Update unet/conditional_unet_model.py
Browse files- unet/conditional_unet_model.py +763 -55
unet/conditional_unet_model.py
CHANGED
@@ -1,83 +1,791 @@
|
|
1 |
-
from typing import
|
2 |
|
3 |
import torch
|
4 |
-
from
|
5 |
-
from
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
r"""
|
10 |
-
|
11 |
-
This model inherits from [`
|
12 |
-
|
13 |
Parameters:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
super().__init__()
|
21 |
-
self.register_modules(unet=unet, scheduler=scheduler)
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
self,
|
26 |
-
|
27 |
-
|
28 |
class_labels: Optional[torch.Tensor] = None,
|
29 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
30 |
-
output_type: Optional[str] = "pil",
|
31 |
return_dict: bool = True,
|
32 |
-
|
33 |
-
) -> Union[ImagePipelineOutput, Tuple]:
|
34 |
r"""
|
35 |
-
The
|
36 |
Args:
|
37 |
-
|
38 |
-
The
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
output_type (`str`, `optional`, defaults to `"pil"`):
|
43 |
-
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
44 |
return_dict (`bool`, *optional*, defaults to `True`):
|
45 |
-
Whether or not to return a [`
|
46 |
Returns:
|
47 |
-
[`~
|
48 |
-
If `return_dict` is
|
49 |
-
returned where the first element is
|
50 |
"""
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
-
sample = sample.to(self.device)
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
output = self.scheduler.step_pred(model_output, t, sample, generator=generator)
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
if not return_dict:
|
82 |
return (sample,)
|
83 |
-
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
|
3 |
import torch
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Optional, Tuple, Union
|
6 |
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.utils import BaseOutput
|
12 |
+
from diffusers.models.embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
|
13 |
+
from diffusers.models.modeling_utils import ModelMixin
|
14 |
+
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class UNet2DOutput(BaseOutput):
|
18 |
+
"""
|
19 |
+
The output of [`UNet2DModel`].
|
20 |
+
Args:
|
21 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
22 |
+
The hidden states output from the last layer of the model.
|
23 |
+
"""
|
24 |
+
|
25 |
+
sample: torch.FloatTensor
|
26 |
+
|
27 |
+
|
28 |
+
class UNet2DModel(ModelMixin, ConfigMixin):
|
29 |
+
r"""
|
30 |
+
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
|
31 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
32 |
+
for all models (such as downloading or saving).
|
33 |
+
Parameters:
|
34 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
35 |
+
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
|
36 |
+
1)`.
|
37 |
+
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
|
38 |
+
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
39 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
40 |
+
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
|
41 |
+
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
|
42 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to flip sin to cos for Fourier time embedding.
|
44 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
|
45 |
+
Tuple of downsample block types.
|
46 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
|
47 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
|
48 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
|
49 |
+
Tuple of upsample block types.
|
50 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
|
51 |
+
Tuple of block output channels.
|
52 |
+
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
|
53 |
+
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
|
54 |
+
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
|
55 |
+
downsample_type (`str`, *optional*, defaults to `conv`):
|
56 |
+
The downsample type for downsampling layers. Choose between "conv" and "resnet"
|
57 |
+
upsample_type (`str`, *optional*, defaults to `conv`):
|
58 |
+
The upsample type for upsampling layers. Choose between "conv" and "resnet"
|
59 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
61 |
+
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
|
62 |
+
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
|
63 |
+
attn_norm_num_groups (`int`, *optional*, defaults to `None`):
|
64 |
+
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
|
65 |
+
given number of groups. If left as `None`, the group norm layer will only be created if
|
66 |
+
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
|
67 |
+
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
|
68 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
69 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
70 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
71 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
72 |
+
`"timestep"`, or `"identity"`.
|
73 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
74 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
|
75 |
+
conditioning with `class_embed_type` equal to `None`.
