Upload config
Browse files- config.json +5 -5
- configuration_internlm2.py +5 -1
config.json
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attn_implementation": "eager",
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
9 |
-
"AutoModel": "
|
10 |
-
"AutoModelForCausalLM": "eth-dl-rewards/internlm2-7b-mod--modeling_internlm2.InternLM2ForCausalLM"
|
11 |
},
|
12 |
"bias": false,
|
13 |
"bos_token_id": 1,
|
@@ -23,11 +22,12 @@
|
|
23 |
"num_key_value_heads": 8,
|
24 |
"pad_token_id": 2,
|
25 |
"pretraining_tp": 1,
|
|
|
26 |
"rms_norm_eps": 1e-05,
|
27 |
"rope_scaling": null,
|
28 |
"rope_theta": 1000000,
|
29 |
"tie_word_embeddings": false,
|
30 |
-
"torch_dtype": "
|
31 |
"transformers_version": "4.47.1",
|
32 |
"use_cache": true,
|
33 |
"vocab_size": 92544
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "internlm/internlm2-7b-reward",
|
3 |
"architectures": [
|
4 |
+
"InternLM2ForRewardModel"
|
5 |
],
|
6 |
"attn_implementation": "eager",
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_internlm2.InternLM2Config",
|
9 |
+
"AutoModel": "internlm/internlm2-7b-reward--modeling_internlm2.InternLM2ForRewardModel"
|
|
|
10 |
},
|
11 |
"bias": false,
|
12 |
"bos_token_id": 1,
|
|
|
22 |
"num_key_value_heads": 8,
|
23 |
"pad_token_id": 2,
|
24 |
"pretraining_tp": 1,
|
25 |
+
"reward_token_id": 92527,
|
26 |
"rms_norm_eps": 1e-05,
|
27 |
"rope_scaling": null,
|
28 |
"rope_theta": 1000000,
|
29 |
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float16",
|
31 |
"transformers_version": "4.47.1",
|
32 |
"use_cache": true,
|
33 |
"vocab_size": 92544
|
configuration_internlm2.py
CHANGED
@@ -90,6 +90,8 @@ class InternLM2Config(PretrainedConfig):
|
|
90 |
these scaling strategies behave:
|
91 |
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
experimental feature, subject to breaking API changes in future versions.
|
|
|
|
|
93 |
"""
|
94 |
_auto_class = "AutoConfig"
|
95 |
model_type = "internlm2"
|
@@ -117,6 +119,7 @@ class InternLM2Config(PretrainedConfig):
|
|
117 |
rope_theta=10000,
|
118 |
rope_scaling=None,
|
119 |
attn_implementation=None,
|
|
|
120 |
**kwargs,
|
121 |
):
|
122 |
self.vocab_size = vocab_size
|
@@ -142,6 +145,7 @@ class InternLM2Config(PretrainedConfig):
|
|
142 |
self.attn_implementation = attn_implementation
|
143 |
if self.attn_implementation is None:
|
144 |
self.attn_implementation = "eager"
|
|
|
145 |
|
146 |
super().__init__(
|
147 |
pad_token_id=pad_token_id,
|
@@ -177,4 +181,4 @@ class InternLM2Config(PretrainedConfig):
|
|
177 |
raise ValueError(
|
178 |
f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
|
179 |
f"of type {type(rope_scaling_factor)}"
|
180 |
-
)
|
|
|
90 |
these scaling strategies behave:
|
91 |
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
experimental feature, subject to breaking API changes in future versions.
|
93 |
+
reward_token_id (`int`, *optional*, defaults to 92527):
|
94 |
+
Token id used to calculate the reward score.
|
95 |
"""
|
96 |
_auto_class = "AutoConfig"
|
97 |
model_type = "internlm2"
|
|
|
119 |
rope_theta=10000,
|
120 |
rope_scaling=None,
|
121 |
attn_implementation=None,
|
122 |
+
reward_token_id=92527,
|
123 |
**kwargs,
|
124 |
):
|
125 |
self.vocab_size = vocab_size
|
|
|
145 |
self.attn_implementation = attn_implementation
|
146 |
if self.attn_implementation is None:
|
147 |
self.attn_implementation = "eager"
|
148 |
+
self.reward_token_id = reward_token_id
|
149 |
|
150 |
super().__init__(
|
151 |
pad_token_id=pad_token_id,
|
|
|
181 |
raise ValueError(
|
182 |
f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
|
183 |
f"of type {type(rope_scaling_factor)}"
|
184 |
+
)
|