etemiz commited on
Commit
fc41e4a
·
verified ·
1 Parent(s): cd1fcf6

Upload folder using huggingface_hub

Browse files
args.json ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "/home/dead/merged/pab-fa-233k/",
3
+ "model_type": "llama3_1",
4
+ "model_revision": null,
5
+ "task_type": "causal_lm",
6
+ "torch_dtype": "bfloat16",
7
+ "attn_impl": null,
8
+ "num_labels": null,
9
+ "rope_scaling": null,
10
+ "device_map": null,
11
+ "local_repo_path": null,
12
+ "template": "llama3_2",
13
+ "system": null,
14
+ "max_length": 4096,
15
+ "truncation_strategy": "delete",
16
+ "max_pixels": null,
17
+ "tools_prompt": "react_en",
18
+ "padding_side": "right",
19
+ "loss_scale": "default",
20
+ "sequence_parallel_size": 1,
21
+ "use_chat_template": false,
22
+ "template_backend": "swift",
23
+ "dataset": [
24
+ "/home/dead/m/md60/dataset/quran/translate/tanzil/processed/all-1.jsonl",
25
+ "/home/dead/m/md60/dataset/risale/risaleglobal.com/sqlite/sqlite-tr-en.jsonl",
26
+ "/home/dead/m/md60/dataset/youtube/kubi/kubi-yt-1.jsonl",
27
+ "/home/dead/m/md60/dataset/iarabi/processed/proc/fusus-yek.jsonl",
28
+ "/home/dead/m/md60/dataset/iarabi/processed/proc/fusus-terzibaba.jsonl",
29
+ "/home/dead/m/md60/dataset/iarabi/processed/proc/tefsiri-kebir.jsonl",
30
+ "/home/dead/m/md60/dataset/rabbani/proc/rabbani-mektubat.jsonl",
31
+ "/home/dead/m/md60/dataset/mevlana/proc/yek-mesnevi.jsonl",
32
+ "/home/dead/m/md60/dataset/gazali/proc/gazali-ilahi-ahlak.jsonl",
33
+ "/home/dead/m/md60/dataset/iarabi/futuhati-mekkiyye/processed/proc/ia-fm-1.jsonl",
34
+ "/home/dead/m/md60/dataset/iarabi/futuhati-mekkiyye/processed/proc/ia-fm-2.jsonl",
35
+ "/home/dead/m/md60/dataset/iarabi/futuhati-mekkiyye/processed/proc/ia-fm-3.jsonl",
36
+ "/home/dead/m/md60/dataset/iarabi/futuhati-mekkiyye/processed/proc/ia-fm-4.jsonl"
37
+ ],
38
+ "val_dataset": [],
39
+ "split_dataset_ratio": 0.01,
40
+ "data_seed": 42,
41
+ "dataset_num_proc": 1,
42
+ "streaming": false,
43
+ "enable_cache": false,
44
+ "download_mode": "reuse_dataset_if_exists",
45
+ "strict": false,
46
+ "model_name": [
47
+ "pab-fa"
48
+ ],
49
+ "model_author": [
50
+ "dead"
51
+ ],
52
+ "custom_dataset_info": [],
53
+ "quant_method": null,
54
+ "quant_bits": null,
55
+ "hqq_axis": null,
56
+ "bnb_4bit_compute_dtype": "bfloat16",
57
+ "bnb_4bit_quant_type": "nf4",
58
+ "bnb_4bit_use_double_quant": true,
59
+ "bnb_4bit_quant_storage": null,
60
+ "max_new_tokens": 64,
61
+ "temperature": 0.0,
62
+ "top_k": null,
63
+ "top_p": null,
64
+ "repetition_penalty": null,
65
+ "num_beams": 1,
66
+ "stream": false,
67
+ "stop_words": [],
68
+ "logprobs": false,
69
+ "ckpt_dir": "/home/dead/merged/pab-fa-233k/",
70
+ "load_dataset_config": null,
71
+ "lora_modules": [],
72
+ "tuner_backend": "peft",
73
+ "train_type": "lora",
74
+ "adapters": [],
75
+ "seed": 42,
76
+ "model_kwargs": {},
77
+ "load_args": true,
78
+ "load_data_args": false,
79
+ "use_hf": false,
80
+ "hub_token": null,
81
+ "custom_register_path": [],
82
+ "ignore_args_error": false,
83
+ "use_swift_lora": false,
84
+ "output_dir": "/home/dead/tr-check/pab-fa/v13-20250116-080312",
85
+ "overwrite_output_dir": false,
86
+ "do_train": false,
87
+ "do_eval": false,
88
+ "do_predict": false,
89
+ "eval_strategy": "steps",
90