|
76 |
+
"""
|
77 |
+
|
78 |
+
@register_to_config
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
|
82 |
+
in_channels: int = 3,
|
83 |
+
out_channels: int = 3,
|
84 |
+
center_input_sample: bool = False,
|
85 |
+
time_embedding_type: str = "positional",
|
86 |
+
freq_shift: int = 0,
|
87 |
+
flip_sin_to_cos: bool = True,
|
88 |
+
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
89 |
+
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
90 |
+
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
|
91 |
+
layers_per_block: int = 2,
|
92 |
+
mid_block_scale_factor: float = 1,
|
93 |
+
downsample_padding: int = 1,
|
94 |
+
downsample_type: str = "conv",
|
95 |
+
upsample_type: str = "conv",
|
96 |
+
dropout: float = 0.0,
|
97 |
+
act_fn: str = "silu",
|
98 |
+
attention_head_dim: Optional[int] = 8,
|
99 |
+
norm_num_groups: int = 32,
|
100 |
+
attn_norm_num_groups: Optional[int] = None,
|
101 |
+
norm_eps: float = 1e-5,
|
102 |
+
resnet_time_scale_shift: str = "default",
|
103 |
+
add_attention: bool = True,
|
104 |
+
class_embed_type: Optional[str] = None,
|
105 |
+
num_class_embeds: Optional[int] = None,
|
106 |
+
num_train_timesteps: Optional[int] = None,
|
107 |
+
set_W_to_weight: Optional[bool] = True
|
108 |
+
):
|
109 |
+
super().__init__()
|
110 |
+
|
111 |
+
self.sample_size = sample_size
|
112 |
+
time_embed_dim = block_out_channels[0] * 4
|
113 |
+
|
114 |
+
# Check inputs
|
115 |
+
if len(down_block_types) != len(up_block_types):
|
116 |
+
raise ValueError(
|
117 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
118 |
+
)
|
119 |
+
|
120 |
+
if len(block_out_channels) != len(down_block_types):
|
121 |
+
raise ValueError(
|
122 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
123 |
+
)
|
124 |
+
|
125 |
+
# input
|
126 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
127 |
+
|
128 |
+
# time
|
129 |
+
if time_embedding_type == "fourier":
|
130 |
+
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16, set_W_to_weight=set_W_to_weight)
|
131 |
+
timestep_input_dim = 2 * block_out_channels[0]
|
132 |
+
elif time_embedding_type == "positional":
|
133 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
134 |
+
timestep_input_dim = block_out_channels[0]
|
135 |
+
elif time_embedding_type == "learned":
|
136 |
+
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
|
137 |
+
timestep_input_dim = block_out_channels[0]
|
138 |
+
|
139 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
140 |
+
|
141 |
+
# class embedding
|
142 |
+
if class_embed_type is None and num_class_embeds is not None:
|
143 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
144 |
+
elif class_embed_type == "timestep":
|
145 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
146 |
+
elif class_embed_type == "identity":
|
147 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
148 |
+
else:
|
149 |
+
self.class_embedding = None
|
150 |
+
|
151 |
+
self.down_blocks = nn.ModuleList([])
|
152 |
+
self.mid_block = None
|
153 |
+
self.up_blocks = nn.ModuleList([])
|
154 |
+
|
155 |
+
# down
|
156 |
+
output_channel = block_out_channels[0]
|
157 |
+
for i, down_block_type in enumerate(down_block_types):
|
158 |
+
input_channel = output_channel
|
159 |
+
output_channel = block_out_channels[i]
|
160 |
+
is_final_block = i == len(block_out_channels) - 1
|
161 |
+
|
162 |
+
down_block = get_down_block(
|
163 |
+
down_block_type,
|
164 |
+
num_layers=layers_per_block,
|
165 |
+
in_channels=input_channel,
|
166 |
+
out_channels=output_channel,
|
167 |
+
temb_channels=time_embed_dim,
|
168 |
+
add_downsample=not is_final_block,
|
169 |
+
resnet_eps=norm_eps,
|
170 |
+
resnet_act_fn=act_fn,
|
171 |
+
resnet_groups=norm_num_groups,
|
172 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
173 |
+
downsample_padding=downsample_padding,
|
174 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
175 |
+
downsample_type=downsample_type,
|
176 |
+
dropout=dropout,
|
177 |
+
)
|
178 |
+
self.down_blocks.append(down_block)
|
179 |
+
|
180 |
+
# mid
|
181 |
+
self.mid_block = UNetMidBlock2D(
|
182 |
+
in_channels=block_out_channels[-1],
|
183 |
+
temb_channels=time_embed_dim,
|
184 |
+
dropout=dropout,
|
185 |
+
resnet_eps=norm_eps,
|
186 |
+
resnet_act_fn=act_fn,
|
187 |
+
output_scale_factor=mid_block_scale_factor,
|
188 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
189 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
190 |
+
resnet_groups=norm_num_groups,
|
191 |
+
attn_groups=attn_norm_num_groups,
|
192 |
+
add_attention=add_attention,
|
193 |
+
)
|
194 |
+
|
195 |
+
# up
|
196 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
197 |
+
output_channel = reversed_block_out_channels[0]
|
198 |
+
for i, up_block_type in enumerate(up_block_types):
|
199 |
+
prev_output_channel = output_channel
|
200 |
+
output_channel = reversed_block_out_channels[i]
|
201 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
202 |
+
|
203 |
+
is_final_block = i == len(block_out_channels) - 1
|
204 |
+
|
205 |
+
up_block = get_up_block(
|
206 |
+
up_block_type,
|
207 |
+
num_layers=layers_per_block + 1,
|
208 |
+
in_channels=input_channel,
|
209 |
+
out_channels=output_channel,
|
210 |
+
prev_output_channel=prev_output_channel,
|
211 |
+
temb_channels=time_embed_dim,
|
212 |
+
add_upsample=not is_final_block,
|
213 |
+
resnet_eps=norm_eps,
|
214 |
+
resnet_act_fn=act_fn,
|
215 |
+
resnet_groups=norm_num_groups,
|
216 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
217 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
218 |
+
upsample_type=upsample_type,
|
219 |
+
dropout=dropout,
|
220 |
+
)
|
221 |
+
self.up_blocks.append(up_block)
|
222 |
+
prev_output_channel = output_channel
|
223 |
+
|
224 |
+
# out
|
225 |
+
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
|
226 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
|
227 |
+
self.conv_act = nn.SiLU()
|
228 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
229 |
+
|
230 |
+
def forward(
|
231 |
+
self,
|
232 |
+
sample: torch.FloatTensor,
|
233 |
+
timestep: Union[torch.Tensor, float, int],
|
234 |
+
class_labels: Optional[torch.Tensor] = None,
|
235 |
+
return_dict: bool = True,
|
236 |
+
) -> Union[UNet2DOutput, Tuple]:
|
237 |
+
r"""
|
238 |
+
The [`UNet2DModel`] forward method.
