--- tags: - espnet - audio - speech-recognition - openai-whisper language: en datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/shihlun_asr_whisper_medium_finetuned_chime4` This model was trained by Shih-Lun Wu (slseanwu) using the chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/chime4/asr1 train_set=tr05_multi_noisy_si284 # tr05_multi_noisy (original training data) or tr05_multi_noisy_si284 (add si284 data) valid_set=dt05_multi_isolated_1ch_track test_sets="dt05_real_isolated_1ch_track dt05_simu_isolated_1ch_track et05_real_isolated_1ch_track et05_simu_isolated_1ch_track" asr_tag=whisper_medium_finetune_lr1e-5_adamw_wd1e-2_3epochs asr_config=conf/tuning/train_asr_whisper_full.yaml inference_config=conf/decode_asr_whisper_noctc_greedy.yaml ./asr.sh \ --skip_data_prep false \ --skip_train true \ --skip_eval false \ --lang en \ --ngpu 1 \ --nj 4 \ --stage 1 \ --stop_stage 13 \ --gpu_inference true \ --inference_nj 1 \ --token_type whisper_multilingual \ --feats_normalize '' \ --max_wav_duration 30 \ --feats_type raw \ --use_lm false \ --cleaner whisper_en \ --asr_tag "${asr_tag}" \ --asr_config "${asr_config}" \ --inference_config "${inference_config}" \ --inference_asr_model valid.acc.ave.pth \ --train_set "${train_set}" \ --valid_set "${valid_set}" \ --test_sets "${test_sets}" "$@" ``` # RESULTS ## Environments - date: `Tue Jan 10 04:15:30 CST 2023` - python version: `3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `d89be931dcc8f61437ac49cbe39a773f2054c50c` - Commit date: `Mon Jan 9 11:06:45 2023 -0600` ## asr_whisper_medium_finetune_lr1e-5_adamw_wd1e-2_3epochs ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|24791|97.8|1.7|0.5|0.3|2.5|24.5| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|24792|96.1|3.0|0.9|0.5|4.4|35.6| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|19341|96.4|2.9|0.7|0.5|4.1|33.0| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|19344|93.4|5.0|1.7|0.8|7.4|41.8| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|24791|97.7|1.8|0.5|0.4|2.8|25.5| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|24792|96.0|3.3|0.8|0.7|4.8|36.0| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|19341|96.1|3.3|0.6|0.7|4.6|34.9| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|19344|92.9|5.8|1.3|1.2|8.3|43.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|141889|99.1|0.3|0.5|0.3|1.2|24.5| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|141900|98.2|0.8|1.0|0.5|2.3|35.6| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|110558|98.5|0.7|0.8|0.5|1.9|33.0| |decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|110572|96.5|1.6|1.9|0.8|4.3|41.8| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|141889|99.1|0.4|0.5|0.5|1.3|25.5| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|141900|98.2|0.9|0.9|0.6|2.4|36.0| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|110558|98.4|0.9|0.7|0.6|2.2|34.9| |decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|110572|96.3|2.0|1.7|1.2|4.9|43.2|