andrewzamai commited on
Commit
458ff2d
·
verified ·
1 Parent(s): 08a9573

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM"
27
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:031ce246a19a329e3cb9bdf5e3fc6afdd30f76ba134e50cb192e38a4ba0b1d08
3
+ size 9462656
checkpoint-420/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-420/adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM"
27
+ }
checkpoint-420/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:031ce246a19a329e3cb9bdf5e3fc6afdd30f76ba134e50cb192e38a4ba0b1d08
3
+ size 9462656
checkpoint-420/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83c51d057bd70fae940d78a535a56825788c26b0f5cb106ff387aaeba085dd76
3
+ size 19035578
checkpoint-420/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:702b4e425c61cce81cc0dcaa0fc047a76e0ab39434bd10a7b3f1d79d834f3c6f
3
+ size 14244
checkpoint-420/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4b8b0cda23a3828a66220f9a9280c566890455294190f981aefd27a0c15d9d
3
+ size 1064
checkpoint-420/trainer_state.json ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.07559170573949814,
3
+ "best_model_checkpoint": "./trained_models/Mistral-7B-Instruct-v0.2_-1pos_-1neg_perNE_top-1NEs_TrueDef-IT/checkpoint-420",
4
+ "epoch": 0.7190241814680077,
5
+ "eval_steps": 20,
6
+ "global_step": 420,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.4999999999999998e-05,
14
+ "loss": 6.4943,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.9999999999999996e-05,
20
+ "loss": 3.9486,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 7.5e-05,
26
+ "loss": 0.4566,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 9.999999999999999e-05,
32
+ "loss": 0.3512,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "eval_loss": 0.3139978051185608,
38
+ "eval_runtime": 222.18,
39
+ "eval_samples_per_second": 7.84,
40
+ "eval_steps_per_second": 7.84,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.04,
45
+ "learning_rate": 0.000125,
46
+ "loss": 0.1879,
47
+ "step": 25
48
+ },
49
+ {
50
+ "epoch": 0.05,
51
+ "learning_rate": 0.00015,
52
+ "loss": 0.1468,
53
+ "step": 30
54
+ },
55
+ {
56
+ "epoch": 0.06,
57
+ "learning_rate": 0.000175,
58
+ "loss": 0.152,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.07,
63
+ "learning_rate": 0.00019999999999999998,
64
+ "loss": 0.1357,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.07,
69
+ "eval_loss": 0.20455242693424225,
70
+ "eval_runtime": 222.1053,
71
+ "eval_samples_per_second": 7.843,
72
+ "eval_steps_per_second": 7.843,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.08,
77
+ "learning_rate": 0.000225,
78
+ "loss": 0.1162,
79
+ "step": 45
80
+ },
81
+ {
82
+ "epoch": 0.09,
83
+ "learning_rate": 0.00025,
84
+ "loss": 0.1099,
85
+ "step": 50
86
+ },
87
+ {
88
+ "epoch": 0.09,
89
+ "learning_rate": 0.00027499999999999996,
90
+ "loss": 0.3812,
91
+ "step": 55
92
+ },
93
+ {
94
+ "epoch": 0.1,
95
+ "learning_rate": 0.0003,
96
+ "loss": 0.2093,
97
+ "step": 60