|
239 |
+
Args:
|
240 |
+
sample (`torch.FloatTensor`):
|
241 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
242 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
243 |
+
class_labels (`torch.FloatTensor`, *optional*, defaults to `None`):
|
244 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
245 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
246 |
+
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
|
247 |
+
Returns:
|
248 |
+
[`~models.unet_2d.UNet2DOutput`] or `tuple`:
|
249 |
+
If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
|
250 |
+
returned where the first element is the sample tensor.
|
251 |
+
"""
|
252 |
+
# 0. center input if necessary
|
253 |
+
if self.config.center_input_sample:
|
254 |
+
sample = 2 * sample - 1.0
|
255 |
+
|
256 |
+
# 1. time
|
257 |
+
timesteps = timestep
|
258 |
+
if not torch.is_tensor(timesteps):
|
259 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
260 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
261 |
+
timesteps = timesteps[None].to(sample.device)
|
262 |
+
|
263 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
264 |
+
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
|
265 |
+
|
266 |
+
t_emb = self.time_proj(timesteps)
|
267 |
+
|
268 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
269 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
270 |
+
# there might be better ways to encapsulate this.
|
271 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
272 |
+
emb = self.time_embedding(t_emb)
|
273 |
+
|
274 |
+
if self.class_embedding is not None:
|
275 |
+
if class_labels is None:
|
276 |
+
raise ValueError("class_labels should be provided when doing class conditioning")
|
277 |
+
|
278 |
+
if self.config.class_embed_type == "timestep":
|
279 |
+
class_labels = self.time_proj(class_labels)
|
280 |
+
|
281 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
282 |
+
emb = emb + class_emb
|
283 |
+
elif self.class_embedding is None and class_labels is not None:
|
284 |
+
raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
|
285 |
+
|
286 |
+
# 2. pre-process
|
287 |
+
skip_sample = sample
|
288 |
+
sample = self.conv_in(sample)
|
289 |
|
290 |
+
# 3. down
|
291 |
+
down_block_res_samples = (sample,)
|
292 |
+
for downsample_block in self.down_blocks:
|
293 |
+
if hasattr(downsample_block, "skip_conv"):
|
294 |
+
sample, res_samples, skip_sample = downsample_block(
|
295 |
+
hidden_states=sample, temb=emb, skip_sample=skip_sample
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
299 |
+
|
300 |
+
down_block_res_samples += res_samples
|
301 |
+
|
302 |
+
# 4. mid
|
303 |
+
sample = self.mid_block(sample, emb)
|
304 |
+
|
305 |
+
# 5. up
|
306 |
+
skip_sample = None
|
307 |
+
for upsample_block in self.up_blocks:
|
308 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
309 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
310 |
+
|
311 |
+
if hasattr(upsample_block, "skip_conv"):
|
312 |
+
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
|
313 |
+
else:
|
314 |
+
sample = upsample_block(sample, res_samples, emb)
|
315 |
+
|
316 |
+
# 6. post-process
|
317 |
+
sample = self.conv_norm_out(sample)
|
318 |
+
sample = self.conv_act(sample)
|
319 |
+
sample = self.conv_out(sample)
|
320 |
+
|
321 |
+
if skip_sample is not None:
|
322 |
+
sample += skip_sample
|
323 |
+
|
324 |
+
if self.config.time_embedding_type == "fourier":
|
325 |
+
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
|
326 |
+
sample = sample / timesteps
|
327 |
+
|
328 |
+
if not return_dict:
|
329 |
+
return (sample,)
|
330 |
+
|
331 |
+
return UNet2DOutput(sample=sample)
|
332 |
+
|
333 |
+
NUM_CLASSES_FLOOR_HUE = 10
|
334 |
+
NUM_CLASSES_OBJECT_HUE = 10
|
335 |
+
NUM_CLASSES_ORIENTATION = 15
|
336 |
+
NUM_CLASSES_SCALE = 8
|
337 |
+
NUM_CLASSES_SHAPE = 4
|
338 |
+
NUM_CLASSES_WALL_HUE = 10
|
339 |
+
class ClassConditionedUnetForShapes3D(ModelMixin, ConfigMixin):
|
340 |
+
@register_to_config
|
