eugene-d commited on
Commit
e84c980
1 Parent(s): c18e081

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1541.89 +/- 103.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95e316b9f96e676e0eb4c65821cbc211e33c0f0ca7f53e40755b0f94e37dea5c
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6cb9aaaee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6cb9aaaf70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6cb9aaf040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6cb9aaf0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6cb9aaf160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6cb9aaf1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6cb9aaf280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6cb9aaf310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6cb9aaf3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6cb9aaf430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6cb9aaf4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6cb9aaf550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6cb9aab330>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676982635485948566,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACCC4j4rcLu/DqwyP3ID6z+UovY/UVevPlaic72SG62+OT5zPyy8hz9zW1A/L9ROP+pYt7/hasM8g4TwvocEDcA9YZY/32EFwCE4ur5w5rM/f4HKP7RbjT3yAT2/XkWvPyoujz93stm/zeWfPjYZu7+FYLs+izpwv3TcQD94C4c/SX4GPxv4FMCZ0ES9Uo2LPzB4iL/iN5G/KDtmv/MdTz+DkUu/LXcrwBVpxD7/2Xc/HBqcPwePGL/qNU2/07yQv6PWMr+E6D0/p8+pvwk9lLy122S/d7LZv83lnz42Gbu/J14fP33po78G3js/4TMLQDmSiT8/4j4/bE0jvzvaML9bMSk/NRwYQPHaHT+ZDI0/26GGv2S6qD9iBMo8ILUavzvQjD4AZOC+aALvvvg5BkCpxLw/utXmvakAyL4K+/0/Ki6PP2OFFj/N5Z8+Nhm7v455jj8K5QW/LOMxP9QCcD+kDYc/8WWjv0OFpz2XF0m/Bhwlv00+1L94g4K/9uIJP9MpAL7tqO6/Tck3Pujse78l448/SF57v0wD/L5bFyU/asu0vzKhJj8Choc+ITw1wLXbZL93stm/zeWfPjYZu7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADMuS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARpuiPQAAAAAO19y/AAAAAGMggbwAAAAAcRHZPwAAAACggHc9AAAAANa39T8AAAAAYNEkPQAAAAACbADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh2QDNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnKsr0AAAAARUj4vwAAAACk6uM9AAAAAD0w/D8AAAAApe6ePQAAAAAjH90/AAAAAKf9br0AAAAAZhTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGG6ErcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8jtg9AAAAAAE08b8AAAAAO4LrvQAAAABtBAFAAAAAAJsxn70AAAAAJr//PwAAAAAXZKU9AAAAALfg2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPtZa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu16tvQAAAAB1z++/AAAAAHw5kL0AAAAAt3P4PwAAAABTMxG+AAAAALco9D8AAAAA2S53PQAAAABcjgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk5ZUQ04zeMAWyUTegDjAF0lEdAqefEkleF+XV9lChoBkdAmVj/sE7nxWgHTegDaAhHQKnpZ2r4nF51fZQoaAZHQJnHAh5gPVdoB03oA2gIR0Cp6lBi1AqvdX2UKGgGR0CZoEpN9H+ZaAdN6ANoCEdAqewi9VWCE3V9lChoBkdAmKrUZJkGzWgHTegDaAhHQKnz0YQarFR1fZQoaAZHQJoUozEaVD9oB03oA2gIR0Cp9XZ/9YOldX2UKGgGR0CbqFB5HEuQaAdN6ANoCEdAqfZfnwG4Z3V9lChoBkdAmdDfWH1vl2gHTegDaAhHQKn4hvtMPBl1fZQoaAZHQJbJmUaAFxJoB03oA2gIR0CqA2WkSElFdX2UKGgGR0CZybU1AJLNaAdN6ANoCEdAqgT9Gd7OV3V9lChoBkdAlw3Et7KJVWgHTegDaAhHQKoF5me18b91fZQoaAZHQJaU3Mqz7dloB03oA2gIR0CqB7j+rELqdX2UKGgGR0CbONxZ+x4ZaAdN6ANoCEdAqg9W1rqMWHV9lChoBkdAnKb0bxVhkWgHTegDaAhHQKoQ803Ov+x1fZQoaAZHQJs4ebVjI7xoB03oA2gIR0CqEdrPMSsbdX2UKGgGR0CbCBXPqs2faAdN6ANoCEdAqhOxTuOS4nV9lChoBkdAmV+9DYywfWgHTegDaAhHQKoeMd2gWad1fZQoaAZHQJtzbluFYdRoB03oA2gIR0CqIKv9UCJXdX2UKGgGR0CazDN+so2GaAdN6ANoCEdAqiGParWAgHV9lChoBkdAl60hUR3/xWgHTegDaAhHQKojaq6vq1R1fZQoaAZHQJtYOg7HQyBoB03oA2gIR0CqK2RIjGDMdX2UKGgGR0CYaWI8hcJMaAdN6ANoCEdAqi0DWNFSbnV9lChoBkdAlvHMFdLQHGgHTegDaAhHQKot7Bsyi251fZQoaAZHQJbv2DWbw0BoB03oA2gIR0CqL8zKs+3ZdX2UKGgGR0CXyPQhfShKaAdN6ANoCEdAqjkZlUZNwnV9lChoBkdAl9ab4zrNW2gHTegDaAhHQKo7o2+fywx1fZQoaAZHQJdnqODJ2dNoB03oA2gIR0CqPQ4R28qXdX2UKGgGR0CZvRwH7gsLaAdN6ANoCEdAqj+K9f1Hv3V9lChoBkdAmOONHxz7uWgHTegDaAhHQKpHW+QlruZ1fZQoaAZHQJi0KIUJv5xoB03oA2gIR0CqSPmPgeijdX2UKGgGR0CXpFyI55quaAdN6ANoCEdAqknhfv4M4XV9lChoBkdAlThnl0YCQ2gHTegDaAhHQKpLxpaA4GV1fZQoaAZHQJLE8kWykbhoB03oA2gIR0CqVBaqbSZ0dX2UKGgGR0CZgxJcxCY1aAdN6ANoCEdAqlZuvpyIYXV9lChoBkdAk/hfVmSQo2gHTegDaAhHQKpX1mPo3aV1fZQoaAZHQJjIA9fTkQxoB03oA2gIR0CqWrriuMdcdX2UKGgGR0CZWmKRdQfqaAdN6ANoCEdAqmNwz7/GVHV9lChoBkdAmzzUxh2GI2gHTegDaAhHQKplDk7wKBx1fZQoaAZHQJomGqkuYhNoB03oA2gIR0CqZfmb1AZ9dX2UKGgGR0CbRMkZ75VPaAdN6ANoCEdAqmflFrl/6XV9lChoBkdAmf9Xq3VkMGgHTegDaAhHQKpvpRzBAOd1fZQoaAZHQJprdW6shgVoB03oA2gIR0CqcUd5yEL6dX2UKGgGR0CZoKvwmVqvaAdN6ANoCEdAqnKcGorFwXV9lChoBkdAmNe6Ii1RcmgHTegDaAhHQKp1RcAR02d1fZQoaAZHQJIo0jNY8uBoB03oA2gIR0Cqf5o9C/oJdX2UKGgGR0CSk8A3T/hmaAdN6ANoCEdAqoFCsQumJnV9lChoBkdAkth/0dzXBmgHTegDaAhHQKqCMiO/+Kl1fZQoaAZHQI0ksK5TZQJoB03oA2gIR0CqhAqrzXjEdX2UKGgGR0CVFp9nbqQjaAdN6ANoCEdAqovlurIYFnV9lChoBkdAldUSj+Jgs2gHTegDaAhHQKqNhoXbdrR1fZQoaAZHQJXX8yWRigFoB03oA2gIR0CqjnGNrCWNdX2UKGgGR0CRoyWLP2PDaAdN6ANoCEdAqpB0nTiKi3V9lChoBkdAlA0VUADJVGgHTegDaAhHQKqb48Djin51fZQoaAZHQJSGlcu8K5VoB03oA2gIR0CqnYfNZ/0/dX2UKGgGR0CT9EAIppevaAdN6ANoCEdAqp54Dklu33V9lChoBkdAlKsjakAPu2gHTegDaAhHQKqgY+LWI451fZQoaAZHQJVmafdyksVoB03oA2gIR0CqqGVxKg7HdX2UKGgGR0CShxUwBYFJaAdN6ANoCEdAqqoTURWcSXV9lChoBkdAlJ5QTh5xBGgHTegDaAhHQKqrAn752yN1fZQoaAZHQJZuBlsguAZoB03oA2gIR0CqrOmX5WRzdX2UKGgGR0CW22oVVPvbaAdN6ANoCEdAqrfVS0jTrnV9lChoBkdAlZDrc45tFmgHTegDaAhHQKq530tAcDN1fZQoaAZHQJeoA1Muez5oB03oA2gIR0Cqus9N34bkdX2UKGgGR0CWka2FWXC1aAdN6ANoCEdAqry0EA5q/XV9lChoBkdAl4bKEvkBCGgHTegDaAhHQKrEe1Q66rh1fZQoaAZHQJkxVjlPrOZoB03oA2gIR0CqxjsKCxu9dX2UKGgGR0CYlmk2xY7raAdN6ANoCEdAqscpi1Aqu3V9lChoBkdAmFEikoF3ZGgHTegDaAhHQKrI+ljVhCt1fZQoaAZHQJn5gutfXwtoB03oA2gIR0Cq0tEcsDnvdX2UKGgGR0CY8LOWSlnAaAdN6ANoCEdAqtVhwsGxEHV9lChoBkdAmDS2seXAumgHTegDaAhHQKrWzzFMqSZ1fZQoaAZHQJmGwQQL/jtoB03oA2gIR0Cq2Ogh0QsgdX2UKGgGR0CX8iouPFNtaAdN6ANoCEdAquCFzCDVY3V9lChoBkdAmHewVCXyAmgHTegDaAhHQKriGbuMMql1fZQoaAZHQJjTtiz9jwxoB03oA2gIR0Cq4v9wm3OOdX2UKGgGR0CYFEi3ocJdaAdN6ANoCEdAquTQ6EJ0GXV9lChoBkdAl+df6fra/WgHTegDaAhHQKrtFBO58Sh1fZQoaAZHQJamnRUm2LJoB03oA2gIR0Cq73YBV+7UdX2UKGgGR0CWVnA/s3Q2aAdN6ANoCEdAqvDdrEcbSHV9lChoBkdAlVD++IuXeGgHTegDaAhHQKrzuuvECNl1fZQoaAZHQJgYkScslLRoB03oA2gIR0Cq/GpNsWO7dX2UKGgGR0CZXtpd8iOeaAdN6ANoCEdAqv4BTIeYD3V9lChoBkdAluh+yVv/BGgHTegDaAhHQKr+5Tspobp1fZQoaAZHQJiE9OEdvKloB03oA2gIR0CrALUSIxgzdX2UKGgGR0Ca9Q6DoQnQaAdN6ANoCEdAqwhwf6oES3V9lChoBkdAmZ9OKKpDNWgHTegDaAhHQKsKDsQ/X5F1fZQoaAZHQJgUZqdpZfVoB03oA2gIR0CrC2FCb+cZdX2UKGgGR0CbVjdIXj2jaAdN6ANoCEdAqw4JT/ACXHV9lChoBkdAmHyMgEEDAGgHTegDaAhHQKsYOvysjml1fZQoaAZHQJTuvj4pMHtoB03oA2gIR0CrGdlVtGd7dX2UKGgGR0CYjOyrxRVIaAdN6ANoCEdAqxrN4gRsdnV9lChoBkdAmdtHuZ1FIGgHTegDaAhHQKscrzg/C691fZQoaAZHQJLlAhvBJqZoB03oA2gIR0CrJG5B9kSVdX2UKGgGR0CYiGHlfZ27aAdN6ANoCEdAqyYFcW0qpnV9lChoBkdAmZX4YWLxZ2gHTegDaAhHQKsm76WPcSJ1fZQoaAZHQJinK8/UvwpoB03oA2gIR0CrKMzBAOawdX2UKGgGR0Ca27SH/LkkaAdN6ANoCEdAqzPq+Yc/+3V9lChoBkdAlOy8Dr7fpGgHTegDaAhHQKs1lV+7UXp1fZQoaAZHQJbLV/lQuVZoB03oA2gIR0CrNoEKE385dX2UKGgGR0CTNUo11nuiaAdN6ANoCEdAqzhef7Jnx3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e45fbb11b0fc2eb5a81b1311deab25654cc5354316e7a89b159f199d04a8a938
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4c6ca943ba07fe31571a20caa19df56e05ffdc06a5b4b2e2cad9248ef0bb71a