+ "prediction_loss_only": false,
91
+ "per_device_train_batch_size": 1,
92
+ "per_device_eval_batch_size": 1,
93
+ "per_gpu_train_batch_size": null,
94
+ "per_gpu_eval_batch_size": null,
95
+ "gradient_accumulation_steps": 16,
96
+ "eval_accumulation_steps": null,
97
+ "eval_delay": 0,
98
+ "torch_empty_cache_steps": null,
99
+ "learning_rate": 3e-06,
100
+ "weight_decay": 0.1,
101
+ "adam_beta1": 0.9,
102
+ "adam_beta2": 0.999,
103
+ "adam_epsilon": 1e-08,
104
+ "max_grad_norm": 1.0,
105
+ "num_train_epochs": 2.0,
106
+ "max_steps": -1,
107
+ "lr_scheduler_type": "cosine",
108
+ "lr_scheduler_kwargs": null,
109
+ "warmup_ratio": 0.05,
110
+ "warmup_steps": 0,
111
+ "log_level": "passive",
112
+ "log_level_replica": "warning",
113
+ "log_on_each_node": true,
114
+ "logging_dir": "/home/dead/tr-check/pab-fa/v13-20250116-080312/runs",
115
+ "logging_strategy": "steps",
116
+ "logging_first_step": true,
117
+ "logging_steps": 5,
118
+ "logging_nan_inf_filter": true,
119
+ "save_strategy": "steps",
120
+ "save_steps": 100.0,
121
+ "save_total_limit": null,
122
+ "save_safetensors": true,
123
+ "save_on_each_node": false,
124
+ "save_only_model": false,
125
+ "restore_callback_states_from_checkpoint": false,
126
+ "no_cuda": false,
127
+ "use_cpu": false,
128
+ "use_mps_device": false,
129
+ "jit_mode_eval": false,
130
+ "use_ipex": false,
131
+ "bf16": true,
132
+ "fp16": false,
133
+ "fp16_opt_level": "O1",
134
+ "half_precision_backend": "auto",
135
+ "bf16_full_eval": false,
136
+ "fp16_full_eval": false,
137
+ "tf32": null,
138
+ "local_rank": -1,
139
+ "ddp_backend": null,
140
+ "tpu_num_cores": null,
141
+ "tpu_metrics_debug": false,
142
+ "debug": null,
143
+ "dataloader_drop_last": false,
144
+ "eval_steps": 100.0,
145
+ "dataloader_num_workers": 4,
146
+ "dataloader_prefetch_factor": null,
147
+ "past_index": -1,
148
+ "run_name": null,
149
+ "disable_tqdm": null,
150
+ "remove_unused_columns": false,
151
+ "label_names": null,
152
+ "load_best_model_at_end": false,
153
+ "metric_for_best_model": "loss",
154
+ "greater_is_better": false,
155
+ "ignore_data_skip": false,
156
+ "fsdp": "",
157
+ "fsdp_min_num_params": 0,
158
+ "fsdp_config": null,
159
+ "fsdp_transformer_layer_cls_to_wrap": null,
160
+ "accelerator_config": {
161
+ "dispatch_batches": false
162
+ },
163
+ "deepspeed": null,
164
+ "label_smoothing_factor": 0.0,
165
+ "optim": "adamw_torch",
166
+ "optim_args": null,
167
+ "adafactor": false,
168
+ "group_by_length": false,
169
+ "length_column_name": "length",
170
+ "report_to": [
171
+ "tensorboard"
172
+ ],
173
+ "ddp_find_unused_parameters": null,
174
+ "ddp_bucket_cap_mb": null,
175
+ "ddp_broadcast_buffers": null,
176
+ "dataloader_pin_memory": true,
177
+ "dataloader_persistent_workers": false,
178
+ "skip_memory_metrics": true,
179
+ "use_legacy_prediction_loop": false,
180
+ "push_to_hub": false,
181
+ "resume_from_checkpoint": null,
182
+ "hub_model_id": null,
183
+ "hub_strategy": "every_save",
184
+ "hub_private_repo": null,
185
+ "hub_always_push": false,
186
+ "gradient_checkpointing": true,
187
+ "gradient_checkpointing_kwargs": null,
188
+ "include_inputs_for_metrics": false,
189
+ "include_for_metrics": [],
190
+ "eval_do_concat_batches": true,
191
+ "fp16_backend": "auto",
