--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4587 - Der: 0.1824 - False Alarm: 0.0587 - Missed Detection: 0.0707 - Confusion: 0.0529 ## Model description This segmentation model has been trained on English data (Callhome) using [diarizers](https://github.com/huggingface/diarizers/tree/main). It can be loaded with two lines of code: ```python from diarizers import SegmentationModel segmentation_model = SegmentationModel().from_pretrained('evie-8/speaker-segmentation-fine-tuned-callhome-eng') ``` To use it within a pyannote speaker diarization pipeline, load the [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) pipeline, and convert the model to a pyannote compatible format: ```python from pyannote.audio import Pipeline import torch device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") # load the pre-trained pyannote pipeline pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1") pipeline.to(device) # replace the segmentation model with your fine-tuned one model = segmentation_model.to_pyannote_model() pipeline._segmentation.model = model.to(device) ``` You can now use the pipeline on audio examples: ```python # load dataset example dataset = load_dataset("diarizers-community/callhome", "eng", split="data") sample = dataset[0]["audio"] # pre-process inputs sample["waveform"] = torch.from_numpy(sample.pop("array")[None, :]).to(device, dtype=model.dtype) sample["sample_rate"] = sample.pop("sampling_rate") # perform inference diarization = pipeline(sample) # dump the diarization output to disk using RTTM format with open("audio.rttm", "w") as rttm: diarization.write_rttm(rttm) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4181 | 1.0 | 362 | 0.4878 | 0.1940 | 0.0577 | 0.0756 | 0.0607 | | 0.3931 | 2.0 | 724 | 0.4616 | 0.1827 | 0.0590 | 0.0718 | 0.0520 | | 0.3766 | 3.0 | 1086 | 0.4643 | 0.1826 | 0.0576 | 0.0723 | 0.0527 | | 0.3661 | 4.0 | 1448 | 0.4603 | 0.1832 | 0.0620 | 0.0682 | 0.0530 | | 0.3568 | 5.0 | 1810 | 0.4587 | 0.1824 | 0.0587 | 0.0707 | 0.0529 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1