341 |
+
def __init__(self,
|
342 |
+
num_classes_floor_hue=NUM_CLASSES_FLOOR_HUE + 1,
|
343 |
+
num_classes_object_hue=NUM_CLASSES_OBJECT_HUE + 1,
|
344 |
+
num_classes_orientation=NUM_CLASSES_ORIENTATION + 1,
|
345 |
+
num_classes_scale=NUM_CLASSES_SCALE + 1,
|
346 |
+
num_classes_shape=NUM_CLASSES_SHAPE + 1,
|
347 |
+
num_classes_wall_hue=NUM_CLASSES_WALL_HUE + 1,
|
348 |
+
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
|
349 |
+
in_channels: int = 3,
|
350 |
+
out_channels: int = 3,
|
351 |
+
center_input_sample: bool = False,
|
352 |
+
time_embedding_type: str = "positional",
|
353 |
+
freq_shift: int = 0,
|
354 |
+
flip_sin_to_cos: bool = True,
|
355 |
+
down_block_types: Tuple[str, ...] = (
|
356 |
+
"DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
357 |
+
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
358 |
+
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
|
359 |
+
layers_per_block: int = 2,
|
360 |
+
mid_block_scale_factor: float = 1,
|
361 |
+
downsample_padding: int = 1,
|
362 |
+
downsample_type: str = "conv",
|
363 |
+
upsample_type: str = "conv",
|
364 |
+
dropout: float = 0.0,
|
365 |
+
act_fn: str = "silu",
|
366 |
+
attention_head_dim: Optional[int] = 8,
|
367 |
+
norm_num_groups: int = 32,
|
368 |
+
attn_norm_num_groups: Optional[int] = None,
|
369 |
+
norm_eps: float = 1e-5,
|
370 |
+
resnet_time_scale_shift: str = "default",
|
371 |
+
add_attention: bool = True,
|
372 |
+
class_embed_type: Optional[str] = None,
|
373 |
+
num_class_embeds: Optional[int] = None,
|
374 |
+
num_train_timesteps: Optional[int] = None,
|
375 |
+
set_W_to_weight: Optional[bool] = True
|
376 |
+
):
|
377 |
+
super().__init__()
|
378 |
+
self.class_floor_hue = nn.Embedding(num_classes_floor_hue, num_classes_floor_hue)
|
379 |
+
self.class_object_hue = nn.Embedding(num_classes_object_hue, num_classes_object_hue)
|
380 |
+
self.class_orientation = nn.Embedding(num_classes_orientation, num_classes_orientation)
|
381 |
+
self.class_scale = nn.Embedding(num_classes_scale, num_classes_scale)
|
382 |
+
self.class_shape = nn.Embedding(num_classes_shape, num_classes_shape)
|
383 |
+
self.class_wall_hue = nn.Embedding(num_classes_wall_hue, num_classes_wall_hue)
|
384 |
+
self.model = UNet2DModel(
|
385 |
+
sample_size=sample_size,
|
386 |
+
in_channels=in_channels,
|
387 |
+
out_channels=out_channels,
|
388 |
+
center_input_sample=center_input_sample,
|
389 |
+
time_embedding_type=time_embedding_type,
|
390 |
+
freq_shift=freq_shift,
|
391 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
392 |
+
down_block_types=down_block_types,
|
393 |
+
up_block_types=up_block_types,
|
394 |
+
block_out_channels=block_out_channels,
|
395 |
+
layers_per_block=layers_per_block,
|
396 |
+
mid_block_scale_factor=mid_block_scale_factor,
|
397 |
+
downsample_padding=downsample_padding,
|
398 |
+
downsample_type=downsample_type,
|
399 |
+
upsample_type=upsample_type,
|
400 |
+
dropout=dropout,
|
401 |
+
act_fn=act_fn,
|
402 |
+
attention_head_dim=attention_head_dim,
|
403 |
+
norm_num_groups=norm_num_groups,
|
404 |
+
attn_norm_num_groups=attn_norm_num_groups,
|
405 |
+
norm_eps=norm_eps,
|
406 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
407 |
+
add_attention=add_attention,
|
408 |
+
class_embed_type=class_embed_type,
|
409 |
+
num_class_embeds=num_class_embeds,
|
410 |
+
num_train_timesteps=num_train_timesteps,
|
411 |
+
set_W_to_weight=set_W_to_weight
|
412 |
+
)
|
413 |
+
|
414 |
+
def forward(self, x, t, class_labels):
|
415 |
+
bs, ch, w, h = x.shape
|
416 |
+
|
417 |
+
class_cond_floor_hue = self.class_floor_hue(class_labels[:, 0])
|
418 |
+
class_cond_floor_hue = class_cond_floor_hue.view(bs, class_cond_floor_hue.shape[1], 1, 1).expand(bs, class_cond_floor_hue.shape[1], w, h)
|
419 |
+
class_cond_object_hue = self.class_object_hue(class_labels[:, 1])
|
420 |
+
class_cond_object_hue = class_cond_object_hue.view(bs, class_cond_object_hue.shape[1], 1, 1).expand(bs, class_cond_object_hue.shape[1], w, h)