192
+ "evaluation_strategy": "steps",
193
+ "push_to_hub_model_id": null,
194
+ "push_to_hub_organization": null,
195
+ "push_to_hub_token": null,
196
+ "mp_parameters": "",
197
+ "auto_find_batch_size": false,
198
+ "full_determinism": false,
199
+ "torchdynamo": null,
200
+ "ray_scope": "last",
201
+ "ddp_timeout": 1800,
202
+ "torch_compile": false,
203
+ "torch_compile_backend": null,
204
+ "torch_compile_mode": null,
205
+ "dispatch_batches": null,
206
+ "split_batches": null,
207
+ "include_tokens_per_second": false,
208
+ "include_num_input_tokens_seen": false,
209
+ "neftune_noise_alpha": null,
210
+ "optim_target_modules": null,
211
+ "batch_eval_metrics": false,
212
+ "eval_on_start": false,
213
+ "use_liger_kernel": false,
214
+ "eval_use_gather_object": false,
215
+ "average_tokens_across_devices": false,
216
+ "sortish_sampler": false,
217
+ "predict_with_generate": false,
218
+ "generation_max_length": null,
219
+ "generation_num_beams": null,
220
+ "generation_config": null,
221
+ "freeze_parameters": [],
222
+ "freeze_parameters_ratio": 0.0,
223
+ "trainable_parameters": [],
224
+ "freeze_llm": false,
225
+ "freeze_vit": true,
226
+ "freeze_aligner": true,
227
+ "target_modules": [
228
+ "all-linear"
229
+ ],
230
+ "target_regex": null,
231
+ "modules_to_save": [],
232
+ "lora_rank": 32,
233
+ "lora_alpha": 64,
234
+ "lora_dropout": 0.05,
235
+ "lora_bias": "none",
236
+ "lora_dtype": null,
237
+ "lorap_lr_ratio": null,
238
+ "use_rslora": false,
239
+ "use_dora": false,
240
+ "lora_ga_batch_size": 2,
241
+ "lora_ga_iters": 2,
242
+ "lora_ga_max_length": 1024,
243
+ "lora_ga_direction": "ArB2r",
244
+ "lora_ga_scale": "stable",
245
+ "lora_ga_stable_gamma": 16,
246
+ "init_weights": true,
247
+ "fourier_n_frequency": 2000,
248
+ "fourier_scaling": 300.0,
249
+ "boft_block_size": 4,
250
+ "boft_block_num": 0,
251
+ "boft_n_butterfly_factor": 1,
252
+ "boft_dropout": 0.0,
253
+ "vera_rank": 256,
254
+ "vera_projection_prng_key": 0,
255
+ "vera_dropout": 0.0,
256
+ "vera_d_initial": 0.1,
257
+ "adapter_act": "gelu",
258
+ "adapter_length": 128,
259
+ "use_galore": false,
260
+ "galore_target_modules": null,
261
+ "galore_rank": 128,
262
+ "galore_update_proj_gap": 50,
263
+ "galore_scale": 1.0,
264
+ "galore_proj_type": "std",
265
+ "galore_optim_per_parameter": false,
266
+ "galore_with_embedding": false,
267
+ "galore_quantization": false,
268
+ "galore_proj_quant": false,
269
+ "galore_proj_bits": 4,
270
+ "galore_proj_group_size": 256,
271
+ "galore_cos_threshold": 0.4,
272
+ "galore_gamma_proj": 2,
273
+ "galore_queue_size": 5,
274
+ "adalora_target_r": 8,
275
+ "adalora_init_r": 12,
276
+ "adalora_tinit": 0,
277
+ "adalora_tfinal": 0,
278
+ "adalora_deltaT": 1,
279
+ "adalora_beta1": 0.85,
280
+ "adalora_beta2": 0.85,
281
+ "adalora_orth_reg_weight": 0.5,
282
+ "llamapro_num_new_blocks": 4,
283
+ "llamapro_num_groups": null,
284
+ "lisa_activated_layers": 0,
285
+ "lisa_step_interval": 20,
286
+ "reft_layer_key": null,
287
+ "reft_layers": null,
288
+ "reft_rank": 4,
289
+ "reft_intervention_type": "LoreftIntervention",
290
+ "reft_args": null,
291
+ "use_liger": false,
292
+ "model_layer_cls_name": null,
293
+ "metric_warmup_step": 0,
294
+ "fsdp_num": 1,
295
+ "acc_steps": 1,
296
