File size: 8,782 Bytes
b820243 b4d132c b820243 15bb64e b820243 15bb64e b4d132c 15bb64e b4d132c 15bb64e b820243 b4d132c b820243 b4d132c b820243 b4d132c b820243 b4d132c b820243 b4d132c b820243 b4d132c b820243 b4d132c b820243 b4d132c b820243 b4d132c c7a5318 b820243 b4d132c c7a5318 b820243 b4d132c 15bb64e b4d132c 15bb64e b4d132c 15bb64e b820243 15bb64e b820243 15bb64e b820243 15bb64e b820243 15bb64e b820243 c7a5318 b820243 15bb64e b820243 c7a5318 b820243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import json
import re
import string
from typing import List
from tokenizers import pre_tokenizers, decoders, NormalizedString, PreTokenizedString, AddedToken
from transformers import PreTrainedTokenizerFast
from rumorpheme import RuMorphemeModel, labels_to_morphemes
DEFAULT_MODEL_NAME = "evilfreelancer/ruMorpheme-v0.2"
END, BEGIN, PAD, UNKNOWN, CAP, ALL_CAPS = 0, 1, 2, 3, 4, 5
SYSTEM, USER, ASSISTANT, FUNCTION_CALL, FUNCTION_RESPONSE = 6, 7, 8, 9, 10
SPACE, NEWLINE, TAB = 11, 12, 13
AUXILIARY = [
"</s>", "<s>", "<pad>", "<unk>", "<cap>", "<all_caps>",
"system", "user", "assistant", "function_call", "function_response",
" ", "\n", "\t"
]
NUMBERS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
LETTERS_CYRILLIC = list(map(chr, range(ord('а'), ord('я') + 1)))
LETTERS_LATIN = list(string.ascii_lowercase)
class RuMorphemePreTokenizer:
"""
Pre-tokenizer for RuMorpheme model.
Splits on spaces, newlines, and tabs, including these as tokens.
Then, applies morpheme splitting to non-space tokens.
"""
def __init__(self, model_name: str = DEFAULT_MODEL_NAME):
self.model = RuMorphemeModel.from_pretrained(model_name)
self.model.eval()
def pre_tokenize(self, pretok: PreTokenizedString):
# First, split on spaces (including newlines and tabs) and add them as tokens
pretok.split(self.split_on_spaces)
# Apply morpheme or character-level splitting to non-space tokens
pretok.split(self.morpheme_or_char_split)
def split_on_spaces(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]:
"""
Splits on spaces, newlines, and tabs, including these as tokens.
"""
text = str(normalized_string)
splits = [
NormalizedString(match.group())
for match in re.finditer(r'\s+|\S+', text)
]
# Convert newlines and tabs to tokens
for idx, split in enumerate(splits):
if split == "\n":
splits[idx] = NormalizedString(AUXILIARY[NEWLINE])
elif split == "\t":
splits[idx] = NormalizedString(AUXILIARY[TAB])
return splits
def morpheme_or_char_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]:
"""
Attempts to split the token into morphemes. If the token starts with "UNKNOWN/",
splits it into individual characters.
"""
word = str(normalized_string)
# If the token is whitespace or digits, return as is
if word.isspace() or word.isdigit():
return [normalized_string]
# Ignore tokens that are only punctuation or non-alphabetical
if not any(c.isalpha() for c in word):
return [normalized_string]
# Detect capitalization and add relevant token if necessary
cap_token = None
if word[0].isupper():
cap_token = NormalizedString(AUXILIARY[CAP])
if len(word) > 1 and word.isupper():
cap_token = NormalizedString(AUXILIARY[ALL_CAPS])
# Convert word to lowercase for morpheme splitting
word_lower = word.lower()
# Make predictions to get morphemes
all_predictions, all_log_probs = self.model.predict([word_lower])
morphs, morph_types, _ = labels_to_morphemes(word_lower, all_predictions[0], all_log_probs[0])
# Handle unknown tokens by splitting into characters
morpheme_tokens = []
for morph, morph_type in zip(morphs, morph_types):
if morph_type == "UNKNOWN":
# Split unknown morpheme into characters
char_tokens = [NormalizedString(char) for char in morph]
morpheme_tokens.extend(char_tokens)
else:
# Add as a single morpheme token
morpheme_tokens.append(NormalizedString(f"{morph_type}/{morph}"))
# Insert capitalization token if needed
if cap_token:
return [cap_token] + morpheme_tokens
else:
return morpheme_tokens
class RuMorphemeDecoder:
"""
Custom decoder for RuMorpheme model, it removes morph_type prefix from tokens and keeps spaces.
