File size: 8,782 Bytes
b820243
 
 
b4d132c
b820243
 
15bb64e
b820243
 
 
 
15bb64e
 
 
 
b4d132c
15bb64e
 
 
 
b4d132c
15bb64e
 
b820243
b4d132c
 
b820243
 
 
 
 
b4d132c
b820243
 
 
 
 
 
 
 
b4d132c
b820243
b4d132c
 
 
b820243
 
 
b4d132c
b820243
 
b4d132c
 
 
 
 
 
 
 
 
 
 
 
b820243
 
b4d132c
b820243
b4d132c
 
b820243
 
 
b4d132c
c7a5318
b820243
 
b4d132c
c7a5318
b820243
 
b4d132c
15bb64e
 
 
 
 
 
 
 
 
b4d132c
15bb64e
 
 
b4d132c
 
 
 
 
 
 
 
 
 
15bb64e
 
 
 
 
 
b820243
 
 
 
15bb64e
b820243
 
 
 
 
 
 
15bb64e
 
 
b820243
15bb64e
 
 
 
 
 
 
 
b820243
 
 
 
 
 
 
 
 
15bb64e
 
 
 
 
 
 
 
 
b820243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a5318
b820243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15bb64e
b820243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a5318
b820243
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import json
import re
import string
from typing import List

from tokenizers import pre_tokenizers, decoders, NormalizedString, PreTokenizedString, AddedToken
from transformers import PreTrainedTokenizerFast

from rumorpheme import RuMorphemeModel, labels_to_morphemes

DEFAULT_MODEL_NAME = "evilfreelancer/ruMorpheme-v0.2"

END, BEGIN, PAD, UNKNOWN, CAP, ALL_CAPS = 0, 1, 2, 3, 4, 5
SYSTEM, USER, ASSISTANT, FUNCTION_CALL, FUNCTION_RESPONSE = 6, 7, 8, 9, 10
SPACE, NEWLINE, TAB = 11, 12, 13

AUXILIARY = [
    "</s>", "<s>", "<pad>", "<unk>", "<cap>", "<all_caps>",
    "system", "user", "assistant", "function_call", "function_response",
    " ", "\n", "\t"
]

NUMBERS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
LETTERS_CYRILLIC = list(map(chr, range(ord('а'), ord('я') + 1)))
LETTERS_LATIN = list(string.ascii_lowercase)


class RuMorphemePreTokenizer:
    """
    Pre-tokenizer for RuMorpheme model.
    Splits on spaces, newlines, and tabs, including these as tokens.
    Then, applies morpheme splitting to non-space tokens.
    """

    def __init__(self, model_name: str = DEFAULT_MODEL_NAME):
        self.model = RuMorphemeModel.from_pretrained(model_name)
        self.model.eval()

    def pre_tokenize(self, pretok: PreTokenizedString):
        # First, split on spaces (including newlines and tabs) and add them as tokens
        pretok.split(self.split_on_spaces)

        # Apply morpheme or character-level splitting to non-space tokens
        pretok.split(self.morpheme_or_char_split)

    def split_on_spaces(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]:
        """
        Splits on spaces, newlines, and tabs, including these as tokens.
        """
        text = str(normalized_string)
        splits = [
            NormalizedString(match.group())
            for match in re.finditer(r'\s+|\S+', text)
        ]

        # Convert newlines and tabs to tokens
        for idx, split in enumerate(splits):
            if split == "\n":
                splits[idx] = NormalizedString(AUXILIARY[NEWLINE])
            elif split == "\t":
                splits[idx] = NormalizedString(AUXILIARY[TAB])

        return splits

    def morpheme_or_char_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]:
        """
        Attempts to split the token into morphemes. If the token starts with "UNKNOWN/",
        splits it into individual characters.
        """
        word = str(normalized_string)

        # If the token is whitespace or digits, return as is
        if word.isspace() or word.isdigit():
            return [normalized_string]

        # Ignore tokens that are only punctuation or non-alphabetical
        if not any(c.isalpha() for c in word):
            return [normalized_string]

        # Detect capitalization and add relevant token if necessary
        cap_token = None
        if word[0].isupper():
            cap_token = NormalizedString(AUXILIARY[CAP])
            if len(word) > 1 and word.isupper():
                cap_token = NormalizedString(AUXILIARY[ALL_CAPS])

        # Convert word to lowercase for morpheme splitting
        word_lower = word.lower()

        # Make predictions to get morphemes
        all_predictions, all_log_probs = self.model.predict([word_lower])
        morphs, morph_types, _ = labels_to_morphemes(word_lower, all_predictions[0], all_log_probs[0])