|
421 |
+
class_cond_orientation = self.class_orientation(class_labels[:, 2])
|
422 |
+
class_cond_orientation = class_cond_orientation.view(bs, class_cond_orientation.shape[1], 1, 1).expand(bs, class_cond_orientation.shape[1], w, h)
|
423 |
+
class_cond_scale = self.class_scale(class_labels[:, 3])
|
424 |
+
class_cond_scale = class_cond_scale.view(bs, class_cond_scale.shape[1], 1, 1).expand(bs, class_cond_scale.shape[1], w, h)
|
425 |
+
class_cond_shape = self.class_shape(class_labels[:, 4])
|
426 |
+
class_cond_shape = class_cond_shape.view(bs, class_cond_shape.shape[1], 1, 1).expand(bs, class_cond_shape.shape[1], w, h)
|
427 |
+
class_cond_wall_hue = self.class_wall_hue(class_labels[:, 5])
|
428 |
+
class_cond_wall_hue = class_cond_wall_hue.view(bs, class_cond_wall_hue.shape[1], 1, 1).expand(bs, class_cond_wall_hue.shape[1], w, h)
|
429 |
+
net_input = torch.cat([x, class_cond_floor_hue, class_cond_object_hue, class_cond_orientation, class_cond_scale, class_cond_shape, class_cond_wall_hue], dim=1)
|
430 |
+
return self.model(net_input, t)
|
431 |
+
|
432 |
+
|
433 |
+
class MultiLabelConditionalUNet2DModelForShapes3D(ModelMixin, ConfigMixin):
|
434 |
r"""
|
435 |
+
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
|
436 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
437 |
+
for all models (such as downloading or saving).
|
438 |
Parameters:
|
439 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
440 |
+
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
|
441 |
+
1)`.
|
442 |
+
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
|
443 |
+
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
444 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
445 |
+
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
|
446 |
+
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
|
447 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
448 |
+
Whether to flip sin to cos for Fourier time embedding.
|
449 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
|
450 |
+
Tuple of downsample block types.
|
451 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
|
452 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
|
453 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
|
454 |
+
Tuple of upsample block types.
|
455 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
|
456 |
+
Tuple of block output channels.
|
457 |
+
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
|
458 |
+
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
|
459 |
+
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
|
460 |
+
downsample_type (`str`, *optional*, defaults to `conv`):
|
461 |
+
The downsample type for downsampling layers. Choose between "conv" and "resnet"
|
462 |
+
upsample_type (`str`, *optional*, defaults to `conv`):
|
463 |
+
The upsample type for upsampling layers. Choose between "conv" and "resnet"
|
464 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
465 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
466 |
+
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
|
467 |
+
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
|
468 |
+
attn_norm_num_groups (`int`, *optional*, defaults to `None`):
|
469 |
+
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
|
470 |
+
given number of groups. If left as `None`, the group norm layer will only be created if
|
471 |
+
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
|
472 |
+
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
|
473 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
474 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
475 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
476 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
477 |
+
`"timestep"`, or `"identity"`.
|
478 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
479 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
|
480 |
+
conditioning with `class_embed_type` equal to `None`.
