--- license: mit datasets: - IlyaGusev/ru_turbo_alpaca - IlyaGusev/ru_turbo_alpaca_evol_instruct - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/gpt_roleplay_realm - lksy/ru_instruct_gpt4 language: - ru - en library_name: peft pipeline_tag: conversational tags: - Saiga - ruGPT-3.5 - 13B - chat - lora - Peft - adapter --- # ruGPT-3.5 13B LoRA: Adapter-Only Version Welcome to the adapter-only version of ruGPT-3.5 13B LoRA. This model is built upon the foundation of [ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B). 📌 Important: This model was trained using settings identical to [GigaSaiga](https://huggingface.co/IlyaGusev/gigasaiga_lora), but incorporates additional dataset. 🔗 Training code is [here](https://github.com/EvilFreelancer/ruGPT-3.5-13B-lora). > Note: If you prefer, you can opt to use the ruGPT-3.5 13B fp16 base model. ## Code sample ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig MODEL_NAME = "evilfreelancer/ruGPT-3.5-13B-lora" DEFAULT_MESSAGE_TEMPLATE = "{role}\n{content}\n" DEFAULT_SYSTEM_PROMPT = "Ты — ruGPT-3.5, русскоязычный автоматический ассистент на 13 миллиардов параметров. Ты разговариваешь с людьми и помогаешь им." class Conversation: def __init__( self, message_template=DEFAULT_MESSAGE_TEMPLATE, system_prompt=DEFAULT_SYSTEM_PROMPT, start_token_id=2, bot_token_id=46787 ): self.message_template = message_template self.start_token_id = start_token_id self.bot_token_id = bot_token_id self.messages = [{ "role": "system", "content": system_prompt }] def get_start_token_id(self): return self.start_token_id def get_bot_token_id(self): return self.bot_token_id def add_user_message(self, message): self.messages.append({ "role": "user", "content": message }) def add_bot_message(self, message): self.messages.append({ "role": "bot", "content": message }) def get_prompt(self, tokenizer): final_text = "" for message in self.messages: message_text = self.message_template.format(**message) final_text += message_text final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) return final_text.strip() def generate(model, tokenizer, prompt, generation_config): data = tokenizer(prompt, return_tensors="pt") data = {k: v.to(model.device) for k, v in data.items()} output_ids = model.generate( **data, generation_config=generation_config )[0] output_ids = output_ids[len(data["input_ids"][0]):] output = tokenizer.decode(output_ids, skip_special_tokens=True) return output.strip() config = PeftConfig.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto" ) model = PeftModel.from_pretrained( model, MODEL_NAME, torch_dtype=torch.float16 ) model.eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False) generation_config = GenerationConfig.from_pretrained(MODEL_NAME) print(generation_config) conversation = Conversation() while True: user_message = input("User: ") if user_message.strip() == "/reset": conversation = Conversation() print("History reset completed!") continue conversation.add_user_message(user_message) prompt = conversation.get_prompt(tokenizer) output = generate( model=model, tokenizer=tokenizer, prompt=prompt, generation_config=generation_config ) conversation.add_bot_message(output) print("ruGPT-3.5:", output) print() print("==============================") print() ``` ## Examples ```text User: Привет! Почему трава зелёная? ruGPT-3.5: Трава зелёная благодаря хлорофиллу - пигменту растений, который поглощает световые волны определенной длины и преобразует их в энергию химических связей. Хлорофилл также обеспечивает растения питательными веществами из почвы через фотосинтез. ``` ```text User: Придумай стишок про нейросети. ruGPT-3.5: Нейросеть – это чудо науки, Она способна решать любые задачи. И если ты хочешь стать программистом, То лучше всего изучать нейронные сети. ``` ```text User: Высота самой высокой горы на Земле? ruGPT-3.5: Самая высокая гора на Земле находится в Гималаях и называется Эверест (8848 метров). ``` ```text User: Сколько максимум лет может прожить галопогосская черепаха? ruGPT-3.5: Галопогосские черепахи могут жить до 100 лет и более. Они являются одними из самых долгоживущих животных на планете. ``` ## 📚 Training Datasets The datasets utilized for training this model are consistent with those used for [Saiga-2](https://github.com/IlyaGusev/rulm). Here's the comprehensive list: - [ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca) - [ru_turbo_alpaca_evol_instruct](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca_evol_instruct) - [ru_turbo_saiga](https://huggingface.co/datasets/IlyaGusev/ru_turbo_saiga) - [ru_sharegpt_cleaned](https://huggingface.co/datasets/IlyaGusev/ru_sharegpt_cleaned) - [oasst1_ru_main_branch](https://huggingface.co/datasets/IlyaGusev/oasst1_ru_main_branch) - [gpt_roleplay_realm](https://huggingface.co/datasets/IlyaGusev/gpt_roleplay_realm) - [ru_instruct_gpt4](https://huggingface.co/datasets/lksy/ru_instruct_gpt4) ## 🛠 Training Procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ## ⚙️ Framework Versions Ensure you have the following framework versions for compatibility: - PyTorch 2.1.0 - PEFT 0.5.0 - bitsandbytes 0.41.1 - transformers 4.34.0 ## Links - https://t.me/evilfreelancer - https://dzen.ru/evilfreelancer