--- tags: - espnet - audio - speaker-recognition language: multilingual datasets: - voxceleb license: cc-by-4.0 --- ## ESPnet2 SPK model ### `espnet/voxcelebs12_ska_mel` This model was trained by Jungjee using voxceleb recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout ea74d1c7482bf5b3b4f90410d1ca8521fd9a566b pip install -e . cd egs2/voxceleb/spk1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxcelebs12_ska_mel ``` # RESULTS ## Environments date: 2023-12-05 14:44:39.571659 - python version: 3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0] - espnet version: 202310 - pytorch version: 2.0.1 | | Mean | Std | |---|---|---| | Target | -0.7834 | 0.1328 | | Non-target | 0.0857 | 0.0857 | | Model name | EER(%) | minDCF | |---|---|---| | conf/tuning/train_ska_Vox12_emb192_torchmelspec_subcentertopk | 0.755 | 0.04722 | ## SPK config
expand ``` config: conf/tuning/train_ska_Vox12_emb192_torchmelspec_subcentertopk.yaml print_config: false log_level: INFO drop_last_iter: true dry_run: false iterator_type: category valid_iterator_type: sequence output_dir: exp/spk_train_ska_Vox12_emb192_torchmelspec_subcentertopk_raw_sp ngpu: 1 seed: 0 num_workers: 6 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 34991 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: true cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - eer - min keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 9999 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 100 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_lora: false save_lora_only: true lora_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 512 valid_batch_size: 40 batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/spk_stats_16k_sp/train/speech_shape valid_shape_file: - exp/spk_stats_16k_sp/valid/speech_shape batch_type: folded valid_batch_type: null fold_length: - 120000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null train_data_path_and_name_and_type: - - dump/raw/voxceleb12_devs_sp/wav.scp - speech - sound - - dump/raw/voxceleb12_devs_sp/utt2spk - spk_labels - text valid_data_path_and_name_and_type: - - dump/raw/voxceleb1_test/trial.scp - speech - sound - - dump/raw/voxceleb1_test/trial2.scp - speech2 - sound - - dump/raw/voxceleb1_test/trial_label - spk_labels - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 weight_decay: 5.0e-05 amsgrad: false scheduler: cosineannealingwarmuprestarts scheduler_conf: first_cycle_steps: 71280 cycle_mult: 1.0 max_lr: 0.001 min_lr: 5.0e-06 warmup_steps: 1000 gamma: 0.75 init: null use_preprocessor: true input_size: null target_duration: 3.0 spk2utt: dump/raw/voxceleb12_devs_sp/spk2utt spk_num: 21615 sample_rate: 16000 num_eval: 10 rir_scp: '' model_conf: extract_feats_in_collect_stats: false frontend: melspec_torch frontend_conf: preemp: true n_fft: 512 log: true win_length: 400 hop_length: 160 n_mels: 80 normalize: mn specaug: null specaug_conf: {} normalize: null normalize_conf: {} encoder: ska_tdnn encoder_conf: model_scale: 8 ndim: 1024 ska_dim: 128 output_size: 1536 pooling: chn_attn_stat pooling_conf: {} projector: ska_tdnn projector_conf: output_size: 192 preprocessor: spk preprocessor_conf: target_duration: 3.0 sample_rate: 16000 num_eval: 5 noise_apply_prob: 0.5 noise_info: - - 1.0 - dump/raw/musan_speech.scp - - 4 - 7 - - 13 - 20 - - 1.0 - dump/raw/musan_noise.scp - - 1 - 1 - - 0 - 15 - - 1.0 - dump/raw/musan_music.scp - - 1 - 1 - - 5 - 15 rir_apply_prob: 0.5 rir_scp: dump/raw/rirs.scp loss: aamsoftmax_sc_topk loss_conf: margin: 0.3 scale: 30 K: 3 mp: 0.06 k_top: 5 required: - output_dir version: '202310' distributed: true ```
### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```