|
481 |
"""
|
482 |
+
|
483 |
+
@register_to_config
|
484 |
+
def __init__(
|
485 |
+
self,
|
486 |
+
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
|
487 |
+
in_channels: int = 3,
|
488 |
+
out_channels: int = 3,
|
489 |
+
center_input_sample: bool = False,
|
490 |
+
time_embedding_type: str = "positional",
|
491 |
+
freq_shift: int = 0,
|
492 |
+
flip_sin_to_cos: bool = True,
|
493 |
+
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
494 |
+
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
495 |
+
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
|
496 |
+
layers_per_block: int = 2,
|
497 |
+
mid_block_scale_factor: float = 1,
|
498 |
+
downsample_padding: int = 1,
|
499 |
+
downsample_type: str = "conv",
|
500 |
+
upsample_type: str = "conv",
|
501 |
+
dropout: float = 0.0,
|
502 |
+
act_fn: str = "silu",
|
503 |
+
attention_head_dim: Optional[int] = 8,
|
504 |
+
norm_num_groups: int = 32,
|
505 |
+
attn_norm_num_groups: Optional[int] = None,
|
506 |
+
norm_eps: float = 1e-5,
|
507 |
+
resnet_time_scale_shift: str = "default",
|
508 |
+
add_attention: bool = True,
|
509 |
+
class_embed_type: Optional[str] = None,
|
510 |
+
num_class_embeds_floor_hue=NUM_CLASSES_FLOOR_HUE + 1,
|
511 |
+
num_class_embeds_object_hue=NUM_CLASSES_OBJECT_HUE + 1,
|
512 |
+
num_class_embeds_orientation=NUM_CLASSES_ORIENTATION + 1,
|
513 |
+
num_class_embeds_scale=NUM_CLASSES_SCALE + 1,
|
514 |
+
num_class_embeds_shape=NUM_CLASSES_SHAPE + 1,
|
515 |
+
num_class_embeds_wall_hue=NUM_CLASSES_WALL_HUE + 1,
|
516 |
+
num_train_timesteps: Optional[int] = None,
|
517 |
+
set_W_to_weight: Optional[bool] = True
|
518 |
+
):
|
519 |
super().__init__()
|
|
|
520 |
|
521 |
+
self.sample_size = sample_size
|
522 |
+
time_embed_dim = block_out_channels[0] * 4
|
523 |
+
|
524 |
+
# Check inputs
|
525 |
+
if len(down_block_types) != len(up_block_types):
|
526 |
+
raise ValueError(
|
527 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
528 |
+
)
|
529 |
+
|
530 |
+
if len(block_out_channels) != len(down_block_types):
|
531 |
+
raise ValueError(
|
532 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
533 |
+
)
|
534 |
+
|
535 |
+
# input
|
536 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
537 |
+
|
538 |
+
# time
|
539 |
+
if time_embedding_type == "fourier":
|
540 |
+
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16, set_W_to_weight=set_W_to_weight)
|
541 |
+
timestep_input_dim = 2 * block_out_channels[0]
|
542 |
+
elif time_embedding_type == "positional":
|
543 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
544 |
+
timestep_input_dim = block_out_channels[0]
|
545 |
+
elif time_embedding_type == "learned":
|
546 |
+
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
|
547 |
+
timestep_input_dim = block_out_channels[0]
|
548 |
+
|
549 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
550 |
+
|
551 |
+
# class embedding
|
552 |
+
if class_embed_type is None and num_class_embeds_floor_hue is not None:
|
553 |
+
self.class_embedding_floor_hue = nn.Embedding(num_class_embeds_floor_hue, time_embed_dim)
|
554 |
+
self.class_embedding_object_hue = nn.Embedding(num_class_embeds_object_hue, time_embed_dim)
|
555 |
+
self.class_embedding_orientation = nn.Embedding(num_class_embeds_orientation, time_embed_dim)
|
556 |
+
self.class_embedding_scale = nn.Embedding(num_class_embeds_scale, time_embed_dim)
|
557 |
+
self.class_embedding_shape = nn.Embedding(num_class_embeds_shape, time_embed_dim)
|
558 |
+
self.class_embedding_wall_hue = nn.Embedding(num_class_embeds_wall_hue, time_embed_dim)
|
559 |
+
elif class_embed_type == "timestep":
|
560 |
+
self.class_embedding_floor_hue = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
561 |
+
self.class_embedding_object_hue = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
562 |
+
self.class_embedding_orientation = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
563 |
+
self.class_embedding_scale = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
564 |
+
self.class_embedding_shape = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
565 |
+
self.class_embedding_wall_hue = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
566 |
+
elif class_embed_type == "identity":
|
567 |
+
self.class_embedding_floor_hue = nn.Identity(time_embed_dim, time_embed_dim)
|
568 |
+
self.class_embedding_object_hue = nn.Identity(time_embed_dim, time_embed_dim)
|
569 |
+
self.class_embedding_orientation = nn.Identity(time_embed_dim, time_embed_dim)
|
570 |
+
self.class_embedding_scale = nn.Identity(time_embed_dim, time_embed_dim)
|
571 |
+
self.class_embedding_shape = nn.Identity(time_embed_dim, time_embed_dim)
|
572 |
+
self.class_embedding_wall_hue = nn.Identity(time_embed_dim, time_embed_dim)