98
+ },
99
+ {
100
+ "epoch": 0.1,
101
+ "eval_loss": 0.12376075983047485,
102
+ "eval_runtime": 222.1103,
103
+ "eval_samples_per_second": 7.843,
104
+ "eval_steps_per_second": 7.843,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 0.0002999994460825163,
110
+ "loss": 0.1396,
111
+ "step": 65
112
+ },
113
+ {
114
+ "epoch": 0.12,
115
+ "learning_rate": 0.0002999977843341562,
116
+ "loss": 0.1036,
117
+ "step": 70
118
+ },
119
+ {
120
+ "epoch": 0.13,
121
+ "learning_rate": 0.00029999501476719257,
122
+ "loss": 0.0634,
123
+ "step": 75
124
+ },
125
+ {
126
+ "epoch": 0.14,
127
+ "learning_rate": 0.0002999911374020804,
128
+ "loss": 0.0933,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.14,
133
+ "eval_loss": 0.1939181536436081,
134
+ "eval_runtime": 222.0528,
135
+ "eval_samples_per_second": 7.845,
136
+ "eval_steps_per_second": 7.845,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.15,
141
+ "learning_rate": 0.00029998615226745605,
142
+ "loss": 0.0656,
143
+ "step": 85
144
+ },
145
+ {
146
+ "epoch": 0.15,
147
+ "learning_rate": 0.0002999800594001376,
148
+ "loss": 0.0519,
149
+ "step": 90
150
+ },
151
+ {
152
+ "epoch": 0.16,
153
+ "learning_rate": 0.0002999728588451245,
154
+ "loss": 0.0476,
155
+ "step": 95
156
+ },
157
+ {
158
+ "epoch": 0.17,
159
+ "learning_rate": 0.0002999645506555967,
160
+ "loss": 0.0098,
161
+ "step": 100
162
+ },
163
+ {
164
+ "epoch": 0.17,
165
+ "eval_loss": 0.24784570932388306,
166
+ "eval_runtime": 222.2602,
167
+ "eval_samples_per_second": 7.838,
168
+ "eval_steps_per_second": 7.838,
169
+ "step": 100
170
+ },
171
+ {
172
+ "epoch": 0.18,
173
+ "learning_rate": 0.00029995513489291506,
174
+ "loss": 0.356,
175
+ "step": 105
176
+ },
177
+ {
178
+ "epoch": 0.19,
179
+ "learning_rate": 0.00029994461162662024,
180
+ "loss": 0.1972,
181
+ "step": 110
182
+ },
183
+ {
184
+ "epoch": 0.2,
185
+ "learning_rate": 0.00029993298093443246,
186
+ "loss": 0.1255,
187
+ "step": 115
188
+ },
189
+ {
190
+ "epoch": 0.21,
191
+ "learning_rate": 0.000299920242902251,
192
+ "loss": 0.0923,
193
+ "step": 120
194
+ },
195
+ {
196
+ "epoch": 0.21,
197
+ "eval_loss": 0.12546367943286896,
198
+ "eval_runtime": 222.0682,
199
+ "eval_samples_per_second": 7.844,
200
+ "eval_steps_per_second": 7.844,
201
+ "step": 120
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 0.0002999063976241536,
206
+ "loss": 0.0504,
207
+ "step": 125
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 0.0002998914452023953,
212
+ "loss": 0.1582,
213
+ "step": 130
214
+ },
215
+ {
216
+ "epoch": 0.23,
217
+ "learning_rate": 0.00029987538574740826,
218
+ "loss": 0.0452,
219
+ "step": 135
220
+ },
221
+ {
222
+ "epoch": 0.24,
223
+ "learning_rate": 0.0002998582193778006,
224
+ "loss": 0.0258,
225
+ "step": 140
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "eval_loss": 0.21805395185947418,
230
+ "eval_runtime": 224.118,
231
+ "eval_samples_per_second": 7.773,
232
+ "eval_steps_per_second": 7.773,
