Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1541.89 +/- 103.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95e316b9f96e676e0eb4c65821cbc211e33c0f0ca7f53e40755b0f94e37dea5c
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6cb9aaaee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6cb9aaaf70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6cb9aaf040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6cb9aaf0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6cb9aaf160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6cb9aaf1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6cb9aaf280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6cb9aaf310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6cb9aaf3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6cb9aaf430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6cb9aaf4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6cb9aaf550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f6cb9aab330>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1676982635485948566,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACCC4j4rcLu/DqwyP3ID6z+UovY/UVevPlaic72SG62+OT5zPyy8hz9zW1A/L9ROP+pYt7/hasM8g4TwvocEDcA9YZY/32EFwCE4ur5w5rM/f4HKP7RbjT3yAT2/XkWvPyoujz93stm/zeWfPjYZu7+FYLs+izpwv3TcQD94C4c/SX4GPxv4FMCZ0ES9Uo2LPzB4iL/iN5G/KDtmv/MdTz+DkUu/LXcrwBVpxD7/2Xc/HBqcPwePGL/qNU2/07yQv6PWMr+E6D0/p8+pvwk9lLy122S/d7LZv83lnz42Gbu/J14fP33po78G3js/4TMLQDmSiT8/4j4/bE0jvzvaML9bMSk/NRwYQPHaHT+ZDI0/26GGv2S6qD9iBMo8ILUavzvQjD4AZOC+aALvvvg5BkCpxLw/utXmvakAyL4K+/0/Ki6PP2OFFj/N5Z8+Nhm7v455jj8K5QW/LOMxP9QCcD+kDYc/8WWjv0OFpz2XF0m/Bhwlv00+1L94g4K/9uIJP9MpAL7tqO6/Tck3Pujse78l448/SF57v0wD/L5bFyU/asu0vzKhJj8Choc+ITw1wLXbZL93stm/zeWfPjYZu7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADMuS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARpuiPQAAAAAO19y/AAAAAGMggbwAAAAAcRHZPwAAAACggHc9AAAAANa39T8AAAAAYNEkPQAAAAACbADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh2QDNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnKsr0AAAAARUj4vwAAAACk6uM9AAAAAD0w/D8AAAAApe6ePQAAAAAjH90/AAAAAKf9br0AAAAAZhTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGG6ErcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8jtg9AAAAAAE08b8AAAAAO4LrvQAAAABtBAFAAAAAAJsxn70AAAAAJr//PwAAAAAXZKU9AAAAALfg2