246, backward_time=0.096, grad_norm=49.449, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.156e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:03:24,393 (trainer:737) INFO: 41epoch:train:2701-2800batch: iter_time=1.043e-04, forward_time=0.104, loss_ctc=39.949, loss_att=56.161, acc=0.732, loss=51.297, backward_time=0.096, grad_norm=46.919, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.155e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:04:05,943 (trainer:737) INFO: 41epoch:train:2801-2900batch: iter_time=1.159e-04, forward_time=0.104, loss_ctc=39.564, loss_att=44.761, acc=0.748, loss=43.202, backward_time=0.096, grad_norm=40.863, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.155e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 10:04:47,640 (trainer:737) INFO: 41epoch:train:2901-3000batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=42.952, loss_att=50.768, acc=0.747, loss=48.423, backward_time=0.096, grad_norm=46.292, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.155e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:05:29,694 (trainer:737) INFO: 41epoch:train:3001-3100batch: iter_time=1.143e-04, forward_time=0.104, loss_ctc=43.007, loss_att=43.016, acc=0.755, loss=43.013, backward_time=0.096, grad_norm=44.289, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.155e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:06:11,709 (trainer:737) INFO: 41epoch:train:3101-3200batch: iter_time=1.020e-04, forward_time=0.105, loss_ctc=41.430, loss_att=52.634, acc=0.721, loss=49.273, backward_time=0.096, grad_norm=45.933, clip=100.000, loss_scale=2.513e+34, optim_step_time=0.039, optim0_lr0=3.154e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:06:31,964 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 10:06:53,601 (trainer:737) INFO: 41epoch:train:3201-3300batch: iter_time=1.202e-04, forward_time=0.104, loss_ctc=40.566, loss_att=44.912, acc=0.762, loss=43.608, backward_time=0.096, grad_norm=40.882, clip=100.000, loss_scale=3.084e+34, optim_step_time=0.039, optim0_lr0=3.154e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 10:07:35,739 (trainer:737) INFO: 41epoch:train:3301-3400batch: iter_time=1.081e-04, forward_time=0.105, loss_ctc=41.686, loss_att=53.031, acc=0.730, loss=49.627, backward_time=0.096, grad_norm=45.552, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.154e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 10:08:17,398 (trainer:737) INFO: 41epoch:train:3401-3500batch: iter_time=1.030e-04, forward_time=0.105, loss_ctc=39.810, loss_att=51.084, acc=0.749, loss=47.702, backward_time=0.096, grad_norm=43.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.154e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:08:59,430 (trainer:737) INFO: 41epoch:train:3501-3600batch: iter_time=1.129e-04, forward_time=0.104, loss_ctc=47.427, loss_att=55.309, acc=0.716, loss=52.945, backward_time=0.095, grad_norm=51.677, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.153e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:09:41,177 (trainer:737) INFO: 41epoch:train:3601-3700batch: iter_time=1.174e-04, forward_time=0.104, loss_ctc=50.911, loss_att=53.511, acc=0.725, loss=52.731, backward_time=0.096, grad_norm=61.074, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.153e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:10:08,350 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 10:10:27,699 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 10:10:31,587 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 10:10:31,587 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 10:10:31,590 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 10:15:01,505 (trainer:737) INFO: 41epoch:train:3701-3800batch: iter_time=2.533, forward_time=0.109, loss_ctc=44.920, loss_att=52.028, acc=0.723, loss=49.896, backward_time=0.096, grad_norm=46.474, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.153e-04, train_time=3.203 +[gpuc04:0/16] 2024-01-17 10:15:43,241 (trainer:737) INFO: 41epoch:train:3801-3900batch: iter_time=1.663e-04, forward_time=0.106, loss_ctc=42.782, loss_att=48.736, acc=0.736, loss=46.950, backward_time=0.097, grad_norm=45.663, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.153e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:16:24,859 (trainer:737) INFO: 41epoch:train:3901-4000batch: iter_time=1.669e-04, forward_time=0.105, loss_ctc=39.170, loss_att=46.843, acc=0.755, loss=44.541, backward_time=0.095, grad_norm=41.621, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.152e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:17:06,491 (trainer:737) INFO: 41epoch:train:4001-4100batch: iter_time=1.763e-04, forward_time=0.106, loss_ctc=41.499, loss_att=56.141, acc=0.731, loss=51.749, backward_time=0.096, grad_norm=47.536, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.152e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:17:48,092 (trainer:737) INFO: 41epoch:train:4101-4200batch: iter_time=1.428e-04, forward_time=0.105, loss_ctc=43.214, loss_att=50.237, acc=0.743, loss=48.130, backward_time=0.096, grad_norm=46.291, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.152e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:18:29,902 (trainer:737) INFO: 41epoch:train:4201-4300batch: iter_time=1.446e-04, forward_time=0.104, loss_ctc=41.229, loss_att=46.336, acc=0.746, loss=44.804, backward_time=0.096, grad_norm=44.153, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.152e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 10:19:12,308 (trainer:737) INFO: 41epoch:train:4301-4400batch: iter_time=1.374e-04, forward_time=0.104, loss_ctc=44.842, loss_att=44.976, acc=0.754, loss=44.936, backward_time=0.096, grad_norm=46.818, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.151e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 10:19:53,843 (trainer:737) INFO: 41epoch:train:4401-4500batch: iter_time=1.475e-04, forward_time=0.104, loss_ctc=39.479, loss_att=46.706, acc=0.744, loss=44.538, backward_time=0.096, grad_norm=39.937, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.151e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 10:20:35,530 (trainer:737) INFO: 41epoch:train:4501-4600batch: iter_time=1.349e-04, forward_time=0.105, loss_ctc=41.859, loss_att=53.141, acc=0.745, loss=49.756, backward_time=0.097, grad_norm=44.436, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.151e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:21:17,132 (trainer:737) INFO: 41epoch:train:4601-4700batch: iter_time=1.265e-04, forward_time=0.104, loss_ctc=40.343, loss_att=48.148, acc=0.734, loss=45.806, backward_time=0.096, grad_norm=42.738, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.150e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:21:59,314 (trainer:737) INFO: 41epoch:train:4701-4800batch: iter_time=1.279e-04, forward_time=0.104, loss_ctc=47.830, loss_att=55.550, acc=0.733, loss=53.234, backward_time=0.096, grad_norm=46.833, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.150e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 10:22:40,792 (trainer:737) INFO: 41epoch:train:4801-4900batch: iter_time=1.491e-04, forward_time=0.104, loss_ctc=39.855, loss_att=50.965, acc=0.725, loss=47.632, backward_time=0.096, grad_norm=49.330, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.150e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 10:23:22,813 (trainer:737) INFO: 41epoch:train:4901-5000batch: iter_time=1.399e-04, forward_time=0.104, loss_ctc=51.518, loss_att=54.128, acc=0.727, loss=53.345, backward_time=0.096, grad_norm=61.707, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.150e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:23:30,223 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 10:23:49,546 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 10:23:53,038 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 10:23:53,038 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 10:23:53,041 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 10:28:40,886 (trainer:737) INFO: 41epoch:train:5001-5100batch: iter_time=2.643, forward_time=0.133, loss_ctc=42.015, loss_att=49.504, acc=0.729, loss=47.257, backward_time=0.099, grad_norm=46.580, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.149e-04, train_time=3.180 +[gpuc04:0/16] 2024-01-17 10:29:22,636 (trainer:737) INFO: 41epoch:train:5101-5200batch: iter_time=1.395e-04, forward_time=0.106, loss_ctc=46.701, loss_att=50.428, acc=0.741, loss=49.310, backward_time=0.097, grad_norm=47.900, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.149e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:30:04,221 (trainer:737) INFO: 41epoch:train:5201-5300batch: iter_time=1.596e-04, forward_time=0.105, loss_ctc=39.242, loss_att=55.905, acc=0.735, loss=50.906, backward_time=0.096, grad_norm=47.785, clip=100.000, loss_scale=3.136e+34, optim_step_time=0.039, optim0_lr0=3.149e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:30:46,272 (trainer:737) INFO: 41epoch:train:5301-5400batch: iter_time=1.255e-04, forward_time=0.107, loss_ctc=39.603, loss_att=44.104, acc=0.749, loss=42.754, backward_time=0.096, grad_norm=40.868, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.149e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:30:52,969 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 10:31:27,944 (trainer:737) INFO: 41epoch:train:5401-5500batch: iter_time=1.359e-04, forward_time=0.105, loss_ctc=42.108, loss_att=50.108, acc=0.750, loss=47.708, backward_time=0.097, grad_norm=45.720, clip=100.000, loss_scale=2.392e+34, optim_step_time=0.039, optim0_lr0=3.148e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:32:09,617 (trainer:737) INFO: 41epoch:train:5501-5600batch: iter_time=1.337e-04, forward_time=0.105, loss_ctc=42.929, loss_att=42.726, acc=0.757, loss=42.787, backward_time=0.096, grad_norm=43.403, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.148e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:32:51,723 (trainer:737) INFO: 41epoch:train:5601-5700batch: iter_time=1.322e-04, forward_time=0.105, loss_ctc=40.903, loss_att=52.123, acc=0.724, loss=48.757, backward_time=0.097, grad_norm=43.323, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.148e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 10:33:33,324 (trainer:737) INFO: 41epoch:train:5701-5800batch: iter_time=1.286e-04, forward_time=0.106, loss_ctc=40.454, loss_att=44.414, acc=0.765, loss=43.226, backward_time=0.096, grad_norm=39.488, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.148e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:34:14,957 (trainer:737) INFO: 41epoch:train:5801-5900batch: iter_time=1.584e-04, forward_time=0.106, loss_ctc=41.573, loss_att=52.967, acc=0.732, loss=49.549, backward_time=0.096, grad_norm=46.719, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.147e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:34:56,634 (trainer:737) INFO: 41epoch:train:5901-6000batch: iter_time=1.400e-04, forward_time=0.106, loss_ctc=39.420, loss_att=50.739, acc=0.750, loss=47.343, backward_time=0.096, grad_norm=42.463, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.147e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:35:39,091 (trainer:737) INFO: 41epoch:train:6001-6100batch: iter_time=1.467e-04, forward_time=0.105, loss_ctc=47.461, loss_att=56.613, acc=0.716, loss=53.868, backward_time=0.096, grad_norm=52.320, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.147e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 10:36:21,133 (trainer:737) INFO: 41epoch:train:6101-6200batch: iter_time=1.551e-04, forward_time=0.106, loss_ctc=48.764, loss_att=52.502, acc=0.728, loss=51.381, backward_time=0.096, grad_norm=58.354, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.147e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:37:00,320 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 10:37:20,043 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 10:37:23,776 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 10:37:23,776 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 10:37:23,780 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 10:42:58,789 (trainer:737) INFO: 41epoch:train:6201-6300batch: iter_time=3.254, forward_time=0.105, loss_ctc=44.994, loss_att=52.549, acc=0.734, loss=50.283, backward_time=0.097, grad_norm=47.843, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.146e-04, train_time=3.976 +[gpuc04:0/16] 2024-01-17 10:43:41,051 (trainer:737) INFO: 41epoch:train:6301-6400batch: iter_time=1.079e-04, forward_time=0.105, loss_ctc=42.934, loss_att=48.946, acc=0.745, loss=47.143, backward_time=0.097, grad_norm=46.363, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.146e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 10:44:22,876 (trainer:737) INFO: 41epoch:train:6401-6500batch: iter_time=1.083e-04, forward_time=0.104, loss_ctc=39.261, loss_att=48.081, acc=0.754, loss=45.435, backward_time=0.096, grad_norm=43.396, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.146e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 10:45:04,620 (trainer:737) INFO: 41epoch:train:6501-6600batch: iter_time=1.113e-04, forward_time=0.105, loss_ctc=41.488, loss_att=56.176, acc=0.741, loss=51.769, backward_time=0.097, grad_norm=47.684, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.146e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:45:46,233 (trainer:737) INFO: 41epoch:train:6601-6700batch: iter_time=1.140e-04, forward_time=0.105, loss_ctc=42.527, loss_att=50.900, acc=0.750, loss=48.388, backward_time=0.096, grad_norm=44.283, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.145e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:46:27,853 (trainer:737) INFO: 41epoch:train:6701-6800batch: iter_time=9.785e-05, forward_time=0.104, loss_ctc=40.989, loss_att=47.765, acc=0.751, loss=45.732, backward_time=0.096, grad_norm=43.303, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.145e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 10:47:09,769 (trainer:737) INFO: 41epoch:train:6801-6900batch: iter_time=9.885e-05, forward_time=0.104, loss_ctc=43.787, loss_att=43.667, acc=0.761, loss=43.703, backward_time=0.096, grad_norm=46.871, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.145e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 10:47:51,825 (trainer:737) INFO: 41epoch:train:6901-7000batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=39.300, loss_att=46.125, acc=0.755, loss=44.078, backward_time=0.096, grad_norm=39.656, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.145e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 10:48:33,603 (trainer:737) INFO: 41epoch:train:7001-7100batch: iter_time=1.044e-04, forward_time=0.105, loss_ctc=42.176, loss_att=55.279, acc=0.756, loss=51.348, backward_time=0.097, grad_norm=47.138, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.144e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 10:49:15,295 (trainer:737) INFO: 41epoch:train:7101-7200batch: iter_time=9.544e-05, forward_time=0.104, loss_ctc=40.308, loss_att=47.293, acc=0.750, loss=45.197, backward_time=0.096, grad_norm=42.489, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.144e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:49:57,052 (trainer:737) INFO: 41epoch:train:7201-7300batch: iter_time=1.126e-04, forward_time=0.105, loss_ctc=47.920, loss_att=56.190, acc=0.742, loss=53.709, backward_time=0.096, grad_norm=46.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.144e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:50:38,563 (trainer:737) INFO: 41epoch:train:7301-7400batch: iter_time=1.075e-04, forward_time=0.103, loss_ctc=39.298, loss_att=52.158, acc=0.732, loss=48.300, backward_time=0.095, grad_norm=47.199, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.143e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 10:51:20,438 (trainer:737) INFO: 41epoch:train:7401-7500batch: iter_time=9.705e-05, forward_time=0.107, loss_ctc=50.877, loss_att=54.669, acc=0.744, loss=53.532, backward_time=0.097, grad_norm=58.740, clip=100.000, loss_scale=3.822e+34, optim_step_time=0.039, optim0_lr0=3.143e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 10:51:22,786 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 10:51:42,436 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 10:51:46,004 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 10:51:46,004 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 10:51:46,007 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 10:56:29,510 (trainer:737) INFO: 41epoch:train:7501-7600batch: iter_time=2.407, forward_time=0.104, loss_ctc=41.586, loss_att=51.039, acc=0.725, loss=48.203, backward_time=0.096, grad_norm=45.405, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.143e-04, train_time=3.090 +[gpuc04:0/16] 2024-01-17 10:57:11,456 (trainer:737) INFO: 41epoch:train:7601-7700batch: iter_time=1.581e-04, forward_time=0.104, loss_ctc=46.891, loss_att=52.366, acc=0.738, loss=50.724, backward_time=0.096, grad_norm=47.262, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.143e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 10:57:53,164 (trainer:737) INFO: 41epoch:train:7701-7800batch: iter_time=1.417e-04, forward_time=0.105, loss_ctc=39.115, loss_att=55.377, acc=0.736, loss=50.498, backward_time=0.096, grad_norm=45.829, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.142e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 10:58:34,943 (trainer:737) INFO: 41epoch:train:7801-7900batch: iter_time=1.351e-04, forward_time=0.104, loss_ctc=39.182, loss_att=43.817, acc=0.751, loss=42.427, backward_time=0.096, grad_norm=39.565, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.142e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 10:59:16,805 (trainer:737) INFO: 41epoch:train:7901-8000batch: iter_time=1.143e-04, forward_time=0.104, loss_ctc=42.187, loss_att=50.362, acc=0.749, loss=47.909, backward_time=0.096, grad_norm=44.954, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.142e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 10:59:58,654 (trainer:737) INFO: 41epoch:train:8001-8100batch: iter_time=1.179e-04, forward_time=0.104, loss_ctc=42.163, loss_att=42.167, acc=0.758, loss=42.166, backward_time=0.096, grad_norm=44.381, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.142e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:00:06,527 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 11:00:40,152 (trainer:737) INFO: 41epoch:train:8101-8200batch: iter_time=1.220e-04, forward_time=0.104, loss_ctc=40.437, loss_att=51.733, acc=0.725, loss=48.345, backward_time=0.096, grad_norm=44.926, clip=100.000, loss_scale=2.455e+34, optim_step_time=0.039, optim0_lr0=3.141e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:01:21,961 (trainer:737) INFO: 41epoch:train:8201-8300batch: iter_time=1.095e-04, forward_time=0.104, loss_ctc=40.287, loss_att=44.958, acc=0.762, loss=43.557, backward_time=0.096, grad_norm=39.853, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.141e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:02:04,452 (trainer:737) INFO: 41epoch:train:8301-8400batch: iter_time=1.242e-04, forward_time=0.105, loss_ctc=41.144, loss_att=52.505, acc=0.735, loss=49.097, backward_time=0.096, grad_norm=44.639, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.141e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 11:02:46,378 (trainer:737) INFO: 41epoch:train:8401-8500batch: iter_time=1.126e-04, forward_time=0.103, loss_ctc=39.257, loss_att=51.061, acc=0.748, loss=47.520, backward_time=0.096, grad_norm=40.754, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.141e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 11:03:27,827 (trainer:737) INFO: 41epoch:train:8501-8600batch: iter_time=1.098e-04, forward_time=0.104, loss_ctc=45.821, loss_att=54.982, acc=0.719, loss=52.234, backward_time=0.096, grad_norm=49.102, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.140e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 11:04:09,321 (trainer:737) INFO: 41epoch:train:8601-8700batch: iter_time=1.113e-04, forward_time=0.104, loss_ctc=48.022, loss_att=51.626, acc=0.729, loss=50.545, backward_time=0.096, grad_norm=56.775, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.140e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:04:32,445 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 11:04:52,526 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 11:04:56,193 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 11:04:56,193 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 11:04:56,196 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 11:09:10,403 (trainer:737) INFO: 41epoch:train:8701-8800batch: iter_time=2.440, forward_time=0.105, loss_ctc=44.372, loss_att=51.532, acc=0.737, loss=49.384, backward_time=0.096, grad_norm=47.755, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.140e-04, train_time=3.011 +[gpuc04:0/16] 2024-01-17 11:09:52,421 (trainer:737) INFO: 41epoch:train:8801-8900batch: iter_time=1.193e-04, forward_time=0.108, loss_ctc=42.432, loss_att=48.161, acc=0.748, loss=46.443, backward_time=0.096, grad_norm=46.543, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.140e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 11:10:33,971 (trainer:737) INFO: 41epoch:train:8901-9000batch: iter_time=1.159e-04, forward_time=0.104, loss_ctc=39.281, loss_att=48.588, acc=0.754, loss=45.796, backward_time=0.096, grad_norm=44.035, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.139e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:11:15,666 (trainer:737) INFO: 41epoch:train:9001-9100batch: iter_time=1.208e-04, forward_time=0.104, loss_ctc=41.189, loss_att=56.297, acc=0.736, loss=51.765, backward_time=0.096, grad_norm=48.286, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.139e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:11:57,296 (trainer:737) INFO: 41epoch:train:9101-9200batch: iter_time=1.309e-04, forward_time=0.105, loss_ctc=42.081, loss_att=50.704, acc=0.748, loss=48.117, backward_time=0.096, grad_norm=44.020, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.139e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:12:39,160 (trainer:737) INFO: 41epoch:train:9201-9300batch: iter_time=1.387e-04, forward_time=0.105, loss_ctc=40.818, loss_att=46.385, acc=0.755, loss=44.714, backward_time=0.096, grad_norm=42.472, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.139e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:13:21,288 (trainer:737) INFO: 41epoch:train:9301-9400batch: iter_time=1.252e-04, forward_time=0.105, loss_ctc=43.559, loss_att=44.126, acc=0.758, loss=43.956, backward_time=0.096, grad_norm=42.686, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.138e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 11:14:02,781 (trainer:737) INFO: 41epoch:train:9401-9500batch: iter_time=1.358e-04, forward_time=0.104, loss_ctc=39.142, loss_att=45.631, acc=0.757, loss=43.684, backward_time=0.096, grad_norm=39.943, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.138e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:14:44,579 (trainer:737) INFO: 41epoch:train:9501-9600batch: iter_time=1.254e-04, forward_time=0.105, loss_ctc=41.540, loss_att=54.382, acc=0.756, loss=50.529, backward_time=0.096, grad_norm=43.285, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.138e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:15:26,299 (trainer:737) INFO: 41epoch:train:9601-9700batch: iter_time=1.235e-04, forward_time=0.105, loss_ctc=39.632, loss_att=46.880, acc=0.752, loss=44.706, backward_time=0.096, grad_norm=41.145, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.138e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:16:08,275 (trainer:737) INFO: 41epoch:train:9701-9800batch: iter_time=1.207e-04, forward_time=0.105, loss_ctc=46.999, loss_att=55.433, acc=0.745, loss=52.902, backward_time=0.096, grad_norm=45.756, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.137e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 11:16:50,041 (trainer:737) INFO: 41epoch:train:9801-9900batch: iter_time=1.309e-04, forward_time=0.104, loss_ctc=38.273, loss_att=51.486, acc=0.734, loss=47.522, backward_time=0.096, grad_norm=47.374, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.137e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:17:31,589 (trainer:737) INFO: 41epoch:train:9901-10000batch: iter_time=1.155e-04, forward_time=0.103, loss_ctc=50.871, loss_att=53.974, acc=0.742, loss=53.043, backward_time=0.096, grad_norm=57.914, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.137e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:17:36,097 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 11:17:55,394 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 11:17:59,008 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 11:17:59,008 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 11:17:59,011 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 11:22:36,249 (trainer:737) INFO: 41epoch:train:10001-10100batch: iter_time=2.446, forward_time=0.106, loss_ctc=41.630, loss_att=48.426, acc=0.747, loss=46.387, backward_time=0.096, grad_norm=45.404, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.137e-04, train_time=3.046 +[gpuc04:0/16] 2024-01-17 11:22:48,806 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 11:23:18,260 (trainer:737) INFO: 41epoch:train:10101-10200batch: iter_time=1.406e-04, forward_time=0.106, loss_ctc=46.566, loss_att=51.702, acc=0.742, loss=50.161, backward_time=0.096, grad_norm=46.715, clip=100.000, loss_scale=2.287e+34, optim_step_time=0.039, optim0_lr0=3.136e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 11:23:59,920 (trainer:737) INFO: 41epoch:train:10201-10300batch: iter_time=1.593e-04, forward_time=0.106, loss_ctc=39.009, loss_att=54.474, acc=0.751, loss=49.835, backward_time=0.096, grad_norm=44.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.136e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:24:41,811 (trainer:737) INFO: 41epoch:train:10301-10400batch: iter_time=1.183e-04, forward_time=0.104, loss_ctc=38.930, loss_att=43.396, acc=0.756, loss=42.056, backward_time=0.096, grad_norm=38.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.136e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 11:25:23,532 (trainer:737) INFO: 41epoch:train:10401-10500batch: iter_time=1.087e-04, forward_time=0.105, loss_ctc=41.581, loss_att=49.463, acc=0.760, loss=47.098, backward_time=0.096, grad_norm=43.725, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.136e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:26:05,226 (trainer:737) INFO: 41epoch:train:10501-10600batch: iter_time=1.087e-04, forward_time=0.105, loss_ctc=42.670, loss_att=42.737, acc=0.761, loss=42.717, backward_time=0.096, grad_norm=43.670, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.135e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:26:46,889 (trainer:737) INFO: 41epoch:train:10601-10700batch: iter_time=1.045e-04, forward_time=0.105, loss_ctc=40.115, loss_att=51.210, acc=0.735, loss=47.882, backward_time=0.096, grad_norm=42.759, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.135e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:27:28,532 (trainer:737) INFO: 41epoch:train:10701-10800batch: iter_time=1.126e-04, forward_time=0.105, loss_ctc=39.838, loss_att=44.376, acc=0.774, loss=43.015, backward_time=0.096, grad_norm=39.647, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.135e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:28:10,304 (trainer:737) INFO: 41epoch:train:10801-10900batch: iter_time=1.150e-04, forward_time=0.105, loss_ctc=40.648, loss_att=51.812, acc=0.749, loss=48.463, backward_time=0.096, grad_norm=43.445, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.134e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:28:52,095 (trainer:737) INFO: 41epoch:train:10901-11000batch: iter_time=1.140e-04, forward_time=0.105, loss_ctc=38.959, loss_att=50.622, acc=0.763, loss=47.123, backward_time=0.096, grad_norm=41.586, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.134e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:29:33,761 (trainer:737) INFO: 41epoch:train:11001-11100batch: iter_time=9.539e-05, forward_time=0.104, loss_ctc=45.436, loss_att=55.935, acc=0.724, loss=52.785, backward_time=0.096, grad_norm=48.156, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.134e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:30:15,404 (trainer:737) INFO: 41epoch:train:11101-11200batch: iter_time=9.831e-05, forward_time=0.104, loss_ctc=47.183, loss_att=51.512, acc=0.744, loss=50.213, backward_time=0.096, grad_norm=58.430, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.134e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:30:38,710 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 11:30:58,592 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 11:31:02,524 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 11:31:02,525 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 11:31:02,528 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 11:35:24,384 (trainer:737) INFO: 41epoch:train:11201-11300batch: iter_time=2.491, forward_time=0.105, loss_ctc=44.226, loss_att=50.602, acc=0.748, loss=48.689, backward_time=0.096, grad_norm=48.276, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.133e-04, train_time=3.090 +[gpuc04:0/16] 2024-01-17 11:36:06,084 (trainer:737) INFO: 41epoch:train:11301-11400batch: iter_time=9.447e-05, forward_time=0.105, loss_ctc=42.313, loss_att=47.355, acc=0.750, loss=45.842, backward_time=0.096, grad_norm=42.954, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.133e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:36:47,555 (trainer:737) INFO: 41epoch:train:11401-11500batch: iter_time=1.194e-04, forward_time=0.104, loss_ctc=38.888, loss_att=47.229, acc=0.756, loss=44.727, backward_time=0.096, grad_norm=43.608, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.133e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 11:37:29,216 (trainer:737) INFO: 41epoch:train:11501-11600batch: iter_time=1.226e-04, forward_time=0.105, loss_ctc=40.897, loss_att=55.156, acc=0.739, loss=50.879, backward_time=0.097, grad_norm=45.964, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.133e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:38:11,017 (trainer:737) INFO: 41epoch:train:11601-11700batch: iter_time=1.269e-04, forward_time=0.105, loss_ctc=41.886, loss_att=50.342, acc=0.748, loss=47.805, backward_time=0.096, grad_norm=44.003, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.132e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:38:52,550 (trainer:737) INFO: 41epoch:train:11701-11800batch: iter_time=1.160e-04, forward_time=0.105, loss_ctc=40.557, loss_att=46.226, acc=0.756, loss=44.525, backward_time=0.096, grad_norm=41.500, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.132e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:39:34,352 (trainer:737) INFO: 41epoch:train:11801-11900batch: iter_time=1.084e-04, forward_time=0.104, loss_ctc=43.540, loss_att=44.325, acc=0.758, loss=44.090, backward_time=0.096, grad_norm=44.159, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.132e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:40:16,632 (trainer:737) INFO: 41epoch:train:11901-12000batch: iter_time=1.297e-04, forward_time=0.104, loss_ctc=38.864, loss_att=45.216, acc=0.757, loss=43.310, backward_time=0.095, grad_norm=39.319, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.132e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 11:40:58,920 (trainer:737) INFO: 41epoch:train:12001-12100batch: iter_time=1.388e-04, forward_time=0.106, loss_ctc=41.694, loss_att=54.060, acc=0.758, loss=50.351, backward_time=0.096, grad_norm=45.299, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.131e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 11:41:20,522 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 11:41:40,537 (trainer:737) INFO: 41epoch:train:12101-12200batch: iter_time=1.303e-04, forward_time=0.106, loss_ctc=39.844, loss_att=46.466, acc=0.753, loss=44.479, backward_time=0.096, grad_norm=42.675, clip=100.000, loss_scale=2.517e+34, optim_step_time=0.039, optim0_lr0=3.131e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:42:23,359 (trainer:737) INFO: 41epoch:train:12201-12300batch: iter_time=1.290e-04, forward_time=0.105, loss_ctc=46.489, loss_att=54.852, acc=0.746, loss=52.343, backward_time=0.096, grad_norm=47.579, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.131e-04, train_time=0.428 +[gpuc04:0/16] 2024-01-17 11:43:04,859 (trainer:737) INFO: 41epoch:train:12301-12400batch: iter_time=1.426e-04, forward_time=0.104, loss_ctc=38.139, loss_att=51.079, acc=0.737, loss=47.197, backward_time=0.095, grad_norm=46.330, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.131e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:43:46,659 (trainer:737) INFO: 41epoch:train:12401-12500batch: iter_time=1.274e-04, forward_time=0.104, loss_ctc=50.269, loss_att=55.273, acc=0.742, loss=53.772, backward_time=0.095, grad_norm=61.224, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.130e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:43:49,068 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 11:44:09,995 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 11:44:13,730 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 11:44:13,730 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 11:44:13,733 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 11:48:47,309 (trainer:737) INFO: 41epoch:train:12501-12600batch: iter_time=2.481, forward_time=0.105, loss_ctc=41.064, loss_att=51.286, acc=0.728, loss=48.219, backward_time=0.097, grad_norm=46.686, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.130e-04, train_time=3.006 +[gpuc04:0/16] 2024-01-17 11:49:29,107 (trainer:737) INFO: 41epoch:train:12601-12700batch: iter_time=1.384e-04, forward_time=0.105, loss_ctc=46.204, loss_att=52.043, acc=0.739, loss=50.291, backward_time=0.097, grad_norm=54.040, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.130e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:50:10,758 (trainer:737) INFO: 41epoch:train:12701-12800batch: iter_time=1.441e-04, forward_time=0.104, loss_ctc=39.465, loss_att=56.681, acc=0.734, loss=51.516, backward_time=0.096, grad_norm=48.727, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.130e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:50:52,417 (trainer:737) INFO: 41epoch:train:12801-12900batch: iter_time=1.630e-04, forward_time=0.105, loss_ctc=38.985, loss_att=44.290, acc=0.750, loss=42.699, backward_time=0.097, grad_norm=40.483, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.129e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:51:34,202 (trainer:737) INFO: 41epoch:train:12901-13000batch: iter_time=1.580e-04, forward_time=0.105, loss_ctc=41.662, loss_att=50.510, acc=0.752, loss=47.855, backward_time=0.097, grad_norm=44.609, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.129e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:52:16,359 (trainer:737) INFO: 41epoch:train:13001-13100batch: iter_time=1.266e-04, forward_time=0.107, loss_ctc=42.555, loss_att=42.889, acc=0.759, loss=42.789, backward_time=0.096, grad_norm=44.656, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.129e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 11:52:58,515 (trainer:737) INFO: 41epoch:train:13101-13200batch: iter_time=1.190e-04, forward_time=0.104, loss_ctc=40.217, loss_att=52.230, acc=0.724, loss=48.626, backward_time=0.096, grad_norm=44.011, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.129e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 11:53:40,115 (trainer:737) INFO: 41epoch:train:13201-13300batch: iter_time=1.406e-04, forward_time=0.105, loss_ctc=39.997, loss_att=44.782, acc=0.764, loss=43.347, backward_time=0.096, grad_norm=39.193, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.128e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 11:54:21,923 (trainer:737) INFO: 41epoch:train:13301-13400batch: iter_time=1.516e-04, forward_time=0.105, loss_ctc=41.126, loss_att=53.169, acc=0.732, loss=49.556, backward_time=0.096, grad_norm=46.151, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.128e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 11:55:03,611 (trainer:737) INFO: 41epoch:train:13401-13500batch: iter_time=1.721e-04, forward_time=0.106, loss_ctc=38.933, loss_att=50.663, acc=0.751, loss=47.144, backward_time=0.096, grad_norm=41.951, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.128e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 11:55:45,175 (trainer:737) INFO: 41epoch:train:13501-13600batch: iter_time=1.471e-04, forward_time=0.104, loss_ctc=44.708, loss_att=55.523, acc=0.717, loss=52.278, backward_time=0.095, grad_norm=52.533, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.128e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 11:56:27,297 (trainer:737) INFO: 41epoch:train:13601-13700batch: iter_time=1.246e-04, forward_time=0.104, loss_ctc=47.044, loss_att=51.574, acc=0.729, loss=50.215, backward_time=0.095, grad_norm=55.742, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.127e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 11:56:54,091 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 11:57:13,850 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 11:57:17,536 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 11:57:17,536 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 11:57:17,539 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 12:01:41,983 (trainer:737) INFO: 41epoch:train:13701-13800batch: iter_time=2.455, forward_time=0.104, loss_ctc=43.929, loss_att=52.032, acc=0.736, loss=49.601, backward_time=0.096, grad_norm=46.419, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.127e-04, train_time=3.147 +[gpuc04:0/16] 2024-01-17 12:02:23,776 (trainer:737) INFO: 41epoch:train:13801-13900batch: iter_time=1.240e-04, forward_time=0.105, loss_ctc=42.380, loss_att=48.176, acc=0.748, loss=46.437, backward_time=0.096, grad_norm=46.737, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.127e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 12:03:05,573 (trainer:737) INFO: 41epoch:train:13901-14000batch: iter_time=1.366e-04, forward_time=0.104, loss_ctc=38.796, loss_att=47.304, acc=0.758, loss=44.751, backward_time=0.095, grad_norm=44.550, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.127e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 12:03:47,303 (trainer:737) INFO: 41epoch:train:14001-14100batch: iter_time=1.515e-04, forward_time=0.105, loss_ctc=41.176, loss_att=55.797, acc=0.743, loss=51.410, backward_time=0.096, grad_norm=46.936, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.126e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 12:04:14,649 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 12:04:29,229 (trainer:737) INFO: 41epoch:train:14101-14200batch: iter_time=1.515e-04, forward_time=0.104, loss_ctc=41.661, loss_att=50.035, acc=0.752, loss=47.522, backward_time=0.096, grad_norm=42.230, clip=100.000, loss_scale=2.329e+34, optim_step_time=0.039, optim0_lr0=3.126e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 12:05:10,848 (trainer:737) INFO: 41epoch:train:14201-14300batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=40.721, loss_att=46.843, acc=0.753, loss=45.007, backward_time=0.096, grad_norm=42.435, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.126e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 12:05:52,502 (trainer:737) INFO: 41epoch:train:14301-14400batch: iter_time=1.287e-04, forward_time=0.105, loss_ctc=43.249, loss_att=43.450, acc=0.762, loss=43.390, backward_time=0.096, grad_norm=43.187, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.126e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 12:06:34,036 (trainer:737) INFO: 41epoch:train:14401-14500batch: iter_time=1.409e-04, forward_time=0.105, loss_ctc=38.522, loss_att=45.332, acc=0.757, loss=43.289, backward_time=0.095, grad_norm=54.005, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.125e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 12:07:15,893 (trainer:737) INFO: 41epoch:train:14501-14600batch: iter_time=1.293e-04, forward_time=0.106, loss_ctc=41.556, loss_att=54.019, acc=0.757, loss=50.280, backward_time=0.096, grad_norm=45.083, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.125e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 12:07:57,605 (trainer:737) INFO: 41epoch:train:14601-14700batch: iter_time=1.545e-04, forward_time=0.104, loss_ctc=39.734, loss_att=46.690, acc=0.753, loss=44.603, backward_time=0.096, grad_norm=43.140, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.125e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 12:08:39,371 (trainer:737) INFO: 41epoch:train:14701-14800batch: iter_time=1.749e-04, forward_time=0.105, loss_ctc=46.972, loss_att=55.613, acc=0.743, loss=53.021, backward_time=0.097, grad_norm=46.610, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.125e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 12:09:20,942 (trainer:737) INFO: 41epoch:train:14801-14900batch: iter_time=1.796e-04, forward_time=0.104, loss_ctc=37.731, loss_att=51.406, acc=0.736, loss=47.303, backward_time=0.096, grad_norm=46.279, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.124e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 12:10:03,207 (trainer:737) INFO: 41epoch:train:14901-15000batch: iter_time=1.396e-04, forward_time=0.103, loss_ctc=50.968, loss_att=55.135, acc=0.746, loss=53.885, backward_time=0.098, grad_norm=63.221, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.124e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 12:30:05,228 (trainer:343) INFO: 41epoch results: [train] iter_time=0.207, forward_time=0.105, loss_ctc=42.674, loss_att=50.380, acc=0.743, loss=48.068, backward_time=0.096, grad_norm=46.314, clip=100.000, loss_scale=2.215e+34, optim_step_time=0.039, optim0_lr0=3.143e-04, train_time=0.647, time=2 hours, 42 minutes and 2.21 seconds, total_count=615000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=52.007, cer_ctc=0.264, loss_att=52.793, acc=0.595, cer=0.396, wer=1.000, loss=52.558, time=19 minutes and 50.83 seconds, total_count=191511, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 12:30:10,304 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 12:30:10,314 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/36epoch.pth +[gpuc04:0/16] 2024-01-17 12:30:10,314 (trainer:272) INFO: 42/45epoch started. Estimated time to finish: 12 hours, 3 minutes and 37.06 seconds +[gpuc04:0/16] 2024-01-17 12:30:10,325 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 12:30:29,158 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 12:30:32,704 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 12:30:32,704 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 12:30:32,708 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 12:34:54,721 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 12:34:57,228 (trainer:737) INFO: 42epoch:train:1-100batch: iter_time=2.328, forward_time=0.103, loss_ctc=49.811, loss_att=48.798, acc=0.732, loss=49.102, backward_time=0.096, grad_norm=55.116, clip=100.000, loss_scale=2.014e+34, optim_step_time=0.039, optim0_lr0=3.124e-04, train_time=2.869 +[gpuc04:0/16] 2024-01-17 12:35:39,077 (trainer:737) INFO: 42epoch:train:101-200batch: iter_time=1.041e-04, forward_time=0.104, loss_ctc=45.516, loss_att=57.388, acc=0.719, loss=53.826, backward_time=0.097, grad_norm=47.595, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.124e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 12:36:21,037 (trainer:737) INFO: 42epoch:train:201-300batch: iter_time=1.065e-04, forward_time=0.104, loss_ctc=40.510, loss_att=48.839, acc=0.760, loss=46.340, backward_time=0.098, grad_norm=41.507, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.123e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 12:37:03,178 (trainer:737) INFO: 42epoch:train:301-400batch: iter_time=1.140e-04, forward_time=0.106, loss_ctc=44.409, loss_att=58.460, acc=0.721, loss=54.245, backward_time=0.098, grad_norm=52.997, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.123e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 12:37:47,477 (trainer:737) INFO: 42epoch:train:401-500batch: iter_time=1.128e-04, forward_time=0.105, loss_ctc=44.477, loss_att=59.557, acc=0.708, loss=55.033, backward_time=0.097, grad_norm=46.229, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.123e-04, train_time=0.443 +[gpuc04:0/16] 2024-01-17 12:38:30,271 (trainer:737) INFO: 42epoch:train:501-600batch: iter_time=1.189e-04, forward_time=0.104, loss_ctc=40.901, loss_att=52.923, acc=0.734, loss=49.316, backward_time=0.097, grad_norm=43.116, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.122e-04, train_time=0.428 +[gpuc04:0/16] 2024-01-17 12:39:14,842 (trainer:737) INFO: 42epoch:train:601-700batch: iter_time=1.164e-04, forward_time=0.122, loss_ctc=31.279, loss_att=31.295, acc=0.787, loss=31.290, backward_time=0.101, grad_norm=35.374, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.122e-04, train_time=0.445 +[gpuc04:0/16] 2024-01-17 12:39:57,856 (trainer:737) INFO: 42epoch:train:701-800batch: iter_time=1.157e-04, forward_time=0.105, loss_ctc=47.221, loss_att=53.446, acc=0.740, loss=51.578, backward_time=0.097, grad_norm=50.755, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.122e-04, train_time=0.430 +[gpuc04:0/16] 2024-01-17 12:40:41,542 (trainer:737) INFO: 42epoch:train:801-900batch: iter_time=1.169e-04, forward_time=0.109, loss_ctc=50.551, loss_att=57.618, acc=0.711, loss=55.498, backward_time=0.106, grad_norm=51.555, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.122e-04, train_time=0.437 +[gpuc04:0/16] 2024-01-17 12:41:26,302 (trainer:737) INFO: 42epoch:train:901-1000batch: iter_time=1.038e-04, forward_time=0.107, loss_ctc=36.015, loss_att=42.650, acc=0.751, loss=40.659, backward_time=0.099, grad_norm=40.186, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.121e-04, train_time=0.447 +[gpuc04:0/16] 2024-01-17 12:42:07,762 (trainer:737) INFO: 42epoch:train:1001-1100batch: iter_time=1.101e-04, forward_time=0.104, loss_ctc=37.238, loss_att=41.883, acc=0.756, loss=40.490, backward_time=0.096, grad_norm=42.159, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.121e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 12:42:51,126 (trainer:737) INFO: 42epoch:train:1101-1200batch: iter_time=1.153e-04, forward_time=0.105, loss_ctc=46.304, loss_att=56.522, acc=0.728, loss=53.456, backward_time=0.097, grad_norm=59.146, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.121e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-17 12:43:17,449 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 12:43:37,289 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 12:43:41,062 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 12:43:41,062 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 12:43:41,066 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 12:50:17,034 (trainer:737) INFO: 42epoch:train:1201-1300batch: iter_time=2.591, forward_time=0.104, loss_ctc=48.814, loss_att=48.789, acc=0.738, loss=48.797, backward_time=0.096, grad_norm=51.413, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.121e-04, train_time=4.459 +[gpuc04:0/16] 2024-01-17 12:50:58,802 (trainer:737) INFO: 42epoch:train:1301-1400batch: iter_time=1.431e-04, forward_time=0.105, loss_ctc=47.649, loss_att=45.561, acc=0.749, loss=46.188, backward_time=0.097, grad_norm=47.085, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.120e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 12:51:40,610 (trainer:737) INFO: 42epoch:train:1401-1500batch: iter_time=1.252e-04, forward_time=0.106, loss_ctc=42.963, loss_att=59.700, acc=0.743, loss=54.679, backward_time=0.098, grad_norm=46.934, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.120e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 12:52:22,549 (trainer:737) INFO: 42epoch:train:1501-1600batch: iter_time=1.483e-04, forward_time=0.105, loss_ctc=38.917, loss_att=51.809, acc=0.748, loss=47.941, backward_time=0.097, grad_norm=43.103, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.120e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 12:53:04,724 (trainer:737) INFO: 42epoch:train:1601-1700batch: iter_time=1.629e-04, forward_time=0.106, loss_ctc=41.447, loss_att=55.725, acc=0.727, loss=51.442, backward_time=0.097, grad_norm=48.226, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.120e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 12:53:46,254 (trainer:737) INFO: 42epoch:train:1701-1800batch: iter_time=1.787e-04, forward_time=0.105, loss_ctc=43.081, loss_att=56.021, acc=0.720, loss=52.139, backward_time=0.097, grad_norm=45.465, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.119e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 12:54:28,434 (trainer:737) INFO: 42epoch:train:1801-1900batch: iter_time=1.598e-04, forward_time=0.106, loss_ctc=38.396, loss_att=46.999, acc=0.783, loss=44.418, backward_time=0.097, grad_norm=39.385, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.119e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 12:55:09,984 (trainer:737) INFO: 42epoch:train:1901-2000batch: iter_time=1.529e-04, forward_time=0.105, loss_ctc=38.332, loss_att=40.104, acc=0.761, loss=39.572, backward_time=0.096, grad_norm=42.087, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.119e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 12:55:51,741 (trainer:737) INFO: 42epoch:train:2001-2100batch: iter_time=1.363e-04, forward_time=0.106, loss_ctc=47.024, loss_att=52.807, acc=0.741, loss=51.072, backward_time=0.097, grad_norm=47.347, clip=100.000, loss_scale=1.101e+34, optim_step_time=0.040, optim0_lr0=3.119e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 12:56:33,311 (trainer:737) INFO: 42epoch:train:2101-2200batch: iter_time=1.530e-04, forward_time=0.105, loss_ctc=42.554, loss_att=52.956, acc=0.730, loss=49.836, backward_time=0.097, grad_norm=44.791, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.118e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 12:57:14,815 (trainer:737) INFO: 42epoch:train:2201-2300batch: iter_time=1.343e-04, forward_time=0.105, loss_ctc=37.567, loss_att=46.286, acc=0.755, loss=43.670, backward_time=0.097, grad_norm=41.690, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.118e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 12:58:01,598 (trainer:737) INFO: 42epoch:train:2301-2400batch: iter_time=1.453e-04, forward_time=0.132, loss_ctc=39.710, loss_att=47.694, acc=0.748, loss=45.299, backward_time=0.100, grad_norm=51.127, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.045, optim0_lr0=3.118e-04, train_time=0.468 +[gpuc04:0/16] 2024-01-17 12:58:43,419 (trainer:737) INFO: 42epoch:train:2401-2500batch: iter_time=1.460e-04, forward_time=0.105, loss_ctc=48.314, loss_att=50.976, acc=0.750, loss=50.177, backward_time=0.097, grad_norm=49.785, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.118e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 12:58:57,128 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 12:59:16,804 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 12:59:20,722 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 12:59:20,722 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 12:59:20,726 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 13:04:31,559 (trainer:737) INFO: 42epoch:train:2501-2600batch: iter_time=2.781, forward_time=0.122, loss_ctc=47.382, loss_att=47.880, acc=0.736, loss=47.731, backward_time=0.097, grad_norm=48.003, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.117e-04, train_time=3.481 +[gpuc04:0/16] 2024-01-17 13:05:13,198 (trainer:737) INFO: 42epoch:train:2601-2700batch: iter_time=1.509e-04, forward_time=0.106, loss_ctc=44.907, loss_att=57.172, acc=0.721, loss=53.492, backward_time=0.097, grad_norm=48.608, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.117e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:05:54,916 (trainer:737) INFO: 42epoch:train:2701-2800batch: iter_time=1.658e-04, forward_time=0.106, loss_ctc=39.946, loss_att=48.470, acc=0.761, loss=45.913, backward_time=0.097, grad_norm=41.432, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.117e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:06:37,097 (trainer:737) INFO: 42epoch:train:2801-2900batch: iter_time=1.711e-04, forward_time=0.106, loss_ctc=43.247, loss_att=58.283, acc=0.723, loss=53.772, backward_time=0.097, grad_norm=50.308, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.117e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 13:07:18,861 (trainer:737) INFO: 42epoch:train:2901-3000batch: iter_time=1.544e-04, forward_time=0.106, loss_ctc=43.386, loss_att=58.191, acc=0.712, loss=53.749, backward_time=0.096, grad_norm=43.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.116e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:08:00,639 (trainer:737) INFO: 42epoch:train:3001-3100batch: iter_time=1.513e-04, forward_time=0.105, loss_ctc=40.254, loss_att=51.897, acc=0.740, loss=48.404, backward_time=0.096, grad_norm=41.349, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.116e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 13:08:42,031 (trainer:737) INFO: 42epoch:train:3101-3200batch: iter_time=1.435e-04, forward_time=0.105, loss_ctc=31.092, loss_att=31.272, acc=0.788, loss=31.218, backward_time=0.096, grad_norm=34.382, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.116e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 13:09:24,107 (trainer:737) INFO: 42epoch:train:3201-3300batch: iter_time=1.292e-04, forward_time=0.105, loss_ctc=45.983, loss_att=52.625, acc=0.740, loss=50.632, backward_time=0.096, grad_norm=45.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.116e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 13:10:05,603 (trainer:737) INFO: 42epoch:train:3301-3400batch: iter_time=1.401e-04, forward_time=0.105, loss_ctc=49.612, loss_att=56.770, acc=0.713, loss=54.623, backward_time=0.096, grad_norm=52.474, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.115e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:10:47,164 (trainer:737) INFO: 42epoch:train:3401-3500batch: iter_time=1.668e-04, forward_time=0.105, loss_ctc=35.147, loss_att=42.436, acc=0.754, loss=40.249, backward_time=0.096, grad_norm=38.510, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.115e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:11:28,581 (trainer:737) INFO: 42epoch:train:3501-3600batch: iter_time=1.431e-04, forward_time=0.105, loss_ctc=36.670, loss_att=41.345, acc=0.759, loss=39.943, backward_time=0.096, grad_norm=41.067, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.115e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 13:12:10,200 (trainer:737) INFO: 42epoch:train:3601-3700batch: iter_time=1.084e-04, forward_time=0.105, loss_ctc=44.643, loss_att=55.657, acc=0.730, loss=52.353, backward_time=0.096, grad_norm=52.930, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.115e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:12:35,394 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 13:12:55,178 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 13:12:58,918 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 13:12:58,918 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 13:12:58,921 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 13:17:18,590 (trainer:737) INFO: 42epoch:train:3701-3800batch: iter_time=2.428, forward_time=0.104, loss_ctc=47.090, loss_att=47.531, acc=0.742, loss=47.399, backward_time=0.095, grad_norm=48.738, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.114e-04, train_time=3.084 +[gpuc04:0/16] 2024-01-17 13:18:00,143 (trainer:737) INFO: 42epoch:train:3801-3900batch: iter_time=1.073e-04, forward_time=0.104, loss_ctc=46.601, loss_att=45.226, acc=0.753, loss=45.639, backward_time=0.095, grad_norm=46.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.114e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:18:42,127 (trainer:737) INFO: 42epoch:train:3901-4000batch: iter_time=1.001e-04, forward_time=0.107, loss_ctc=41.948, loss_att=59.221, acc=0.744, loss=54.039, backward_time=0.097, grad_norm=45.429, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.114e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 13:19:24,002 (trainer:737) INFO: 42epoch:train:4001-4100batch: iter_time=1.298e-04, forward_time=0.104, loss_ctc=38.497, loss_att=51.341, acc=0.750, loss=47.488, backward_time=0.096, grad_norm=43.203, clip=100.000, loss_scale=2.202e+34, optim_step_time=0.039, optim0_lr0=3.114e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 13:20:05,910 (trainer:737) INFO: 42epoch:train:4101-4200batch: iter_time=1.349e-04, forward_time=0.105, loss_ctc=40.799, loss_att=55.422, acc=0.729, loss=51.035, backward_time=0.096, grad_norm=46.608, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.113e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 13:20:21,408 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 13:20:47,675 (trainer:737) INFO: 42epoch:train:4201-4300batch: iter_time=1.221e-04, forward_time=0.104, loss_ctc=42.653, loss_att=55.637, acc=0.723, loss=51.742, backward_time=0.096, grad_norm=43.112, clip=100.000, loss_scale=2.832e+34, optim_step_time=0.039, optim0_lr0=3.113e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:21:29,660 (trainer:737) INFO: 42epoch:train:4301-4400batch: iter_time=1.118e-04, forward_time=0.105, loss_ctc=37.963, loss_att=46.922, acc=0.785, loss=44.234, backward_time=0.096, grad_norm=38.911, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.113e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 13:22:11,145 (trainer:737) INFO: 42epoch:train:4401-4500batch: iter_time=1.168e-04, forward_time=0.104, loss_ctc=38.302, loss_att=39.999, acc=0.762, loss=39.490, backward_time=0.095, grad_norm=41.427, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.113e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:22:53,306 (trainer:737) INFO: 42epoch:train:4501-4600batch: iter_time=1.356e-04, forward_time=0.104, loss_ctc=46.353, loss_att=51.881, acc=0.743, loss=50.222, backward_time=0.096, grad_norm=46.610, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.112e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 13:23:35,004 (trainer:737) INFO: 42epoch:train:4601-4700batch: iter_time=1.164e-04, forward_time=0.104, loss_ctc=41.739, loss_att=52.870, acc=0.731, loss=49.531, backward_time=0.096, grad_norm=45.229, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.112e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:24:16,422 (trainer:737) INFO: 42epoch:train:4701-4800batch: iter_time=1.015e-04, forward_time=0.104, loss_ctc=37.295, loss_att=46.527, acc=0.753, loss=43.757, backward_time=0.095, grad_norm=41.485, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.112e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 13:24:58,179 (trainer:737) INFO: 42epoch:train:4801-4900batch: iter_time=1.115e-04, forward_time=0.104, loss_ctc=38.563, loss_att=47.548, acc=0.750, loss=44.852, backward_time=0.095, grad_norm=47.606, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.112e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:25:39,876 (trainer:737) INFO: 42epoch:train:4901-5000batch: iter_time=9.744e-05, forward_time=0.103, loss_ctc=47.711, loss_att=50.277, acc=0.751, loss=49.507, backward_time=0.096, grad_norm=48.410, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.111e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:25:46,328 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 13:26:05,940 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 13:26:09,725 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 13:26:09,725 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 13:26:09,728 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 13:30:48,897 (trainer:737) INFO: 42epoch:train:5001-5100batch: iter_time=2.483, forward_time=0.110, loss_ctc=48.081, loss_att=46.432, acc=0.745, loss=46.927, backward_time=0.096, grad_norm=49.921, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.111e-04, train_time=3.090 +[gpuc04:0/16] 2024-01-17 13:31:30,599 (trainer:737) INFO: 42epoch:train:5101-5200batch: iter_time=1.721e-04, forward_time=0.105, loss_ctc=44.265, loss_att=58.316, acc=0.724, loss=54.100, backward_time=0.097, grad_norm=46.253, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.111e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:32:12,297 (trainer:737) INFO: 42epoch:train:5201-5300batch: iter_time=1.571e-04, forward_time=0.106, loss_ctc=39.550, loss_att=47.302, acc=0.770, loss=44.976, backward_time=0.097, grad_norm=40.691, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.111e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:32:54,074 (trainer:737) INFO: 42epoch:train:5301-5400batch: iter_time=1.390e-04, forward_time=0.107, loss_ctc=42.748, loss_att=57.966, acc=0.737, loss=53.401, backward_time=0.097, grad_norm=48.225, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.110e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 13:33:35,744 (trainer:737) INFO: 42epoch:train:5401-5500batch: iter_time=1.331e-04, forward_time=0.106, loss_ctc=43.496, loss_att=59.951, acc=0.716, loss=55.014, backward_time=0.096, grad_norm=44.220, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.110e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:34:17,551 (trainer:737) INFO: 42epoch:train:5501-5600batch: iter_time=1.381e-04, forward_time=0.105, loss_ctc=39.414, loss_att=53.186, acc=0.744, loss=49.055, backward_time=0.096, grad_norm=43.549, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.110e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 13:34:59,199 (trainer:737) INFO: 42epoch:train:5601-5700batch: iter_time=1.230e-04, forward_time=0.105, loss_ctc=31.189, loss_att=31.074, acc=0.792, loss=31.109, backward_time=0.096, grad_norm=35.296, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.110e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:35:40,842 (trainer:737) INFO: 42epoch:train:5701-5800batch: iter_time=1.318e-04, forward_time=0.106, loss_ctc=45.753, loss_att=51.717, acc=0.754, loss=49.928, backward_time=0.096, grad_norm=47.258, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.109e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:36:22,691 (trainer:737) INFO: 42epoch:train:5801-5900batch: iter_time=1.402e-04, forward_time=0.106, loss_ctc=48.386, loss_att=57.451, acc=0.715, loss=54.731, backward_time=0.097, grad_norm=50.372, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.109e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 13:37:04,346 (trainer:737) INFO: 42epoch:train:5901-6000batch: iter_time=1.636e-04, forward_time=0.105, loss_ctc=34.801, loss_att=42.170, acc=0.766, loss=39.959, backward_time=0.096, grad_norm=38.779, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.109e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:37:46,316 (trainer:737) INFO: 42epoch:train:6001-6100batch: iter_time=1.613e-04, forward_time=0.108, loss_ctc=36.659, loss_att=41.751, acc=0.762, loss=40.223, backward_time=0.096, grad_norm=40.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.109e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 13:38:28,506 (trainer:737) INFO: 42epoch:train:6101-6200batch: iter_time=1.530e-04, forward_time=0.106, loss_ctc=43.673, loss_att=55.535, acc=0.735, loss=51.977, backward_time=0.097, grad_norm=52.