233
+ "step": 140
234
+ },
235
+ {
236
+ "epoch": 0.25,
237
+ "learning_rate": 0.00029983994622035585,
238
+ "loss": 0.032,
239
+ "step": 145
240
+ },
241
+ {
242
+ "epoch": 0.26,
243
+ "learning_rate": 0.00029982056641003147,
244
+ "loss": 0.0224,
245
+ "step": 150
246
+ },
247
+ {
248
+ "epoch": 0.27,
249
+ "learning_rate": 0.00029980008008995834,
250
+ "loss": 0.2454,
251
+ "step": 155
252
+ },
253
+ {
254
+ "epoch": 0.27,
255
+ "learning_rate": 0.00029977848741143966,
256
+ "loss": 0.1583,
257
+ "step": 160
258
+ },
259
+ {
260
+ "epoch": 0.27,
261
+ "eval_loss": 0.10049739480018616,
262
+ "eval_runtime": 224.1576,
263
+ "eval_samples_per_second": 7.771,
264
+ "eval_steps_per_second": 7.771,
265
+ "step": 160
266
+ },
267
+ {
268
+ "epoch": 0.28,
269
+ "learning_rate": 0.0002997557885339494,
270
+ "loss": 0.1388,
271
+ "step": 165
272
+ },
273
+ {
274
+ "epoch": 0.29,
275
+ "learning_rate": 0.0002997319836251319,
276
+ "loss": 0.0962,
277
+ "step": 170
278
+ },
279
+ {
280
+ "epoch": 0.3,
281
+ "learning_rate": 0.00029970707286079966,
282
+ "loss": 0.0602,
283
+ "step": 175
284
+ },
285
+ {
286
+ "epoch": 0.31,
287
+ "learning_rate": 0.00029968105642493286,
288
+ "loss": 0.0642,
289
+ "step": 180
290
+ },
291
+ {
292
+ "epoch": 0.31,
293
+ "eval_loss": 0.10171639919281006,
294
+ "eval_runtime": 223.682,
295
+ "eval_samples_per_second": 7.788,
296
+ "eval_steps_per_second": 7.788,
297
+ "step": 180
298
+ },
299
+ {
300
+ "epoch": 0.32,
301
+ "learning_rate": 0.0002996539345096776,
302
+ "loss": 0.0499,
303
+ "step": 185
304
+ },
305
+ {
306
+ "epoch": 0.33,
307
+ "learning_rate": 0.0002996257073153446,
308
+ "loss": 0.0486,
309
+ "step": 190
310
+ },
311
+ {
312
+ "epoch": 0.33,
313
+ "learning_rate": 0.00029959637505040773,
314
+ "loss": 0.0198,
315
+ "step": 195
316
+ },
317
+ {
318
+ "epoch": 0.34,
319
+ "learning_rate": 0.00029956593793150233,
320
+ "loss": 0.0359,
321
+ "step": 200
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "eval_loss": 0.1516859233379364,
326
+ "eval_runtime": 228.4243,
327
+ "eval_samples_per_second": 7.626,
328
+ "eval_steps_per_second": 7.626,
329
+ "step": 200
330
+ },
331
+ {
332
+ "epoch": 0.35,
333
+ "learning_rate": 0.0002995343961834238,
334
+ "loss": 0.2612,
335
+ "step": 205
336
+ },
337
+ {
338
+ "epoch": 0.36,
339
+ "learning_rate": 0.00029950175003912573,
340
+ "loss": 0.1232,
341
+ "step": 210
342
+ },
343
+ {
344
+ "epoch": 0.37,
345
+ "learning_rate": 0.0002994679997397185,
346
+ "loss": 0.0861,
347
+ "step": 215
348
+ },
349
+ {
350
+ "epoch": 0.38,
351
+ "learning_rate": 0.00029943314553446706,
352
+ "loss": 0.0867,
353
+ "step": 220
354
+ },
355
+ {
356
+ "epoch": 0.38,
357
+ "eval_loss": 0.08929727226495743,
358
+ "eval_runtime": 229.1014,
359
+ "eval_samples_per_second": 7.604,
360
+ "eval_steps_per_second": 7.604,
361
+ "step": 220
362
+ },
363
+ {
364
+ "epoch": 0.39,
365
+ "learning_rate": 0.0002993971876807896,
366
+ "loss": 0.0485,
367