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPtZa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu16tvQAAAAB1z++/AAAAAHw5kL0AAAAAt3P4PwAAAABTMxG+AAAAALco9D8AAAAA2S53PQAAAABcjgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk5ZUQ04zeMAWyUTegDjAF0lEdAqefEkleF+XV9lChoBkdAmVj/sE7nxWgHTegDaAhHQKnpZ2r4nF51fZQoaAZHQJnHAh5gPVdoB03oA2gIR0Cp6lBi1AqvdX2UKGgGR0CZoEpN9H+ZaAdN6ANoCEdAqewi9VWCE3V9lChoBkdAmKrUZJkGzWgHTegDaAhHQKnz0YQarFR1fZQoaAZHQJoUozEaVD9oB03oA2gIR0Cp9XZ/9YOldX2UKGgGR0CbqFB5HEuQaAdN6ANoCEdAqfZfnwG4Z3V9lChoBkdAmdDfWH1vl2gHTegDaAhHQKn4hvtMPBl1fZQoaAZHQJbJmUaAFxJoB03oA2gIR0CqA2WkSElFdX2UKGgGR0CZybU1AJLNaAdN6ANoCEdAqgT9Gd7OV3V9lChoBkdAlw3Et7KJVWgHTegDaAhHQKoF5me18b91fZQoaAZHQJaU3Mqz7dloB03oA2gIR0CqB7j+rELqdX2UKGgGR0CbONxZ+x4ZaAdN6ANoCEdAqg9W1rqMWHV9lChoBkdAnKb0bxVhkWgHTegDaAhHQKoQ803Ov+x1fZQoaAZHQJs4ebVjI7xoB03oA2gIR0CqEdrPMSsbdX2UKGgGR0CbCBXPqs2faAdN6ANoCEdAqhOxTuOS4nV9lChoBkdAmV+9DYywfWgHTegDaAhHQKoeMd2gWad1fZQoaAZHQJtzbluFYdRoB03oA2gIR0CqIKv9UCJXdX2UKGgGR0CazDN+so2GaAdN6ANoCEdAqiGParWAgHV9lChoBkdAl60hUR3/xWgHTegDaAhHQKojaq6vq1R1fZQoaAZHQJtYOg7HQyBoB03oA2gIR0CqK2RIjGDMdX2UKGgGR0CYaWI8hcJMaAdN6ANoCEdAqi0DWNFSbnV9lChoBkdAlvHMFdLQHGgHTegDaAhHQKot7Bsyi251fZQoaAZHQJbv2DWbw0BoB03oA2gIR0CqL8zKs+3ZdX2UKGgGR0CXyPQhfShKaAdN6ANoCEdAqjkZlUZNwnV9lChoBkdAl9ab4zrNW2gHTegDaAhHQKo7o2+fywx1fZQoaAZHQJdnqODJ2dNoB03oA2gIR0CqPQ4R28qXdX2UKGgGR0CZvRwH7gsLaAdN6ANoCEdAqj+K9f1Hv3V9lChoBkdAmOONHxz7uWgHTegDaAhHQKpHW+QlruZ1fZQoaAZHQJi0KIUJv5xoB03oA2gIR0CqSPmPgeijdX2UKGgGR0CXpFyI55quaAdN6ANoCEdAqknhfv4M4XV9lChoBkdAlThnl0YCQ2gHTegDaAhHQKpLxpaA4GV1fZQoaAZHQJLE8kWykbhoB03oA2gIR0CqVBaqbSZ0dX2UKGgGR0CZgxJcxCY1aAdN6ANoCEdAqlZuvpyIYXV9lChoBkdAk/hfVmSQo2gHTegDaAhHQKpX1mPo3aV1fZQoaAZHQJjIA9fTkQxoB03oA2gIR0CqWrriuMdcdX2UKGgGR0CZWmKRdQfqaAdN6ANoCEdAqmNwz7/GVHV9lChoBkdAmzzUxh2GI2gHTegDaAhHQKplDk7wKBx1fZQoaAZHQJomGqkuYhNoB03oA2gIR0CqZfmb1AZ9dX2UKGgGR0CbRMkZ75VPaAdN6ANoCEdAqmflFrl/6XV9lChoBkdAmf9Xq3VkMGgHTegDaAhHQKpvpRzBAOd1fZQoaAZHQJprdW6shgVoB03oA2gIR0CqcUd5yEL6dX2UKGgGR0CZoKvwmVqvaAdN6ANoCEdAqnKcGorFwXV9lChoBkdAmNe6Ii1RcmgHTegDaAhHQKp1RcAR02d1fZQoaAZHQJIo0jNY8uBoB03oA2gIR0Cqf5o9C/oJdX2UKGgGR0CSk8A3T/hmaAdN6ANoCEdAqoFCsQumJnV9lChoBkdAkth/0dzXBmgHTegDaAhHQKqCMiO/+Kl1fZQoaAZHQI0ksK5TZQJoB03oA2gIR0CqhAqrzXjEdX2UKGgGR0CVFp9nbqQjaAdN6ANoCEdAqovlurIYFnV9lChoBkdAldUSj+Jgs2gHTegDaAhHQKqNhoXbdrR1fZQoaAZHQJXX8