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.108e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 13:38:58,223 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 13:39:17,242 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 13:39:20,762 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 13:39:20,762 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 13:39:20,766 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 13:43:34,152 (trainer:737) INFO: 42epoch:train:6201-6300batch: iter_time=2.496, forward_time=0.105, loss_ctc=47.208, loss_att=47.896, acc=0.738, loss=47.690, backward_time=0.096, grad_norm=49.373, clip=100.000, loss_scale=3.385e+34, optim_step_time=0.039, optim0_lr0=3.108e-04, train_time=3.056 +[gpuc04:0/16] 2024-01-17 13:44:16,062 (trainer:737) INFO: 42epoch:train:6301-6400batch: iter_time=1.769e-04, forward_time=0.105, loss_ctc=46.791, loss_att=46.357, acc=0.744, loss=46.487, backward_time=0.096, grad_norm=43.889, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.108e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 13:44:57,833 (trainer:737) INFO: 42epoch:train:6401-6500batch: iter_time=1.837e-04, forward_time=0.107, loss_ctc=42.278, loss_att=57.671, acc=0.739, loss=53.053, backward_time=0.097, grad_norm=46.070, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.108e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:45:39,522 (trainer:737) INFO: 42epoch:train:6501-6600batch: iter_time=1.839e-04, forward_time=0.105, loss_ctc=38.292, loss_att=51.515, acc=0.744, loss=47.548, backward_time=0.096, grad_norm=41.777, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.107e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:45:52,831 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 13:46:21,007 (trainer:737) INFO: 42epoch:train:6601-6700batch: iter_time=1.422e-04, forward_time=0.105, loss_ctc=40.323, loss_att=54.012, acc=0.727, loss=49.905, backward_time=0.096, grad_norm=43.322, clip=100.000, loss_scale=2.727e+34, optim_step_time=0.038, optim0_lr0=3.107e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:47:02,440 (trainer:737) INFO: 42epoch:train:6701-6800batch: iter_time=1.607e-04, forward_time=0.105, loss_ctc=41.931, loss_att=55.138, acc=0.714, loss=51.176, backward_time=0.096, grad_norm=43.813, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.107e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 13:47:44,322 (trainer:737) INFO: 42epoch:train:6801-6900batch: iter_time=2.194e-04, forward_time=0.106, loss_ctc=37.337, loss_att=46.206, acc=0.783, loss=43.545, backward_time=0.097, grad_norm=38.469, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.107e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 13:48:25,887 (trainer:737) INFO: 42epoch:train:6901-7000batch: iter_time=1.967e-04, forward_time=0.106, loss_ctc=37.501, loss_att=39.743, acc=0.760, loss=39.070, backward_time=0.096, grad_norm=40.673, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.106e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:49:07,474 (trainer:737) INFO: 42epoch:train:7001-7100batch: iter_time=1.739e-04, forward_time=0.106, loss_ctc=45.937, loss_att=51.119, acc=0.740, loss=49.565, backward_time=0.096, grad_norm=48.330, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.106e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:49:49,061 (trainer:737) INFO: 42epoch:train:7101-7200batch: iter_time=2.055e-04, forward_time=0.106, loss_ctc=41.593, loss_att=52.415, acc=0.725, loss=49.168, backward_time=0.096, grad_norm=44.778, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.106e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:50:30,566 (trainer:737) INFO: 42epoch:train:7201-7300batch: iter_time=1.653e-04, forward_time=0.105, loss_ctc=36.736, loss_att=46.682, acc=0.746, loss=43.698, backward_time=0.095, grad_norm=40.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.106e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 13:51:12,335 (trainer:737) INFO: 42epoch:train:7301-7400batch: iter_time=1.303e-04, forward_time=0.105, loss_ctc=38.698, loss_att=45.395, acc=0.757, loss=43.386, backward_time=0.095, grad_norm=43.740, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.105e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 13:51:54,197 (trainer:737) INFO: 42epoch:train:7401-7500batch: iter_time=1.296e-04, forward_time=0.105, loss_ctc=47.380, loss_att=48.992, acc=0.751, loss=48.508, backward_time=0.096, grad_norm=48.362, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.105e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 13:51:59,814 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 13:52:19,383 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 13:52:23,076 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 13:52:23,076 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 13:52:23,080 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 13:57:46,328 (trainer:737) INFO: 42epoch:train:7501-7600batch: iter_time=3.091, forward_time=0.105, loss_ctc=46.844, loss_att=48.591, acc=0.743, loss=48.067, backward_time=0.096, grad_norm=48.985, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.105e-04, train_time=3.521 +[gpuc04:0/16] 2024-01-17 13:58:27,993 (trainer:737) INFO: 42epoch:train:7601-7700batch: iter_time=1.034e-04, forward_time=0.104, loss_ctc=43.951, loss_att=58.672, acc=0.724, loss=54.255, backward_time=0.097, grad_norm=47.031, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.105e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 13:59:09,943 (trainer:737) INFO: 42epoch:train:7701-7800batch: iter_time=1.191e-04, forward_time=0.104, loss_ctc=39.600, loss_att=48.420, acc=0.770, loss=45.774, backward_time=0.097, grad_norm=42.289, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.104e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 13:59:51,666 (trainer:737) INFO: 42epoch:train:7801-7900batch: iter_time=1.265e-04, forward_time=0.105, loss_ctc=42.656, loss_att=57.893, acc=0.737, loss=53.322, backward_time=0.097, grad_norm=52.246, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.104e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:00:33,552 (trainer:737) INFO: 42epoch:train:7901-8000batch: iter_time=1.185e-04, forward_time=0.104, loss_ctc=43.676, loss_att=60.536, acc=0.715, loss=55.478, backward_time=0.097, grad_norm=45.330, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.104e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 14:01:15,126 (trainer:737) INFO: 42epoch:train:8001-8100batch: iter_time=1.302e-04, forward_time=0.105, loss_ctc=39.702, loss_att=53.443, acc=0.745, loss=49.321, backward_time=0.096, grad_norm=43.960, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.104e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:01:56,825 (trainer:737) INFO: 42epoch:train:8101-8200batch: iter_time=1.350e-04, forward_time=0.105, loss_ctc=30.622, loss_att=31.039, acc=0.791, loss=30.914, backward_time=0.095, grad_norm=34.336, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.103e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:02:38,425 (trainer:737) INFO: 42epoch:train:8201-8300batch: iter_time=1.363e-04, forward_time=0.107, loss_ctc=45.506, loss_att=51.740, acc=0.753, loss=49.870, backward_time=0.096, grad_norm=44.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.103e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:03:18,947 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 14:03:20,203 (trainer:737) INFO: 42epoch:train:8301-8400batch: iter_time=1.426e-04, forward_time=0.106, loss_ctc=48.274, loss_att=58.468, acc=0.713, loss=55.410, backward_time=0.096, grad_norm=48.913, clip=100.000, loss_scale=2.045e+34, optim_step_time=0.039, optim0_lr0=3.103e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:04:01,616 (trainer:737) INFO: 42epoch:train:8401-8500batch: iter_time=1.569e-04, forward_time=0.106, loss_ctc=34.531, loss_att=42.201, acc=0.766, loss=39.900, backward_time=0.096, grad_norm=38.250, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.103e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 14:04:43,028 (trainer:737) INFO: 42epoch:train:8501-8600batch: iter_time=1.499e-04, forward_time=0.106, loss_ctc=36.145, loss_att=41.557, acc=0.764, loss=39.933, backward_time=0.096, grad_norm=39.741, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.102e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 14:05:24,713 (trainer:737) INFO: 42epoch:train:8601-8700batch: iter_time=1.567e-04, forward_time=0.107, loss_ctc=43.418, loss_att=55.245, acc=0.735, loss=51.697, backward_time=0.097, grad_norm=52.039, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.102e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:05:50,779 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 14:06:10,346 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 14:06:14,022 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 14:06:14,022 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 14:06:14,025 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 14:10:42,738 (trainer:737) INFO: 42epoch:train:8701-8800batch: iter_time=2.518, forward_time=0.104, loss_ctc=46.953, loss_att=47.520, acc=0.738, loss=47.350, backward_time=0.096, grad_norm=47.605, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.102e-04, train_time=3.180 +[gpuc04:0/16] 2024-01-17 14:11:24,408 (trainer:737) INFO: 42epoch:train:8801-8900batch: iter_time=1.226e-04, forward_time=0.104, loss_ctc=46.326, loss_att=45.143, acc=0.749, loss=45.498, backward_time=0.096, grad_norm=46.922, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.102e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:12:06,588 (trainer:737) INFO: 42epoch:train:8901-9000batch: iter_time=1.259e-04, forward_time=0.106, loss_ctc=41.780, loss_att=56.270, acc=0.743, loss=51.923, backward_time=0.097, grad_norm=45.730, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.101e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 14:12:48,570 (trainer:737) INFO: 42epoch:train:9001-9100batch: iter_time=1.239e-04, forward_time=0.104, loss_ctc=38.185, loss_att=51.125, acc=0.744, loss=47.243, backward_time=0.096, grad_norm=43.344, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.101e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 14:13:30,500 (trainer:737) INFO: 42epoch:train:9101-9200batch: iter_time=1.591e-04, forward_time=0.106, loss_ctc=40.001, loss_att=53.421, acc=0.728, loss=49.395, backward_time=0.096, grad_norm=45.921, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.101e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 14:14:12,184 (trainer:737) INFO: 42epoch:train:9201-9300batch: iter_time=1.387e-04, forward_time=0.105, loss_ctc=41.967, loss_att=54.951, acc=0.715, loss=51.056, backward_time=0.095, grad_norm=43.268, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.101e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:14:54,413 (trainer:737) INFO: 42epoch:train:9301-9400batch: iter_time=1.181e-04, forward_time=0.105, loss_ctc=37.475, loss_att=45.827, acc=0.784, loss=43.321, backward_time=0.096, grad_norm=39.091, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.100e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 14:15:35,956 (trainer:737) INFO: 42epoch:train:9401-9500batch: iter_time=1.242e-04, forward_time=0.105, loss_ctc=37.563, loss_att=39.863, acc=0.762, loss=39.173, backward_time=0.095, grad_norm=41.658, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.100e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:16:18,300 (trainer:737) INFO: 42epoch:train:9501-9600batch: iter_time=1.225e-04, forward_time=0.105, loss_ctc=45.859, loss_att=50.857, acc=0.741, loss=49.358, backward_time=0.095, grad_norm=46.764, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.100e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 14:16:59,999 (trainer:737) INFO: 42epoch:train:9601-9700batch: iter_time=1.392e-04, forward_time=0.105, loss_ctc=41.306, loss_att=51.832, acc=0.728, loss=48.675, backward_time=0.095, grad_norm=45.496, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.100e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:17:41,652 (trainer:737) INFO: 42epoch:train:9701-9800batch: iter_time=1.317e-04, forward_time=0.105, loss_ctc=36.737, loss_att=46.064, acc=0.747, loss=43.266, backward_time=0.095, grad_norm=42.394, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.099e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:18:23,144 (trainer:737) INFO: 42epoch:train:9801-9900batch: iter_time=1.251e-04, forward_time=0.105, loss_ctc=38.406, loss_att=45.374, acc=0.757, loss=43.284, backward_time=0.095, grad_norm=47.967, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.099e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:19:04,869 (trainer:737) INFO: 42epoch:train:9901-10000batch: iter_time=1.165e-04, forward_time=0.105, loss_ctc=46.669, loss_att=48.892, acc=0.749, loss=48.225, backward_time=0.096, grad_norm=46.891, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.099e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:19:11,139 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 14:19:30,557 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 14:19:34,583 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 14:19:34,583 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 14:19:34,586 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 14:24:24,926 (trainer:737) INFO: 42epoch:train:10001-10100batch: iter_time=2.758, forward_time=0.117, loss_ctc=46.645, loss_att=47.622, acc=0.744, loss=47.329, backward_time=0.098, grad_norm=50.272, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.099e-04, train_time=3.200 +[gpuc04:0/16] 2024-01-17 14:25:06,624 (trainer:737) INFO: 42epoch:train:10101-10200batch: iter_time=1.244e-04, forward_time=0.104, loss_ctc=43.699, loss_att=58.626, acc=0.726, loss=54.148, backward_time=0.096, grad_norm=49.360, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.098e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:25:48,429 (trainer:737) INFO: 42epoch:train:10201-10300batch: iter_time=1.295e-04, forward_time=0.106, loss_ctc=39.003, loss_att=48.024, acc=0.771, loss=45.318, backward_time=0.097, grad_norm=41.481, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.098e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:26:30,181 (trainer:737) INFO: 42epoch:train:10301-10400batch: iter_time=1.583e-04, forward_time=0.107, loss_ctc=42.148, loss_att=58.493, acc=0.737, loss=53.589, backward_time=0.097, grad_norm=51.698, clip=100.000, loss_scale=1.070e+34, optim_step_time=0.038, optim0_lr0=3.098e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:27:11,800 (trainer:737) INFO: 42epoch:train:10401-10500batch: iter_time=1.701e-04, forward_time=0.106, loss_ctc=43.289, loss_att=59.923, acc=0.715, loss=54.933, backward_time=0.096, grad_norm=45.279, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.098e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:27:53,348 (trainer:737) INFO: 42epoch:train:10501-10600batch: iter_time=1.629e-04, forward_time=0.105, loss_ctc=39.346, loss_att=52.749, acc=0.746, loss=48.728, backward_time=0.096, grad_norm=42.501, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.097e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:28:34,871 (trainer:737) INFO: 42epoch:train:10601-10700batch: iter_time=1.511e-04, forward_time=0.105, loss_ctc=30.311, loss_att=30.788, acc=0.793, loss=30.645, backward_time=0.095, grad_norm=33.341, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.097e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:29:16,668 (trainer:737) INFO: 42epoch:train:10701-10800batch: iter_time=1.459e-04, forward_time=0.106, loss_ctc=45.361, loss_att=52.009, acc=0.753, loss=50.014, backward_time=0.096, grad_norm=46.524, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.097e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:29:58,278 (trainer:737) INFO: 42epoch:train:10801-10900batch: iter_time=1.283e-04, forward_time=0.105, loss_ctc=47.641, loss_att=57.330, acc=0.715, loss=54.423, backward_time=0.096, grad_norm=49.650, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.097e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:30:40,240 (trainer:737) INFO: 42epoch:train:10901-11000batch: iter_time=1.406e-04, forward_time=0.105, loss_ctc=34.348, loss_att=42.440, acc=0.766, loss=40.013, backward_time=0.095, grad_norm=38.313, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.096e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 14:31:21,730 (trainer:737) INFO: 42epoch:train:11001-11100batch: iter_time=1.502e-04, forward_time=0.105, loss_ctc=35.845, loss_att=40.958, acc=0.765, loss=39.424, backward_time=0.095, grad_norm=38.450, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.096e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:32:03,756 (trainer:737) INFO: 42epoch:train:11101-11200batch: iter_time=1.514e-04, forward_time=0.106, loss_ctc=43.586, loss_att=55.508, acc=0.736, loss=51.932, backward_time=0.096, grad_norm=53.491, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.096e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 14:32:32,026 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 14:32:52,122 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 14:32:55,807 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 14:32:55,808 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 14:32:55,811 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 14:37:50,297 (trainer:737) INFO: 42epoch:train:11201-11300batch: iter_time=2.959, forward_time=0.104, loss_ctc=47.262, loss_att=47.301, acc=0.739, loss=47.289, backward_time=0.096, grad_norm=50.463, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.096e-04, train_time=3.465 +[gpuc04:0/16] 2024-01-17 14:38:31,867 (trainer:737) INFO: 42epoch:train:11301-11400batch: iter_time=1.325e-04, forward_time=0.104, loss_ctc=45.973, loss_att=44.694, acc=0.750, loss=45.078, backward_time=0.095, grad_norm=46.029, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.095e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:39:13,733 (trainer:737) INFO: 42epoch:train:11401-11500batch: iter_time=1.224e-04, forward_time=0.106, loss_ctc=42.065, loss_att=56.822, acc=0.743, loss=52.395, backward_time=0.096, grad_norm=45.925, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.095e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:39:55,593 (trainer:737) INFO: 42epoch:train:11501-11600batch: iter_time=1.358e-04, forward_time=0.105, loss_ctc=37.425, loss_att=50.878, acc=0.747, loss=46.842, backward_time=0.096, grad_norm=43.782, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.095e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:40:37,459 (trainer:737) INFO: 42epoch:train:11601-11700batch: iter_time=1.379e-04, forward_time=0.109, loss_ctc=39.748, loss_att=53.205, acc=0.728, loss=49.168, backward_time=0.096, grad_norm=45.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.095e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:41:19,221 (trainer:737) INFO: 42epoch:train:11701-11800batch: iter_time=1.603e-04, forward_time=0.105, loss_ctc=42.179, loss_att=55.023, acc=0.715, loss=51.170, backward_time=0.095, grad_norm=46.316, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.094e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:42:00,796 (trainer:737) INFO: 42epoch:train:11801-11900batch: iter_time=1.324e-04, forward_time=0.106, loss_ctc=37.519, loss_att=46.126, acc=0.784, loss=43.544, backward_time=0.096, grad_norm=38.898, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.094e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:42:42,525 (trainer:737) INFO: 42epoch:train:11901-12000batch: iter_time=1.469e-04, forward_time=0.106, loss_ctc=37.649, loss_att=39.015, acc=0.763, loss=38.605, backward_time=0.095, grad_norm=39.953, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.094e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:43:24,124 (trainer:737) INFO: 42epoch:train:12001-12100batch: iter_time=1.359e-04, forward_time=0.107, loss_ctc=45.772, loss_att=50.662, acc=0.742, loss=49.195, backward_time=0.096, grad_norm=46.662, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.094e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:44:05,611 (trainer:737) INFO: 42epoch:train:12101-12200batch: iter_time=1.341e-04, forward_time=0.106, loss_ctc=40.920, loss_att=51.333, acc=0.729, loss=48.209, backward_time=0.095, grad_norm=44.483, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.093e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:44:47,533 (trainer:737) INFO: 42epoch:train:12201-12300batch: iter_time=1.329e-04, forward_time=0.106, loss_ctc=36.453, loss_att=45.636, acc=0.749, loss=42.881, backward_time=0.095, grad_norm=41.055, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.093e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 14:45:29,392 (trainer:737) INFO: 42epoch:train:12301-12400batch: iter_time=1.433e-04, forward_time=0.106, loss_ctc=38.157, loss_att=45.487, acc=0.757, loss=43.288, backward_time=0.095, grad_norm=47.564, clip=100.000, loss_scale=2.139e+34, optim_step_time=0.038, optim0_lr0=3.093e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:46:10,998 (trainer:737) INFO: 42epoch:train:12401-12500batch: iter_time=1.230e-04, forward_time=0.106, loss_ctc=47.750, loss_att=48.789, acc=0.750, loss=48.477, backward_time=0.096, grad_norm=50.084, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=3.093e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:46:15,825 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 14:46:35,253 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 14:46:38,767 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 14:46:38,767 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 14:46:38,770 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 14:51:23,936 (trainer:737) INFO: 42epoch:train:12501-12600batch: iter_time=2.711, forward_time=0.104, loss_ctc=46.613, loss_att=45.003, acc=0.742, loss=45.486, backward_time=0.095, grad_norm=48.672, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.092e-04, train_time=3.129 +[gpuc04:0/16] 2024-01-17 14:51:57,884 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 14:52:05,414 (trainer:737) INFO: 42epoch:train:12601-12700batch: iter_time=1.814e-04, forward_time=0.104, loss_ctc=43.213, loss_att=54.603, acc=0.730, loss=51.186, backward_time=0.095, grad_norm=45.402, clip=100.000, loss_scale=3.776e+34, optim_step_time=0.039, optim0_lr0=3.092e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:52:47,020 (trainer:737) INFO: 42epoch:train:12701-12800batch: iter_time=1.923e-04, forward_time=0.105, loss_ctc=39.249, loss_att=47.880, acc=0.764, loss=45.291, backward_time=0.096, grad_norm=40.986, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.092e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:53:28,889 (trainer:737) INFO: 42epoch:train:12801-12900batch: iter_time=1.884e-04, forward_time=0.105, loss_ctc=42.127, loss_att=56.880, acc=0.728, loss=52.454, backward_time=0.096, grad_norm=47.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.092e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:54:10,460 (trainer:737) INFO: 42epoch:train:12901-13000batch: iter_time=1.746e-04, forward_time=0.106, loss_ctc=42.972, loss_att=57.476, acc=0.717, loss=53.125, backward_time=0.096, grad_norm=46.333, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.092e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:54:52,003 (trainer:737) INFO: 42epoch:train:13001-13100batch: iter_time=1.783e-04, forward_time=0.106, loss_ctc=39.497, loss_att=51.946, acc=0.739, loss=48.211, backward_time=0.095, grad_norm=44.207, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.091e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 14:55:33,667 (trainer:737) INFO: 42epoch:train:13101-13200batch: iter_time=1.617e-04, forward_time=0.105, loss_ctc=30.588, loss_att=30.899, acc=0.792, loss=30.806, backward_time=0.095, grad_norm=34.867, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.091e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:56:15,973 (trainer:737) INFO: 42epoch:train:13201-13300batch: iter_time=1.655e-04, forward_time=0.106, loss_ctc=45.200, loss_att=50.871, acc=0.749, loss=49.169, backward_time=0.096, grad_norm=46.192, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.091e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 14:56:57,635 (trainer:737) INFO: 42epoch:train:13301-13400batch: iter_time=1.643e-04, forward_time=0.106, loss_ctc=48.071, loss_att=56.931, acc=0.716, loss=54.273, backward_time=0.095, grad_norm=49.710, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.091e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 14:57:39,376 (trainer:737) INFO: 42epoch:train:13401-13500batch: iter_time=1.906e-04, forward_time=0.106, loss_ctc=34.445, loss_att=41.670, acc=0.757, loss=39.503, backward_time=0.095, grad_norm=38.348, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.090e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 14:58:21,299 (trainer:737) INFO: 42epoch:train:13501-13600batch: iter_time=2.026e-04, forward_time=0.106, loss_ctc=35.539, loss_att=41.985, acc=0.757, loss=40.051, backward_time=0.095, grad_norm=38.622, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.090e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 14:59:03,158 (trainer:737) INFO: 42epoch:train:13601-13700batch: iter_time=1.683e-04, forward_time=0.105, loss_ctc=43.242, loss_att=54.365, acc=0.733, loss=51.028, backward_time=0.095, grad_norm=52.960, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.090e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 14:59:30,175 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 14:59:50,122 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 14:59:53,888 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 14:59:53,888 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 14:59:53,892 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 15:04:19,040 (trainer:737) INFO: 42epoch:train:13701-13800batch: iter_time=2.741, forward_time=0.105, loss_ctc=46.778, loss_att=47.574, acc=0.743, loss=47.335, backward_time=0.096, grad_norm=48.332, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.090e-04, train_time=3.159 +[gpuc04:0/16] 2024-01-17 15:05:00,991 (trainer:737) INFO: 42epoch:train:13801-13900batch: iter_time=1.648e-04, forward_time=0.105, loss_ctc=45.573, loss_att=44.753, acc=0.755, loss=44.999, backward_time=0.096, grad_norm=43.538, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.089e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 15:05:42,926 (trainer:737) INFO: 42epoch:train:13901-14000batch: iter_time=1.993e-04, forward_time=0.106, loss_ctc=41.574, loss_att=58.635, acc=0.746, loss=53.517, backward_time=0.097, grad_norm=45.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.089e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 15:06:24,576 (trainer:737) INFO: 42epoch:train:14001-14100batch: iter_time=1.753e-04, forward_time=0.105, loss_ctc=37.628, loss_att=50.933, acc=0.753, loss=46.942, backward_time=0.097, grad_norm=42.359, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.089e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 15:07:06,279 (trainer:737) INFO: 42epoch:train:14101-14200batch: iter_time=1.534e-04, forward_time=0.106, loss_ctc=39.741, loss_att=55.494, acc=0.731, loss=50.768, backward_time=0.097, grad_norm=45.587, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.089e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 15:07:47,905 (trainer:737) INFO: 42epoch:train:14201-14300batch: iter_time=1.299e-04, forward_time=0.105, loss_ctc=41.835, loss_att=55.458, acc=0.725, loss=51.371, backward_time=0.096, grad_norm=43.350, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.088e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 15:08:29,613 (trainer:737) INFO: 42epoch:train:14301-14400batch: iter_time=1.586e-04, forward_time=0.104, loss_ctc=36.999, loss_att=46.579, acc=0.787, loss=43.705, backward_time=0.096, grad_norm=37.525, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.088e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 15:09:11,163 (trainer:737) INFO: 42epoch:train:14401-14500batch: iter_time=1.465e-04, forward_time=0.104, loss_ctc=37.262, loss_att=39.517, acc=0.764, loss=38.840, backward_time=0.096, grad_norm=39.570, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.088e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 15:09:52,795 (trainer:737) INFO: 42epoch:train:14501-14600batch: iter_time=1.555e-04, forward_time=0.104, loss_ctc=45.698, loss_att=51.941, acc=0.744, loss=50.068, backward_time=0.097, grad_norm=44.932, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.088e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 15:10:34,354 (trainer:737) INFO: 42epoch:train:14601-14700batch: iter_time=1.576e-04, forward_time=0.105, loss_ctc=40.781, loss_att=52.901, acc=0.733, loss=49.265, backward_time=0.096, grad_norm=44.310, clip=100.000, loss_scale=2.451e+34, optim_step_time=0.039, optim0_lr0=3.087e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 15:11:15,912 (trainer:737) INFO: 42epoch:train:14701-14800batch: iter_time=1.472e-04, forward_time=0.106, loss_ctc=36.421, loss_att=45.425, acc=0.757, loss=42.724, backward_time=0.096, grad_norm=41.478, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.087e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 15:11:53,677 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 15:11:57,475 (trainer:737) INFO: 42epoch:train:14801-14900batch: iter_time=1.559e-04, forward_time=0.106, loss_ctc=38.108, loss_att=47.408, acc=0.751, loss=44.618, backward_time=0.096, grad_norm=45.049, clip=100.000, loss_scale=3.965e+34, optim_step_time=0.039, optim0_lr0=3.087e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 15:12:39,092 (trainer:737) INFO: 42epoch:train:14901-15000batch: iter_time=1.246e-04, forward_time=0.105, loss_ctc=47.060, loss_att=49.438, acc=0.754, loss=48.725, backward_time=0.097, grad_norm=48.560, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.087e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 15:32:47,700 (trainer:343) INFO: 42epoch results: [train] iter_time=0.213, forward_time=0.106, loss_ctc=41.648, loss_att=49.894, acc=0.745, loss=47.421, backward_time=0.096, grad_norm=44.979, clip=100.000, loss_scale=1.942e+34, optim_step_time=0.039, optim0_lr0=3.105e-04, train_time=0.650, time=2 hours, 42 minutes and 37.75 seconds, total_count=630000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=49.929, cer_ctc=0.254, loss_att=53.622, acc=0.594, cer=0.418, wer=1.000, loss=52.514, time=19 minutes and 59.4 seconds, total_count=196182, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 15:32:53,298 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 15:32:53,623 (trainer:272) INFO: 43/45epoch started. Estimated time to finish: 9 hours, 3 minutes and 19.14 seconds +[gpuc04:0/16] 2024-01-17 15:32:53,634 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 15:33:12,217 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 15:33:15,823 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 15:33:15,823 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 15:33:15,826 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 15:38:00,902 (trainer:737) INFO: 43epoch:train:1-100batch: iter_time=2.645, forward_time=0.110, loss_ctc=54.977, loss_att=68.001, acc=0.713, loss=64.093, backward_time=0.099, grad_norm=62.799, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.086e-04, train_time=3.072 +[gpuc04:0/16] 2024-01-17 15:38:42,865 (trainer:737) INFO: 43epoch:train:101-200batch: iter_time=1.231e-04, forward_time=0.106, loss_ctc=48.459, loss_att=53.374, acc=0.730, loss=51.899, backward_time=0.097, grad_norm=50.581, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.086e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 15:39:24,736 (trainer:737) INFO: 43epoch:train:201-300batch: iter_time=1.258e-04, forward_time=0.106, loss_ctc=44.075, loss_att=48.077, acc=0.744, loss=46.877, backward_time=0.098, grad_norm=44.853, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.086e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 15:40:06,847 (trainer:737) INFO: 43epoch:train:301-400batch: iter_time=1.275e-04, forward_time=0.107, loss_ctc=56.482, loss_att=55.160, acc=0.724, loss=55.556, backward_time=0.098, grad_norm=59.