+ "step": 225
368
+ },
369
+ {
370
+ "epoch": 0.39,
371
+ "learning_rate": 0.00029936012644425517,
372
+ "loss": 0.0516,
373
+ "step": 230
374
+ },
375
+ {
376
+ "epoch": 0.4,
377
+ "learning_rate": 0.00029932196209858197,
378
+ "loss": 0.0583,
379
+ "step": 235
380
+ },
381
+ {
382
+ "epoch": 0.41,
383
+ "learning_rate": 0.00029928269492563537,
384
+ "loss": 0.0271,
385
+ "step": 240
386
+ },
387
+ {
388
+ "epoch": 0.41,
389
+ "eval_loss": 0.13832463324069977,
390
+ "eval_runtime": 227.2299,
391
+ "eval_samples_per_second": 7.666,
392
+ "eval_steps_per_second": 7.666,
393
+ "step": 240
394
+ },
395
+ {
396
+ "epoch": 0.42,
397
+ "learning_rate": 0.00029924232521542557,
398
+ "loss": 0.0213,
399
+ "step": 245
400
+ },
401
+ {
402
+ "epoch": 0.43,
403
+ "learning_rate": 0.00029920085326610595,
404
+ "loss": 0.0388,
405
+ "step": 250
406
+ },
407
+ {
408
+ "epoch": 0.44,
409
+ "learning_rate": 0.00029915827938397017,
410
+ "loss": 0.3212,
411
+ "step": 255
412
+ },
413
+ {
414
+ "epoch": 0.45,
415
+ "learning_rate": 0.0002991146038834505,
416
+ "loss": 0.1213,
417
+ "step": 260
418
+ },
419
+ {
420
+ "epoch": 0.45,
421
+ "eval_loss": 0.09067531675100327,
422
+ "eval_runtime": 228.6975,
423
+ "eval_samples_per_second": 7.617,
424
+ "eval_steps_per_second": 7.617,
425
+ "step": 260
426
+ },
427
+ {
428
+ "epoch": 0.45,
429
+ "learning_rate": 0.00029906982708711533,
430
+ "loss": 0.0905,
431
+ "step": 265
432
+ },
433
+ {
434
+ "epoch": 0.46,
435
+ "learning_rate": 0.00029902394932566657,
436
+ "loss": 0.0397,
437
+ "step": 270
438
+ },
439
+ {
440
+ "epoch": 0.47,
441
+ "learning_rate": 0.00029897697093793753,
442
+ "loss": 0.0497,
443
+ "step": 275
444
+ },
445
+ {
446
+ "epoch": 0.48,
447
+ "learning_rate": 0.0002989288922708902,
448
+ "loss": 0.0549,
449
+ "step": 280
450
+ },
451
+ {
452
+ "epoch": 0.48,
453
+ "eval_loss": 0.10685621201992035,
454
+ "eval_runtime": 227.369,
455
+ "eval_samples_per_second": 7.662,
456
+ "eval_steps_per_second": 7.662,
457
+ "step": 280
458
+ },
459
+ {
460
+ "epoch": 0.49,
461
+ "learning_rate": 0.0002988797136796128,
462
+ "loss": 0.0281,
463
+ "step": 285
464
+ },
465
+ {
466
+ "epoch": 0.5,
467
+ "learning_rate": 0.00029882943552731703,
468
+ "loss": 0.0586,
469
+ "step": 290
470
+ },
471
+ {
472
+ "epoch": 0.51,
473
+ "learning_rate": 0.0002987780581853355,
474
+ "loss": 0.0284,
475
+ "step": 295
476
+ },
477
+ {
478
+ "epoch": 0.51,
479
+ "learning_rate": 0.00029872558203311914,
480
+ "loss": 0.0436,
481
+ "step": 300
482
+ },
483
+ {
484
+ "epoch": 0.51,
485
+ "eval_loss": 0.1119319349527359,
486
+ "eval_runtime": 221.5402,
487
+ "eval_samples_per_second": 7.863,
488
+ "eval_steps_per_second": 7.863,
489
+ "step": 300
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 0.00029867200745823384,
494
+ "loss": 0.1798,
495
+ "step": 305
496
+ },
497
+ {
498
+ "epoch": 0.53,
499
+ "learning_rate": 0.00029861733485635834,
500
+ "loss": 0.1191,
501
+ "step": 310
502
+ },
503
+ {