yWRigFoB03oA2gIR0CqjnGNrCWNdX2UKGgGR0CRoyWLP2PDaAdN6ANoCEdAqpB0nTiKi3V9lChoBkdAlA0VUADJVGgHTegDaAhHQKqb48Djin51fZQoaAZHQJSGlcu8K5VoB03oA2gIR0CqnYfNZ/0/dX2UKGgGR0CT9EAIppevaAdN6ANoCEdAqp54Dklu33V9lChoBkdAlKsjakAPu2gHTegDaAhHQKqgY+LWI451fZQoaAZHQJVmafdyksVoB03oA2gIR0CqqGVxKg7HdX2UKGgGR0CShxUwBYFJaAdN6ANoCEdAqqoTURWcSXV9lChoBkdAlJ5QTh5xBGgHTegDaAhHQKqrAn752yN1fZQoaAZHQJZuBlsguAZoB03oA2gIR0CqrOmX5WRzdX2UKGgGR0CW22oVVPvbaAdN6ANoCEdAqrfVS0jTrnV9lChoBkdAlZDrc45tFmgHTegDaAhHQKq530tAcDN1fZQoaAZHQJeoA1Muez5oB03oA2gIR0Cqus9N34bkdX2UKGgGR0CWka2FWXC1aAdN6ANoCEdAqry0EA5q/XV9lChoBkdAl4bKEvkBCGgHTegDaAhHQKrEe1Q66rh1fZQoaAZHQJkxVjlPrOZoB03oA2gIR0CqxjsKCxu9dX2UKGgGR0CYlmk2xY7raAdN6ANoCEdAqscpi1Aqu3V9lChoBkdAmFEikoF3ZGgHTegDaAhHQKrI+ljVhCt1fZQoaAZHQJn5gutfXwtoB03oA2gIR0Cq0tEcsDnvdX2UKGgGR0CY8LOWSlnAaAdN6ANoCEdAqtVhwsGxEHV9lChoBkdAmDS2seXAumgHTegDaAhHQKrWzzFMqSZ1fZQoaAZHQJmGwQQL/jtoB03oA2gIR0Cq2Ogh0QsgdX2UKGgGR0CX8iouPFNtaAdN6ANoCEdAquCFzCDVY3V9lChoBkdAmHewVCXyAmgHTegDaAhHQKriGbuMMql1fZQoaAZHQJjTtiz9jwxoB03oA2gIR0Cq4v9wm3OOdX2UKGgGR0CYFEi3ocJdaAdN6ANoCEdAquTQ6EJ0GXV9lChoBkdAl+df6fra/WgHTegDaAhHQKrtFBO58Sh1fZQoaAZHQJamnRUm2LJoB03oA2gIR0Cq73YBV+7UdX2UKGgGR0CWVnA/s3Q2aAdN6ANoCEdAqvDdrEcbSHV9lChoBkdAlVD++IuXeGgHTegDaAhHQKrzuuvECNl1fZQoaAZHQJgYkScslLRoB03oA2gIR0Cq/GpNsWO7dX2UKGgGR0CZXtpd8iOeaAdN6ANoCEdAqv4BTIeYD3V9lChoBkdAluh+yVv/BGgHTegDaAhHQKr+5Tspobp1fZQoaAZHQJiE9OEdvKloB03oA2gIR0CrALUSIxgzdX2UKGgGR0Ca9Q6DoQnQaAdN6ANoCEdAqwhwf6oES3V9lChoBkdAmZ9OKKpDNWgHTegDaAhHQKsKDsQ/X5F1fZQoaAZHQJgUZqdpZfVoB03oA2gIR0CrC2FCb+cZdX2UKGgGR0CbVjdIXj2jaAdN6ANoCEdAqw4JT/ACXHV9lChoBkdAmHyMgEEDAGgHTegDaAhHQKsYOvysjml1fZQoaAZHQJTuvj4pMHtoB03oA2gIR0CrGdlVtGd7dX2UKGgGR0CYjOyrxRVIaAdN6ANoCEdAqxrN4gRsdnV9lChoBkdAmdtHuZ1FIGgHTegDaAhHQKscrzg/C691fZQoaAZHQJLlAhvBJqZoB03oA2gIR0CrJG5B9kSVdX2UKGgGR0CYiGHlfZ27aAdN6ANoCEdAqyYFcW0qpnV9lChoBkdAmZX4YWLxZ2gHTegDaAhHQKsm76WPcSJ1fZQoaAZHQJinK8/UvwpoB03oA2gIR0CrKMzBAOawdX2UKGgGR0Ca27SH/LkkaAdN6ANoCEdAqzPq+Yc/+3V9lChoBkdAlOy8Dr7fpGgHTegDaAhHQKs1lV+7UXp1fZQoaAZHQJbLV/lQuVZoB03oA2gIR0CrNoEKE385dX2UKGgGR0CTNUo11nuiaAdN6ANoCEdAqzhef7Jnx3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e45fbb11b0fc2eb5a81b1311deab25654cc5354316e7a89b159f199d04a8a938
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4c6ca943ba07fe31571a20caa19df56e05ffdc06a5b4b2e2cad9248ef0bb71a