"""
def decode_chain(self, tokens: List[str]) -> List[str]:
"""
tokenizer.decode function calls this function
"""
decoded_tokens = []
capitalize_next = False
uppercase_next = False
for token in tokens:
# Handle capitalization tokens
if token == AUXILIARY[CAP]:
capitalize_next = True
continue
elif token == AUXILIARY[ALL_CAPS]:
uppercase_next = True
continue
# If token is a space, keep it as is
if token.isspace():
decoded_tokens.append(token)
else:
# Remove morph_type prefix if present
if '/' in token:
_, morph = token.split('/', 1)
else:
morph = token
# Apply capitalization if needed
if uppercase_next:
morph = morph.upper()
uppercase_next = False
elif capitalize_next:
morph = morph.capitalize()
capitalize_next = False
decoded_tokens.append(morph)
return decoded_tokens
class RuMorphemeTokenizerFast(PreTrainedTokenizerFast):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# If pre-tokenizer nodel is not specified, use the default
self.model_name = kwargs.get('model_name')
if kwargs.get('model_name') is None:
self.model_name: str = DEFAULT_MODEL_NAME
# Complete initialization
self.init_backend_tokenizer()
def init_backend_tokenizer(self):
# Custom pre-tokenizer
self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
pre_tokenizers.Punctuation(),
pre_tokenizers.Digits(individual_digits=True),
pre_tokenizers.PreTokenizer.custom(RuMorphemePreTokenizer(self.model_name))
])
# Custom decoder
self.backend_tokenizer.decoder = decoders.Decoder.custom(RuMorphemeDecoder())
def save_pretrained(self, save_directory, **kwargs):
# Temporarily remove the custom pre-tokenizer and decoder before saving
original_pre_tokenizer = self.backend_tokenizer.pre_tokenizer
original_decoder = self.backend_tokenizer.decoder
self.backend_tokenizer.pre_tokenizer = None
self.backend_tokenizer.decoder = None
# Save the tokenizer using the parent method
super().save_pretrained(save_directory, **kwargs)
# Re-attach the custom pre-tokenizer and decoder
self.backend_tokenizer.pre_tokenizer = original_pre_tokenizer
self.backend_tokenizer.decoder = original_decoder
# Save the tokenizer class name in tokenizer_config.json
tokenizer_config_file = os.path.join(save_directory, 'tokenizer_config.json')
if os.path.isfile(tokenizer_config_file):
with open(tokenizer_config_file, 'r', encoding='utf-8') as f:
tokenizer_config = json.load(f)
else:
tokenizer_config = {}
# Correctly specify the tokenizer_class with module name
tokenizer_config['tokenizer_class'] = "RuMorphemeTokenizerFast"
tokenizer_config['use_fast'] = True
tokenizer_config['auto_map'] = {"AutoTokenizer": ["", "tokenizer.RuMorphemeTokenizerFast"]}
with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
json.dump(tokenizer_config, f, ensure_ascii=False)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
# Load the tokenizer using the parent method
tokenizer = super(RuMorphemeTokenizerFast, cls).from_pretrained(
pretrained_model_name_or_path, *init_inputs, **kwargs
)
# If pre-tokenizer nodel is not specified, use the default
model_name = kwargs.get('model_name')
if kwargs.get('model_name') is None:
model_name: str = DEFAULT_MODEL_NAME
# Custom pre-tokenizer
tokenizer.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
pre_tokenizers.Punctuation(),
pre_tokenizers.Digits(individual_digits=True),
pre_tokenizers.PreTokenizer.custom(RuMorphemePreTokenizer(model_name))
])
# Custom decoder
tokenizer.backend_tokenizer.decoder = decoders.Decoder.custom(RuMorphemeDecoder())
return tokenizer
|