        # Handle unknown tokens by splitting into characters
        morpheme_tokens = []
        for morph, morph_type in zip(morphs, morph_types):
            if morph_type == "UNKNOWN":
                # Split unknown morpheme into characters
                char_tokens = [NormalizedString(char) for char in morph]
                morpheme_tokens.extend(char_tokens)
            else:
                # Add as a single morpheme token
                morpheme_tokens.append(NormalizedString(f"{morph_type}/{morph}"))

        # Insert capitalization token if needed
        if cap_token:
            return [cap_token] + morpheme_tokens
        else:
            return morpheme_tokens


class RuMorphemeDecoder:
    """
    Custom decoder for RuMorpheme model, it removes morph_type prefix from tokens and keeps spaces.
    """

    def decode_chain(self, tokens: List[str]) -> List[str]:
        """
        tokenizer.decode function calls this function
        """
        decoded_tokens = []
        capitalize_next = False
        uppercase_next = False

        for token in tokens:
            # Handle capitalization tokens
            if token == AUXILIARY[CAP]:
                capitalize_next = True
                continue
            elif token == AUXILIARY[ALL_CAPS]:
                uppercase_next = True
                continue

            # If token is a space, keep it as is
            if token.isspace():
                decoded_tokens.append(token)
            else:
                # Remove morph_type prefix if present
                if '/' in token:
                    _, morph = token.split('/', 1)
                else:
                    morph = token

                # Apply capitalization if needed
                if uppercase_next:
                    morph = morph.upper()
                    uppercase_next = False
                elif capitalize_next:
                    morph = morph.capitalize()
                    capitalize_next = False

                decoded_tokens.append(morph)
        return decoded_tokens


class RuMorphemeTokenizerFast(PreTrainedTokenizerFast):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # If pre-tokenizer nodel is not specified, use the default
        self.model_name = kwargs.get('model_name')
        if kwargs.get('model_name') is None:
            self.model_name: str = DEFAULT_MODEL_NAME

        # Complete initialization
        self.init_backend_tokenizer()

    def init_backend_tokenizer(self):
        # Custom pre-tokenizer
        self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
            pre_tokenizers.Punctuation(),
            pre_tokenizers.Digits(individual_digits=True),
            pre_tokenizers.PreTokenizer.custom(RuMorphemePreTokenizer(self.model_name))
        ])
        # Custom decoder
        self.backend_tokenizer.decoder = decoders.Decoder.custom(RuMorphemeDecoder())

    def save_pretrained(self, save_directory, **kwargs):
        # Temporarily remove the custom pre-tokenizer and decoder before saving
        original_pre_tokenizer = self.backend_tokenizer.pre_tokenizer
        original_decoder = self.backend_tokenizer.decoder
        self.backend_tokenizer.pre_tokenizer = None
        self.backend_tokenizer.decoder = None

        # Save the tokenizer using the parent method
        super().save_pretrained(save_directory, **kwargs)

        # Re-attach the custom pre-tokenizer and decoder
        self.backend_tokenizer.pre_tokenizer = original_pre_tokenizer
        self.backend_tokenizer.decoder = original_decoder

        # Save the tokenizer class name in tokenizer_config.json
        tokenizer_config_file = os.path.join(save_directory, 'tokenizer_config.json')
        if os.path.isfile(tokenizer_config_file):
            with open(tokenizer_config_file, 'r', encoding='utf-8') as f:
                tokenizer_config = json.load(f)
        else:
            tokenizer_config = {}

        # Correctly specify the tokenizer_class with module name
        tokenizer_config['tokenizer_class'] = "RuMorphemeTokenizerFast"
        tokenizer_config['use_fast'] = True
        tokenizer_config['auto_map'] = {"AutoTokenizer": ["", "tokenizer.RuMorphemeTokenizerFast"]}

        with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
            json.dump(tokenizer_config, f, ensure_ascii=False)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
        # Load the tokenizer using the parent method
        tokenizer = super(RuMorphemeTokenizerFast, cls).from_pretrained(
            pretrained_model_name_or_path, *init_inputs, **kwargs
        )

        # If pre-tokenizer nodel is not specified, use the default
        model_name = kwargs.get('model_name')
        if kwargs.get('model_name') is None:
            model_name: str = DEFAULT_MODEL_NAME

        # Custom pre-tokenizer
        tokenizer.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
            pre_tokenizers.Punctuation(),
            pre_tokenizers.Digits(individual_digits=True),
            pre_tokenizers.PreTokenizer.custom(RuMorphemePreTokenizer(model_name))
        ])

        # Custom decoder
        tokenizer.backend_tokenizer.decoder = decoders.Decoder.custom(RuMorphemeDecoder())

        return tokenizer