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.086e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 15:40:50,129 (trainer:737) INFO: 43epoch:train:401-500batch: iter_time=1.320e-04, forward_time=0.106, loss_ctc=52.209, loss_att=52.318, acc=0.743, loss=52.285, backward_time=0.098, grad_norm=50.653, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.085e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-17 15:41:34,738 (trainer:737) INFO: 43epoch:train:501-600batch: iter_time=1.299e-04, forward_time=0.106, loss_ctc=46.846, loss_att=56.421, acc=0.750, loss=53.548, backward_time=0.099, grad_norm=53.527, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.085e-04, train_time=0.446 +[gpuc04:0/16] 2024-01-17 15:42:25,668 (trainer:737) INFO: 43epoch:train:601-700batch: iter_time=1.220e-04, forward_time=0.105, loss_ctc=38.185, loss_att=40.897, acc=0.781, loss=40.083, backward_time=0.098, grad_norm=47.825, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.085e-04, train_time=0.509 +[gpuc04:0/16] 2024-01-17 15:43:08,243 (trainer:737) INFO: 43epoch:train:701-800batch: iter_time=1.295e-04, forward_time=0.105, loss_ctc=38.357, loss_att=43.604, acc=0.748, loss=42.030, backward_time=0.097, grad_norm=43.154, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.085e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-17 15:43:50,700 (trainer:737) INFO: 43epoch:train:801-900batch: iter_time=1.375e-04, forward_time=0.107, loss_ctc=54.054, loss_att=57.180, acc=0.757, loss=56.242, backward_time=0.099, grad_norm=52.802, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.084e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 15:44:32,581 (trainer:737) INFO: 43epoch:train:901-1000batch: iter_time=1.241e-04, forward_time=0.106, loss_ctc=40.270, loss_att=47.199, acc=0.745, loss=45.120, backward_time=0.098, grad_norm=46.887, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.084e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 15:45:16,992 (trainer:737) INFO: 43epoch:train:1001-1100batch: iter_time=1.290e-04, forward_time=0.106, loss_ctc=45.480, loss_att=56.276, acc=0.736, loss=53.037, backward_time=0.098, grad_norm=52.174, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.084e-04, train_time=0.444 +[gpuc04:0/16] 2024-01-17 15:46:03,137 (trainer:737) INFO: 43epoch:train:1101-1200batch: iter_time=1.249e-04, forward_time=0.107, loss_ctc=40.369, loss_att=41.960, acc=0.757, loss=41.482, backward_time=0.098, grad_norm=46.272, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.084e-04, train_time=0.461 +[gpuc04:0/16] 2024-01-17 15:46:36,344 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 15:46:55,766 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 15:46:59,584 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 15:46:59,584 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 15:46:59,587 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 15:52:28,903 (trainer:737) INFO: 43epoch:train:1201-1300batch: iter_time=3.037, forward_time=0.177, loss_ctc=43.320, loss_att=56.270, acc=0.719, loss=52.385, backward_time=0.118, grad_norm=51.145, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.083e-04, train_time=3.858 +[gpuc04:0/16] 2024-01-17 15:53:11,002 (trainer:737) INFO: 43epoch:train:1301-1400batch: iter_time=1.449e-04, forward_time=0.106, loss_ctc=52.410, loss_att=64.474, acc=0.701, loss=60.854, backward_time=0.096, grad_norm=61.530, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.083e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 15:53:53,042 (trainer:737) INFO: 43epoch:train:1401-1500batch: iter_time=1.716e-04, forward_time=0.106, loss_ctc=47.459, loss_att=51.335, acc=0.741, loss=50.172, backward_time=0.096, grad_norm=48.465, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.083e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 15:54:34,748 (trainer:737) INFO: 43epoch:train:1501-1600batch: iter_time=2.029e-04, forward_time=0.105, loss_ctc=42.058, loss_att=42.015, acc=0.737, loss=42.028, backward_time=0.096, grad_norm=43.989, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.083e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 15:55:16,539 (trainer:737) INFO: 43epoch:train:1601-1700batch: iter_time=1.614e-04, forward_time=0.106, loss_ctc=62.886, loss_att=58.243, acc=0.705, loss=59.636, backward_time=0.097, grad_norm=59.521, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.082e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 15:55:58,347 (trainer:737) INFO: 43epoch:train:1701-1800batch: iter_time=1.954e-04, forward_time=0.106, loss_ctc=46.353, loss_att=57.723, acc=0.743, loss=54.312, backward_time=0.097, grad_norm=50.232, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.082e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 15:56:40,286 (trainer:737) INFO: 43epoch:train:1801-1900batch: iter_time=1.556e-04, forward_time=0.109, loss_ctc=38.533, loss_att=44.719, acc=0.759, loss=42.863, backward_time=0.097, grad_norm=41.772, clip=100.000, loss_scale=2.264e+34, optim_step_time=0.039, optim0_lr0=3.082e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 15:57:21,814 (trainer:737) INFO: 43epoch:train:1901-2000batch: iter_time=1.530e-04, forward_time=0.106, loss_ctc=38.284, loss_att=40.430, acc=0.761, loss=39.786, backward_time=0.097, grad_norm=44.515, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.082e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 15:58:03,371 (trainer:737) INFO: 43epoch:train:2001-2100batch: iter_time=1.609e-04, forward_time=0.105, loss_ctc=44.007, loss_att=45.403, acc=0.755, loss=44.984, backward_time=0.097, grad_norm=46.849, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.081e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 15:58:45,005 (trainer:737) INFO: 43epoch:train:2101-2200batch: iter_time=1.715e-04, forward_time=0.107, loss_ctc=48.983, loss_att=57.006, acc=0.732, loss=54.599, backward_time=0.097, grad_norm=51.304, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.081e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 15:59:03,686 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 15:59:26,563 (trainer:737) INFO: 43epoch:train:2201-2300batch: iter_time=1.749e-04, forward_time=0.106, loss_ctc=37.875, loss_att=48.530, acc=0.746, loss=45.333, backward_time=0.097, grad_norm=44.052, clip=100.000, loss_scale=3.000e+34, optim_step_time=0.039, optim0_lr0=3.081e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:00:08,299 (trainer:737) INFO: 43epoch:train:2301-2400batch: iter_time=1.719e-04, forward_time=0.106, loss_ctc=44.175, loss_att=48.882, acc=0.735, loss=47.470, backward_time=0.096, grad_norm=50.431, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.081e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:00:49,740 (trainer:737) INFO: 43epoch:train:2401-2500batch: iter_time=1.428e-04, forward_time=0.105, loss_ctc=37.900, loss_att=40.101, acc=0.763, loss=39.441, backward_time=0.097, grad_norm=41.327, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.080e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 16:00:55,531 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 16:01:14,941 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 16:01:18,604 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 16:01:18,604 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 16:01:18,607 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 16:06:14,887 (trainer:737) INFO: 43epoch:train:2501-2600batch: iter_time=2.797, forward_time=0.106, loss_ctc=53.411, loss_att=68.307, acc=0.696, loss=63.838, backward_time=0.096, grad_norm=60.674, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.080e-04, train_time=3.251 +[gpuc04:0/16] 2024-01-17 16:06:56,251 (trainer:737) INFO: 43epoch:train:2601-2700batch: iter_time=1.373e-04, forward_time=0.105, loss_ctc=46.362, loss_att=51.539, acc=0.728, loss=49.986, backward_time=0.095, grad_norm=47.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.080e-04, train_time=0.413 +[gpuc04:0/16] 2024-01-17 16:07:37,898 (trainer:737) INFO: 43epoch:train:2701-2800batch: iter_time=1.553e-04, forward_time=0.106, loss_ctc=42.878, loss_att=45.891, acc=0.747, loss=44.987, backward_time=0.095, grad_norm=42.649, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.080e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:08:19,482 (trainer:737) INFO: 43epoch:train:2801-2900batch: iter_time=1.522e-04, forward_time=0.107, loss_ctc=54.903, loss_att=53.608, acc=0.716, loss=53.997, backward_time=0.096, grad_norm=57.505, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.080e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:09:01,194 (trainer:737) INFO: 43epoch:train:2901-3000batch: iter_time=1.521e-04, forward_time=0.106, loss_ctc=48.407, loss_att=49.441, acc=0.742, loss=49.131, backward_time=0.096, grad_norm=46.342, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.079e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:09:43,268 (trainer:737) INFO: 43epoch:train:3001-3100batch: iter_time=1.386e-04, forward_time=0.107, loss_ctc=44.922, loss_att=53.904, acc=0.740, loss=51.209, backward_time=0.096, grad_norm=54.065, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.079e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 16:10:24,894 (trainer:737) INFO: 43epoch:train:3101-3200batch: iter_time=1.388e-04, forward_time=0.106, loss_ctc=37.496, loss_att=40.725, acc=0.772, loss=39.756, backward_time=0.096, grad_norm=41.887, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.079e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:11:06,688 (trainer:737) INFO: 43epoch:train:3201-3300batch: iter_time=1.540e-04, forward_time=0.105, loss_ctc=37.303, loss_att=43.466, acc=0.743, loss=41.617, backward_time=0.095, grad_norm=42.985, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.079e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 16:11:48,643 (trainer:737) INFO: 43epoch:train:3301-3400batch: iter_time=1.470e-04, forward_time=0.106, loss_ctc=53.019, loss_att=54.961, acc=0.754, loss=54.379, backward_time=0.097, grad_norm=50.532, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.078e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 16:12:30,063 (trainer:737) INFO: 43epoch:train:3401-3500batch: iter_time=1.454e-04, forward_time=0.106, loss_ctc=38.646, loss_att=45.541, acc=0.748, loss=43.473, backward_time=0.096, grad_norm=45.580, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.078e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 16:13:11,583 (trainer:737) INFO: 43epoch:train:3501-3600batch: iter_time=1.835e-04, forward_time=0.107, loss_ctc=44.230, loss_att=53.248, acc=0.741, loss=50.542, backward_time=0.096, grad_norm=50.328, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.078e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:13:53,061 (trainer:737) INFO: 43epoch:train:3601-3700batch: iter_time=1.630e-04, forward_time=0.108, loss_ctc=38.445, loss_att=40.514, acc=0.755, loss=39.893, backward_time=0.095, grad_norm=43.457, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.078e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:14:20,086 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 16:14:39,642 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 16:14:43,482 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 16:14:43,482 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 16:14:43,486 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 16:20:36,378 (trainer:737) INFO: 43epoch:train:3701-3800batch: iter_time=3.516, forward_time=0.175, loss_ctc=42.125, loss_att=53.495, acc=0.723, loss=50.084, backward_time=0.114, grad_norm=48.912, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.077e-04, train_time=4.033 +[gpuc04:0/16] 2024-01-17 16:21:17,930 (trainer:737) INFO: 43epoch:train:3801-3900batch: iter_time=1.708e-04, forward_time=0.106, loss_ctc=50.930, loss_att=61.661, acc=0.707, loss=58.442, backward_time=0.096, grad_norm=56.110, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.077e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:21:59,526 (trainer:737) INFO: 43epoch:train:3901-4000batch: iter_time=1.573e-04, forward_time=0.106, loss_ctc=46.373, loss_att=48.917, acc=0.747, loss=48.154, backward_time=0.097, grad_norm=46.014, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.077e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:22:41,368 (trainer:737) INFO: 43epoch:train:4001-4100batch: iter_time=2.006e-04, forward_time=0.106, loss_ctc=41.894, loss_att=41.005, acc=0.740, loss=41.272, backward_time=0.096, grad_norm=44.443, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.077e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 16:23:23,576 (trainer:737) INFO: 43epoch:train:4101-4200batch: iter_time=1.728e-04, forward_time=0.107, loss_ctc=60.505, loss_att=56.405, acc=0.712, loss=57.635, backward_time=0.097, grad_norm=58.794, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.076e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 16:24:05,317 (trainer:737) INFO: 43epoch:train:4201-4300batch: iter_time=1.869e-04, forward_time=0.107, loss_ctc=45.690, loss_att=56.439, acc=0.745, loss=53.215, backward_time=0.097, grad_norm=52.819, clip=100.000, loss_scale=3.219e+34, optim_step_time=0.039, optim0_lr0=3.076e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:24:46,848 (trainer:737) INFO: 43epoch:train:4301-4400batch: iter_time=1.979e-04, forward_time=0.106, loss_ctc=38.249, loss_att=44.448, acc=0.761, loss=42.588, backward_time=0.097, grad_norm=41.654, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.076e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:25:28,748 (trainer:737) INFO: 43epoch:train:4401-4500batch: iter_time=1.738e-04, forward_time=0.106, loss_ctc=37.072, loss_att=39.296, acc=0.765, loss=38.629, backward_time=0.096, grad_norm=42.212, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.076e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 16:26:10,391 (trainer:737) INFO: 43epoch:train:4501-4600batch: iter_time=1.897e-04, forward_time=0.106, loss_ctc=44.375, loss_att=44.795, acc=0.760, loss=44.669, backward_time=0.098, grad_norm=46.819, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=3.075e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:26:52,423 (trainer:737) INFO: 43epoch:train:4601-4700batch: iter_time=1.703e-04, forward_time=0.105, loss_ctc=47.943, loss_att=56.020, acc=0.733, loss=53.597, backward_time=0.099, grad_norm=49.844, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=3.075e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 16:27:18,732 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 16:27:34,600 (trainer:737) INFO: 43epoch:train:4701-4800batch: iter_time=1.937e-04, forward_time=0.106, loss_ctc=37.300, loss_att=47.832, acc=0.748, loss=44.672, backward_time=0.098, grad_norm=45.358, clip=100.000, loss_scale=3.378e+34, optim_step_time=0.041, optim0_lr0=3.075e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 16:28:16,385 (trainer:737) INFO: 43epoch:train:4801-4900batch: iter_time=1.923e-04, forward_time=0.106, loss_ctc=43.325, loss_att=47.258, acc=0.740, loss=46.078, backward_time=0.097, grad_norm=46.755, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.075e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 16:28:58,161 (trainer:737) INFO: 43epoch:train:4901-5000batch: iter_time=1.703e-04, forward_time=0.106, loss_ctc=38.084, loss_att=39.214, acc=0.767, loss=38.875, backward_time=0.096, grad_norm=42.465, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.074e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 16:29:10,052 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 16:29:30,436 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 16:29:34,200 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 16:29:34,201 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 16:29:34,204 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 16:34:49,265 (trainer:737) INFO: 43epoch:train:5001-5100batch: iter_time=3.084, forward_time=0.111, loss_ctc=52.449, loss_att=70.775, acc=0.707, loss=65.277, backward_time=0.099, grad_norm=61.190, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.074e-04, train_time=3.511 +[gpuc04:0/16] 2024-01-17 16:35:30,994 (trainer:737) INFO: 43epoch:train:5101-5200batch: iter_time=2.231e-04, forward_time=0.107, loss_ctc=45.509, loss_att=52.789, acc=0.735, loss=50.605, backward_time=0.098, grad_norm=48.246, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.074e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:36:12,651 (trainer:737) INFO: 43epoch:train:5201-5300batch: iter_time=2.228e-04, forward_time=0.106, loss_ctc=42.844, loss_att=47.943, acc=0.748, loss=46.413, backward_time=0.097, grad_norm=43.355, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.074e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:36:54,367 (trainer:737) INFO: 43epoch:train:5301-5400batch: iter_time=2.300e-04, forward_time=0.107, loss_ctc=54.762, loss_att=54.803, acc=0.728, loss=54.791, backward_time=0.097, grad_norm=57.885, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.073e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:37:36,000 (trainer:737) INFO: 43epoch:train:5401-5500batch: iter_time=1.877e-04, forward_time=0.107, loss_ctc=47.864, loss_att=51.454, acc=0.746, loss=50.377, backward_time=0.097, grad_norm=51.171, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.073e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:38:18,181 (trainer:737) INFO: 43epoch:train:5501-5600batch: iter_time=2.074e-04, forward_time=0.106, loss_ctc=44.419, loss_att=56.251, acc=0.753, loss=52.701, backward_time=0.097, grad_norm=51.336, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.073e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 16:38:59,753 (trainer:737) INFO: 43epoch:train:5601-5700batch: iter_time=2.010e-04, forward_time=0.106, loss_ctc=37.128, loss_att=40.125, acc=0.785, loss=39.226, backward_time=0.097, grad_norm=41.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.073e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:39:41,271 (trainer:737) INFO: 43epoch:train:5701-5800batch: iter_time=1.833e-04, forward_time=0.105, loss_ctc=37.395, loss_att=43.436, acc=0.750, loss=41.624, backward_time=0.096, grad_norm=42.720, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.072e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:40:23,741 (trainer:737) INFO: 43epoch:train:5801-5900batch: iter_time=1.684e-04, forward_time=0.108, loss_ctc=52.612, loss_att=57.099, acc=0.759, loss=55.753, backward_time=0.098, grad_norm=51.626, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.072e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 16:41:05,878 (trainer:737) INFO: 43epoch:train:5901-6000batch: iter_time=1.821e-04, forward_time=0.107, loss_ctc=37.985, loss_att=46.743, acc=0.748, loss=44.116, backward_time=0.097, grad_norm=43.783, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.072e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 16:41:47,548 (trainer:737) INFO: 43epoch:train:6001-6100batch: iter_time=1.895e-04, forward_time=0.107, loss_ctc=43.878, loss_att=55.796, acc=0.741, loss=52.221, backward_time=0.097, grad_norm=48.903, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.072e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:42:29,060 (trainer:737) INFO: 43epoch:train:6101-6200batch: iter_time=1.927e-04, forward_time=0.106, loss_ctc=38.350, loss_att=41.723, acc=0.759, loss=40.711, backward_time=0.096, grad_norm=43.884, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.072e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:43:00,499 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 16:43:20,252 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 16:43:24,219 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 16:43:24,219 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 16:43:24,223 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 16:47:56,084 (trainer:737) INFO: 43epoch:train:6201-6300batch: iter_time=2.849, forward_time=0.106, loss_ctc=41.814, loss_att=53.581, acc=0.732, loss=50.051, backward_time=0.097, grad_norm=48.239, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.071e-04, train_time=3.270 +[gpuc04:0/16] 2024-01-17 16:48:37,799 (trainer:737) INFO: 43epoch:train:6301-6400batch: iter_time=1.645e-04, forward_time=0.106, loss_ctc=49.998, loss_att=62.411, acc=0.721, loss=58.687, backward_time=0.096, grad_norm=56.159, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.071e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:49:19,414 (trainer:737) INFO: 43epoch:train:6401-6500batch: iter_time=1.420e-04, forward_time=0.106, loss_ctc=46.451, loss_att=49.568, acc=0.755, loss=48.633, backward_time=0.096, grad_norm=47.430, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.071e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:50:00,949 (trainer:737) INFO: 43epoch:train:6501-6600batch: iter_time=1.673e-04, forward_time=0.106, loss_ctc=41.967, loss_att=42.069, acc=0.742, loss=42.038, backward_time=0.095, grad_norm=44.821, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.071e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 16:50:42,706 (trainer:737) INFO: 43epoch:train:6601-6700batch: iter_time=1.610e-04, forward_time=0.106, loss_ctc=60.589, loss_att=60.014, acc=0.717, loss=60.187, backward_time=0.096, grad_norm=58.488, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.070e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:51:24,426 (trainer:737) INFO: 43epoch:train:6701-6800batch: iter_time=1.629e-04, forward_time=0.106, loss_ctc=45.016, loss_att=57.309, acc=0.752, loss=53.621, backward_time=0.096, grad_norm=50.427, clip=100.000, loss_scale=2.845e+34, optim_step_time=0.038, optim0_lr0=3.070e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:51:46,667 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 16:52:06,200 (trainer:737) INFO: 43epoch:train:6801-6900batch: iter_time=1.590e-04, forward_time=0.106, loss_ctc=37.531, loss_att=44.193, acc=0.779, loss=42.195, backward_time=0.096, grad_norm=40.094, clip=100.000, loss_scale=3.168e+34, optim_step_time=0.038, optim0_lr0=3.070e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 16:52:47,825 (trainer:737) INFO: 43epoch:train:6901-7000batch: iter_time=1.611e-04, forward_time=0.106, loss_ctc=37.496, loss_att=39.546, acc=0.774, loss=38.931, backward_time=0.096, grad_norm=43.152, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.070e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:53:29,470 (trainer:737) INFO: 43epoch:train:7001-7100batch: iter_time=1.488e-04, forward_time=0.106, loss_ctc=43.495, loss_att=45.862, acc=0.760, loss=45.152, backward_time=0.096, grad_norm=44.409, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.069e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 16:54:11,226 (trainer:737) INFO: 43epoch:train:7101-7200batch: iter_time=1.468e-04, forward_time=0.106, loss_ctc=47.223, loss_att=55.910, acc=0.743, loss=53.304, backward_time=0.096, grad_norm=50.808, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.069e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:54:52,997 (trainer:737) INFO: 43epoch:train:7201-7300batch: iter_time=1.561e-04, forward_time=0.105, loss_ctc=36.903, loss_att=49.075, acc=0.750, loss=45.423, backward_time=0.096, grad_norm=44.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.069e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 16:55:34,974 (trainer:737) INFO: 43epoch:train:7301-7400batch: iter_time=1.357e-04, forward_time=0.107, loss_ctc=43.228, loss_att=49.100, acc=0.739, loss=47.338, backward_time=0.096, grad_norm=47.465, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.069e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 16:56:17,132 (trainer:737) INFO: 43epoch:train:7401-7500batch: iter_time=1.503e-04, forward_time=0.104, loss_ctc=37.172, loss_att=40.807, acc=0.770, loss=39.716, backward_time=0.095, grad_norm=41.328, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.068e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 16:56:22,213 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 16:56:41,650 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 16:56:45,343 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 16:56:45,344 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 16:56:45,347 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 17:01:40,855 (trainer:737) INFO: 43epoch:train:7501-7600batch: iter_time=2.761, forward_time=0.108, loss_ctc=52.322, loss_att=71.770, acc=0.689, loss=65.935, backward_time=0.097, grad_norm=59.120, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.068e-04, train_time=3.237 +[gpuc04:0/16] 2024-01-17 17:02:22,674 (trainer:737) INFO: 43epoch:train:7601-7700batch: iter_time=1.739e-04, forward_time=0.107, loss_ctc=44.873, loss_att=52.017, acc=0.728, loss=49.874, backward_time=0.096, grad_norm=47.784, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.068e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 17:03:05,008 (trainer:737) INFO: 43epoch:train:7701-7800batch: iter_time=1.639e-04, forward_time=0.107, loss_ctc=42.710, loss_att=46.541, acc=0.748, loss=45.392, backward_time=0.096, grad_norm=42.106, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.068e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 17:03:46,719 (trainer:737) INFO: 43epoch:train:7801-7900batch: iter_time=1.812e-04, forward_time=0.108, loss_ctc=53.651, loss_att=53.738, acc=0.719, loss=53.712, backward_time=0.096, grad_norm=56.627, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.067e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:04:28,326 (trainer:737) INFO: 43epoch:train:7901-8000batch: iter_time=1.998e-04, forward_time=0.107, loss_ctc=47.307, loss_att=49.050, acc=0.744, loss=48.528, backward_time=0.096, grad_norm=46.178, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.067e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:05:12,385 (trainer:737) INFO: 43epoch:train:8001-8100batch: iter_time=1.801e-04, forward_time=0.107, loss_ctc=44.162, loss_att=54.287, acc=0.740, loss=51.250, backward_time=0.097, grad_norm=51.649, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.067e-04, train_time=0.440 +[gpuc04:0/16] 2024-01-17 17:05:55,268 (trainer:737) INFO: 43epoch:train:8101-8200batch: iter_time=1.532e-04, forward_time=0.108, loss_ctc=36.623, loss_att=40.607, acc=0.772, loss=39.412, backward_time=0.097, grad_norm=41.618, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.067e-04, train_time=0.429 +[gpuc04:0/16] 2024-01-17 17:06:38,583 (trainer:737) INFO: 43epoch:train:8201-8300batch: iter_time=3.930e-04, forward_time=0.105, loss_ctc=36.874, loss_att=42.746, acc=0.747, loss=40.985, backward_time=0.099, grad_norm=41.839, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.043, optim0_lr0=3.066e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-17 17:07:03,438 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 17:07:20,553 (trainer:737) INFO: 43epoch:train:8301-8400batch: iter_time=1.344e-04, forward_time=0.107, loss_ctc=51.791, loss_att=54.600, acc=0.754, loss=53.758, backward_time=0.098, grad_norm=52.057, clip=100.000, loss_scale=1.647e+34, optim_step_time=0.039, optim0_lr0=3.066e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 17:08:02,059 (trainer:737) INFO: 43epoch:train:8401-8500batch: iter_time=1.288e-04, forward_time=0.104, loss_ctc=37.266, loss_att=46.182, acc=0.746, loss=43.507, backward_time=0.095, grad_norm=46.155, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.066e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:08:43,759 (trainer:737) INFO: 43epoch:train:8501-8600batch: iter_time=1.445e-04, forward_time=0.106, loss_ctc=43.602, loss_att=53.291, acc=0.740, loss=50.384, backward_time=0.096, grad_norm=49.099, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.066e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:09:25,189 (trainer:737) INFO: 43epoch:train:8601-8700batch: iter_time=1.500e-04, forward_time=0.105, loss_ctc=37.120, loss_att=39.847, acc=0.757, loss=39.029, backward_time=0.095, grad_norm=41.677, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.066e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 17:10:18,518 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 17:10:38,661 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 17:10:43,467 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 17:10:43,467 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 17:10:43,470 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 17:17:31,968 (trainer:737) INFO: 43epoch:train:8701-8800batch: iter_time=4.436, forward_time=0.106, loss_ctc=41.595, loss_att=52.637, acc=0.727, loss=49.324, backward_time=0.097, grad_norm=46.908, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.065e-04, train_time=4.868 +[gpuc04:0/16] 2024-01-17 17:18:13,684 (trainer:737) INFO: 43epoch:train:8801-8900batch: iter_time=1.305e-04, forward_time=0.106, loss_ctc=49.168, loss_att=61.415, acc=0.710, loss=57.741, backward_time=0.097, grad_norm=53.690, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.065e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:18:55,619 (trainer:737) INFO: 43epoch:train:8901-9000batch: iter_time=1.439e-04, forward_time=0.106, loss_ctc=45.819, loss_att=48.894, acc=0.746, loss=47.972, backward_time=0.098, grad_norm=46.883, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.065e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 17:19:37,632 (trainer:737) INFO: 43epoch:train:9001-9100batch: iter_time=1.275e-04, forward_time=0.106, loss_ctc=41.948, loss_att=41.435, acc=0.741, loss=41.589, backward_time=0.097, grad_norm=45.761, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.065e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 17:20:19,524 (trainer:737) INFO: 43epoch:train:9101-9200batch: iter_time=1.275e-04, forward_time=0.106, loss_ctc=59.008, loss_att=56.160, acc=0.712, loss=57.015, backward_time=0.097, grad_norm=54.316, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.064e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 17:21:01,149 (trainer:737) INFO: 43epoch:train:9201-9300batch: iter_time=1.246e-04, forward_time=0.106, loss_ctc=45.108, loss_att=56.658, acc=0.747, loss=53.193, backward_time=0.098, grad_norm=51.571, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.064e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:21:42,910 (trainer:737) INFO: 43epoch:train:9301-9400batch: iter_time=1.142e-04, forward_time=0.105, loss_ctc=37.756, loss_att=44.473, acc=0.761, loss=42.458, backward_time=0.097, grad_norm=41.014, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.064e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:22:24,344 (trainer:737) INFO: 43epoch:train:9401-9500batch: iter_time=1.196e-04, forward_time=0.106, loss_ctc=36.875, loss_att=39.454, acc=0.765, loss=38.680, backward_time=0.096, grad_norm=41.374, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.064e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 17:23:05,874 (trainer:737) INFO: 43epoch:train:9501-9600batch: iter_time=1.509e-04, forward_time=0.106, loss_ctc=43.641, loss_att=44.724, acc=0.759, loss=44.399, backward_time=0.096, grad_norm=44.329, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.063e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:23:47,548 (trainer:737) INFO: 43epoch:train:9601-9700batch: iter_time=1.446e-04, forward_time=0.106, loss_ctc=47.029, loss_att=55.974, acc=0.735, loss=53.291, backward_time=0.096, grad_norm=50.449, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.063e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:24:29,642 (trainer:737) INFO: 43epoch:train:9701-9800batch: iter_time=1.511e-04, forward_time=0.105, loss_ctc=36.952, loss_att=47.463, acc=0.750, loss=44.310, backward_time=0.096, grad_norm=44.117, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.063e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 17:25:11,399 (trainer:737) INFO: 43epoch:train:9801-9900batch: iter_time=1.592e-04, forward_time=0.106, loss_ctc=42.294, loss_att=47.332, acc=0.741, loss=45.820, backward_time=0.096, grad_norm=47.013, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.063e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:25:53,076 (trainer:737) INFO: 43epoch:train:9901-10000batch: iter_time=1.614e-04, forward_time=0.104, loss_ctc=36.871, loss_att=38.883, acc=0.768, loss=38.279, backward_time=0.096, grad_norm=40.479, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.062e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:25:58,859 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 17:26:18,196 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 17:26:21,860 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 17:26:21,860 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 17:26:21,863 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 17:31:27,136 (trainer:737) INFO: 43epoch:train:10001-10100batch: iter_time=2.899, forward_time=0.126, loss_ctc=51.120, loss_att=67.414, acc=0.699, loss=62.526, backward_time=0.098, grad_norm=57.889, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.041, optim0_lr0=3.062e-04, train_time=3.340 +[gpuc04:0/16] 2024-01-17 17:32:08,619 (trainer:737) INFO: 43epoch:train:10101-10200batch: iter_time=1.383e-04, forward_time=0.104, loss_ctc=45.068, loss_att=50.316, acc=0.732, loss=48.741, backward_time=0.096, grad_norm=46.469, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.062e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:32:52,006 (trainer:737) INFO: 43epoch:train:10201-10300batch: iter_time=1.561e-04, forward_time=0.105, loss_ctc=42.687, loss_att=45.637, acc=0.750, loss=44.752, backward_time=0.096, grad_norm=42.885, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.062e-04, train_time=0.434 +[gpuc04:0/16] 2024-01-17 17:33:33,686 (trainer:737) INFO: 43epoch:train:10301-10400batch: iter_time=1.820e-04, forward_time=0.105, loss_ctc=53.922, loss_att=53.184, acc=0.719, loss=53.406, backward_time=0.098, grad_norm=56.084, clip=100.000, loss_scale=1.464e+34, optim_step_time=0.039, optim0_lr0=3.061e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:34:15,338 (trainer:737) INFO: 43epoch:train:10401-10500batch: iter_time=1.672e-04, forward_time=0.105, loss_ctc=46.839, loss_att=48.970, acc=0.743, loss=48.331, backward_time=0.097, grad_norm=47.679, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.061e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:34:56,999 (trainer:737) INFO: 43epoch:train:10501-10600batch: iter_time=1.862e-04, forward_time=0.106, loss_ctc=43.921, loss_att=52.655, acc=0.743, loss=50.035, backward_time=0.097, grad_norm=51.239, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.061e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:35:38,556 (trainer:737) INFO: 43epoch:train:10601-10700batch: iter_time=2.307e-04, forward_time=0.106, loss_ctc=36.773, loss_att=40.141, acc=0.775, loss=39.131, backward_time=0.097, grad_norm=40.761, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.061e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:36:20,284 (trainer:737) INFO: 43epoch:train:10701-10800batch: iter_time=2.432e-04, forward_time=0.106, loss_ctc=37.161, loss_att=43.146, acc=0.745, loss=41.351, backward_time=0.098, grad_norm=41.974, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.060e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:37:02,640 (trainer:737) INFO: 43epoch:train:10801-10900batch: iter_time=2.231e-04, forward_time=0.107, loss_ctc=51.536, loss_att=54.168, acc=0.757, loss=53.379, backward_time=0.098, grad_norm=48.676, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.060e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 17:37:44,314 (trainer:737) INFO: 43epoch:train:10901-11000batch: iter_time=2.443e-04, forward_time=0.106, loss_ctc=37.735, loss_att=45.276, acc=0.750, loss=43.014, backward_time=0.098, grad_norm=44.939, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.060e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:38:26,385 (trainer:737) INFO: 43epoch:train:11001-11100batch: iter_time=2.214e-04, forward_time=0.107, loss_ctc=43.546, loss_att=53.684, acc=0.742, loss=50.642, backward_time=0.098, grad_norm=50.578, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.060e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 17:39:08,560 (trainer:737) INFO: 43epoch:train:11101-11200batch: iter_time=2.219e-04, forward_time=0.106, loss_ctc=37.214, loss_att=39.763, acc=0.758, loss=38.998, backward_time=0.097, grad_norm=45.000, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.060e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 17:39:35,904 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 17:39:55,546 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 17:39:59,729 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 17:39:59,729 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 17:39:59,732 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 17:45:30,151 (trainer:737) INFO: 43epoch:train:11201-11300batch: iter_time=2.890, forward_time=0.107, loss_ctc=40.847, loss_att=53.980, acc=0.731, loss=50.040, backward_time=0.097, grad_norm=48.391, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.059e-04, train_time=3.816 +[gpuc04:0/16] 2024-01-17 17:46:11,844 (trainer:737) INFO: 43epoch:train:11301-11400batch: iter_time=1.995e-04, forward_time=0.106, loss_ctc=49.391, loss_att=64.574, acc=0.717, loss=60.019, backward_time=0.098, grad_norm=56.810, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.059e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:46:53,772 (trainer:737) INFO: 43epoch:train:11401-11500batch: iter_time=1.709e-04, forward_time=0.105, loss_ctc=46.308, loss_att=50.215, acc=0.755, loss=49.043, backward_time=0.097, grad_norm=46.891, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.059e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 17:47:35,315 (trainer:737) INFO: 43epoch:train:11501-11600batch: iter_time=2.309e-04, forward_time=0.106, loss_ctc=41.686, loss_att=42.779, acc=0.743, loss=42.451, backward_time=0.096, grad_norm=43.318, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.059e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:48:06,555 (trainer:668) WARNING: The grad norm is inf. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 17:48:16,945 (trainer:737) INFO: 43epoch:train:11601-11700batch: iter_time=1.694e-04, forward_time=0.106, loss_ctc=58.741, loss_att=60.363, acc=0.716, loss=59.877, backward_time=0.097, grad_norm=57.296, clip=100.000, loss_scale=1.815e+34, optim_step_time=0.039, optim0_lr0=3.058e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:48:58,940 (trainer:737) INFO: 43epoch:train:11701-11800batch: iter_time=1.881e-04, forward_time=0.106, loss_ctc=44.501, loss_att=57.069, acc=0.750, loss=53.298, backward_time=0.096, grad_norm=51.134, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.058e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 17:49:40,489 (trainer:737) INFO: 43epoch:train:11801-11900batch: iter_time=1.573e-04, forward_time=0.106, loss_ctc=37.774, loss_att=44.920, acc=0.779, loss=42.776, backward_time=0.096, grad_norm=41.635, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.058e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:50:22,279 (trainer:737) INFO: 43epoch:train:11901-12000batch: iter_time=1.675e-04, forward_time=0.106, loss_ctc=36.944, loss_att=39.578, acc=0.775, loss=38.788, backward_time=0.096, grad_norm=42.415, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.058e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 17:51:03,883 (trainer:737) INFO: 43epoch:train:12001-12100batch: iter_time=1.892e-04, forward_time=0.106, loss_ctc=43.069, loss_att=46.185, acc=0.761, loss=45.250, backward_time=0.096, grad_norm=45.200, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.057e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:51:45,623 (trainer:737) INFO: 43epoch:train:12101-12200batch: iter_time=1.824e-04, forward_time=0.107, loss_ctc=47.058, loss_att=56.661, acc=0.745, loss=53.780, backward_time=0.097, grad_norm=51.826, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.057e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 17:52:27,269 (trainer:737) INFO: 43epoch:train:12201-12300batch: iter_time=1.896e-04, forward_time=0.106, loss_ctc=36.628, loss_att=49.525, acc=0.749, loss=45.656, backward_time=0.096, grad_norm=48.818, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.057e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 17:53:08,793 (trainer:737) INFO: 43epoch:train:12301-12400batch: iter_time=2.369e-04, forward_time=0.106, loss_ctc=41.737, loss_att=48.366, acc=0.742, loss=46.377, backward_time=0.096, grad_norm=44.837, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.057e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 17:53:50,256 (trainer:737) INFO: 43epoch:train:12401-12500batch: iter_time=1.870e-04, forward_time=0.105, loss_ctc=36.486, loss_att=40.728, acc=0.771, loss=39.455, backward_time=0.095, grad_norm=40.662, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.056e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 17:53:56,447 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 17:54:16,157 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 17:54:20,013 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 17:54:20,013 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 17:54:20,016 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 17:59:12,256 (trainer:737) INFO: 43epoch:train:12501-12600batch: iter_time=2.791, forward_time=0.107, loss_ctc=50.376, loss_att=67.359, acc=0.715, loss=62.264, backward_time=0.098, grad_norm=59.034, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.056e-04, train_time=3.220 +[gpuc04:0/16] 2024-01-17 17:59:53,866 (trainer:737) INFO: 43epoch:train:12601-12700batch: iter_time=1.957e-04, forward_time=0.106, loss_ctc=44.650, loss_att=51.294, acc=0.739, loss=49.301, backward_time=0.097, grad_norm=46.920, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.056e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:00:35,684 (trainer:737) INFO: 43epoch:train:12701-12800batch: iter_time=1.542e-04, forward_time=0.106, loss_ctc=42.256, loss_att=46.520, acc=0.753, loss=45.241, backward_time=0.096, grad_norm=43.396, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.056e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 18:01:17,441 (trainer:737) INFO: 43epoch:train:12801-12900batch: iter_time=1.895e-04, forward_time=0.106, loss_ctc=53.694, loss_att=53.879, acc=0.732, loss=53.824, backward_time=0.097, grad_norm=56.962, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.055e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 18:01:59,415 (trainer:737) INFO: 43epoch:train:12901-13000batch: iter_time=1.861e-04, forward_time=0.106, loss_ctc=46.413, loss_att=51.618, acc=0.745, loss=50.057, backward_time=0.097, grad_norm=47.033, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.055e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 18:02:41,550 (trainer:737) INFO: 43epoch:train:13001-13100batch: iter_time=2.010e-04, forward_time=0.106, loss_ctc=42.759, loss_att=54.295, acc=0.760, loss=50.834, backward_time=0.097, grad_norm=48.360, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.055e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 18:03:23,513 (trainer:737) INFO: 43epoch:train:13101-13200batch: iter_time=1.990e-04, forward_time=0.110, loss_ctc=36.174, loss_att=39.208, acc=0.787, loss=38.298, backward_time=0.097, grad_norm=39.034, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.055e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 18:04:05,088 (trainer:737) INFO: 43epoch:train:13201-13300batch: iter_time=1.655e-04, forward_time=0.105, loss_ctc=36.903, loss_att=42.750, acc=0.754, loss=40.996, backward_time=0.096, grad_norm=43.296, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.055e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:04:47,037 (trainer:737) INFO: 43epoch:train:13301-13400batch: iter_time=1.845e-04, forward_time=0.107, loss_ctc=51.542, loss_att=56.227, acc=0.761, loss=54.821, backward_time=0.097, grad_norm=51.410, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.054e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 18:05:28,736 (trainer:737) INFO: 43epoch:train:13401-13500batch: iter_time=1.905e-04, forward_time=0.105, loss_ctc=37.517, loss_att=45.493, acc=0.753, loss=43.100, backward_time=0.096, grad_norm=44.369, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.054e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 18:06:11,251 (trainer:737) INFO: 43epoch:train:13501-13600batch: iter_time=1.991e-04, forward_time=0.106, loss_ctc=43.190, loss_att=55.780, acc=0.741, loss=52.003, backward_time=0.097, grad_norm=47.907, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.054e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 18:06:53,102 (trainer:737) INFO: 43epoch:train:13601-13700batch: iter_time=1.843e-04, forward_time=0.104, loss_ctc=37.095, loss_att=40.797, acc=0.763, loss=39.687, backward_time=0.096, grad_norm=43.152, clip=100.000, loss_scale=1.298e+34, optim_step_time=0.039, optim0_lr0=3.054e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 18:07:20,454 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 18:07:40,469 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 18:07:44,296 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 18:07:44,297 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 18:07:44,300 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 18:12:14,024 (trainer:737) INFO: 43epoch:train:13701-13800batch: iter_time=2.740, forward_time=0.106, loss_ctc=41.043, loss_att=53.090, acc=0.734, loss=49.476, backward_time=0.096, grad_norm=46.041, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.053e-04, train_time=3.209 +[gpuc04:0/16] 2024-01-17 18:12:55,703 (trainer:737) INFO: 43epoch:train:13801-13900batch: iter_time=2.048e-04, forward_time=0.106, loss_ctc=49.124, loss_att=61.923, acc=0.724, loss=58.084, backward_time=0.096, grad_norm=56.126, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.053e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 18:13:37,795 (trainer:737) INFO: 43epoch:train:13901-14000batch: iter_time=2.372e-04, forward_time=0.105, loss_ctc=45.827, loss_att=49.216, acc=0.757, loss=48.199, backward_time=0.096, grad_norm=46.487, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.053e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 18:14:19,231 (trainer:737) INFO: 43epoch:train:14001-14100batch: iter_time=2.424e-04, forward_time=0.105, loss_ctc=41.494, loss_att=42.723, acc=0.740, loss=42.354, backward_time=0.095, grad_norm=44.033, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.053e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 18:15:00,891 (trainer:737) INFO: 43epoch:train:14101-14200batch: iter_time=2.106e-04, forward_time=0.106, loss_ctc=58.414, loss_att=58.381, acc=0.723, loss=58.391, backward_time=0.096, grad_norm=56.570, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.052e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:15:42,539 (trainer:737) INFO: 43epoch:train:14201-14300batch: iter_time=2.139e-04, forward_time=0.106, loss_ctc=44.932, loss_att=56.713, acc=0.752, loss=53.179, backward_time=0.097, grad_norm=52.532, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.052e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:16:24,127 (trainer:737) INFO: 43epoch:train:14301-14400batch: iter_time=2.250e-04, forward_time=0.106, loss_ctc=37.259, loss_att=44.776, acc=0.778, loss=42.521, backward_time=0.096, grad_norm=40.058, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.052e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:17:05,769 (trainer:737) INFO: 43epoch:train:14401-14500batch: iter_time=2.221e-04, forward_time=0.106, loss_ctc=36.817, loss_att=39.115, acc=0.777, loss=38.426, backward_time=0.096, grad_norm=41.452, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.052e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:17:47,402 (trainer:737) INFO: 43epoch:train:14501-14600batch: iter_time=2.158e-04, forward_time=0.106, loss_ctc=43.426, loss_att=46.029, acc=0.764, loss=45.248, backward_time=0.096, grad_norm=46.153, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.051e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 18:18:29,207 (trainer:737) INFO: 43epoch:train:14601-14700batch: iter_time=2.274e-04, forward_time=0.107, loss_ctc=46.597, loss_att=55.277, acc=0.746, loss=52.673, backward_time=0.097, grad_norm=49.674, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.051e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 18:19:11,089 (trainer:737) INFO: 43epoch:train:14701-14800batch: iter_time=2.022e-04, forward_time=0.106, loss_ctc=36.725, loss_att=50.496, acc=0.745, loss=46.365, backward_time=0.097, grad_norm=44.013, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.051e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 18:19:53,097 (trainer:737) INFO: 43epoch:train:14801-14900batch: iter_time=2.070e-04, forward_time=0.106, loss_ctc=42.330, loss_att=47.832, acc=0.744, loss=46.181, backward_time=0.096, grad_norm=48.567, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.051e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 18:20:35,247 (trainer:737) INFO: 43epoch:train:14901-15000batch: iter_time=1.894e-04, forward_time=0.106, loss_ctc=36.771, loss_att=40.727, acc=0.771, loss=39.540, backward_time=0.096, grad_norm=40.267, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.050e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 18:40:37,568 (trainer:343) INFO: 43epoch results: [train] iter_time=0.243, forward_time=0.107, loss_ctc=44.176, loss_att=50.152, acc=0.745, loss=48.359, backward_time=0.097, grad_norm=48.099, clip=100.000, loss_scale=1.933e+34, optim_step_time=0.039, optim0_lr0=3.068e-04, train_time=0.671, time=2 hours, 47 minutes and 52.08 seconds, total_count=645000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=50.032, cer_ctc=0.253, loss_att=52.116, acc=0.603, cer=0.387, wer=0.998, loss=51.491, time=19 minutes and 51.66 seconds, total_count=200853, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 18:40:42,838 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 18:40:42,899 (trainer:272) INFO: 44/45epoch started. Estimated time to finish: 6 hours, 3 minutes and 33.34 seconds +[gpuc04:0/16] 2024-01-17 18:40:42,909 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 18:41:01,797 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 18:41:05,482 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 18:41:05,482 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 18:41:05,485 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 18:46:01,879 (trainer:737) INFO: 44epoch:train:1-100batch: iter_time=2.631, forward_time=0.105, loss_ctc=40.743, loss_att=43.583, acc=0.754, loss=42.731, backward_time=0.097, grad_norm=45.262, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.050e-04, train_time=3.189 +[gpuc04:0/16] 2024-01-17 18:46:43,609 (trainer:737) INFO: 44epoch:train:101-200batch: iter_time=1.086e-04, forward_time=0.105, loss_ctc=43.014, loss_att=50.658, acc=0.748, loss=48.365, backward_time=0.098, grad_norm=43.844, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.050e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 18:47:31,008 (trainer:737) INFO: 44epoch:train:201-300batch: iter_time=1.136e-04, forward_time=0.105, loss_ctc=43.287, loss_att=56.999, acc=0.726, loss=52.885, backward_time=0.098, grad_norm=49.456, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.050e-04, train_time=0.474 +[gpuc04:0/16] 2024-01-17 18:48:15,175 (trainer:737) INFO: 44epoch:train:301-400batch: iter_time=1.355e-04, forward_time=0.105, loss_ctc=43.509, loss_att=60.076, acc=0.716, loss=55.106, backward_time=0.097, grad_norm=45.731, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.050e-04, train_time=0.441 +[gpuc04:0/16] 2024-01-17 18:48:58,382 (trainer:737) INFO: 44epoch:train:401-500batch: iter_time=1.215e-04, forward_time=0.105, loss_ctc=38.447, loss_att=47.469, acc=0.737, loss=44.762, backward_time=0.097, grad_norm=45.721, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.049e-04, train_time=0.432 +[gpuc04:0/16] 2024-01-17 18:49:40,878 (trainer:737) INFO: 44epoch:train:501-600batch: iter_time=1.348e-04, forward_time=0.106, loss_ctc=46.816, loss_att=56.486, acc=0.736, loss=53.585, backward_time=0.098, grad_norm=134.999, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.049e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 18:50:23,436 (trainer:737) INFO: 44epoch:train:601-700batch: iter_time=1.262e-04, forward_time=0.105, loss_ctc=47.075, loss_att=53.434, acc=0.740, loss=51.527, backward_time=0.098, grad_norm=53.619, clip=100.000, loss_scale=2.596e+34, optim_step_time=0.039, optim0_lr0=3.049e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 18:50:56,723 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 18:51:05,116 (trainer:737) INFO: 44epoch:train:701-800batch: iter_time=1.130e-04, forward_time=0.105, loss_ctc=43.897, loss_att=46.589, acc=0.738, loss=45.782, backward_time=0.097, grad_norm=53.185, clip=100.000, loss_scale=3.734e+34, optim_step_time=0.039, optim0_lr0=3.049e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 18:51:48,893 (trainer:737) INFO: 44epoch:train:801-900batch: iter_time=1.359e-04, forward_time=0.116, loss_ctc=52.683, loss_att=64.822, acc=0.717, loss=61.180, backward_time=0.100, grad_norm=56.870, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.048e-04, train_time=0.438 +[gpuc04:0/16] 2024-01-17 18:52:31,796 (trainer:737) INFO: 44epoch:train:901-1000batch: iter_time=1.170e-04, forward_time=0.111, loss_ctc=42.658, loss_att=46.556, acc=0.737, loss=45.387, backward_time=0.097, grad_norm=45.558, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.048e-04, train_time=0.429 +[gpuc04:0/16] 2024-01-17 18:53:17,025 (trainer:737) INFO: 44epoch:train:1001-1100batch: iter_time=1.167e-04, forward_time=0.108, loss_ctc=40.319, loss_att=38.875, acc=0.759, loss=39.308, backward_time=0.099, grad_norm=45.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.048e-04, train_time=0.452 +[gpuc04:0/16] 2024-01-17 18:53:59,252 (trainer:737) INFO: 44epoch:train:1101-1200batch: iter_time=1.186e-04, forward_time=0.106, loss_ctc=43.668, loss_att=53.416, acc=0.708, loss=50.492, backward_time=0.097, grad_norm=53.446, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.048e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 18:54:42,502 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 18:55:02,587 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 18:55:06,410 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 18:55:06,410 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-17 18:55:06,414 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 19:03:13,934 (trainer:737) INFO: 44epoch:train:1201-1300batch: iter_time=3.304, forward_time=0.125, loss_ctc=45.358, loss_att=48.884, acc=0.747, loss=47.826, backward_time=0.098, grad_norm=43.974, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.047e-04, train_time=5.547 +[gpuc04:0/16] 2024-01-17 19:03:55,691 (trainer:737) INFO: 44epoch:train:1301-1400batch: iter_time=1.474e-04, forward_time=0.106, loss_ctc=41.567, loss_att=50.569, acc=0.749, loss=47.868, backward_time=0.096, grad_norm=45.385, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.047e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:04:37,387 (trainer:737) INFO: 44epoch:train:1401-1500batch: iter_time=1.675e-04, forward_time=0.106, loss_ctc=38.818, loss_att=45.652, acc=0.742, loss=43.602, backward_time=0.097, grad_norm=41.352, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.047e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:05:19,191 (trainer:737) INFO: 44epoch:train:1501-1600batch: iter_time=1.783e-04, forward_time=0.106, loss_ctc=44.613, loss_att=65.457, acc=0.710, loss=59.204, backward_time=0.097, grad_norm=49.673, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.047e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:06:00,765 (trainer:737) INFO: 44epoch:train:1601-1700batch: iter_time=2.047e-04, forward_time=0.106, loss_ctc=40.145, loss_att=50.011, acc=0.730, loss=47.051, backward_time=0.096, grad_norm=47.029, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.046e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 19:06:43,211 (trainer:737) INFO: 44epoch:train:1701-1800batch: iter_time=1.771e-04, forward_time=0.106, loss_ctc=42.699, loss_att=54.128, acc=0.745, loss=50.699, backward_time=0.097, grad_norm=47.713, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.046e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 19:07:25,733 (trainer:737) INFO: 44epoch:train:1801-1900batch: iter_time=2.062e-04, forward_time=0.105, loss_ctc=48.625, loss_att=52.568, acc=0.734, loss=51.385, backward_time=0.096, grad_norm=52.202, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.046e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 19:08:07,351 (trainer:737) INFO: 44epoch:train:1901-2000batch: iter_time=1.960e-04, forward_time=0.106, loss_ctc=39.869, loss_att=44.550, acc=0.752, loss=43.146, backward_time=0.096, grad_norm=50.765, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.046e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:08:49,196 (trainer:737) INFO: 44epoch:train:2001-2100batch: iter_time=1.641e-04, forward_time=0.107, loss_ctc=44.101, loss_att=50.932, acc=0.738, loss=48.883, backward_time=0.097, grad_norm=48.186, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.046e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:09:31,023 (trainer:737) INFO: 44epoch:train:2101-2200batch: iter_time=2.148e-04, forward_time=0.107, loss_ctc=50.131, loss_att=62.579, acc=0.717, loss=58.844, backward_time=0.097, grad_norm=49.990, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.045e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:10:12,811 (trainer:737) INFO: 44epoch:train:2201-2300batch: iter_time=1.731e-04, forward_time=0.105, loss_ctc=40.403, loss_att=40.311, acc=0.751, loss=40.338, backward_time=0.096, grad_norm=45.580, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.045e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:10:54,329 (trainer:737) INFO: 44epoch:train:2301-2400batch: iter_time=2.234e-04, forward_time=0.106, loss_ctc=42.880, loss_att=46.513, acc=0.727, loss=45.423, backward_time=0.096, grad_norm=47.868, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.045e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 19:11:35,961 (trainer:737) INFO: 44epoch:train:2401-2500batch: iter_time=1.793e-04, forward_time=0.105, loss_ctc=45.384, loss_att=55.601, acc=0.727, loss=52.536, backward_time=0.097, grad_norm=49.500, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.045e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:11:45,554 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 19:12:05,204 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 19:12:09,315 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 19:12:09,316 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 19:12:09,319 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 19:17:09,203 (trainer:737) INFO: 44epoch:train:2501-2600batch: iter_time=2.913, forward_time=0.105, loss_ctc=38.749, loss_att=46.178, acc=0.743, loss=43.949, backward_time=0.095, grad_norm=44.817, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.044e-04, train_time=3.332 +[gpuc04:0/16] 2024-01-17 19:17:50,821 (trainer:737) INFO: 44epoch:train:2601-2700batch: iter_time=1.942e-04, forward_time=0.106, loss_ctc=41.902, loss_att=48.104, acc=0.752, loss=46.243, backward_time=0.097, grad_norm=45.286, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.044e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:18:32,684 (trainer:737) INFO: 44epoch:train:2701-2800batch: iter_time=1.858e-04, forward_time=0.106, loss_ctc=42.155, loss_att=57.571, acc=0.722, loss=52.947, backward_time=0.097, grad_norm=47.938, clip=100.000, loss_scale=2.492e+34, optim_step_time=0.040, optim0_lr0=3.044e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:19:14,522 (trainer:737) INFO: 44epoch:train:2801-2900batch: iter_time=1.967e-04, forward_time=0.106, loss_ctc=42.187, loss_att=57.837, acc=0.716, loss=53.142, backward_time=0.096, grad_norm=45.267, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.044e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:19:56,192 (trainer:737) INFO: 44epoch:train:2901-3000batch: iter_time=1.699e-04, forward_time=0.105, loss_ctc=36.984, loss_att=47.420, acc=0.733, loss=44.289, backward_time=0.095, grad_norm=43.592, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.043e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:19:58,238 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 19:20:37,699 (trainer:737) INFO: 44epoch:train:3001-3100batch: iter_time=1.522e-04, forward_time=0.106, loss_ctc=45.183, loss_att=55.829, acc=0.730, loss=52.635, backward_time=0.095, grad_norm=50.428, clip=100.000, loss_scale=2.161e+34, optim_step_time=0.039, optim0_lr0=3.043e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 19:21:19,261 (trainer:737) INFO: 44epoch:train:3101-3200batch: iter_time=1.854e-04, forward_time=0.106, loss_ctc=45.866, loss_att=52.612, acc=0.736, loss=50.588, backward_time=0.096, grad_norm=52.615, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.043e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 19:22:00,947 (trainer:737) INFO: 44epoch:train:3201-3300batch: iter_time=1.647e-04, forward_time=0.106, loss_ctc=43.170, loss_att=45.557, acc=0.733, loss=44.841, backward_time=0.095, grad_norm=53.225, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.043e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:22:43,533 (trainer:737) INFO: 44epoch:train:3301-3400batch: iter_time=1.805e-04, forward_time=0.107, loss_ctc=51.139, loss_att=59.807, acc=0.719, loss=57.207, backward_time=0.097, grad_norm=52.410, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.042e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-17 19:23:25,565 (trainer:737) INFO: 44epoch:train:3401-3500batch: iter_time=1.742e-04, forward_time=0.105, loss_ctc=41.468, loss_att=46.755, acc=0.728, loss=45.169, backward_time=0.096, grad_norm=43.800, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.042e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 19:24:07,243 (trainer:737) INFO: 44epoch:train:3501-3600batch: iter_time=1.659e-04, forward_time=0.105, loss_ctc=38.885, loss_att=39.488, acc=0.750, loss=39.307, backward_time=0.095, grad_norm=45.606, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.042e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:24:48,799 (trainer:737) INFO: 44epoch:train:3601-3700batch: iter_time=1.716e-04, forward_time=0.105, loss_ctc=42.142, loss_att=52.353, acc=0.710, loss=49.290, backward_time=0.096, grad_norm=51.064, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.042e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 19:25:14,572 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 19:25:34,508 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 19:25:38,318 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 19:25:38,318 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 19:25:38,322 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 19:31:03,364 (trainer:737) INFO: 44epoch:train:3701-3800batch: iter_time=2.915, forward_time=0.161, loss_ctc=44.907, loss_att=49.090, acc=0.743, loss=47.835, backward_time=0.111, grad_norm=44.862, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.042, optim0_lr0=3.042e-04, train_time=3.745 +[gpuc04:0/16] 2024-01-17 19:31:45,094 (trainer:737) INFO: 44epoch:train:3801-3900batch: iter_time=1.462e-04, forward_time=0.105, loss_ctc=41.425, loss_att=53.007, acc=0.743, loss=49.533, backward_time=0.096, grad_norm=47.388, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.041e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:32:27,044 (trainer:737) INFO: 44epoch:train:3901-4000batch: iter_time=1.439e-04, forward_time=0.107, loss_ctc=38.910, loss_att=46.870, acc=0.742, loss=44.482, backward_time=0.096, grad_norm=42.330, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.041e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 19:33:08,910 (trainer:737) INFO: 44epoch:train:4001-4100batch: iter_time=1.758e-04, forward_time=0.106, loss_ctc=44.309, loss_att=65.819, acc=0.711, loss=59.366, backward_time=0.096, grad_norm=48.571, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.041e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:33:51,224 (trainer:737) INFO: 44epoch:train:4101-4200batch: iter_time=1.772e-04, forward_time=0.106, loss_ctc=38.965, loss_att=49.939, acc=0.730, loss=46.647, backward_time=0.096, grad_norm=43.509, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.041e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 19:34:32,833 (trainer:737) INFO: 44epoch:train:4201-4300batch: iter_time=1.874e-04, forward_time=0.106, loss_ctc=42.237, loss_att=53.429, acc=0.746, loss=50.071, backward_time=0.096, grad_norm=51.368, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.040e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:35:14,454 (trainer:737) INFO: 44epoch:train:4301-4400batch: iter_time=1.681e-04, forward_time=0.105, loss_ctc=47.654, loss_att=52.392, acc=0.737, loss=50.971, backward_time=0.095, grad_norm=49.437, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.040e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:35:56,308 (trainer:737) INFO: 44epoch:train:4401-4500batch: iter_time=1.694e-04, forward_time=0.105, loss_ctc=39.100, loss_att=44.462, acc=0.753, loss=42.853, backward_time=0.095, grad_norm=48.179, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.040e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:36:01,674 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 19:36:38,046 (trainer:737) INFO: 44epoch:train:4501-4600batch: iter_time=1.656e-04, forward_time=0.106, loss_ctc=43.858, loss_att=50.734, acc=0.739, loss=48.671, backward_time=0.096, grad_norm=47.680, clip=100.000, loss_scale=1.164e+34, optim_step_time=0.039, optim0_lr0=3.040e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:37:20,165 (trainer:737) INFO: 44epoch:train:4601-4700batch: iter_time=1.571e-04, forward_time=0.106, loss_ctc=49.645, loss_att=62.404, acc=0.716, loss=58.576, backward_time=0.097, grad_norm=52.122, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.039e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 19:38:01,780 (trainer:737) INFO: 44epoch:train:4701-4800batch: iter_time=1.930e-04, forward_time=0.105, loss_ctc=39.929, loss_att=40.381, acc=0.752, loss=40.245, backward_time=0.096, grad_norm=46.893, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.039e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:38:43,434 (trainer:737) INFO: 44epoch:train:4801-4900batch: iter_time=1.665e-04, forward_time=0.106, loss_ctc=42.040, loss_att=45.891, acc=0.728, loss=44.735, backward_time=0.096, grad_norm=49.327, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.039e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:39:25,408 (trainer:737) INFO: 44epoch:train:4901-5000batch: iter_time=1.483e-04, forward_time=0.105, loss_ctc=44.445, loss_att=54.907, acc=0.730, loss=51.769, backward_time=0.097, grad_norm=48.254, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.039e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 19:39:31,499 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 19:39:51,173 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 19:39:54,921 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 19:39:54,921 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-17 19:39:54,924 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 19:46:08,355 (trainer:737) INFO: 44epoch:train:5001-5100batch: iter_time=3.458, forward_time=0.108, loss_ctc=38.315, loss_att=45.002, acc=0.745, loss=42.996, backward_time=0.096, grad_norm=41.663, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.039e-04, train_time=4.029 +[gpuc04:0/16] 2024-01-17 19:46:50,104 (trainer:737) INFO: 44epoch:train:5101-5200batch: iter_time=1.485e-04, forward_time=0.105, loss_ctc=41.600, loss_att=47.266, acc=0.755, loss=45.566, backward_time=0.096, grad_norm=43.670, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.038e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:47:32,094 (trainer:737) INFO: 44epoch:train:5201-5300batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=41.698, loss_att=56.068, acc=0.724, loss=51.757, backward_time=0.096, grad_norm=45.177, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.038e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 19:48:13,785 (trainer:737) INFO: 44epoch:train:5301-5400batch: iter_time=1.554e-04, forward_time=0.105, loss_ctc=41.572, loss_att=56.816, acc=0.720, loss=52.243, backward_time=0.096, grad_norm=43.128, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.038e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 19:48:55,369 (trainer:737) INFO: 44epoch:train:5401-5500batch: iter_time=1.816e-04, forward_time=0.105, loss_ctc=36.601, loss_att=46.599, acc=0.737, loss=43.600, backward_time=0.096, grad_norm=44.704, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.038e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:49:37,194 (trainer:737) INFO: 44epoch:train:5501-5600batch: iter_time=1.849e-04, forward_time=0.106, loss_ctc=45.053, loss_att=55.964, acc=0.729, loss=52.691, backward_time=0.099, grad_norm=47.874, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.037e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:50:19,221 (trainer:737) INFO: 44epoch:train:5601-5700batch: iter_time=1.975e-04, forward_time=0.105, loss_ctc=45.284, loss_att=52.421, acc=0.737, loss=50.279, backward_time=0.099, grad_norm=51.435, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.037e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 19:51:00,866 (trainer:737) INFO: 44epoch:train:5701-5800batch: iter_time=2.333e-04, forward_time=0.105, loss_ctc=42.252, loss_att=45.171, acc=0.735, loss=44.295, backward_time=0.099, grad_norm=50.178, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.040, optim0_lr0=3.037e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:51:42,652 (trainer:737) INFO: 44epoch:train:5801-5900batch: iter_time=1.870e-04, forward_time=0.107, loss_ctc=50.599, loss_att=60.432, acc=0.718, loss=57.482, backward_time=0.097, grad_norm=52.566, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.037e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:52:25,068 (trainer:737) INFO: 44epoch:train:5901-6000batch: iter_time=1.486e-04, forward_time=0.109, loss_ctc=41.135, loss_att=46.551, acc=0.729, loss=44.926, backward_time=0.095, grad_norm=45.582, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.036e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 19:53:06,868 (trainer:737) INFO: 44epoch:train:6001-6100batch: iter_time=1.570e-04, forward_time=0.105, loss_ctc=38.548, loss_att=39.530, acc=0.750, loss=39.236, backward_time=0.095, grad_norm=43.521, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.036e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 19:53:48,457 (trainer:737) INFO: 44epoch:train:6101-6200batch: iter_time=1.593e-04, forward_time=0.106, loss_ctc=41.495, loss_att=51.279, acc=0.715, loss=48.344, backward_time=0.095, grad_norm=50.107, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=3.036e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 19:54:16,034 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 19:54:35,643 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 19:54:39,231 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 19:54:39,231 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 19:54:39,234 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 19:59:06,420 (trainer:737) INFO: 44epoch:train:6201-6300batch: iter_time=2.506, forward_time=0.109, loss_ctc=44.194, loss_att=48.522, acc=0.741, loss=47.223, backward_time=0.097, grad_norm=43.739, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.036e-04, train_time=3.179 +[gpuc04:0/16] 2024-01-17 19:59:48,432 (trainer:737) INFO: 44epoch:train:6301-6400batch: iter_time=1.272e-04, forward_time=0.105, loss_ctc=40.933, loss_att=48.002, acc=0.747, loss=45.881, backward_time=0.097, grad_norm=45.828, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.035e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 20:00:30,078 (trainer:737) INFO: 44epoch:train:6401-6500batch: iter_time=1.470e-04, forward_time=0.106, loss_ctc=38.324, loss_att=44.719, acc=0.743, loss=42.801, backward_time=0.096, grad_norm=41.582, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=3.035e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:01:11,764 (trainer:737) INFO: 44epoch:train:6501-6600batch: iter_time=1.406e-04, forward_time=0.106, loss_ctc=43.465, loss_att=61.862, acc=0.710, loss=56.343, backward_time=0.097, grad_norm=46.441, clip=100.000, loss_scale=1.942e+34, optim_step_time=0.039, optim0_lr0=3.035e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:01:53,300 (trainer:737) INFO: 44epoch:train:6601-6700batch: iter_time=1.825e-04, forward_time=0.105, loss_ctc=38.787, loss_att=48.768, acc=0.729, loss=45.774, backward_time=0.096, grad_norm=45.188, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.035e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:02:34,938 (trainer:737) INFO: 44epoch:train:6701-6800batch: iter_time=1.473e-04, forward_time=0.107, loss_ctc=41.915, loss_att=52.869, acc=0.745, loss=49.583, backward_time=0.097, grad_norm=46.451, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.035e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:03:16,711 (trainer:737) INFO: 44epoch:train:6801-6900batch: iter_time=1.432e-04, forward_time=0.105, loss_ctc=47.446, loss_att=52.784, acc=0.728, loss=51.183, backward_time=0.096, grad_norm=51.870, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.034e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:03:58,310 (trainer:737) INFO: 44epoch:train:6901-7000batch: iter_time=1.848e-04, forward_time=0.106, loss_ctc=38.799, loss_att=43.206, acc=0.747, loss=41.884, backward_time=0.096, grad_norm=50.112, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.034e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:04:40,288 (trainer:737) INFO: 44epoch:train:7001-7100batch: iter_time=1.523e-04, forward_time=0.107, loss_ctc=43.509, loss_att=48.677, acc=0.732, loss=47.127, backward_time=0.096, grad_norm=47.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.034e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 20:05:22,313 (trainer:737) INFO: 44epoch:train:7101-7200batch: iter_time=1.388e-04, forward_time=0.107, loss_ctc=48.569, loss_att=59.341, acc=0.712, loss=56.109, backward_time=0.097, grad_norm=49.748, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.034e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 20:06:03,848 (trainer:737) INFO: 44epoch:train:7201-7300batch: iter_time=1.401e-04, forward_time=0.106, loss_ctc=39.507, loss_att=41.694, acc=0.736, loss=41.038, backward_time=0.096, grad_norm=47.203, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.033e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:06:45,408 (trainer:737) INFO: 44epoch:train:7301-7400batch: iter_time=1.418e-04, forward_time=0.105, loss_ctc=41.847, loss_att=44.817, acc=0.731, loss=43.926, backward_time=0.096, grad_norm=49.118, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.033e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:07:27,134 (trainer:737) INFO: 44epoch:train:7401-7500batch: iter_time=1.163e-04, forward_time=0.106, loss_ctc=44.262, loss_att=54.148, acc=0.724, loss=51.183, backward_time=0.096, grad_norm=48.892, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.033e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:07:31,436 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 20:07:51,619 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 20:07:55,426 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 20:07:55,426 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 20:07:55,429 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 20:12:52,924 (trainer:737) INFO: 44epoch:train:7501-7600batch: iter_time=2.799, forward_time=0.105, loss_ctc=37.833, loss_att=42.420, acc=0.751, loss=41.044, backward_time=0.096, grad_norm=42.265, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.033e-04, train_time=3.258 +[gpuc04:0/16] 2024-01-17 20:13:34,622 (trainer:737) INFO: 44epoch:train:7601-7700batch: iter_time=2.015e-04, forward_time=0.106, loss_ctc=41.255, loss_att=46.265, acc=0.757, loss=44.762, backward_time=0.097, grad_norm=42.070, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.032e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:14:16,667 (trainer:737) INFO: 44epoch:train:7701-7800batch: iter_time=1.944e-04, forward_time=0.106, loss_ctc=41.384, loss_att=54.553, acc=0.728, loss=50.602, backward_time=0.097, grad_norm=43.930, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.032e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 20:14:58,291 (trainer:737) INFO: 44epoch:train:7801-7900batch: iter_time=1.996e-04, forward_time=0.105, loss_ctc=41.302, loss_att=56.561, acc=0.721, loss=51.984, backward_time=0.096, grad_norm=45.339, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.032e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:15:39,824 (trainer:737) INFO: 44epoch:train:7901-8000batch: iter_time=1.941e-04, forward_time=0.105, loss_ctc=36.408, loss_att=46.889, acc=0.735, loss=43.745, backward_time=0.096, grad_norm=45.877, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.032e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:16:21,604 (trainer:737) INFO: 44epoch:train:8001-8100batch: iter_time=1.763e-04, forward_time=0.107, loss_ctc=44.234, loss_att=54.790, acc=0.732, loss=51.623, backward_time=0.097, grad_norm=48.926, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.032e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 20:17:04,062 (trainer:737) INFO: 44epoch:train:8101-8200batch: iter_time=2.004e-04, forward_time=0.106, loss_ctc=45.674, loss_att=51.892, acc=0.740, loss=50.027, backward_time=0.096, grad_norm=50.475, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.031e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 20:17:46,615 (trainer:737) INFO: 44epoch:train:8201-8300batch: iter_time=1.593e-04, forward_time=0.105, loss_ctc=42.163, loss_att=44.499, acc=0.738, loss=43.798, backward_time=0.097, grad_norm=50.100, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.031e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 20:18:28,552 (trainer:737) INFO: 44epoch:train:8301-8400batch: iter_time=1.851e-04, forward_time=0.107, loss_ctc=50.072, loss_att=59.102, acc=0.722, loss=56.393, backward_time=0.099, grad_norm=51.063, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.031e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 20:19:10,320 (trainer:737) INFO: 44epoch:train:8401-8500batch: iter_time=2.099e-04, forward_time=0.105, loss_ctc=41.170, loss_att=46.052, acc=0.730, loss=44.587, backward_time=0.099, grad_norm=44.897, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.031e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:19:51,947 (trainer:737) INFO: 44epoch:train:8501-8600batch: iter_time=2.100e-04, forward_time=0.106, loss_ctc=38.604, loss_att=39.037, acc=0.753, loss=38.907, backward_time=0.096, grad_norm=42.196, clip=100.000, loss_scale=3.884e+34, optim_step_time=0.039, optim0_lr0=3.030e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:20:33,565 (trainer:737) INFO: 44epoch:train:8601-8700batch: iter_time=1.976e-04, forward_time=0.105, loss_ctc=41.177, loss_att=51.699, acc=0.713, loss=48.542, backward_time=0.097, grad_norm=50.357, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.030e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:20:59,290 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 20:21:19,993 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 20:21:23,926 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 20:21:23,926 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 20:21:23,929 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 20:25:49,871 (trainer:737) INFO: 44epoch:train:8701-8800batch: iter_time=2.739, forward_time=0.106, loss_ctc=44.442, loss_att=48.691, acc=0.741, loss=47.416, backward_time=0.097, grad_norm=44.381, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.040, optim0_lr0=3.030e-04, train_time=3.163 +[gpuc04:0/16] 2024-01-17 20:25:56,677 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 20:26:31,670 (trainer:737) INFO: 44epoch:train:8801-8900batch: iter_time=1.588e-04, forward_time=0.105, loss_ctc=40.354, loss_att=47.472, acc=0.749, loss=45.337, backward_time=0.097, grad_norm=42.294, clip=100.000, loss_scale=2.392e+34, optim_step_time=0.040, optim0_lr0=3.030e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 20:27:13,224 (trainer:737) INFO: 44epoch:train:8901-9000batch: iter_time=1.625e-04, forward_time=0.105, loss_ctc=37.920, loss_att=44.432, acc=0.745, loss=42.478, backward_time=0.096, grad_norm=40.646, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.029e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:27:54,869 (trainer:737) INFO: 44epoch:train:9001-9100batch: iter_time=1.592e-04, forward_time=0.105, loss_ctc=43.973, loss_att=62.176, acc=0.709, loss=56.715, backward_time=0.096, grad_norm=49.799, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.029e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:28:36,336 (trainer:737) INFO: 44epoch:train:9101-9200batch: iter_time=1.281e-04, forward_time=0.104, loss_ctc=38.435, loss_att=49.320, acc=0.727, loss=46.054, backward_time=0.095, grad_norm=46.068, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.029e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 20:29:18,683 (trainer:737) INFO: 44epoch:train:9201-9300batch: iter_time=1.517e-04, forward_time=0.104, loss_ctc=41.301, loss_att=52.289, acc=0.746, loss=48.992, backward_time=0.096, grad_norm=47.704, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.029e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 20:30:00,151 (trainer:737) INFO: 44epoch:train:9301-9400batch: iter_time=1.398e-04, forward_time=0.105, loss_ctc=47.116, loss_att=51.808, acc=0.731, loss=50.400, backward_time=0.096, grad_norm=51.195, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.029e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 20:30:41,622 (trainer:737) INFO: 44epoch:train:9401-9500batch: iter_time=1.580e-04, forward_time=0.105, loss_ctc=38.815, loss_att=43.087, acc=0.750, loss=41.805, backward_time=0.095, grad_norm=47.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.028e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 20:31:23,630 (trainer:737) INFO: 44epoch:train:9501-9600batch: iter_time=1.819e-04, forward_time=0.105, loss_ctc=43.025, loss_att=47.923, acc=0.737, loss=46.454, backward_time=0.096, grad_norm=48.075, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.028e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 20:32:05,391 (trainer:737) INFO: 44epoch:train:9601-9700batch: iter_time=1.911e-04, forward_time=0.107, loss_ctc=48.772, loss_att=60.025, acc=0.709, loss=56.649, backward_time=0.096, grad_norm=51.426, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.028e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:32:47,222 (trainer:737) INFO: 44epoch:train:9701-9800batch: iter_time=1.830e-04, forward_time=0.105, loss_ctc=39.688, loss_att=41.096, acc=0.739, loss=40.674, backward_time=0.096, grad_norm=44.851, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.028e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 20:33:28,722 (trainer:737) INFO: 44epoch:train:9801-9900batch: iter_time=1.855e-04, forward_time=0.105, loss_ctc=41.517, loss_att=44.406, acc=0.732, loss=43.539, backward_time=0.095, grad_norm=48.247, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.027e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:34:10,594 (trainer:737) INFO: 44epoch:train:9901-10000batch: iter_time=1.454e-04, forward_time=0.107, loss_ctc=43.991, loss_att=54.411, acc=0.721, loss=51.285, backward_time=0.096, grad_norm=47.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.027e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 20:34:16,458 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 20:34:35,985 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 20:34:39,796 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 20:34:39,796 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 20:34:39,799 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 20:39:39,649 (trainer:737) INFO: 44epoch:train:10001-10100batch: iter_time=2.809, forward_time=0.148, loss_ctc=37.668, loss_att=44.367, acc=0.758, loss=42.358, backward_time=0.103, grad_norm=41.364, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.027e-04, train_time=3.290 +[gpuc04:0/16] 2024-01-17 20:40:21,576 (trainer:737) INFO: 44epoch:train:10101-10200batch: iter_time=1.289e-04, forward_time=0.105, loss_ctc=41.083, loss_att=50.609, acc=0.752, loss=47.751, backward_time=0.098, grad_norm=44.066, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.027e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 20:41:03,380 (trainer:737) INFO: 44epoch:train:10201-10300batch: iter_time=1.244e-04, forward_time=0.106, loss_ctc=41.261, loss_att=57.612, acc=0.728, loss=52.707, backward_time=0.097, grad_norm=45.718, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.026e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 20:41:45,108 (trainer:737) INFO: 44epoch:train:10301-10400batch: iter_time=1.255e-04, forward_time=0.105, loss_ctc=41.374, loss_att=60.608, acc=0.718, loss=54.838, backward_time=0.097, grad_norm=46.859, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.026e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:42:27,220 (trainer:737) INFO: 44epoch:train:10401-10500batch: iter_time=1.202e-04, forward_time=0.105, loss_ctc=35.925, loss_att=46.820, acc=0.742, loss=43.551, backward_time=0.096, grad_norm=46.506, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.026e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 20:43:09,041 (trainer:737) INFO: 44epoch:train:10501-10600batch: iter_time=1.296e-04, forward_time=0.106, loss_ctc=44.898, loss_att=55.546, acc=0.740, loss=52.351, backward_time=0.096, grad_norm=49.460, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.026e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 20:43:50,674 (trainer:737) INFO: 44epoch:train:10601-10700batch: iter_time=1.133e-04, forward_time=0.105, loss_ctc=45.088, loss_att=52.878, acc=0.746, loss=50.541, backward_time=0.096, grad_norm=49.766, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.026e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:44:32,183 (trainer:737) INFO: 44epoch:train:10701-10800batch: iter_time=1.106e-04, forward_time=0.105, loss_ctc=41.938, loss_att=45.582, acc=0.745, loss=44.489, backward_time=0.096, grad_norm=49.274, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.025e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:45:14,080 (trainer:737) INFO: 44epoch:train:10801-10900batch: iter_time=1.045e-04, forward_time=0.106, loss_ctc=49.579, loss_att=63.357, acc=0.724, loss=59.224, backward_time=0.097, grad_norm=52.323, clip=100.000, loss_scale=3.822e+34, optim_step_time=0.039, optim0_lr0=3.025e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 20:45:55,929 (trainer:737) INFO: 44epoch:train:10901-11000batch: iter_time=1.052e-04, forward_time=0.105, loss_ctc=40.334, loss_att=46.828, acc=0.739, loss=44.880, backward_time=0.096, grad_norm=42.628, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.025e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 20:46:29,558 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 20:46:37,412 (trainer:737) INFO: 44epoch:train:11001-11100batch: iter_time=1.231e-04, forward_time=0.105, loss_ctc=38.564, loss_att=39.337, acc=0.760, loss=39.105, backward_time=0.096, grad_norm=41.814, clip=100.000, loss_scale=3.755e+34, optim_step_time=0.039, optim0_lr0=3.025e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:47:19,122 (trainer:737) INFO: 44epoch:train:11101-11200batch: iter_time=1.156e-04, forward_time=0.103, loss_ctc=40.555, loss_att=51.341, acc=0.719, loss=48.106, backward_time=0.095, grad_norm=49.694, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.024e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:47:47,537 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 20:48:07,082 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 20:48:10,857 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 20:48:10,858 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 20:48:10,861 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 20:52:51,136 (trainer:737) INFO: 44epoch:train:11201-11300batch: iter_time=2.809, forward_time=0.107, loss_ctc=44.361, loss_att=49.574, acc=0.746, loss=48.010, backward_time=0.097, grad_norm=44.343, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.024e-04, train_time=3.320 +[gpuc04:0/16] 2024-01-17 20:53:32,857 (trainer:737) INFO: 44epoch:train:11301-11400batch: iter_time=1.553e-04, forward_time=0.105, loss_ctc=40.155, loss_att=49.757, acc=0.746, loss=46.876, backward_time=0.097, grad_norm=46.800, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.024e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:54:14,489 (trainer:737) INFO: 44epoch:train:11401-11500batch: iter_time=1.445e-04, forward_time=0.105, loss_ctc=37.791, loss_att=44.853, acc=0.746, loss=42.735, backward_time=0.097, grad_norm=40.533, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.024e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 20:54:56,487 (trainer:737) INFO: 44epoch:train:11501-11600batch: iter_time=1.335e-04, forward_time=0.109, loss_ctc=43.201, loss_att=62.621, acc=0.711, loss=56.795, backward_time=0.097, grad_norm=49.490, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.023e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 20:55:38,047 (trainer:737) INFO: 44epoch:train:11601-11700batch: iter_time=1.472e-04, forward_time=0.105, loss_ctc=38.431, loss_att=48.426, acc=0.730, loss=45.427, backward_time=0.097, grad_norm=44.370, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.023e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 20:56:21,034 (trainer:737) INFO: 44epoch:train:11701-11800batch: iter_time=1.407e-04, forward_time=0.106, loss_ctc=41.251, loss_att=53.195, acc=0.743, loss=49.612, backward_time=0.097, grad_norm=47.139, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.023e-04, train_time=0.430 +[gpuc04:0/16] 2024-01-17 20:57:03,179 (trainer:737) INFO: 44epoch:train:11801-11900batch: iter_time=1.401e-04, forward_time=0.105, loss_ctc=46.873, loss_att=52.550, acc=0.731, loss=50.847, backward_time=0.096, grad_norm=49.523, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.023e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 20:57:44,611 (trainer:737) INFO: 44epoch:train:11901-12000batch: iter_time=1.501e-04, forward_time=0.105, loss_ctc=38.512, loss_att=43.310, acc=0.748, loss=41.871, backward_time=0.097, grad_norm=48.903, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.023e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 20:58:26,287 (trainer:737) INFO: 44epoch:train:12001-12100batch: iter_time=1.562e-04, forward_time=0.105, loss_ctc=43.306, loss_att=48.563, acc=0.734, loss=46.986, backward_time=0.098, grad_norm=47.590, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.022e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:59:07,977 (trainer:737) INFO: 44epoch:train:12101-12200batch: iter_time=1.415e-04, forward_time=0.106, loss_ctc=48.829, loss_att=60.293, acc=0.712, loss=56.854, backward_time=0.097, grad_norm=53.727, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.022e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 20:59:50,202 (trainer:737) INFO: 44epoch:train:12201-12300batch: iter_time=1.271e-04, forward_time=0.105, loss_ctc=39.418, loss_att=41.695, acc=0.737, loss=41.012, backward_time=0.097, grad_norm=43.443, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.022e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 21:00:32,219 (trainer:737) INFO: 44epoch:train:12301-12400batch: iter_time=1.259e-04, forward_time=0.105, loss_ctc=41.268, loss_att=44.659, acc=0.734, loss=43.642, backward_time=0.101, grad_norm=57.940, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.022e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 21:01:13,780 (trainer:737) INFO: 44epoch:train:12401-12500batch: iter_time=1.200e-04, forward_time=0.105, loss_ctc=43.558, loss_att=53.826, acc=0.725, loss=50.746, backward_time=0.097, grad_norm=47.796, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.021e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 21:01:30,683 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-17 21:01:50,249 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 21:01:54,014 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 21:01:54,014 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 21:01:54,018 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 21:07:03,976 (trainer:737) INFO: 44epoch:train:12501-12600batch: iter_time=3.082, forward_time=0.106, loss_ctc=37.410, loss_att=43.252, acc=0.762, loss=41.499, backward_time=0.097, grad_norm=43.107, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.021e-04, train_time=3.502 +[gpuc04:0/16] 2024-01-17 21:07:45,804 (trainer:737) INFO: 44epoch:train:12601-12700batch: iter_time=1.347e-04, forward_time=0.106, loss_ctc=40.561, loss_att=49.648, acc=0.755, loss=46.922, backward_time=0.098, grad_norm=42.323, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.021e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 21:08:27,630 (trainer:737) INFO: 44epoch:train:12701-12800batch: iter_time=1.203e-04, forward_time=0.106, loss_ctc=41.427, loss_att=57.378, acc=0.730, loss=52.592, backward_time=0.098, grad_norm=50.247, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.021e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 21:09:09,451 (trainer:737) INFO: 44epoch:train:12801-12900batch: iter_time=1.543e-04, forward_time=0.106, loss_ctc=41.417, loss_att=60.664, acc=0.718, loss=54.890, backward_time=0.098, grad_norm=46.048, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.020e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 21:09:51,463 (trainer:737) INFO: 44epoch:train:12901-13000batch: iter_time=1.511e-04, forward_time=0.106, loss_ctc=36.068, loss_att=47.110, acc=0.742, loss=43.797, backward_time=0.097, grad_norm=46.251, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.020e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 21:10:33,721 (trainer:737) INFO: 44epoch:train:13001-13100batch: iter_time=1.443e-04, forward_time=0.106, loss_ctc=44.392, loss_att=55.008, acc=0.742, loss=51.823, backward_time=0.098, grad_norm=48.709, clip=100.000, loss_scale=2.472e+34, optim_step_time=0.040, optim0_lr0=3.020e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 21:10:58,250 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 21:11:15,423 (trainer:737) INFO: 44epoch:train:13101-13200batch: iter_time=1.448e-04, forward_time=0.106, loss_ctc=45.044, loss_att=52.309, acc=0.746, loss=50.130, backward_time=0.097, grad_norm=49.892, clip=100.000, loss_scale=3.294e+34, optim_step_time=0.040, optim0_lr0=3.020e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 21:11:57,014 (trainer:737) INFO: 44epoch:train:13201-13300batch: iter_time=1.581e-04, forward_time=0.105, loss_ctc=42.955, loss_att=45.813, acc=0.745, loss=44.956, backward_time=0.097, grad_norm=52.883, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.020e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 21:12:39,156 (trainer:737) INFO: 44epoch:train:13301-13400batch: iter_time=1.606e-04, forward_time=0.106, loss_ctc=49.682, loss_att=62.708, acc=0.726, loss=58.801, backward_time=0.098, grad_norm=52.156, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.019e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 21:13:20,786 (trainer:737) INFO: 44epoch:train:13401-13500batch: iter_time=1.727e-04, forward_time=0.105, loss_ctc=40.200, loss_att=46.346, acc=0.740, loss=44.502, backward_time=0.097, grad_norm=42.600, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.019e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 21:14:02,285 (trainer:737) INFO: 44epoch:train:13501-13600batch: iter_time=1.441e-04, forward_time=0.105, loss_ctc=38.101, loss_att=38.778, acc=0.760, loss=38.575, backward_time=0.097, grad_norm=41.963, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.019e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 21:14:43,790 (trainer:737) INFO: 44epoch:train:13601-13700batch: iter_time=1.489e-04, forward_time=0.105, loss_ctc=40.697, loss_att=51.401, acc=0.718, loss=48.190, backward_time=0.096, grad_norm=50.597, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.019e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 21:15:11,556 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-17 21:15:30,938 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 21:15:34,743 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 21:15:34,744 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 21:15:34,747 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 21:20:23,923 (trainer:737) INFO: 44epoch:train:13701-13800batch: iter_time=2.970, forward_time=0.117, loss_ctc=44.034, loss_att=47.793, acc=0.756, loss=46.666, backward_time=0.097, grad_norm=43.190, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.018e-04, train_time=3.401 +[gpuc04:0/16] 2024-01-17 21:21:05,748 (trainer:737) INFO: 44epoch:train:13801-13900batch: iter_time=1.801e-04, forward_time=0.106, loss_ctc=40.294, loss_att=50.093, acc=0.752, loss=47.153, backward_time=0.098, grad_norm=46.556, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.018e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 21:21:47,505 (trainer:737) INFO: 44epoch:train:13901-14000batch: iter_time=1.414e-04, forward_time=0.106, loss_ctc=37.827, loss_att=46.161, acc=0.744, loss=43.661, backward_time=0.097, grad_norm=40.929, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.018e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 21:22:29,275 (trainer:737) INFO: 44epoch:train:14001-14100batch: iter_time=1.894e-04, forward_time=0.106, loss_ctc=43.347, loss_att=64.938, acc=0.712, loss=58.460, backward_time=0.097, grad_norm=46.540, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.018e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 