+ "add_version": true,
297
+ "resume_only_model": false,
298
+ "check_model": true,
299
+ "packing": false,
300
+ "lazy_tokenize": false,
301
+ "loss_type": null,
302
+ "optimizer": null,
303
+ "metric": null,
304
+ "acc_strategy": "token",
305
+ "rank": -1,
306
+ "global_world_size": 1,
307
+ "local_world_size": 1,
308
+ "model_suffix": "pab-fa-233k",
309
+ "model_info": "ModelInfo(model_type='llama3_1', model_dir='/home/dead/merged/pab-fa-233k', torch_dtype=torch.bfloat16, max_model_len=131072, quant_method=None, quant_bits=None, config={'factor': 8.0, 'high_freq_factor': 4.0, 'low_freq_factor': 1.0, 'original_max_position_embeddings': 8192, 'rope_type': 'llama3'}, task_type='causal_lm', num_labels=None)",
310
+ "model_meta": "ModelMeta(model_type='llama3_1', model_groups=[ModelGroup(models=[Model(ms_model_id='LLM-Research/Meta-Llama-3.1-8B-Instruct', hf_model_id='meta-llama/Meta-Llama-3.1-8B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-70B-Instruct', hf_model_id='meta-llama/Meta-Llama-3.1-70B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-405B-Instruct', hf_model_id='meta-llama/Meta-Llama-3.1-405B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-8B', hf_model_id='meta-llama/Meta-Llama-3.1-8B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-70B', hf_model_id='meta-llama/Meta-Llama-3.1-70B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-405B', hf_model_id='meta-llama/Meta-Llama-3.1-405B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-70B-Instruct-FP8', hf_model_id='meta-llama/Meta-Llama-3.1-70B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-405B-Instruct-FP8', hf_model_id='meta-llama/Meta-Llama-3.1-405B-Instruct-FP8', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[]), ModelGroup(models=[Model(ms_model_id='LLM-Research/Meta-Llama-3.1-8B-Instruct-BNB-NF4', hf_model_id='hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-70B-Instruct-bnb-4bit', hf_model_id='unsloth/Meta-Llama-3.1-70B-Instruct-bnb-4bit', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-405B-Instruct-BNB-NF4', hf_model_id='hugging-quants/Meta-Llama-3.1-405B-Instruct-BNB-NF4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4', hf_model_id='hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4', hf_model_id='hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4', hf_model_id='hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-8B-Instruct-AWQ-INT4', hf_model_id='hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-70B-Instruct-AWQ-INT4', hf_model_id='hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='LLM-Research/Meta-Llama-3.1-405B-Instruct-AWQ-INT4', hf_model_id='hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[]), ModelGroup(models=[Model(ms_model_id='AI-ModelScope/Llama-3.1-Nemotron-70B-Instruct-HF', hf_model_id='nvidia/Llama-3.1-Nemotron-70B-Instruct-HF', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='llama3_2', get_function=<function get_model_tokenizer_with_flash_attn at 0x79b658147ce0>, model_arch='llama', architectures=['LlamaForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, ignore_patterns=[], requires=['transformers>=4.43'], tags=[])",
311
+ "model_dir": "/home/dead/merged/pab-fa-233k",
312
+ "hub": "<class 'swift.hub.hub.MSHub'>",
313