504
+ "epoch": 0.54,
505
+ "learning_rate": 0.0002985615646312807,
506
+ "loss": 0.0841,
507
+ "step": 315
508
+ },
509
+ {
510
+ "epoch": 0.55,
511
+ "learning_rate": 0.00029850469719489573,
512
+ "loss": 0.1025,
513
+ "step": 320
514
+ },
515
+ {
516
+ "epoch": 0.55,
517
+ "eval_loss": 0.08742260932922363,
518
+ "eval_runtime": 221.4467,
519
+ "eval_samples_per_second": 7.866,
520
+ "eval_steps_per_second": 7.866,
521
+ "step": 320
522
+ },
523
+ {
524
+ "epoch": 0.56,
525
+ "learning_rate": 0.00029844673296720154,
526
+ "loss": 0.0457,
527
+ "step": 325
528
+ },
529
+ {
530
+ "epoch": 0.56,
531
+ "learning_rate": 0.00029838767237629684,
532
+ "loss": 0.0465,
533
+ "step": 330
534
+ },
535
+ {
536
+ "epoch": 0.57,
537
+ "learning_rate": 0.0002983275158583775,
538
+ "loss": 0.063,
539
+ "step": 335
540
+ },
541
+ {
542
+ "epoch": 0.58,
543
+ "learning_rate": 0.0002982662638577335,
544
+ "loss": 0.0238,
545
+ "step": 340
546
+ },
547
+ {
548
+ "epoch": 0.58,
549
+ "eval_loss": 0.14248833060264587,
550
+ "eval_runtime": 225.6871,
551
+ "eval_samples_per_second": 7.719,
552
+ "eval_steps_per_second": 7.719,
553
+ "step": 340
554
+ },
555
+ {
556
+ "epoch": 0.59,
557
+ "learning_rate": 0.00029820391682674563,
558
+ "loss": 0.0205,
559
+ "step": 345
560
+ },
561
+ {
562
+ "epoch": 0.6,
563
+ "learning_rate": 0.00029814047522588194,
564
+ "loss": 0.0218,
565
+ "step": 350
566
+ },
567
+ {
568
+ "epoch": 0.61,
569
+ "learning_rate": 0.00029807593952369465,
570
+ "loss": 0.2612,
571
+ "step": 355
572
+ },
573
+ {
574
+ "epoch": 0.62,
575
+ "learning_rate": 0.00029801031019681645,
576
+ "loss": 0.1889,
577
+ "step": 360
578
+ },
579
+ {
580
+ "epoch": 0.62,
581
+ "eval_loss": 0.09468888491392136,
582
+ "eval_runtime": 228.9494,
583
+ "eval_samples_per_second": 7.609,
584
+ "eval_steps_per_second": 7.609,
585
+ "step": 360
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 0.0002979435877299571,
590
+ "loss": 0.0905,
591
+ "step": 365
592
+ },
593
+ {
594
+ "epoch": 0.63,
595
+ "learning_rate": 0.0002978757726158998,
596
+ "loss": 0.0619,
597
+ "step": 370
598
+ },
599
+ {
600
+ "epoch": 0.64,
601
+ "learning_rate": 0.00029780686535549756,
602
+ "loss": 0.0625,
603
+ "step": 375
604
+ },
605
+ {
606
+ "epoch": 0.65,
607
+ "learning_rate": 0.0002977368664576696,
608
+ "loss": 0.0585,
609
+ "step": 380
610
+ },
611
+ {
612
+ "epoch": 0.65,
613
+ "eval_loss": 0.08509568870067596,
614
+ "eval_runtime": 227.8786,
615
+ "eval_samples_per_second": 7.644,
616
+ "eval_steps_per_second": 7.644,
617
+ "step": 380
618
+ },
619
+ {
620
+ "epoch": 0.66,
621
+ "learning_rate": 0.00029766577643939744,
622
+ "loss": 0.0327,
623
+ "step": 385
624
+ },
625
+ {
626
+ "epoch": 0.67,
627
+ "learning_rate": 0.00029759359582572103,
628
+ "loss": 0.043,
629
+ "step": 390
630
+ },
631
+ {
632
+ "epoch": 0.68,
633
+ "learning_rate": 0.00029752032514973516,
634
+ "loss": 0.0234,
635
+ "step": 395
636
+ },
637
+ {
638
+ "epoch": 0.68,
639
