--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: xlm-roberta-ner-ja-v4 results: [] --- # xlm-roberta-ner-ja-v4 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9955 - Recall: 0.9978 - F1-score: 0.9966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:| | 0.0884 | 1.0 | 778 | 0.0488 | 0.9820 | 0.9838 | 0.9829 | | 0.0403 | 2.0 | 1556 | 0.0460 | 0.9888 | 0.9924 | 0.9906 | | 0.0256 | 3.0 | 2334 | 0.0518 | 0.9910 | 0.9928 | 0.9919 | | 0.0162 | 4.0 | 3112 | 0.0523 | 0.9951 | 0.9973 | 0.9962 | | 0.0087 | 5.0 | 3890 | 0.0615 | 0.9955 | 0.9978 | 0.9966 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0