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/home/dead/tr-check/pab-fa/v13-20250116-080312', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=16, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=3e-06, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=2.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/dead/tr-check/pab-fa/v13-20250116-080312/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=100, save_total_limit=None, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=100, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/dead/tr-check/pab-fa/v13-20250116-080312', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed=None, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, is_encoder_decoder=False, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, galore_config=None)"
314
+ }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/home/dead/merged/pab-fa-55719",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
@@ -31,8 +31,8 @@
31
  "rope_theta": 500000.0,
32
  "tie_word_embeddings": false,
33
  "torch_dtype": "bfloat16",
34
- "transformers_version": "4.46.1",
35
- "unsloth_version": "2024.11.7",
36
  "use_cache": true,
37
  "vocab_size": 128256
38
  }
 
1
  {
2
+ "_name_or_path": "/home/dead/merged/pab-fa-233k",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
31
  "rope_theta": 500000.0,
32
  "tie_word_embeddings": false,
33
  "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.48.0",
35
+ "unsloth_version": "2025.1.5",
36
  "use_cache": true,
37
  "vocab_size": 128256
38
  }
generation_config.json CHANGED
@@ -7,5 +7,5 @@
7
  "pad_token_id": 128004,
8
  "temperature": 0.6,
9
  "top_p": 0.9,
10
- "transformers_version": "4.46.1"
11
  }
 
7
  "pad_token_id": 128004,
8
  "temperature": 0.6,
9
  "top_p": 0.9,
10
+ "transformers_version": "4.48.0"
11
  }
model-00001-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8f1bb42ee647c2d966768abe98baf02cfd01501b98f2fa03ac59be35e4a3eaa
3
  size 4976698672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c515bbdb8604e71a7cba850e490f9f3f48c0bf0bb655cea1a080b21667c8db2
3
  size 4976698672
model-00002-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aacc970e17c4134e02319da0693292341d92299462fbb9c9955c34c923beefca
3
  size 4999802720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5ec7db694a911d786637efb941f948aab8db41e4447d410f07dd62f65e409f0
3
  size 4999802720
model-00003-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0eef5562fb6aa3deaab46b712e7cace13c410529fb52cad6f80a2f03d2f8a0e3
3
  size 4915916176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416007463bba5bc7a903ef64a1196b5b64c57ea67aed71285912e63dffd8726b
3
  size 4915916176
model-00004-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9d219984a657042ca71f559dd032bf7fba32a922cf19828a734ecb76375b9683
3
  size 1168138808
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3e489cecc5f19cbbf7fbc4a91ea888c184f4cbfad5dcc21380a1f6b5d27974
3
  size 1168138808
tokenizer_config.json CHANGED
@@ -2053,6 +2053,7 @@
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
 
2056
  "model_input_names": [
2057
  "input_ids",
2058
  "attention_mask"
 
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
  "model_input_names": [
2058
  "input_ids",
2059
  "attention_mask"