21:23:11,169 (trainer:737) INFO: 44epoch:train:14101-14200batch: iter_time=1.997e-04, forward_time=0.106, loss_ctc=37.913, loss_att=50.224, acc=0.732, loss=46.531, backward_time=0.096, grad_norm=47.026, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.017e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 21:23:52,815 (trainer:737) INFO: 44epoch:train:14201-14300batch: iter_time=1.760e-04, forward_time=0.106, loss_ctc=41.441, loss_att=52.269, acc=0.751, loss=49.020, backward_time=0.097, grad_norm=47.356, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.017e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 21:24:34,701 (trainer:737) INFO: 44epoch:train:14301-14400batch: iter_time=1.507e-04, forward_time=0.105, loss_ctc=46.781, loss_att=52.409, acc=0.736, loss=50.721, backward_time=0.096, grad_norm=50.643, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.017e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 21:25:16,292 (trainer:737) INFO: 44epoch:train:14401-14500batch: iter_time=1.465e-04, forward_time=0.106, loss_ctc=38.060, loss_att=43.763, acc=0.758, loss=42.052, backward_time=0.097, grad_norm=46.993, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.017e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 21:25:58,097 (trainer:737) INFO: 44epoch:train:14501-14600batch: iter_time=1.502e-04, forward_time=0.106, loss_ctc=43.317, loss_att=49.768, acc=0.745, loss=47.833, backward_time=0.098, grad_norm=48.428, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.017e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 21:26:39,997 (trainer:737) INFO: 44epoch:train:14601-14700batch: iter_time=1.694e-04, forward_time=0.106, loss_ctc=48.219, loss_att=61.618, acc=0.720, loss=57.598, backward_time=0.097, grad_norm=51.841, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.016e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 21:27:21,574 (trainer:737) INFO: 44epoch:train:14701-14800batch: iter_time=1.605e-04, forward_time=0.106, loss_ctc=39.119, loss_att=40.964, acc=0.748, loss=40.411, backward_time=0.097, grad_norm=43.168, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.016e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 21:28:03,143 (trainer:737) INFO: 44epoch:train:14801-14900batch: iter_time=1.423e-04, forward_time=0.105, loss_ctc=40.987, loss_att=45.379, acc=0.732, loss=44.062, backward_time=0.097, grad_norm=46.572, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.016e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 21:28:44,739 (trainer:737) INFO: 44epoch:train:14901-15000batch: iter_time=1.171e-04, forward_time=0.105, loss_ctc=43.468, loss_att=53.621, acc=0.736, loss=50.575, backward_time=0.097, grad_norm=46.211, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.016e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 21:48:46,657 (trainer:343) INFO: 44epoch results: [train] iter_time=0.233, forward_time=0.107, loss_ctc=42.349, loss_att=50.644, acc=0.735, loss=48.155, backward_time=0.097, grad_norm=47.886, clip=100.000, loss_scale=2.073e+34, optim_step_time=0.039, optim0_lr0=3.033e-04, train_time=0.672, time=2 hours, 48 minutes and 11.73 seconds, total_count=660000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=48.206, cer_ctc=0.249, loss_att=50.951, acc=0.604, cer=0.397, wer=1.000, loss=50.128, time=19 minutes and 51.82 seconds, total_count=205524, gpu_max_cached_mem_GB=27.988 +[gpuc04:0/16] 2024-01-17 21:48:52,289 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-17 21:48:52,362 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/39epoch.pth +[gpuc04:0/16] 2024-01-17 21:48:52,363 (trainer:272) INFO: 45/45epoch started. Estimated time to finish: 3 hours, 2 minutes and 21.47 seconds +[gpuc04:0/16] 2024-01-17 21:48:52,373 (multiple_iter_factory:32) INFO: Building 0th iter-factory... +[gpuc04:0/16] 2024-01-17 21:49:12,120 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 21:49:15,976 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.8", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.8", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.8", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.8", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 21:49:15,976 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.8, +[gpuc04:0/16] 2024-01-17 21:49:15,980 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 21:54:07,886 (trainer:737) INFO: 45epoch:train:1-100batch: iter_time=2.703, forward_time=0.128, loss_ctc=42.727, loss_att=54.401, acc=0.736, loss=50.899, backward_time=0.100, grad_norm=51.251, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.015e-04, train_time=3.155 +[gpuc04:0/16] 2024-01-17 21:54:49,615 (trainer:737) INFO: 45epoch:train:101-200batch: iter_time=1.179e-04, forward_time=0.105, loss_ctc=42.197, loss_att=43.333, acc=0.760, loss=42.992, backward_time=0.097, grad_norm=45.577, clip=100.000, loss_scale=2.928e+34, optim_step_time=0.039, optim0_lr0=3.015e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 21:55:13,752 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 21:55:31,334 (trainer:737) INFO: 45epoch:train:201-300batch: iter_time=1.210e-04, forward_time=0.105, loss_ctc=47.445, loss_att=50.453, acc=0.741, loss=49.551, backward_time=0.098, grad_norm=45.615, clip=100.000, loss_scale=3.273e+34, optim_step_time=0.039, optim0_lr0=3.015e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 21:56:13,349 (trainer:737) INFO: 45epoch:train:301-400batch: iter_time=1.204e-04, forward_time=0.105, loss_ctc=35.415, loss_att=37.673, acc=0.760, loss=36.996, backward_time=0.097, grad_norm=43.608, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.015e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 21:56:55,925 (trainer:737) INFO: 45epoch:train:401-500batch: iter_time=1.304e-04, forward_time=0.107, loss_ctc=44.500, loss_att=53.163, acc=0.773, loss=50.564, backward_time=0.099, grad_norm=47.423, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.014e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-17 21:57:37,874 (trainer:737) INFO: 45epoch:train:501-600batch: iter_time=1.252e-04, forward_time=0.106, loss_ctc=60.032, loss_att=58.236, acc=0.742, loss=58.775, backward_time=0.099, grad_norm=56.087, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.014e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 21:58:20,965 (trainer:737) INFO: 45epoch:train:601-700batch: iter_time=1.361e-04, forward_time=0.107, loss_ctc=50.468, loss_att=51.467, acc=0.752, loss=51.167, backward_time=0.099, grad_norm=52.978, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.014e-04, train_time=0.431 +[gpuc04:0/16] 2024-01-17 21:59:03,794 (trainer:737) INFO: 45epoch:train:701-800batch: iter_time=1.237e-04, forward_time=0.107, loss_ctc=48.609, loss_att=45.623, acc=0.749, loss=46.519, backward_time=0.099, grad_norm=50.898, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.014e-04, train_time=0.426 +[gpuc04:0/16] 2024-01-17 21:59:51,655 (trainer:737) INFO: 45epoch:train:801-900batch: iter_time=1.239e-04, forward_time=0.106, loss_ctc=43.824, loss_att=49.525, acc=0.740, loss=47.815, backward_time=0.098, grad_norm=46.016, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=3.014e-04, train_time=0.480 +[gpuc04:0/16] 2024-01-17 22:00:35,009 (trainer:737) INFO: 45epoch:train:901-1000batch: iter_time=1.167e-04, forward_time=0.106, loss_ctc=41.019, loss_att=51.379, acc=0.757, loss=48.271, backward_time=0.099, grad_norm=42.716, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.013e-04, train_time=0.433 +[gpuc04:0/16] 2024-01-17 22:01:25,060 (trainer:737) INFO: 45epoch:train:1001-1100batch: iter_time=1.141e-04, forward_time=0.140, loss_ctc=38.045, loss_att=49.598, acc=0.735, loss=46.132, backward_time=0.127, grad_norm=44.554, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.051, optim0_lr0=3.013e-04, train_time=0.500 +[gpuc04:0/16] 2024-01-17 22:02:09,388 (trainer:737) INFO: 45epoch:train:1101-1200batch: iter_time=1.345e-04, forward_time=0.106, loss_ctc=48.696, loss_att=51.991, acc=0.718, loss=51.002, backward_time=0.098, grad_norm=59.619, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.013e-04, train_time=0.443 +[gpuc04:0/16] 2024-01-17 22:02:59,723 (multiple_iter_factory:32) INFO: Building 1th iter-factory... +[gpuc04:0/16] 2024-01-17 22:03:20,108 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 22:03:24,069 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.5", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.5", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.5", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.5", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 22:03:24,069 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.5, +[gpuc04:0/16] 2024-01-17 22:03:24,072 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 22:11:10,637 (trainer:737) INFO: 45epoch:train:1201-1300batch: iter_time=4.922, forward_time=0.109, loss_ctc=41.084, loss_att=55.661, acc=0.732, loss=51.288, backward_time=0.099, grad_norm=50.447, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.013e-04, train_time=5.412 +[gpuc04:0/16] 2024-01-17 22:11:54,258 (trainer:737) INFO: 45epoch:train:1301-1400batch: iter_time=1.797e-04, forward_time=0.107, loss_ctc=41.741, loss_att=50.278, acc=0.731, loss=47.717, backward_time=0.097, grad_norm=46.092, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.012e-04, train_time=0.436 +[gpuc04:0/16] 2024-01-17 22:12:36,603 (trainer:737) INFO: 45epoch:train:1401-1500batch: iter_time=1.822e-04, forward_time=0.104, loss_ctc=45.014, loss_att=44.796, acc=0.752, loss=44.862, backward_time=0.096, grad_norm=46.395, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.012e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 22:13:21,636 (trainer:737) INFO: 45epoch:train:1501-1600batch: iter_time=2.069e-04, forward_time=0.104, loss_ctc=41.719, loss_att=43.352, acc=0.751, loss=42.862, backward_time=0.096, grad_norm=45.795, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.012e-04, train_time=0.450 +[gpuc04:0/16] 2024-01-17 22:14:04,154 (trainer:737) INFO: 45epoch:train:1601-1700batch: iter_time=1.902e-04, forward_time=0.104, loss_ctc=38.637, loss_att=45.410, acc=0.757, loss=43.378, backward_time=0.096, grad_norm=43.317, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.012e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 22:14:46,464 (trainer:737) INFO: 45epoch:train:1701-1800batch: iter_time=1.601e-04, forward_time=0.105, loss_ctc=44.322, loss_att=55.405, acc=0.754, loss=52.080, backward_time=0.097, grad_norm=45.521, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.012e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 22:15:28,140 (trainer:737) INFO: 45epoch:train:1801-1900batch: iter_time=1.544e-04, forward_time=0.105, loss_ctc=57.212, loss_att=53.059, acc=0.741, loss=54.305, backward_time=0.097, grad_norm=54.859, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.011e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 22:16:09,850 (trainer:737) INFO: 45epoch:train:1901-2000batch: iter_time=1.524e-04, forward_time=0.106, loss_ctc=56.297, loss_att=52.320, acc=0.747, loss=53.513, backward_time=0.097, grad_norm=63.371, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.011e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 22:16:51,310 (trainer:737) INFO: 45epoch:train:2001-2100batch: iter_time=1.849e-04, forward_time=0.104, loss_ctc=44.541, loss_att=51.714, acc=0.712, loss=49.562, backward_time=0.096, grad_norm=47.668, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.011e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 22:17:32,769 (trainer:737) INFO: 45epoch:train:2101-2200batch: iter_time=1.597e-04, forward_time=0.104, loss_ctc=37.060, loss_att=42.873, acc=0.756, loss=41.129, backward_time=0.096, grad_norm=41.946, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.011e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 22:18:14,275 (trainer:737) INFO: 45epoch:train:2201-2300batch: iter_time=1.517e-04, forward_time=0.104, loss_ctc=39.436, loss_att=57.256, acc=0.727, loss=51.910, backward_time=0.096, grad_norm=46.040, clip=100.000, loss_scale=2.949e+34, optim_step_time=0.039, optim0_lr0=3.010e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 22:18:57,187 (trainer:737) INFO: 45epoch:train:2301-2400batch: iter_time=1.986e-04, forward_time=0.112, loss_ctc=41.815, loss_att=44.190, acc=0.751, loss=43.478, backward_time=0.097, grad_norm=45.503, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.010e-04, train_time=0.429 +[gpuc04:0/16] 2024-01-17 22:19:39,146 (trainer:737) INFO: 45epoch:train:2401-2500batch: iter_time=1.611e-04, forward_time=0.104, loss_ctc=46.685, loss_att=52.821, acc=0.713, loss=50.980, backward_time=0.096, grad_norm=55.230, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.010e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 22:19:46,076 (multiple_iter_factory:32) INFO: Building 2th iter-factory... +[gpuc04:0/16] 2024-01-17 22:20:05,711 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 22:20:09,496 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.2", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.2", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.2", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.2", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 22:20:09,497 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.2, +[gpuc04:0/16] 2024-01-17 22:20:09,500 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 22:25:02,335 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 22:25:33,618 (trainer:737) INFO: 45epoch:train:2501-2600batch: iter_time=2.853, forward_time=0.106, loss_ctc=40.819, loss_att=55.215, acc=0.738, loss=50.896, backward_time=0.097, grad_norm=44.105, clip=100.000, loss_scale=2.643e+34, optim_step_time=0.039, optim0_lr0=3.010e-04, train_time=3.544 +[gpuc04:0/16] 2024-01-17 22:26:15,246 (trainer:737) INFO: 45epoch:train:2601-2700batch: iter_time=1.571e-04, forward_time=0.106, loss_ctc=39.698, loss_att=44.149, acc=0.763, loss=42.814, backward_time=0.097, grad_norm=41.908, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.009e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 22:26:56,897 (trainer:737) INFO: 45epoch:train:2701-2800batch: iter_time=1.530e-04, forward_time=0.106, loss_ctc=46.572, loss_att=49.687, acc=0.744, loss=48.753, backward_time=0.097, grad_norm=45.583, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.009e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 22:27:38,565 (trainer:737) INFO: 45epoch:train:2801-2900batch: iter_time=1.414e-04, forward_time=0.105, loss_ctc=34.551, loss_att=37.121, acc=0.764, loss=36.350, backward_time=0.096, grad_norm=40.904, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.009e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 22:28:21,026 (trainer:737) INFO: 45epoch:train:2901-3000batch: iter_time=1.790e-04, forward_time=0.107, loss_ctc=43.650, loss_att=52.811, acc=0.776, loss=50.062, backward_time=0.098, grad_norm=45.196, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.009e-04, train_time=0.424 +[gpuc04:0/16] 2024-01-17 22:29:03,357 (trainer:737) INFO: 45epoch:train:3001-3100batch: iter_time=1.880e-04, forward_time=0.106, loss_ctc=57.243, loss_att=57.212, acc=0.744, loss=57.221, backward_time=0.097, grad_norm=54.961, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.009e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 22:29:45,188 (trainer:737) INFO: 45epoch:train:3101-3200batch: iter_time=1.657e-04, forward_time=0.106, loss_ctc=48.821, loss_att=50.848, acc=0.752, loss=50.240, backward_time=0.097, grad_norm=49.869, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.008e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:30:27,362 (trainer:737) INFO: 45epoch:train:3201-3300batch: iter_time=1.571e-04, forward_time=0.110, loss_ctc=47.066, loss_att=45.693, acc=0.750, loss=46.105, backward_time=0.097, grad_norm=49.665, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.008e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 22:31:09,221 (trainer:737) INFO: 45epoch:train:3301-3400batch: iter_time=1.283e-04, forward_time=0.105, loss_ctc=41.827, loss_att=50.249, acc=0.736, loss=47.723, backward_time=0.096, grad_norm=45.322, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.008e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:31:50,933 (trainer:737) INFO: 45epoch:train:3401-3500batch: iter_time=1.561e-04, forward_time=0.106, loss_ctc=40.005, loss_att=50.554, acc=0.761, loss=47.389, backward_time=0.097, grad_norm=41.790, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.008e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 22:32:32,499 (trainer:737) INFO: 45epoch:train:3501-3600batch: iter_time=1.509e-04, forward_time=0.104, loss_ctc=37.828, loss_att=50.348, acc=0.735, loss=46.592, backward_time=0.096, grad_norm=43.667, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.007e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 22:33:14,310 (trainer:737) INFO: 45epoch:train:3601-3700batch: iter_time=1.576e-04, forward_time=0.106, loss_ctc=47.361, loss_att=50.399, acc=0.725, loss=49.488, backward_time=0.097, grad_norm=55.718, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.007e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:33:40,111 (multiple_iter_factory:32) INFO: Building 3th iter-factory... +[gpuc04:0/16] 2024-01-17 22:33:59,432 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 22:34:03,104 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.9", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.9", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.9", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.9", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 22:34:03,104 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.9, +[gpuc04:0/16] 2024-01-17 22:34:03,108 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 22:38:37,531 (trainer:737) INFO: 45epoch:train:3701-3800batch: iter_time=2.779, forward_time=0.125, loss_ctc=39.681, loss_att=53.458, acc=0.737, loss=49.325, backward_time=0.098, grad_norm=49.434, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.007e-04, train_time=3.232 +[gpuc04:0/16] 2024-01-17 22:39:19,142 (trainer:737) INFO: 45epoch:train:3801-3900batch: iter_time=1.609e-04, forward_time=0.105, loss_ctc=41.425, loss_att=49.306, acc=0.735, loss=46.942, backward_time=0.096, grad_norm=42.974, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.007e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 22:40:00,924 (trainer:737) INFO: 45epoch:train:3901-4000batch: iter_time=1.428e-04, forward_time=0.105, loss_ctc=43.905, loss_att=44.390, acc=0.754, loss=44.244, backward_time=0.096, grad_norm=45.454, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.007e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:40:42,406 (trainer:737) INFO: 45epoch:train:4001-4100batch: iter_time=1.543e-04, forward_time=0.105, loss_ctc=41.062, loss_att=43.159, acc=0.752, loss=42.530, backward_time=0.096, grad_norm=43.583, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.006e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 22:41:24,408 (trainer:737) INFO: 45epoch:train:4101-4200batch: iter_time=1.787e-04, forward_time=0.105, loss_ctc=38.637, loss_att=45.584, acc=0.758, loss=43.500, backward_time=0.096, grad_norm=42.506, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=3.006e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 22:42:06,197 (trainer:737) INFO: 45epoch:train:4201-4300batch: iter_time=1.643e-04, forward_time=0.106, loss_ctc=44.045, loss_att=55.459, acc=0.755, loss=52.035, backward_time=0.097, grad_norm=50.212, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.006e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:42:48,031 (trainer:737) INFO: 45epoch:train:4301-4400batch: iter_time=1.602e-04, forward_time=0.106, loss_ctc=56.521, loss_att=52.859, acc=0.742, loss=53.958, backward_time=0.097, grad_norm=54.406, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.006e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:43:29,864 (trainer:737) INFO: 45epoch:train:4401-4500batch: iter_time=1.583e-04, forward_time=0.106, loss_ctc=55.715, loss_att=52.153, acc=0.747, loss=53.222, backward_time=0.097, grad_norm=57.714, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.005e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:44:11,900 (trainer:737) INFO: 45epoch:train:4501-4600batch: iter_time=1.514e-04, forward_time=0.105, loss_ctc=43.280, loss_att=51.363, acc=0.714, loss=48.938, backward_time=0.096, grad_norm=45.808, clip=100.000, loss_scale=3.572e+34, optim_step_time=0.039, optim0_lr0=3.005e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 22:44:53,726 (trainer:737) INFO: 45epoch:train:4601-4700batch: iter_time=1.575e-04, forward_time=0.106, loss_ctc=36.751, loss_att=42.429, acc=0.758, loss=40.726, backward_time=0.096, grad_norm=41.947, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.005e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 22:45:06,500 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 22:45:35,639 (trainer:737) INFO: 45epoch:train:4701-4800batch: iter_time=1.503e-04, forward_time=0.106, loss_ctc=38.836, loss_att=56.603, acc=0.728, loss=51.273, backward_time=0.096, grad_norm=44.290, clip=100.000, loss_scale=2.685e+34, optim_step_time=0.038, optim0_lr0=3.005e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 22:46:17,528 (trainer:737) INFO: 45epoch:train:4801-4900batch: iter_time=1.785e-04, forward_time=0.106, loss_ctc=40.556, loss_att=43.010, acc=0.755, loss=42.273, backward_time=0.096, grad_norm=44.612, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.005e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 22:46:59,184 (trainer:737) INFO: 45epoch:train:4901-5000batch: iter_time=1.359e-04, forward_time=0.105, loss_ctc=45.480, loss_att=51.441, acc=0.716, loss=49.653, backward_time=0.096, grad_norm=56.793, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.004e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 22:47:05,659 (multiple_iter_factory:32) INFO: Building 4th iter-factory... +[gpuc04:0/16] 2024-01-17 22:47:25,801 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 22:47:30,077 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.7", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.7", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.7", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.7", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 22:47:30,077 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.7, +[gpuc04:0/16] 2024-01-17 22:47:30,081 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 22:52:32,364 (trainer:737) INFO: 45epoch:train:5001-5100batch: iter_time=2.659, forward_time=0.137, loss_ctc=40.644, loss_att=50.889, acc=0.735, loss=47.815, backward_time=0.102, grad_norm=44.568, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.004e-04, train_time=3.332 +[gpuc04:0/16] 2024-01-17 22:53:14,297 (trainer:737) INFO: 45epoch:train:5101-5200batch: iter_time=1.565e-04, forward_time=0.104, loss_ctc=39.094, loss_att=43.303, acc=0.754, loss=42.041, backward_time=0.096, grad_norm=41.559, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.004e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 22:53:56,040 (trainer:737) INFO: 45epoch:train:5201-5300batch: iter_time=1.624e-04, forward_time=0.105, loss_ctc=46.383, loss_att=50.065, acc=0.732, loss=48.960, backward_time=0.096, grad_norm=44.996, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.004e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 22:54:37,617 (trainer:737) INFO: 45epoch:train:5301-5400batch: iter_time=1.907e-04, forward_time=0.104, loss_ctc=34.166, loss_att=35.761, acc=0.770, loss=35.283, backward_time=0.095, grad_norm=40.646, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.003e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 22:55:19,890 (trainer:737) INFO: 45epoch:train:5401-5500batch: iter_time=1.802e-04, forward_time=0.106, loss_ctc=43.097, loss_att=52.019, acc=0.768, loss=49.342, backward_time=0.097, grad_norm=44.798, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.003e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 22:56:01,635 (trainer:737) INFO: 45epoch:train:5501-5600batch: iter_time=1.464e-04, forward_time=0.106, loss_ctc=56.571, loss_att=56.892, acc=0.740, loss=56.796, backward_time=0.097, grad_norm=54.165, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.003e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 22:56:43,390 (trainer:737) INFO: 45epoch:train:5601-5700batch: iter_time=1.434e-04, forward_time=0.105, loss_ctc=48.566, loss_att=50.317, acc=0.750, loss=49.792, backward_time=0.097, grad_norm=48.764, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.003e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 22:57:25,346 (trainer:737) INFO: 45epoch:train:5701-5800batch: iter_time=1.622e-04, forward_time=0.105, loss_ctc=46.785, loss_att=45.593, acc=0.746, loss=45.950, backward_time=0.097, grad_norm=52.274, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.002e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 22:58:06,852 (trainer:737) INFO: 45epoch:train:5801-5900batch: iter_time=1.802e-04, forward_time=0.104, loss_ctc=40.894, loss_att=48.372, acc=0.731, loss=46.129, backward_time=0.096, grad_norm=45.468, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.002e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 22:58:48,728 (trainer:737) INFO: 45epoch:train:5901-6000batch: iter_time=1.520e-04, forward_time=0.105, loss_ctc=39.903, loss_att=50.341, acc=0.753, loss=47.209, backward_time=0.096, grad_norm=41.269, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.002e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 22:59:30,272 (trainer:737) INFO: 45epoch:train:6001-6100batch: iter_time=1.802e-04, forward_time=0.105, loss_ctc=37.420, loss_att=48.287, acc=0.733, loss=45.027, backward_time=0.096, grad_norm=42.526, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.002e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 23:00:11,930 (trainer:737) INFO: 45epoch:train:6101-6200batch: iter_time=1.413e-04, forward_time=0.105, loss_ctc=46.997, loss_att=50.930, acc=0.718, loss=49.750, backward_time=0.096, grad_norm=56.421, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.002e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:00:40,098 (multiple_iter_factory:32) INFO: Building 5th iter-factory... +[gpuc04:0/16] 2024-01-17 23:00:59,519 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 23:01:03,257 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.4", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.4", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.4", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.4", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 23:01:03,257 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.4, +[gpuc04:0/16] 2024-01-17 23:01:03,260 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 23:05:33,732 (trainer:737) INFO: 45epoch:train:6201-6300batch: iter_time=2.797, forward_time=0.105, loss_ctc=38.720, loss_att=52.238, acc=0.744, loss=48.183, backward_time=0.097, grad_norm=47.208, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.001e-04, train_time=3.218 +[gpuc04:0/16] 2024-01-17 23:06:15,867 (trainer:737) INFO: 45epoch:train:6301-6400batch: iter_time=2.075e-04, forward_time=0.106, loss_ctc=41.302, loss_att=51.915, acc=0.743, loss=48.731, backward_time=0.098, grad_norm=44.025, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=3.001e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 23:06:57,803 (trainer:737) INFO: 45epoch:train:6401-6500batch: iter_time=1.939e-04, forward_time=0.108, loss_ctc=44.049, loss_att=43.562, acc=0.765, loss=43.708, backward_time=0.096, grad_norm=44.269, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.001e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 23:07:39,493 (trainer:737) INFO: 45epoch:train:6501-6600batch: iter_time=2.001e-04, forward_time=0.105, loss_ctc=40.567, loss_att=42.822, acc=0.763, loss=42.145, backward_time=0.096, grad_norm=43.809, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.001e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:08:21,210 (trainer:737) INFO: 45epoch:train:6601-6700batch: iter_time=2.185e-04, forward_time=0.105, loss_ctc=38.076, loss_att=46.563, acc=0.758, loss=44.017, backward_time=0.096, grad_norm=41.671, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=3.000e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:09:03,121 (trainer:737) INFO: 45epoch:train:6701-6800batch: iter_time=1.853e-04, forward_time=0.106, loss_ctc=42.926, loss_att=55.563, acc=0.765, loss=51.772, backward_time=0.097, grad_norm=63.898, clip=100.000, loss_scale=3.531e+34, optim_step_time=0.039, optim0_lr0=3.000e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 23:09:45,200 (trainer:737) INFO: 45epoch:train:6801-6900batch: iter_time=1.809e-04, forward_time=0.106, loss_ctc=55.800, loss_att=53.362, acc=0.746, loss=54.093, backward_time=0.097, grad_norm=54.697, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.000e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 23:10:27,694 (trainer:737) INFO: 45epoch:train:6901-7000batch: iter_time=1.895e-04, forward_time=0.107, loss_ctc=54.521, loss_att=52.359, acc=0.756, loss=53.007, backward_time=0.098, grad_norm=56.071, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.000e-04, train_time=0.425 +[gpuc04:0/16] 2024-01-17 23:11:09,423 (trainer:737) INFO: 45epoch:train:7001-7100batch: iter_time=2.115e-04, forward_time=0.106, loss_ctc=42.951, loss_att=51.125, acc=0.731, loss=48.673, backward_time=0.097, grad_norm=46.154, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=3.000e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:11:51,067 (trainer:737) INFO: 45epoch:train:7101-7200batch: iter_time=2.032e-04, forward_time=0.105, loss_ctc=36.330, loss_att=42.083, acc=0.768, loss=40.357, backward_time=0.097, grad_norm=41.992, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=2.999e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:12:33,087 (trainer:737) INFO: 45epoch:train:7201-7300batch: iter_time=2.002e-04, forward_time=0.105, loss_ctc=38.894, loss_att=57.875, acc=0.737, loss=52.180, backward_time=0.099, grad_norm=58.023, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.041, optim0_lr0=2.999e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 23:13:03,636 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 23:13:15,415 (trainer:737) INFO: 45epoch:train:7301-7400batch: iter_time=2.210e-04, forward_time=0.106, loss_ctc=40.675, loss_att=43.139, acc=0.758, loss=42.400, backward_time=0.099, grad_norm=45.294, clip=100.000, loss_scale=3.566e+34, optim_step_time=0.041, optim0_lr0=2.999e-04, train_time=0.423 +[gpuc04:0/16] 2024-01-17 23:13:57,136 (trainer:737) INFO: 45epoch:train:7401-7500batch: iter_time=2.177e-04, forward_time=0.105, loss_ctc=45.718, loss_att=54.024, acc=0.719, loss=51.532, backward_time=0.099, grad_norm=56.932, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.041, optim0_lr0=2.999e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:14:01,572 (multiple_iter_factory:32) INFO: Building 6th iter-factory... +[gpuc04:0/16] 2024-01-17 23:14:21,927 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 23:14:25,852 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.1", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.1", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.1", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.1", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 23:14:25,852 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.1, +[gpuc04:0/16] 2024-01-17 23:14:25,855 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 23:19:11,855 (trainer:737) INFO: 45epoch:train:7501-7600batch: iter_time=2.722, forward_time=0.105, loss_ctc=40.811, loss_att=53.293, acc=0.731, loss=49.549, backward_time=0.097, grad_norm=44.643, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.998e-04, train_time=3.147 +[gpuc04:0/16] 2024-01-17 23:19:53,461 (trainer:737) INFO: 45epoch:train:7601-7700batch: iter_time=1.749e-04, forward_time=0.104, loss_ctc=39.245, loss_att=43.911, acc=0.755, loss=42.511, backward_time=0.096, grad_norm=44.417, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.998e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:20:35,332 (trainer:737) INFO: 45epoch:train:7701-7800batch: iter_time=1.769e-04, forward_time=0.104, loss_ctc=46.025, loss_att=50.103, acc=0.733, loss=48.880, backward_time=0.096, grad_norm=44.239, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.998e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 23:21:16,941 (trainer:737) INFO: 45epoch:train:7801-7900batch: iter_time=1.825e-04, forward_time=0.103, loss_ctc=33.753, loss_att=35.826, acc=0.769, loss=35.204, backward_time=0.095, grad_norm=40.750, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.998e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:21:59,047 (trainer:737) INFO: 45epoch:train:7901-8000batch: iter_time=1.589e-04, forward_time=0.105, loss_ctc=42.991, loss_att=51.925, acc=0.769, loss=49.245, backward_time=0.096, grad_norm=44.547, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.998e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 23:22:40,878 (trainer:737) INFO: 45epoch:train:8001-8100batch: iter_time=1.560e-04, forward_time=0.106, loss_ctc=56.842, loss_att=56.690, acc=0.739, loss=56.736, backward_time=0.097, grad_norm=53.900, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.997e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 23:23:22,658 (trainer:737) INFO: 45epoch:train:8101-8200batch: iter_time=1.772e-04, forward_time=0.107, loss_ctc=48.414, loss_att=49.898, acc=0.752, loss=49.452, backward_time=0.097, grad_norm=51.477, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.997e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 23:24:04,679 (trainer:737) INFO: 45epoch:train:8201-8300batch: iter_time=1.542e-04, forward_time=0.105, loss_ctc=46.425, loss_att=45.668, acc=0.746, loss=45.895, backward_time=0.096, grad_norm=52.170, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.997e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-17 23:24:46,159 (trainer:737) INFO: 45epoch:train:8301-8400batch: iter_time=1.665e-04, forward_time=0.105, loss_ctc=40.800, loss_att=49.785, acc=0.727, loss=47.089, backward_time=0.095, grad_norm=44.811, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.997e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 23:25:27,791 (trainer:737) INFO: 45epoch:train:8401-8500batch: iter_time=1.773e-04, forward_time=0.106, loss_ctc=39.688, loss_att=50.674, acc=0.752, loss=47.378, backward_time=0.096, grad_norm=42.922, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.996e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:26:09,292 (trainer:737) INFO: 45epoch:train:8501-8600batch: iter_time=1.645e-04, forward_time=0.105, loss_ctc=36.969, loss_att=48.194, acc=0.734, loss=44.827, backward_time=0.095, grad_norm=41.839, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.996e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 23:26:51,009 (trainer:737) INFO: 45epoch:train:8601-8700batch: iter_time=1.379e-04, forward_time=0.106, loss_ctc=46.663, loss_att=51.126, acc=0.720, loss=49.787, backward_time=0.097, grad_norm=56.671, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.996e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:27:17,175 (multiple_iter_factory:32) INFO: Building 7th iter-factory... +[gpuc04:0/16] 2024-01-17 23:27:36,410 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 23:27:39,972 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.0", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.0", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.0", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.0", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 23:27:39,972 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.0, +[gpuc04:0/16] 2024-01-17 23:27:39,975 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 23:32:08,394 (trainer:737) INFO: 45epoch:train:8701-8800batch: iter_time=2.751, forward_time=0.106, loss_ctc=37.983, loss_att=51.588, acc=0.743, loss=47.506, backward_time=0.097, grad_norm=46.981, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.996e-04, train_time=3.174 +[gpuc04:0/16] 2024-01-17 23:32:50,056 (trainer:737) INFO: 45epoch:train:8801-8900batch: iter_time=1.819e-04, forward_time=0.104, loss_ctc=40.968, loss_att=51.867, acc=0.743, loss=48.597, backward_time=0.097, grad_norm=43.589, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.996e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:33:31,622 (trainer:737) INFO: 45epoch:train:8901-9000batch: iter_time=1.445e-04, forward_time=0.103, loss_ctc=43.278, loss_att=43.035, acc=0.767, loss=43.108, backward_time=0.096, grad_norm=45.253, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.995e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 23:34:13,213 (trainer:737) INFO: 45epoch:train:9001-9100batch: iter_time=1.451e-04, forward_time=0.103, loss_ctc=40.789, loss_att=42.791, acc=0.764, loss=42.191, backward_time=0.096, grad_norm=44.814, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.995e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:34:54,792 (trainer:737) INFO: 45epoch:train:9101-9200batch: iter_time=1.798e-04, forward_time=0.104, loss_ctc=37.876, loss_att=46.818, acc=0.759, loss=44.136, backward_time=0.097, grad_norm=40.878, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.995e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:35:36,736 (trainer:737) INFO: 45epoch:train:9201-9300batch: iter_time=1.590e-04, forward_time=0.105, loss_ctc=43.216, loss_att=56.174, acc=0.764, loss=52.287, backward_time=0.097, grad_norm=45.394, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.995e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 23:36:18,487 (trainer:737) INFO: 45epoch:train:9301-9400batch: iter_time=1.513e-04, forward_time=0.104, loss_ctc=55.209, loss_att=53.186, acc=0.746, loss=53.793, backward_time=0.097, grad_norm=53.534, clip=100.000, loss_scale=2.658e+34, optim_step_time=0.038, optim0_lr0=2.994e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:37:00,302 (trainer:737) INFO: 45epoch:train:9401-9500batch: iter_time=1.837e-04, forward_time=0.106, loss_ctc=54.249, loss_att=52.243, acc=0.758, loss=52.844, backward_time=0.097, grad_norm=54.045, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=2.994e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 23:37:41,801 (trainer:737) INFO: 45epoch:train:9501-9600batch: iter_time=1.565e-04, forward_time=0.104, loss_ctc=42.428, loss_att=50.101, acc=0.729, loss=47.799, backward_time=0.096, grad_norm=46.223, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=2.994e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 23:38:23,983 (trainer:737) INFO: 45epoch:train:9601-9700batch: iter_time=1.791e-04, forward_time=0.105, loss_ctc=36.468, loss_att=42.242, acc=0.766, loss=40.510, backward_time=0.096, grad_norm=42.856, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=2.994e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 23:39:05,586 (trainer:737) INFO: 45epoch:train:9701-9800batch: iter_time=1.517e-04, forward_time=0.104, loss_ctc=38.401, loss_att=57.508, acc=0.737, loss=51.775, backward_time=0.097, grad_norm=42.716, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=2.993e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:39:47,498 (trainer:737) INFO: 45epoch:train:9801-9900batch: iter_time=1.552e-04, forward_time=0.104, loss_ctc=40.180, loss_att=42.690, acc=0.759, loss=41.937, backward_time=0.097, grad_norm=44.165, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.039, optim0_lr0=2.993e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 23:40:29,013 (trainer:737) INFO: 45epoch:train:9901-10000batch: iter_time=1.327e-04, forward_time=0.102, loss_ctc=44.190, loss_att=52.194, acc=0.719, loss=49.793, backward_time=0.097, grad_norm=54.994, clip=100.000, loss_scale=4.154e+34, optim_step_time=0.038, optim0_lr0=2.993e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-17 23:40:36,039 (multiple_iter_factory:32) INFO: Building 8th iter-factory... +[gpuc04:0/16] 2024-01-17 23:40:55,521 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 23:40:59,329 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.3", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.3", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.3", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.3", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 23:40:59,329 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.3, +[gpuc04:0/16] 2024-01-17 23:40:59,332 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 23:45:08,281 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-17 23:45:46,696 (trainer:737) INFO: 45epoch:train:10001-10100batch: iter_time=2.754, forward_time=0.108, loss_ctc=40.781, loss_att=53.604, acc=0.731, loss=49.757, backward_time=0.098, grad_norm=45.469, clip=100.000, loss_scale=2.245e+34, optim_step_time=0.040, optim0_lr0=2.993e-04, train_time=3.177 +[gpuc04:0/16] 2024-01-17 23:46:28,673 (trainer:737) INFO: 45epoch:train:10101-10200batch: iter_time=2.033e-04, forward_time=0.104, loss_ctc=38.878, loss_att=44.086, acc=0.754, loss=42.524, backward_time=0.098, grad_norm=43.006, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=2.993e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 23:47:10,782 (trainer:737) INFO: 45epoch:train:10201-10300batch: iter_time=2.170e-04, forward_time=0.107, loss_ctc=45.836, loss_att=50.332, acc=0.731, loss=48.983, backward_time=0.096, grad_norm=45.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.992e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 23:47:52,361 (trainer:737) INFO: 45epoch:train:10301-10400batch: iter_time=2.208e-04, forward_time=0.103, loss_ctc=33.531, loss_att=35.834, acc=0.770, loss=35.143, backward_time=0.095, grad_norm=39.959, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.992e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:48:34,015 (trainer:737) INFO: 45epoch:train:10401-10500batch: iter_time=2.286e-04, forward_time=0.105, loss_ctc=42.990, loss_att=51.578, acc=0.769, loss=49.002, backward_time=0.096, grad_norm=45.355, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.992e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-17 23:49:15,697 (trainer:737) INFO: 45epoch:train:10501-10600batch: iter_time=2.037e-04, forward_time=0.104, loss_ctc=56.377, loss_att=56.588, acc=0.740, loss=56.524, backward_time=0.097, grad_norm=55.191, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.992e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-17 23:49:57,544 (trainer:737) INFO: 45epoch:train:10601-10700batch: iter_time=1.722e-04, forward_time=0.103, loss_ctc=47.884, loss_att=50.323, acc=0.751, loss=49.591, backward_time=0.097, grad_norm=48.867, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.991e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 23:50:39,411 (trainer:737) INFO: 45epoch:train:10701-10800batch: iter_time=1.565e-04, forward_time=0.104, loss_ctc=46.096, loss_att=45.450, acc=0.746, loss=45.644, backward_time=0.097, grad_norm=51.152, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.991e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-17 23:51:20,833 (trainer:737) INFO: 45epoch:train:10801-10900batch: iter_time=1.756e-04, forward_time=0.103, loss_ctc=40.049, loss_att=48.161, acc=0.734, loss=45.728, backward_time=0.095, grad_norm=42.705, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.991e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-17 23:52:02,970 (trainer:737) INFO: 45epoch:train:10901-11000batch: iter_time=1.428e-04, forward_time=0.103, loss_ctc=39.537, loss_att=50.905, acc=0.753, loss=47.495, backward_time=0.096, grad_norm=41.689, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.991e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-17 23:52:44,908 (trainer:737) INFO: 45epoch:train:11001-11100batch: iter_time=1.468e-04, forward_time=0.102, loss_ctc=37.066, loss_att=48.319, acc=0.734, loss=44.943, backward_time=0.095, grad_norm=43.229, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.991e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-17 23:53:27,136 (trainer:737) INFO: 45epoch:train:11101-11200batch: iter_time=1.704e-04, forward_time=0.109, loss_ctc=46.401, loss_att=50.674, acc=0.719, loss=49.393, backward_time=0.098, grad_norm=55.546, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.990e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-17 23:54:03,787 (multiple_iter_factory:32) INFO: Building 9th iter-factory... +[gpuc04:0/16] 2024-01-17 23:54:24,067 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-17 23:54:27,829 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.10", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.10", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.10", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.10", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-17 23:54:27,829 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.10, +[gpuc04:0/16] 2024-01-17 23:54:27,832 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-17 23:59:17,244 (trainer:737) INFO: 45epoch:train:11201-11300batch: iter_time=3.068, forward_time=0.117, loss_ctc=37.664, loss_att=50.978, acc=0.748, loss=46.984, backward_time=0.098, grad_norm=46.556, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.990e-04, train_time=3.501 +[gpuc04:0/16] 2024-01-17 23:59:59,248 (trainer:737) INFO: 45epoch:train:11301-11400batch: iter_time=1.422e-04, forward_time=0.106, loss_ctc=40.798, loss_att=51.129, acc=0.746, loss=48.030, backward_time=0.097, grad_norm=43.013, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.990e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-18 00:00:40,948 (trainer:737) INFO: 45epoch:train:11401-11500batch: iter_time=1.456e-04, forward_time=0.106, loss_ctc=43.377, loss_att=43.772, acc=0.764, loss=43.654, backward_time=0.097, grad_norm=46.826, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.040, optim0_lr0=2.990e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-18 00:00:44,631 (trainer:668) WARNING: The grad norm is nan. Skipping updating the model. +[gpuc04:0/16] 2024-01-18 00:01:22,537 (trainer:737) INFO: 45epoch:train:11501-11600batch: iter_time=1.566e-04, forward_time=0.105, loss_ctc=40.352, loss_att=41.997, acc=0.765, loss=41.503, backward_time=0.097, grad_norm=41.611, clip=100.000, loss_scale=1.122e+34, optim_step_time=0.040, optim0_lr0=2.989e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:02:04,486 (trainer:737) INFO: 45epoch:train:11601-11700batch: iter_time=1.550e-04, forward_time=0.103, loss_ctc=38.051, loss_att=46.869, acc=0.758, loss=44.223, backward_time=0.097, grad_norm=40.907, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.989e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-18 00:02:46,333 (trainer:737) INFO: 45epoch:train:11701-11800batch: iter_time=1.521e-04, forward_time=0.104, loss_ctc=43.430, loss_att=55.041, acc=0.766, loss=51.558, backward_time=0.098, grad_norm=44.474, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.989e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-18 00:03:28,138 (trainer:737) INFO: 45epoch:train:11801-11900batch: iter_time=1.245e-04, forward_time=0.104, loss_ctc=55.338, loss_att=53.289, acc=0.745, loss=53.904, backward_time=0.098, grad_norm=53.551, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.989e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-18 00:04:10,049 (trainer:737) INFO: 45epoch:train:11901-12000batch: iter_time=1.550e-04, forward_time=0.105, loss_ctc=54.012, loss_att=52.140, acc=0.758, loss=52.701, backward_time=0.099, grad_norm=54.664, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.989e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-18 00:04:51,602 (trainer:737) INFO: 45epoch:train:12001-12100batch: iter_time=1.429e-04, forward_time=0.104, loss_ctc=42.206, loss_att=50.420, acc=0.728, loss=47.955, backward_time=0.096, grad_norm=44.310, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.988e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:05:33,111 (trainer:737) INFO: 45epoch:train:12101-12200batch: iter_time=1.518e-04, forward_time=0.104, loss_ctc=36.492, loss_att=42.681, acc=0.765, loss=40.824, backward_time=0.097, grad_norm=40.959, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.988e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:06:14,717 (trainer:737) INFO: 45epoch:train:12201-12300batch: iter_time=1.533e-04, forward_time=0.103, loss_ctc=38.386, loss_att=57.894, acc=0.738, loss=52.042, backward_time=0.096, grad_norm=43.699, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.988e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:06:56,272 (trainer:737) INFO: 45epoch:train:12301-12400batch: iter_time=1.453e-04, forward_time=0.104, loss_ctc=39.893, loss_att=43.404, acc=0.756, loss=42.350, backward_time=0.096, grad_norm=43.758, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.988e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:07:38,447 (trainer:737) INFO: 45epoch:train:12401-12500batch: iter_time=1.208e-04, forward_time=0.103, loss_ctc=44.673, loss_att=52.768, acc=0.726, loss=50.340, backward_time=0.096, grad_norm=56.410, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.987e-04, train_time=0.422 +[gpuc04:0/16] 2024-01-18 00:07:43,633 (multiple_iter_factory:32) INFO: Building 10th iter-factory... +[gpuc04:0/16] 2024-01-18 00:08:03,901 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-18 00:08:07,877 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.11", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.11", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.11", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.11", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-18 00:08:07,877 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.11, +[gpuc04:0/16] 2024-01-18 00:08:07,880 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-18 00:12:55,715 (trainer:737) INFO: 45epoch:train:12501-12600batch: iter_time=2.756, forward_time=0.105, loss_ctc=40.073, loss_att=53.089, acc=0.732, loss=49.184, backward_time=0.096, grad_norm=44.801, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.987e-04, train_time=3.172 +[gpuc04:0/16] 2024-01-18 00:13:37,089 (trainer:737) INFO: 45epoch:train:12601-12700batch: iter_time=2.137e-04, forward_time=0.103, loss_ctc=39.070, loss_att=44.044, acc=0.754, loss=42.552, backward_time=0.095, grad_norm=43.891, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.039, optim0_lr0=2.987e-04, train_time=0.413 +[gpuc04:0/16] 2024-01-18 00:14:18,683 (trainer:737) INFO: 45epoch:train:12701-12800batch: iter_time=1.800e-04, forward_time=0.104, loss_ctc=45.586, loss_att=49.965, acc=0.732, loss=48.651, backward_time=0.096, grad_norm=45.479, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.987e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:14:59,919 (trainer:737) INFO: 45epoch:train:12801-12900batch: iter_time=2.195e-04, forward_time=0.102, loss_ctc=33.241, loss_att=35.641, acc=0.771, loss=34.921, backward_time=0.094, grad_norm=40.205, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.987e-04, train_time=0.412 +[gpuc04:0/16] 2024-01-18 00:15:41,564 (trainer:737) INFO: 45epoch:train:12901-13000batch: iter_time=1.885e-04, forward_time=0.104, loss_ctc=42.793, loss_att=51.700, acc=0.769, loss=49.028, backward_time=0.096, grad_norm=45.112, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.986e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:16:23,486 (trainer:737) INFO: 45epoch:train:13001-13100batch: iter_time=1.865e-04, forward_time=0.104, loss_ctc=56.410, loss_att=56.590, acc=0.740, loss=56.536, backward_time=0.096, grad_norm=52.296, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.986e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-18 00:17:05,151 (trainer:737) INFO: 45epoch:train:13101-13200batch: iter_time=1.592e-04, forward_time=0.104, loss_ctc=47.645, loss_att=50.141, acc=0.751, loss=49.392, backward_time=0.096, grad_norm=50.381, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.986e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:17:46,768 (trainer:737) INFO: 45epoch:train:13201-13300batch: iter_time=1.609e-04, forward_time=0.103, loss_ctc=46.408, loss_att=46.004, acc=0.746, loss=46.125, backward_time=0.096, grad_norm=52.226, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.986e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:18:28,209 (trainer:737) INFO: 45epoch:train:13301-13400batch: iter_time=1.707e-04, forward_time=0.102, loss_ctc=40.122, loss_att=48.214, acc=0.733, loss=45.787, backward_time=0.095, grad_norm=42.442, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.985e-04, train_time=0.414 +[gpuc04:0/16] 2024-01-18 00:19:09,764 (trainer:737) INFO: 45epoch:train:13401-13500batch: iter_time=1.524e-04, forward_time=0.103, loss_ctc=39.351, loss_att=50.402, acc=0.753, loss=47.087, backward_time=0.096, grad_norm=42.216, clip=100.000, loss_scale=1.038e+34, optim_step_time=0.038, optim0_lr0=2.985e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:19:51,801 (trainer:737) INFO: 45epoch:train:13501-13600batch: iter_time=1.438e-04, forward_time=0.103, loss_ctc=36.462, loss_att=48.078, acc=0.735, loss=44.593, backward_time=0.096, grad_norm=42.871, clip=100.000, loss_scale=1.983e+34, optim_step_time=0.038, optim0_lr0=2.985e-04, train_time=0.420 +[gpuc04:0/16] 2024-01-18 00:20:34,651 (trainer:737) INFO: 45epoch:train:13601-13700batch: iter_time=1.681e-04, forward_time=0.103, loss_ctc=45.507, loss_att=50.196, acc=0.719, loss=48.789, backward_time=0.096, grad_norm=54.768, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.985e-04, train_time=0.428 +[gpuc04:0/16] 2024-01-18 00:21:00,082 (multiple_iter_factory:32) INFO: Building 11th iter-factory... +[gpuc04:0/16] 2024-01-18 00:21:20,600 (s2t:445) INFO: Optional Data Names: ('text_prev', 'text_ctc', 'text_spk2', 'text_spk3', 'text_spk4') +[gpuc04:0/16] 2024-01-18 00:21:24,258 (abs_task:1616) INFO: [train] dataset: +ESPnetDataset( + speech: {"path": "exp/s2t_stats_raw_bpe50000/splits12/wav.scp/split.6", "type": "kaldi_ark"} + text_prev: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.prev/split.6", "type": "text"} + text_ctc: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text.ctc/split.6", "type": "text"} + text: {"path": "exp/s2t_stats_raw_bpe50000/splits12/text/split.6", "type": "text"} + preprocess: ) +[gpuc04:0/16] 2024-01-18 00:21:24,259 (abs_task:1617) INFO: [train] Batch sampler: UnsortedBatchSampler(N-batch=19027, batch_size=256, key_file=exp/s2t_stats_raw_bpe50000/splits12/speech_shape/split.6, +[gpuc04:0/16] 2024-01-18 00:21:24,262 (abs_task:1618) INFO: [train] mini-batch sizes summary: N-batch=19027, mean=256.0, min=256, max=257 +[gpuc04:0/16] 2024-01-18 00:25:44,977 (trainer:737) INFO: 45epoch:train:13701-13800batch: iter_time=2.686, forward_time=0.104, loss_ctc=38.193, loss_att=51.572, acc=0.747, loss=47.559, backward_time=0.096, grad_norm=48.115, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.985e-04, train_time=3.103 +[gpuc04:0/16] 2024-01-18 00:26:26,928 (trainer:737) INFO: 45epoch:train:13801-13900batch: iter_time=1.485e-04, forward_time=0.103, loss_ctc=40.701, loss_att=51.059, acc=0.747, loss=47.951, backward_time=0.096, grad_norm=44.231, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.984e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-18 00:27:08,896 (trainer:737) INFO: 45epoch:train:13901-14000batch: iter_time=1.323e-04, forward_time=0.102, loss_ctc=43.018, loss_att=43.845, acc=0.764, loss=43.597, backward_time=0.096, grad_norm=44.410, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.039, optim0_lr0=2.984e-04, train_time=0.419 +[gpuc04:0/16] 2024-01-18 00:27:50,466 (trainer:737) INFO: 45epoch:train:14001-14100batch: iter_time=1.276e-04, forward_time=0.102, loss_ctc=40.473, loss_att=42.348, acc=0.767, loss=41.785, backward_time=0.096, grad_norm=42.069, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.984e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:28:31,993 (trainer:737) INFO: 45epoch:train:14101-14200batch: iter_time=1.188e-04, forward_time=0.102, loss_ctc=37.831, loss_att=46.616, acc=0.758, loss=43.980, backward_time=0.096, grad_norm=41.982, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.984e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:29:13,718 (trainer:737) INFO: 45epoch:train:14201-14300batch: iter_time=1.260e-04, forward_time=0.103, loss_ctc=43.014, loss_att=54.837, acc=0.767, loss=51.290, backward_time=0.096, grad_norm=44.281, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.983e-04, train_time=0.417 +[gpuc04:0/16] 2024-01-18 00:29:55,814 (trainer:737) INFO: 45epoch:train:14301-14400batch: iter_time=1.231e-04, forward_time=0.103, loss_ctc=55.654, loss_att=53.455, acc=0.745, loss=54.115, backward_time=0.097, grad_norm=56.694, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.983e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-18 00:30:37,679 (trainer:737) INFO: 45epoch:train:14401-14500batch: iter_time=1.238e-04, forward_time=0.103, loss_ctc=54.340, loss_att=52.127, acc=0.757, loss=52.791, backward_time=0.097, grad_norm=53.393, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.983e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-18 00:31:19,224 (trainer:737) INFO: 45epoch:train:14501-14600batch: iter_time=1.385e-04, forward_time=0.102, loss_ctc=42.087, loss_att=50.241, acc=0.731, loss=47.795, backward_time=0.096, grad_norm=45.985, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.983e-04, train_time=0.415 +[gpuc04:0/16] 2024-01-18 00:32:01,342 (trainer:737) INFO: 45epoch:train:14601-14700batch: iter_time=1.226e-04, forward_time=0.105, loss_ctc=35.914, loss_att=42.087, acc=0.767, loss=40.235, backward_time=0.096, grad_norm=41.056, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.983e-04, train_time=0.421 +[gpuc04:0/16] 2024-01-18 00:32:42,964 (trainer:737) INFO: 45epoch:train:14701-14800batch: iter_time=1.117e-04, forward_time=0.102, loss_ctc=38.358, loss_att=58.090, acc=0.737, loss=52.170, backward_time=0.096, grad_norm=42.858, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.982e-04, train_time=0.416 +[gpuc04:0/16] 2024-01-18 00:33:24,815 (trainer:737) INFO: 45epoch:train:14801-14900batch: iter_time=1.202e-04, forward_time=0.102, loss_ctc=39.802, loss_att=43.384, acc=0.755, loss=42.309, backward_time=0.096, grad_norm=44.602, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.982e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-18 00:34:06,628 (trainer:737) INFO: 45epoch:train:14901-15000batch: iter_time=1.252e-04, forward_time=0.102, loss_ctc=44.404, loss_att=51.468, acc=0.727, loss=49.349, backward_time=0.096, grad_norm=56.659, clip=100.000, loss_scale=2.077e+34, optim_step_time=0.038, optim0_lr0=2.982e-04, train_time=0.418 +[gpuc04:0/16] 2024-01-18 00:54:01,035 (trainer:343) INFO: 45epoch results: [train] iter_time=0.236, forward_time=0.106, loss_ctc=43.342, loss_att=49.292, acc=0.747, loss=47.507, backward_time=0.097, grad_norm=47.254, clip=100.000, loss_scale=2.194e+34, optim_step_time=0.039, optim0_lr0=2.999e-04, train_time=0.661, time=2 hours, 45 minutes and 23.13 seconds, total_count=675000, gpu_max_cached_mem_GB=27.988, [valid] loss_ctc=46.933, cer_ctc=0.249, loss_att=51.428, acc=0.603, cer=0.381, wer=0.999, loss=50.080, time=19 minutes and 45.36 seconds, total_count=210195, gpu_max_cached_mem_GB=27.988 +gpuc04:3119859:3120002 [3] NCCL INFO [Service thread] Connection closed by localRank 3 +gpuc04:3119862:3119997 [6] NCCL INFO [Service thread] Connection closed by localRank 6 +gpuc04:3119859:3119859 [3] NCCL INFO comm 0x12119740 rank 3 nranks 16 cudaDev 3 busId 4c000 - Abort COMPLETE +gpuc06:1624907:1625016 [1] NCCL INFO [Service thread] Connection closed by localRank 1 +gpuc06:1624911:1625011 [5] NCCL INFO [Service thread] Connection closed by localRank 5 +gpuc04:3119862:3119862 [6] NCCL INFO comm 0x125d1780 rank 6 nranks 16 cudaDev 6 busId c8000 - Abort COMPLETE +gpuc06:1624913:1625015 [7] NCCL INFO [Service thread] Connection closed by localRank 7 +gpuc06:1624911:1624911 [5] NCCL INFO comm 0xf0ace60 rank 13 nranks 16 cudaDev 5 busId 8b000 - Abort COMPLETE +gpuc06:1624908:1625012 [2] NCCL INFO [Service thread] Connection closed by localRank 2 +gpuc06:1624907:1624907 [1] NCCL INFO comm 0xfa6c470 rank 9 nranks 16 cudaDev 1 busId b000 - Abort COMPLETE +gpuc04:3119861:3119998 [5] NCCL INFO [Service thread] Connection closed by localRank 5 +gpuc06:1624909:1625017 [3] NCCL INFO [Service thread] Connection closed by localRank 3 +gpuc06:1624913:1624913 [7] NCCL INFO comm 0x52e33e00 rank 15 nranks 16 cudaDev 7 busId cb000 - Abort COMPLETE +gpuc06:1624909:1624909 [3] NCCL INFO comm 0x5305cf80 rank 11 nranks 16 cudaDev 3 busId 4c000 - Abort COMPLETE +gpuc04:3119861:3119861 [5] NCCL INFO comm 0x7fc3350 rank 5 nranks 16 cudaDev 5 busId 8b000 - Abort COMPLETE +gpuc06:1624908:1624908 [2] NCCL INFO comm 0x574b7630 rank 10 nranks 16 cudaDev 2 busId 48000 - Abort COMPLETE +gpuc04:3119857:3119999 [1] NCCL INFO [Service thread] Connection closed by localRank 1 +gpuc04:3119860:3120000 [4] NCCL INFO [Service thread] Connection closed by localRank 4 +gpuc06:1624910:1625014 [4] NCCL INFO [Service thread] Connection closed by localRank 4 +gpuc06:1624912:1625018 [6] NCCL INFO [Service thread] Connection closed by localRank 6 +gpuc04:3119860:3119860 [4] NCCL INFO comm 0xed6dc00 rank 4 nranks 16 cudaDev 4 busId 88000 - Abort COMPLETE +gpuc04:3119857:3119857 [1] NCCL INFO comm 0x58d82f80 rank 1 nranks 16 cudaDev 1 busId b000 - Abort COMPLETE +gpuc06:1624912:1624912 [6] NCCL INFO comm 0x109e2e20 rank 14 nranks 16 cudaDev 6 busId c8000 - Abort COMPLETE +gpuc06:1624906:1625013 [0] NCCL INFO [Service thread] Connection closed by localRank 0 +gpuc06:1624910:1624910 [4] NCCL INFO comm 0xb764400 rank 12 nranks 16 cudaDev 4 busId 88000 - Abort COMPLETE +gpuc04:3119858:3119995 [2] NCCL INFO [Service thread] Connection closed by localRank 2 +gpuc06:1624906:1624906 [0] NCCL INFO comm 0xf7092c0 rank 8 nranks 16 cudaDev 0 busId 7000 - Abort COMPLETE +gpuc04:3119858:3119858 [2] NCCL INFO comm 0x119f4e30 rank 2 nranks 16 cudaDev 2 busId 48000 - Abort COMPLETE +gpuc04:3119863:3120001 [7] NCCL INFO [Service thread] Connection closed by localRank 7 +gpuc04:3119863:3119863 [7] NCCL INFO comm 0x577eca40 rank 7 nranks 16 cudaDev 7 busId cb000 - Abort COMPLETE +[gpuc04:0/16] 2024-01-18 00:54:06,226 (trainer:391) INFO: The best model has been updated: valid.total_count +[gpuc04:0/16] 2024-01-18 00:54:06,286 (trainer:445) INFO: The model files were removed: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/40epoch.pth +[gpuc04:0/16] 2024-01-18 00:54:06,286 (trainer:463) INFO: The training was finished at 45 epochs +[gpuc04:0/16] 2024-01-18 00:54:06,316 (average_nbest_models:69) INFO: Averaging 5best models: criterion="valid.acc": exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/valid.acc.ave_5best.pth +[gpuc04:0/16] 2024-01-18 00:54:18,872 (average_nbest_models:69) INFO: Averaging 5best models: criterion="valid.total_count": exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/valid.total_count.ave_5best.pth +gpuc04:3119856:3119996 [0] NCCL INFO [Service thread] Connection closed by localRank 0 +gpuc04:3119856:3119856 [0] NCCL INFO comm 0xacef5c0 rank 0 nranks 16 cudaDev 0 busId 7000 - Abort COMPLETE +# Accounting: begin_time=1705429183 +# Accounting: end_time=1705560872 +# Accounting: time=131689 threads=1 +# Finished at Thu Jan 18 00:54:32 CST 2024 with status 0 diff --git a/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/valid.total_count.ave_5best.pth b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/valid.total_count.ave_5best.pth new file mode 100644 index 0000000000000000000000000000000000000000..148b02fe72577ecb24b63f5be8b3a740dd5249fb --- /dev/null +++ b/exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/valid.total_count.ave_5best.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:99e5de1865e2c98308b41ce6f28b7f658bec7b274da60f37b219a99279d43f3a +size 404971245 diff --git a/meta.yaml b/meta.yaml new file mode 100644 index 0000000000000000000000000000000000000000..50a93104030ae684cc9c7c577a1babdaf111ebff --- /dev/null +++ b/meta.yaml @@ -0,0 +1,8 @@ +espnet: '202308' +files: + s2t_model_file: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/valid.total_count.ave_5best.pth +python: 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] +timestamp: 1705960184.857766 +torch: 1.13.1 +yaml_files: + s2t_train_config: exp/s2t_train_s2t_ebf_conv2d_size384_e6_d6_piecewise_lr1e-3_warmup60k_flashattn_lessreg_raw_bpe50000/config.yaml