|
573 |
+
else:
|
574 |
+
self.class_embedding_floor_hue = None
|
575 |
+
|
576 |
+
self.down_blocks = nn.ModuleList([])
|
577 |
+
self.mid_block = None
|
578 |
+
self.up_blocks = nn.ModuleList([])
|
579 |
+
|
580 |
+
# down
|
581 |
+
output_channel = block_out_channels[0]
|
582 |
+
for i, down_block_type in enumerate(down_block_types):
|
583 |
+
input_channel = output_channel
|
584 |
+
output_channel = block_out_channels[i]
|
585 |
+
is_final_block = i == len(block_out_channels) - 1
|
586 |
+
|
587 |
+
down_block = get_down_block(
|
588 |
+
down_block_type,
|
589 |
+
num_layers=layers_per_block,
|
590 |
+
in_channels=input_channel,
|
591 |
+
out_channels=output_channel,
|
592 |
+
temb_channels=time_embed_dim,
|
593 |
+
add_downsample=not is_final_block,
|
594 |
+
resnet_eps=norm_eps,
|
595 |
+
resnet_act_fn=act_fn,
|
596 |
+
resnet_groups=norm_num_groups,
|
597 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
598 |
+
downsample_padding=downsample_padding,
|
599 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
600 |
+
downsample_type=downsample_type,
|
601 |
+
dropout=dropout,
|
602 |
+
)
|
603 |
+
self.down_blocks.append(down_block)
|
604 |
+
|
605 |
+
# mid
|
606 |
+
self.mid_block = UNetMidBlock2D(
|
607 |
+
in_channels=block_out_channels[-1],
|
608 |
+
temb_channels=time_embed_dim,
|
609 |
+
dropout=dropout,
|
610 |
+
resnet_eps=norm_eps,
|
611 |
+
resnet_act_fn=act_fn,
|
612 |
+
output_scale_factor=mid_block_scale_factor,
|
613 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
614 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
615 |
+
resnet_groups=norm_num_groups,
|
616 |
+
attn_groups=attn_norm_num_groups,
|
617 |
+
add_attention=add_attention,
|
618 |
+
)
|
619 |
+
|
620 |
+
# up
|
621 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
622 |
+
output_channel = reversed_block_out_channels[0]
|
623 |
+
for i, up_block_type in enumerate(up_block_types):
|
624 |
+
prev_output_channel = output_channel
|
625 |
+
output_channel = reversed_block_out_channels[i]
|
626 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
627 |
+
|
628 |
+
is_final_block = i == len(block_out_channels) - 1
|
629 |
+
|
630 |
+
up_block = get_up_block(
|
631 |
+
up_block_type,
|
632 |
+
num_layers=layers_per_block + 1,
|
633 |
+
in_channels=input_channel,
|
634 |
+
out_channels=output_channel,
|
635 |
+
prev_output_channel=prev_output_channel,
|
636 |
+
temb_channels=time_embed_dim,
|
637 |
+
add_upsample=not is_final_block,
|
638 |
+
resnet_eps=norm_eps,
|
639 |
+
resnet_act_fn=act_fn,
|
640 |
+
resnet_groups=norm_num_groups,
|
641 |
+
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
642 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
643 |
+
upsample_type=upsample_type,
|
644 |
+
dropout=dropout,
|
645 |
+
)
|
646 |
+
self.up_blocks.append(up_block)
|
647 |
+
prev_output_channel = output_channel
|
648 |
+
|
649 |
+
# out
|
650 |
+
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
|
651 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
|
652 |
+
self.conv_act = nn.SiLU()
|
653 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
654 |
+
|
655 |
+
def forward(
|
656 |
self,
|
657 |
+
sample: torch.FloatTensor,
|
658 |
+
timestep: Union[torch.Tensor, float, int],
|
659 |
class_labels: Optional[torch.Tensor] = None,
|
|
|
|
|
660 |
return_dict: bool = True,
|
661 |
+
) -> Union[UNet2DOutput, Tuple]:
|
|
|
662 |
r"""
|
663 |
+
The [`UNet2DModel`] forward method.
|
664 |
Args:
|
665 |
+
sample (`torch.FloatTensor`):
|
666 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
667 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
668 |
+
class_labels (`torch.FloatTensor`, *optional*, defaults to `None`):
|
669 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
|
|
|
|
670 |
return_dict (`bool`, *optional*, defaults to `True`):
|
671 |
+
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
|
672 |
Returns:
|
673 |
+
[`~models.unet_2d.UNet2DOutput`] or `tuple`:
|
674 |
+
If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
|
675 |
+
returned where the first element is the sample tensor.
|
676 |
"""
|
677 |
+
# 0. center input if necessary
|
678 |
+
if self.config.center_input_sample:
|
679 |
+
sample = 2 * sample - 1.0
|
680 |
+
|
681 |
+
# 1. time
|
682 |
+
timesteps = timestep
|
683 |
+
if not torch.is_tensor(timesteps):
|
684 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
685 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
686 |
+
timesteps = timesteps[None].to(sample.device)
|
687 |
|
688 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
689 |
+
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
|
690 |
|
691 |
+
t_emb = self.time_proj(timesteps)