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6cb9aaaee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6cb9aaaf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6cb9aaf040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6cb9aaf0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f6cb9aaf160>", "forward": "<function ActorCriticPolicy.forward at 0x7f6cb9aaf1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6cb9aaf280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6cb9aaf310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6cb9aaf3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6cb9aaf430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6cb9aaf4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6cb9aaf550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6cb9aab330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676982635485948566, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACCC4j4rcLu/DqwyP3ID6z+UovY/UVevPlaic72SG62+OT5zPyy8hz9zW1A/L9ROP+pYt7/hasM8g4TwvocEDcA9YZY/32EFwCE4ur5w5rM/f4HKP7RbjT3yAT2/XkWvPyoujz93stm/zeWfPjYZu7+FYLs+izpwv3TcQD94C4c/SX4GPxv4FMCZ0ES9Uo2LPzB4iL/iN5G/KDtmv/MdTz+DkUu/LXcrwBVpxD7/2Xc/HBqcPwePGL/qNU2/07yQv6PWMr+E6D0/p8+pvwk9lLy122S/d7LZv83lnz42Gbu/J14fP33po78G3js/4TMLQDmSiT8/4j4/bE0jvzvaML9bMSk/NRwYQPHaHT+ZDI0/26GGv2S6qD9iBMo8ILUavzvQjD4AZOC+aALvvvg5BkCpxLw/utXmvakAyL4K+/0/Ki6PP2OFFj/N5Z8+Nhm7v455jj8K5QW/LOMxP9QCcD+kDYc/8WWjv0OFpz2XF0m/Bhwlv00+1L94g4K/9uIJP9MpAL7tqO6/Tck3Pujse78l448/SF57v0wD/L5bFyU/asu0vzKhJj8Choc+ITw1wLXbZL93stm/zeWfPjYZu7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADMuS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARpuiPQAAAAAO19y/AAAAAGMggbwAAAAAcRHZPwAAAACggHc9AAAAANa39T8AAAAAYNEkPQAAAAACbADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh2QDNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnKsr0AAAAARUj4vwAAAACk6uM9AAAAAD0w/D8AAAAApe6ePQAAAAAjH90/AAAAAKf9br0AAAAAZhTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGG6ErcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8jtg9AAAAAAE08b8AAAAAO4LrvQAAAABtBAFAAAAAAJsxn70AAAAAJr//PwAAAAAXZKU9AAAAALfg2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPtZa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu16tvQAAAAB1z++/AAAAAHw5kL0AAAAAt3P4PwAAAABTMxG+AAAAALco9D8AAAAA2S53PQAAAABcjgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk5ZUQ04zeMAWyUTegDjAF0lEdAqefEkleF+XV9lChoBkdAmVj/sE7nxWgHTegDaAhHQKnpZ2r4nF51fZQoaAZHQJnHAh5gPVdoB03oA2gIR0Cp6lBi1AqvdX2UKGgGR0CZoEpN9H+ZaAdN6ANoCEdAqewi9VWCE3V9lChoBkdAmKrUZJkGzWgHTegDaAhHQKnz0YQarFR1fZQoaAZHQJoUozEaVD9oB03oA2gIR0Cp9XZ/9YOldX2UKGgGR0CbqFB5HEuQaAdN6ANoCEdAqfZfnwG4Z3V9lChoBkdAmdDfWH1vl2gHTegDaAhHQKn4hvtMPBl1fZQoaAZHQJbJmUaAFxJoB03oA2gIR0CqA2WkSElFdX2UKGgGR0CZybU1AJLNaAdN6ANoCEdAqgT9Gd7OV3V9lChoBkdAlw3Et7KJVWgHTegDaAhHQKoF5me18b91fZQoaAZHQJaU3Mqz7dloB03oA2gIR0CqB7j+rELqdX2UKGgGR0CbONxZ+x4ZaAdN6ANoCEdAqg9W1rqMWHV9lChoBkdAnKb0bxVhkWgHTegDaAhHQKoQ803Ov+x1fZQoaAZHQJs4ebVjI7xoB03oA2gIR0CqEdrPMSsbdX2UKGgGR0CbCBXPqs2faAdN6ANoCEdAqhOxTuOS4nV9lChoBkdAmV+9DYywfWgHTegDaAhHQKoeMd2gWad1fZQoaAZHQJtzbluFYdRoB03oA2gIR0CqIKv9UCJXdX2UKGgGR0CazDN+so2GaAdN6ANoCEdAqiGParWAgHV9lChoBkdAl60hUR3/xWgHTegDaAhHQKojaq6vq1R1fZQoaAZHQJtYOg7HQyBoB03oA2gIR0CqK2RIjGDMdX2UKGgGR0CYaWI8hcJMaAdN6ANoCEdAqi0DWNFSbnV9lChoBkdAlvHMFdLQHGgHTegDaAhHQKot7Bsyi251fZQoaAZHQJbv2DWbw0BoB03oA2gIR0CqL8zKs+3ZdX2UKGgGR0CXyPQhfShKaAdN6ANoCEdAqjkZlUZNwnV9lChoBkdAl9ab4zrNW2gHTegDaAhHQKo7o2+fywx1fZQoaAZHQJdnqODJ2dNoB03oA2gIR0CqPQ4R28qXdX2UKGgGR0CZvRwH7gsLaAdN6ANoCEdAqj+K9f1Hv3V9lChoBkdAmOONHxz7uWgHTegDaAhHQKpHW+QlruZ1fZQoaAZHQJi0KIUJv5xoB03oA2gIR0CqSPmPgeijdX2UKGgGR0CXpFyI55quaAdN6ANoCEdAqknhfv4M4XV9lChoBkdAlThnl0YCQ2gHTegDaAhHQKpLxpaA4GV1fZQoaAZHQJLE8kWykbhoB03oA2gIR0CqVBaqbSZ0dX2UKGgGR0CZgxJcxCY1aAdN6ANoCEdAqlZuvpyIYXV9lChoBkdAk/hfVmSQo2gHTegDaAhHQKpX1mPo3aV1fZQoaAZHQJjIA9fTkQxoB03oA2gIR0CqWrriuMdcdX2UKGgGR0CZWmKRdQfqaAdN6ANoCEdAqmNwz7/GVHV9lChoBkdAmzzUxh2GI2gHTegDaAhHQKplDk7wKBx1fZQoaAZHQJomGqkuYhNoB03oA2gIR0CqZfmb1AZ9dX2UKGgGR0CbRMkZ75VPaAdN6ANoCEdAqmflFrl/6XV9lChoBkdAmf9Xq3VkMGgHTegDaAhHQKpvpRzBAOd1fZQoaAZHQJprdW6shgVoB03oA2gIR0CqcUd5yEL6dX2UKGgGR0CZoKvwmVqvaAdN6ANoCEdAqnKcGorFwXV9lChoBkdAmNe6Ii1RcmgHTegDaAhHQKp1RcAR02d1fZQoaAZHQJIo0jNY8uBoB03oA2gIR0Cqf5o9C/oJdX2UKGgGR0CSk8A3T/hmaAdN6ANoCEdAqoFCsQumJnV9lChoBkdAkth/0dzXBmgHTegDaAhHQKqCMiO/+Kl1fZQoaAZHQI0ksK5TZQJoB03oA2gIR0CqhAqrzXjEdX2UKGgGR0CVFp9nbqQjaAdN6ANoCEdAqovlurIYFnV9lChoBkdAldUSj+Jgs2gHTegDaAhHQKqNhoXbdrR1fZQoaAZHQJXX8yWRigFoB03oA2gIR0CqjnGNrCWNdX2UKGgGR0CRoyWLP2PDaAdN6ANoCEdAqpB0nTiKi3V9lChoBkdAlA0VUADJVGgHTegDaAhHQKqb48Djin51fZQoaAZHQJSGlcu8K5VoB03oA2gIR0CqnYfNZ/0/dX2UKGgGR0CT9EAIppevaAdN6ANoCEdAqp54Dklu33V9lChoBkdAlKsjakAPu2gHTegDaAhHQKqgY+LWI451fZQoaAZHQJVmafdyksVoB03oA2gIR0CqqGVxKg7HdX2UKGgGR0CShxUwBYFJaAdN6ANoCEdAqqoTURWcSXV9lChoBkdAlJ5QTh5xBGgHTegDaAhHQKqrAn752yN1fZQoaAZHQJZuBlsguAZoB03oA2gIR0CqrOmX5WRzdX2UKGgGR0CW22oVVPvbaAdN6ANoCEdAqrfVS0jTrnV9lChoBkdAlZDrc45tFmgHTegDaAhHQKq530tAcDN1fZQoaAZHQJeoA1Muez5oB03oA2gIR0Cqus9N34bkdX2UKGgGR0CWka2FWXC1aAdN6ANoCEdAqry0EA5q/XV9lChoBkdAl4bKEvkBCGgHTegDaAhHQKrEe1Q66rh1fZQoaAZHQJkxVjlPrOZoB03oA2gIR0CqxjsKCxu9dX2UKGgGR0CYlmk2xY7raAdN6ANoCEdAqscpi1Aqu3V9lChoBkdAmFEikoF3ZGgHTegDaAhHQKrI+ljVhCt1fZQoaAZHQJn5gutfXwtoB03oA2gIR0Cq0tEcsDnvdX2UKGgGR0CY8LOWSlnAaAdN6ANoCEdAqtVhwsGxEHV9lChoBkdAmDS2seXAumgHTegDaAhHQKrWzzFMqSZ1fZQoaAZHQJmGwQQL/jtoB03oA2gIR0Cq2Ogh0QsgdX2UKGgGR0CX8iouPFNtaAdN6ANoCEdAquCFzCDVY3V9lChoBkdAmHewVCXyAmgHTegDaAhHQKriGbuMMql1fZQoaAZHQJjTtiz9jwxoB03oA2gIR0Cq4v9wm3OOdX2UKGgGR0CYFEi3ocJdaAdN6ANoCEdAquTQ6EJ0GXV9lChoBkdAl+df6fra/WgHTegDaAhHQKrtFBO58Sh1fZQoaAZHQJamnRUm2LJoB03oA2gIR0Cq73YBV+7UdX2UKGgGR0CWVnA/s3Q2aAdN6ANoCEdAqvDdrEcbSHV9lChoBkdAlVD++IuXeGgHTegDaAhHQKrzuuvECNl1fZQoaAZHQJgYkScslLRoB03oA2gIR0Cq/GpNsWO7dX2UKGgGR0CZXtpd8iOeaAdN6ANoCEdAqv4BTIeYD3V9lChoBkdAluh+yVv/BGgHTegDaAhHQKr+5Tspobp1fZQoaAZHQJiE9OEdvKloB03oA2gIR0CrALUSIxgzdX2UKGgGR0Ca9Q6DoQnQaAdN6ANoCEdAqwhwf6oES3V9lChoBkdAmZ9OKKpDNWgHTegDaAhHQKsKDsQ/X5F1fZQoaAZHQJgUZqdpZfVoB03oA2gIR0CrC2FCb+cZdX2UKGgGR0CbVjdIXj2jaAdN6ANoCEdAqw4JT/ACXHV9lChoBkdAmHyMgEEDAGgHTegDaAhHQKsYOvysjml1fZQoaAZHQJTuvj4pMHtoB03oA2gIR0CrGdlVtGd7dX2UKGgGR0CYjOyrxRVIaAdN6ANoCEdAqxrN4gRsdnV9lChoBkdAmdtHuZ1FIGgHTegDaAhHQKscrzg/C691fZQoaAZHQJLlAhvBJqZoB03oA2gIR0CrJG5B9kSVdX2UKGgGR0CYiGHlfZ27aAdN6ANoCEdAqyYFcW0qpnV9lChoBkdAmZX4YWLxZ2gHTegDaAhHQKsm76WPcSJ1fZQoaAZHQJinK8/UvwpoB03oA2gIR0CrKMzBAOawdX2UKGgGR0Ca27SH/LkkaAdN6ANoCEdAqzPq+Yc/+3V9lChoBkdAlOy8Dr7fpGgHTegDaAhHQKs1lV+7UXp1fZQoaAZHQJbLV/lQuVZoB03oA2gIR0CrNoEKE385dX2UKGgGR0CTNUo11nuiaAdN6ANoCEdAqzhef7Jnx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4a00446bc0d93572d2c47d917d08c490bd684a972be1cf4fd627f05194d97b
3
+ size 1176895
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1541.88787834947, "std_reward": 103.69804609829114, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T13:30:13.457738"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29c649ce943bc28d293d2db1c74740b1e1beecb9e70903c58850a0cad769c7ff
3
+ size 2136