|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Tokenization class for model ByT5.""" |
|
|
|
|
|
import warnings |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.models.byt5.tokenization_byt5 import ByT5Tokenizer |
|
|
|
class ByT5KoreanTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a ByT5Korean tokenizer. |
|
On top of ByT5's simple raw bytes utf-8 encoding, ByT5Korean adds extra tokens for Korean jamo. |
|
|
|
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. |
|
Users should refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): |
|
The end of sequence token. |
|
|
|
.. note:: |
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end of |
|
sequence. The token used is the :obj:`sep_token`. |
|
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
extra_ids (:obj:`int`, `optional`, defaults to 100): |
|
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are |
|
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are |
|
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary |
|
like in ByT5 preprocessing see `here |
|
<https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117>`__). |
|
additional_special_tokens (:obj:`List[str]`, `optional`): |
|
Additional special tokens used by the tokenizer. |
|
""" |
|
|
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
pad_token="<pad>", |
|
extra_ids=57, |
|
additional_special_tokens=None, |
|
**kwargs |
|
) -> None: |
|
|
|
if extra_ids > 0 and additional_special_tokens is None: |
|
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] |
|
elif extra_ids > 0 and additional_special_tokens is not None: |
|
|
|
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens))) |
|
if extra_tokens != extra_ids: |
|
raise ValueError( |
|
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are provided to ByT5Tokenizer. " |
|
"In this case the additional_special_tokens must include the extra_ids tokens" |
|
) |
|
|
|
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token |
|
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token |
|
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token |
|
|
|
super().__init__( |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
extra_ids=extra_ids, |
|
additional_special_tokens=additional_special_tokens, |
|
**kwargs, |
|
) |
|
|
|
self._extra_ids = extra_ids |
|
|
|
|
|
for token in self.all_special_tokens: |
|
self.tokens_trie.add(token) |
|
|
|
self._utf_vocab_size = 2 ** 8 |
|
self._utf_vocab_size += 19 + 21 + 28 |
|
|
|
|
|
self.special_tokens_encoder: Dict[int, str] = { |
|
self.pad_token: 0, |
|
self.eos_token: 1, |
|
self.unk_token: 2, |
|
} |
|
self._num_special_tokens = len(self.special_tokens_encoder) |
|
n = len(additional_special_tokens) |
|
for i, token in enumerate(additional_special_tokens): |
|
self.special_tokens_encoder[token] = self.vocab_size + i - n |
|
self.special_tokens_decoder: Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} |
|
|
|
@property |
|
def vocab_size(self): |
|
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer ``prepare_for_model`` method. |
|
|
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
|
|
if token_ids_1 is None: |
|
return ([0] * len(token_ids_0)) + [1] |
|
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] |
|
|
|
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: |
|
"""Do not add eos again if user already added it.""" |
|
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: |
|
warnings.warn( |
|
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated eos tokens being added." |
|
) |
|
return token_ids |
|
else: |
|
return token_ids + [self.eos_token_id] |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not |
|
make use of token type ids, therefore a list of zeros is returned. |
|
|
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
:obj:`List[int]`: List of zeros. |
|
""" |
|
eos = [self.eos_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + eos) * [0] |
|
return len(token_ids_0 + eos + token_ids_1 + eos) * [0] |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A sequence has the following format: |
|
|
|
- single sequence: ``X </s>`` |
|
- pair of sequences: ``A </s> B </s>`` |
|
|
|
Args: |
|
token_ids_0 (:obj:`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (:obj:`List[int]`, `optional`): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. |
|
""" |
|
token_ids_0 = self._add_eos_if_not_present(token_ids_0) |
|
if token_ids_1 is None: |
|
return token_ids_0 |
|
else: |
|
token_ids_1 = self._add_eos_if_not_present(token_ids_1) |
|
return token_ids_0 + token_ids_1 |
|
|
|
def _convert_char_to_tokens_Korean(self, c): |
|
o = ord(c) |
|
if 44032 <= o and o <= 55203: |
|
o -= 44032 |
|
return [chr(256 + (o // 588)), chr(256 + 19 + ((o % 588) // 28)), chr(256 + 19 + 21 + (o % 28))] |
|
return [chr(i) for i in c.encode("utf-8")] |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words""" |
|
if text in self.all_special_tokens: |
|
return [text] |
|
|
|
|
|
|
|
return sum([self._convert_char_to_tokens_Korean(c) for c in text], []) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
if token in self.special_tokens_encoder: |
|
token_id = self.special_tokens_encoder[token] |
|
elif token in self.added_tokens_encoder: |
|
token_id = self.added_tokens_encoder[token] |
|
|
|
|
|
elif len(token) != 1: |
|
token_id = self.unk_token_id |
|
else: |
|
token_id = ord(token) + self._num_special_tokens |
|
return token_id |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
if index in self.special_tokens_decoder: |
|
token = self.special_tokens_decoder[index] |
|
else: |
|
token = chr(index - self._num_special_tokens) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
bstring = b"" |
|
ids = [ord(t[0]) for t in tokens] |
|
for i in range(len(ids)-2): |
|
if 256 <= ids[i] and ids[i] < 256+19 and 256+19 <= ids[i+1] and ids[i+1] < 256+19+21 and 256+19+21 <= ids[i+2] and ids[i+2] < 256+19+21+28: |
|
tokens[i] = chr(44032 + (ids[i]-256)*21*28 + (ids[i+1]-256-19)*28 + (ids[i+2]-256-19-21)) |
|
tokens[i+1] = None |
|
tokens[i+2] = None |
|
for token in tokens: |
|
if token == None: |
|
continue |
|
if token in self.special_tokens_decoder: |
|
tok_string = self.special_tokens_decoder[token].encode("utf-8") |
|
elif token in self.added_tokens_decoder: |
|
tok_string = self.special_tokens_decoder[token].encode("utf-8") |
|
elif token in self.special_tokens_encoder: |
|
tok_string = token.encode("utf-8") |
|
elif token in self.added_tokens_encoder: |
|
tok_string = token.encode("utf-8") |
|
else: |
|
if type(token) == str and ord(token) >= 256: |
|
tok_string = token.encode("utf-8") |
|
else: |
|
tok_string = bytes([ord(token) if type(token) == str else min(255, token)]) |
|
bstring += tok_string |
|
string = bstring.decode("utf-8", errors="ignore") |
|
return string |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
return () |
|
|
|
|
|
if __name__ == "__main__": |
|
tokenizer = ByT5KoreanTokenizer() |
|
text = "This is a test <extra_id_0> of the ๊ฐ๋ํฃ ์๋
ํ์ธ์ <extra_id_1>." |
|
tokenized_text = tokenizer.tokenize(text) |
|
print(tokenized_text) |
|
print(tokenizer(text)) |
|
print(tokenizer.convert_tokens_to_ids(tokenized_text)) |
|
print(tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(tokenized_text))) |
|
print(tokenizer.convert_tokens_to_string(tokenized_text)) |