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6cb9aaaee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6cb9aaaf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6cb9aaf040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6cb9aaf0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f6cb9aaf160>", "forward": "<function ActorCriticPolicy.forward at 0x7f6cb9aaf1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6cb9aaf280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6cb9aaf310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6cb9aaf3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6cb9aaf430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6cb9aaf4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6cb9aaf550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6cb9aab330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676982635485948566, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACCC4j4rcLu/DqwyP3ID6z+UovY/UVevPlaic72SG62+OT5zPyy8hz9zW1A/L9ROP+pYt7/hasM8g4TwvocEDcA9YZY/32EFwCE4ur5w5rM/f4HKP7RbjT3yAT2/XkWvPyoujz93stm/zeWfPjYZu7+FYLs+izpwv3TcQD94C4c/SX4GPxv4FMCZ0ES9Uo2LPzB4iL/iN5G/KDtmv/MdTz+DkUu/LXcrwBVpxD7/2Xc/HBqcPwePGL/qNU2/07yQv6PWMr+E6D0/p8+pvwk9lLy122S/d7LZv83lnz42Gbu/J14fP33po78G3js/4TMLQDmSiT8/4j4/bE0jvzvaML9bMSk/NRwYQPHaHT+ZDI0/26GGv2S6qD9iBMo8ILUavzvQjD4AZOC+aALvvvg5BkCpxLw/utXmvakAyL4K+/0/Ki6PP2OFFj/N5Z8+Nhm7v455jj8K5QW/LOMxP9QCcD+kDYc/8WWjv0OFpz2XF0m/Bhwlv00+1L94g4K/9uIJP9MpAL7tqO6/Tck3Pujse78l448/SF57v0wD/L5bFyU/asu0vzKhJj8Choc+ITw1wLXbZL93stm/zeWfPjYZu7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADMuS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARpuiPQAAAAAO19y/AAAAAGMggbwAAAAAcRHZPwAAAACggHc9AAAAANa39T8AAAAAYNEkPQAAAAACbADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh2QDNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOnKsr0AAAAARUj4vwAAAACk6uM9AAAAAD0w/D8AAAAApe6ePQAAAAAjH90/AAAAAKf9br0AAAAAZhTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGG6ErcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA8jtg9AAAAAAE08b8AAAAAO4LrvQAAAABtBAFAAAAAAJsxn70AAAAAJr//PwAAAAAXZKU9AAAAALfg2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPtZa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu16tvQAAAAB1z++/AAAAAHw5kL0AAAAAt3P4PwAAAABTMxG+AAAAALco9D8AAAAA2S53PQAAAABcjgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJk5ZUQ04zeMAWyUTegDjAF0lEdAqefEkleF+XV9lChoBkdAmVj/sE7nxWgHTegDaAhHQKnpZ2r4nF51fZQoaAZHQJnHAh5gPVdoB03oA2gIR0Cp6lBi1AqvdX2UKGgGR0CZoEpN9H+ZaAdN6ANoCEdAqewi9VWCE3V9lChoBkdAmKrUZJkGzWgHTegDaAhHQKnz0YQarFR1fZQoaAZHQJoUozEaVD9oB03oA2gIR0Cp9XZ/9YOldX2UKGgGR0CbqFB5HEuQaAdN6ANoCEdAqfZfnwG4Z3V9lChoBkdAmdDfWH1vl2gHTegDaAhHQKn4hvtMPBl1fZQoaAZHQJbJmUaAFxJoB03oA2gIR0CqA2WkSElFdX2UKGgGR0CZybU1AJLNaAdN6ANoCEdAqgT9Gd7OV3V9lChoBkdAlw3Et7KJVWgHTegDaAhHQKoF5me18b91fZQoaAZHQJaU3Mqz7dloB03oA2gIR0CqB7j+rELqdX2UKGgGR0CbONxZ+x4ZaAdN6ANoCEdAqg9W1rqMWHV9lChoBkdAnKb0bxVhkWgHTegDaAhHQKoQ803Ov+x1fZQoaAZHQJs4ebVjI7xoB03oA2gIR0CqEdrPMSsbdX2UKGgGR0CbCBXPqs2faAdN6ANoCEdAqhOxTuOS4nV9lChoBkdAmV+9DYywfWgHTegDaAhHQKoeMd2gWad1fZQoaAZHQJtzbluFYdRoB03oA2gIR0CqIKv9UCJXdX2UKGgGR0CazDN+so2GaAdN6ANoCEdAqiGParWAgHV9lChoBkdAl60hUR3/xWgHTegDaAhHQKojaq6vq1R1fZQoaAZHQJtYOg7HQyBoB03oA2gIR0CqK2RIjGDMdX2UKGgGR0CYaWI8hcJMaAdN6ANoCEdAqi0DWNFSbnV9lChoBkdAlvHMFdLQHGgHTegDaAhHQKot7Bsyi251fZQoaAZHQJbv2DWbw0BoB03oA2gIR0CqL8zKs+3ZdX2UKGgGR0CXyPQhfShKaAdN6ANoCEdAqjkZlUZNwnV9lChoBkdAl9ab4zrNW2gHTegDaAhHQKo7o2+fywx1fZQoaAZHQJdnqODJ2dNoB03oA2gIR0CqPQ4R28qXdX2UKGgGR0CZvRwH7gsLaAdN6ANoCEdAqj+K9f1Hv3V9lChoBkdAmOONHxz7uWgHTegDaAhHQKpHW+QlruZ1fZQoaAZHQJi0KIUJv5xoB03oA2gIR0CqSPmPgeijdX2UKGgGR0CXpFyI55quaAdN6ANoCEdAqknhfv4M4XV9lChoBkdAlThnl0YCQ2gHTegDaAhHQKpLxpaA4GV1fZQoaAZHQJLE8kWykbhoB03oA2gIR0CqVBaqbSZ0dX2UKGgGR0CZgxJcxCY1aAdN6ANoCEdAqlZuvpyIYXV9lChoBkdAk/hfVmSQo2gHTegDaAhHQKpX1mPo3aV1fZQoaAZHQJjIA9fTkQxoB03oA2gIR0CqWrriuMdcdX2UKGgGR0CZWmKRdQfqaAdN6ANoCEdAqmNwz7/GVHV9lChoBkdAmzzUxh2GI2gHTegDaAhHQKplDk7wKBx1fZQoaAZHQJomGqkuYhNoB03oA2gIR0CqZfmb1AZ9dX2UKGgGR0CbRMkZ75VPaAdN6ANoCEdAqmflFrl/6XV9lChoBkdAmf9Xq3VkMGgHTegDaAhHQKpvpRzBAOd1fZQoaAZHQJprdW6shgVoB03oA2gIR0CqcUd5yEL6dX2UKGgGR0CZoKvwmVqvaAdN6ANoCEdAqnKcGorFwXV9lChoBkdAmNe6Ii1RcmgHTegDaAhHQKp1RcAR02d1fZQoaAZHQJIo0jNY8uBoB03oA2gIR0Cqf5o9C/oJdX2UKGgGR0CSk8A3T/hmaAdN6ANoCEdAqoFCsQumJnV9lChoBkdAkth/0dzXBmgHTegDaAhHQKqCMiO/+Kl1fZQoaAZHQI0ksK5TZQJoB03oA2gIR0CqhAqrzXjEdX2UKGgGR0CVFp9nbqQjaAdN6ANoCEdAqovlurIYFnV9lChoBkdAldUSj+Jgs2gHTegDaAhHQKqNhoXbdrR1fZQoaAZHQJXX8yWRigFoB03oA2gIR0CqjnGNrCWNdX2UKGgGR0CRoyWLP2PDaAdN6ANoCEdAqpB0nTiKi3V9lChoBkdAlA0VUADJVGgHTegDaAhHQKqb48Djin51fZQoaAZHQJSGlcu8K5VoB03oA2gIR0CqnYfNZ/0/dX2UKGgGR0CT9EAIppevaAdN6ANoCEdAqp54Dklu33V9lChoBkdAlKsjakAPu2gHTegDaAhHQKqgY+LWI451fZQoaAZHQJVmafdyksVoB03oA2gIR0CqqGVxKg7HdX2UKGgGR0CShxUwBYFJaAdN6ANoCEdAqqoTURWcSXV9lChoBkdAlJ5QTh5xBGgHTegDaAhHQKqrAn752yN1fZQoaAZHQJZuBlsguAZoB03oA2gIR0CqrOmX5WRzdX2UKGgGR0CW22oVVPvbaAdN6ANoCEdAqrfVS0jTrnV9lChoBkdAlZDrc45tFmgHTegDaAhHQKq530tAcDN1fZQoaAZHQJeoA1Muez5oB03oA2gIR0Cqus9N34bkdX2UKGgGR0CWka2FWXC1aAdN6ANoCEdAqry0EA5q/XV9lChoBkdAl4bKEvkBCGgHTegDaAhHQKrEe1Q66rh1fZQoaAZHQJkxVjlPrOZoB03oA2gIR0CqxjsKCxu9dX2UKGgGR0CYlmk2xY7raAdN6ANoCEdAqscpi1Aqu3V9lChoBkdAmFEikoF3ZGgHTegDaAhHQKrI+ljVhCt1fZQoaAZHQJn5gutfXwtoB03oA2gIR0Cq0tEcsDnvdX2UKGgGR0CY8LOWSlnAaAdN6ANoCEdAqtVhwsGxEHV9lChoBkdAmDS2seXAumgHTegDaAhHQKrWzzFMqSZ1fZQoaAZHQJmGwQQL/jtoB03oA2gIR0Cq2Ogh0QsgdX2UKGgGR0CX8iouPFNtaAdN6ANoCEdAquCFzCDVY3V9lChoBkdAmHewVCXyAmgHTegDaAhHQKriGbuMMql1fZQoaAZHQJjTtiz9jwxoB03oA2gIR0Cq4v9wm3OOdX2UKGgGR0CYFEi3ocJdaAdN6ANoCEdAquTQ6EJ0GXV9lChoBkdAl+df6fra/WgHTegDaAhHQKrtFBO58Sh1fZQoaAZHQJamnRUm2LJoB03oA2gIR0Cq73YBV+7UdX2UKGgGR0CWVnA/s3Q2aAdN6ANoCEdAqvDdrEcbSHV9lChoBkdAlVD++IuXeGgHTegDaAhHQKrzuuvECNl1fZQoaAZHQJgYkScslLRoB03oA2gIR0Cq/GpNsWO7dX2UKGgGR0CZXtpd8iOeaAdN6ANoCEdAqv4BTIeYD3V9lChoBkdAluh+yVv/BGgHTegDaAhHQKr+5Tspobp1fZQoaAZHQJiE9OEdvKloB03oA2gIR0CrALUSIxgzdX2UKGgGR0Ca9Q6DoQnQaAdN6ANoCEdAqwhwf6oES3V9lChoBkdAmZ9OKKpDNWgHTegDaAhHQKsKDsQ/X5F1fZQoaAZHQJgUZqdpZfVoB03oA2gIR0CrC2FCb+cZdX2UKGgGR0CbVjdIXj2jaAdN6ANoCEdAqw4JT/ACXHV9lChoBkdAmHyMgEEDAGgHTegDaAhHQKsYOvysjml1fZQoaAZHQJTuvj4pMHtoB03oA2gIR0CrGdlVtGd7dX2UKGgGR0CYjOyrxRVIaAdN6ANoCEdAqxrN4gRsdnV9lChoBkdAmdtHuZ1FIGgHTegDaAhHQKscrzg/C691fZQoaAZHQJLlAhvBJqZoB03oA2gIR0CrJG5B9kSVdX2UKGgGR0CYiGHlfZ27aAdN6ANoCEdAqyYFcW0qpnV9lChoBkdAmZX4YWLxZ2gHTegDaAhHQKsm76WPcSJ1fZQoaAZHQJinK8/UvwpoB03oA2gIR0CrKMzBAOawdX2UKGgGR0Ca27SH/LkkaAdN6ANoCEdAqzPq+Yc/+3V9lChoBkdAlOy8Dr7fpGgHTegDaAhHQKs1lV+7UXp1fZQoaAZHQJbLV/lQuVZoB03oA2gIR0CrNoEKE385dX2UKGgGR0CTNUo11nuiaAdN6ANoCEdAqzhef7Jnx3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f4a00446bc0d93572d2c47d917d08c490bd684a972be1cf4fd627f05194d97b
|
3 |
+
size 1176895
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1541.88787834947, "std_reward": 103.69804609829114, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T13:30:13.457738"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29c649ce943bc28d293d2db1c74740b1e1beecb9e70903c58850a0cad769c7ff
|
3 |
+
size 2136
|