+ "learning_rate": 0.00029744596495258525,
640
+ "loss": 0.0119,
641
+ "step": 400
642
+ },
643
+ {
644
+ "epoch": 0.68,
645
+ "eval_loss": 0.09636981785297394,
646
+ "eval_runtime": 228.541,
647
+ "eval_samples_per_second": 7.622,
648
+ "eval_steps_per_second": 7.622,
649
+ "step": 400
650
+ },
651
+ {
652
+ "epoch": 0.69,
653
+ "learning_rate": 0.00029737051578346345,
654
+ "loss": 0.1557,
655
+ "step": 405
656
+ },
657
+ {
658
+ "epoch": 0.7,
659
+ "learning_rate": 0.0002972939781996047,
660
+ "loss": 0.1116,
661
+ "step": 410
662
+ },
663
+ {
664
+ "epoch": 0.71,
665
+ "learning_rate": 0.0002972163527662824,
666
+ "loss": 0.0638,
667
+ "step": 415
668
+ },
669
+ {
670
+ "epoch": 0.72,
671
+ "learning_rate": 0.00029713764005680427,
672
+ "loss": 0.0726,
673
+ "step": 420
674
+ },
675
+ {
676
+ "epoch": 0.72,
677
+ "eval_loss": 0.07559170573949814,
678
+ "eval_runtime": 228.1262,
679
+ "eval_samples_per_second": 7.636,
680
+ "eval_steps_per_second": 7.636,
681
+ "step": 420
682
+ }
683
+ ],
684
+ "logging_steps": 5,
685
+ "max_steps": 5840,
686
+ "num_input_tokens_seen": 0,
687
+ "num_train_epochs": 10,
688
+ "save_steps": 20,
689
+ "total_flos": 2.1261537057551155e+17,
690
+ "train_batch_size": 1,
691
+ "trial_name": null,
692
+ "trial_params": null
693
+ }
checkpoint-420/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:790952d63dabcb27434d04a2ca79e0e8844ccfcd3124036a9abca65a2d24669b
3
+ size 4792
checkpoint-520/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-520/adapter_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj",
24
+ "k_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM"
27
+ }
checkpoint-520/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b53ee7dcaeabf5cde29fbb85e1525e09e6ad2c18e60945f0e0ffe3b7921d960
3
+ size 9462656
checkpoint-520/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9370fd4be7d76a08c0b2c8f8848eefe47bd63a3d7bab937ed834b149ed32d9fd
3
+ size 19035578
checkpoint-520/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0776f9f5ebfe31f0df16f250abbeb2c11060eb7e2204e2f7911a5eb73f6b08b
3
+ size 14244
checkpoint-520/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69978fbe25427833c39316fa7fc29c20deed1ef3aa5af8275ccb6eef52a3c68c
3
+ size 1064
checkpoint-520/trainer_state.json ADDED
@@ -0,0 +1,853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.07559170573949814,
3
+ "best_model_checkpoint": "./trained_models/Mistral-7B-Instruct-v0.2_-1pos_-1neg_perNE_top-1NEs_TrueDef-IT/checkpoint-420",
4
+ "epoch": 0.8902204151508667,
5
+ "eval_steps": 20,
6
+ "global_step": 520,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.4999999999999998e-05,
14
+ "loss": 6.4943,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.9999999999999996e-05,
20
+ "loss": 3.9486,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 7.5e-05,
26
+ "loss": 0.4566,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 9.999999999999999e-05,
32