|
|
|
692 |
|
693 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
694 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
695 |
+
# there might be better ways to encapsulate this.
|
696 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
697 |
+
emb = self.time_embedding(t_emb)
|
698 |
|
699 |
+
if self.class_embedding_floor_hue is not None:
|
700 |
+
if class_labels is None:
|
701 |
+
raise ValueError("class_labels should be provided when doing class conditioning")
|
702 |
+
class_labels_floor_hue = class_labels[:, 0]
|
703 |
+
class_labels_object_hue = class_labels[:, 1]
|
704 |
+
class_labels_orientation = class_labels[:, 2]
|
705 |
+
class_labels_scale = class_labels[:, 3]
|
706 |
+
class_labels_shape = class_labels[:, 4]
|
707 |
+
class_labels_wall_hue = class_labels[:, 5]
|
708 |
+
if self.config.class_embed_type == "timestep":
|
709 |
+
class_labels_floor_hue = self.time_proj(class_labels_floor_hue)
|
710 |
+
class_labels_object_hue = self.time_proj(class_labels_object_hue)
|
711 |
+
class_labels_orientation = self.time_proj(class_labels_orientation)
|
712 |
+
class_labels_scale = self.time_proj(class_labels_scale)
|
713 |
+
class_labels_shape = self.time_proj(class_labels_shape)
|
714 |
+
class_labels_wall_hue = self.time_proj(class_labels_wall_hue)
|
715 |
|
716 |
+
def add_embedding_if_non_zero(class_labels, class_embedding):
|
717 |
+
# Create an output tensor initialized to zero of the required shape
|
718 |
+
output = torch.zeros((class_labels.size(0), emb.size(1)), device=emb.device)
|
|
|
719 |
|
720 |
+
# Check for non-zero indices
|
721 |
+
non_zero_indices = class_labels.nonzero(as_tuple=True)
|
|
|
722 |
|
723 |
+
if non_zero_indices[0].numel() > 0:
|
724 |
+
# Compute embeddings for non-zero indices only
|
725 |
+
embeddings = class_embedding(class_labels[non_zero_indices])
|
726 |
+
# Place computed embeddings back into the correct positions
|
727 |
+
output[non_zero_indices] = embeddings
|
728 |
|
729 |
+
return output
|
730 |
+
|
731 |
+
if self.class_embedding_floor_hue:
|
732 |
+
emb += self.class_embedding_floor_hue(class_labels_floor_hue)
|
733 |
+
if self.class_embedding_object_hue:
|
734 |
+
emb += self.class_embedding_object_hue(class_labels_object_hue)
|
735 |
+
if self.class_embedding_orientation:
|
736 |
+
emb += self.class_embedding_orientation(class_labels_orientation)
|
737 |
+
if self.class_embedding_scale:
|
738 |
+
emb += self.class_embedding_scale(class_labels_scale)
|
739 |
+
if self.class_embedding_shape:
|
740 |
+
emb += self.class_embedding_shape(class_labels_shape)
|
741 |
+
if self.class_embedding_wall_hue:
|
742 |
+
emb += self.class_embedding_wall_hue(class_labels_wall_hue)
|
743 |
+
elif self.class_embedding_floor_hue is None and class_labels is not None:
|
744 |
+
raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
|
745 |
+
|
746 |
+
# 2. pre-process
|
747 |
+
skip_sample = sample
|
748 |
+
sample = self.conv_in(sample)
|
749 |
+
|
750 |
+
# 3. down
|
751 |
+
down_block_res_samples = (sample,)
|
752 |
+
for downsample_block in self.down_blocks:
|
753 |
+
if hasattr(downsample_block, "skip_conv"):
|
754 |
+
sample, res_samples, skip_sample = downsample_block(
|
755 |
+
hidden_states=sample, temb=emb, skip_sample=skip_sample
|
756 |
+
)
|
757 |
+
else:
|
758 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
759 |
+
|
760 |
+
down_block_res_samples += res_samples
|
761 |
+
|
762 |
+
# 4. mid
|
763 |
+
sample = self.mid_block(sample, emb)
|
764 |
+
|
765 |
+
# 5. up
|
766 |
+
skip_sample = None
|
767 |
+
for upsample_block in self.up_blocks:
|
768 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
769 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
770 |
+
|
771 |
+
if hasattr(upsample_block, "skip_conv"):
|
772 |
+
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
|
773 |
+
else:
|
774 |
+
sample = upsample_block(sample, res_samples, emb)
|
775 |
+
|
776 |
+
# 6. post-process
|
777 |
+
sample = self.conv_norm_out(sample)
|
778 |
+
sample = self.conv_act(sample)
|
779 |
+
sample = self.conv_out(sample)
|
780 |
+
|
781 |
+
if skip_sample is not None:
|
782 |
+
sample += skip_sample
|
783 |
+
|
784 |
+
if self.config.time_embedding_type == "fourier":
|
785 |
+
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
|
786 |
+
sample = sample / timesteps
|
787 |
|
788 |
if not return_dict:
|
789 |
return (sample,)
|
790 |
+
|
791 |
+
return UNet2DOutput(sample=sample)
|