+ "loss": 0.3512,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "eval_loss": 0.3139978051185608,
38
+ "eval_runtime": 222.18,
39
+ "eval_samples_per_second": 7.84,
40
+ "eval_steps_per_second": 7.84,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.04,
45
+ "learning_rate": 0.000125,
46
+ "loss": 0.1879,
47
+ "step": 25
48
+ },
49
+ {
50
+ "epoch": 0.05,
51
+ "learning_rate": 0.00015,
52
+ "loss": 0.1468,
53
+ "step": 30
54
+ },
55
+ {
56
+ "epoch": 0.06,
57
+ "learning_rate": 0.000175,
58
+ "loss": 0.152,
59
+ "step": 35
60
+ },
61
+ {
62
+ "epoch": 0.07,
63
+ "learning_rate": 0.00019999999999999998,
64
+ "loss": 0.1357,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.07,
69
+ "eval_loss": 0.20455242693424225,
70
+ "eval_runtime": 222.1053,
71
+ "eval_samples_per_second": 7.843,
72
+ "eval_steps_per_second": 7.843,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.08,
77
+ "learning_rate": 0.000225,
78
+ "loss": 0.1162,
79
+ "step": 45
80
+ },
81
+ {
82
+ "epoch": 0.09,
83
+ "learning_rate": 0.00025,
84
+ "loss": 0.1099,
85
+ "step": 50
86
+ },
87
+ {
88
+ "epoch": 0.09,
89
+ "learning_rate": 0.00027499999999999996,
90
+ "loss": 0.3812,
91
+ "step": 55
92
+ },
93
+ {
94
+ "epoch": 0.1,
95
+ "learning_rate": 0.0003,
96
+ "loss": 0.2093,
97
+ "step": 60
98
+ },
99
+ {
100
+ "epoch": 0.1,
101
+ "eval_loss": 0.12376075983047485,
102
+ "eval_runtime": 222.1103,
103
+ "eval_samples_per_second": 7.843,
104
+ "eval_steps_per_second": 7.843,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.11,
109
+ "learning_rate": 0.0002999994460825163,
110
+ "loss": 0.1396,
111
+ "step": 65
112
+ },
113
+ {
114
+ "epoch": 0.12,
115
+ "learning_rate": 0.0002999977843341562,
116
+ "loss": 0.1036,
117
+ "step": 70
118
+ },
119
+ {
120
+ "epoch": 0.13,
121
+ "learning_rate": 0.00029999501476719257,
122
+ "loss": 0.0634,
123
+ "step": 75
124
+ },
125
+ {
126
+ "epoch": 0.14,
127
+ "learning_rate": 0.0002999911374020804,
128
+ "loss": 0.0933,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 0.14,
133
+ "eval_loss": 0.1939181536436081,
134
+ "eval_runtime": 222.0528,
135
+ "eval_samples_per_second": 7.845,
136
+ "eval_steps_per_second": 7.845,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.15,
141
+ "learning_rate": 0.00029998615226745605,
142
+ "loss": 0.0656,
143
+ "step": 85
144
+ },
145
+ {
146
+ "epoch": 0.15,
147
+ "learning_rate": 0.0002999800594001376,
148
+ "loss": 0.0519,
149
+ "step": 90
150
+ },
151
+ {
152
+ "epoch": 0.16,
153
+ "learning_rate": 0.0002999728588451245,
154
+ "loss": 0.0476,
155
+ "step": 95
156
+ },
157
+ {
158
+ "epoch": 0.17,
159
+ "learning_rate": 0.0002999645506555967,
160
+ "loss": 0.0098,
161
+ "step": 100
162
+ },
163
+ {
164
+ "epoch": 0.17,
165
+ "eval_loss": 0.24784570932388306,
166
+ "eval_runtime": 222.2602,
167
+ "eval_samples_per_second": 7.838,
168
+ "eval_steps_per_second": 7.838,
169
+ "step": 100
170
+ },
171
+ {
172
+ "epoch": 0.18,
173
+ "learning_rate": 0.00029995513489291506,
174
+ "loss": 0.356,
175
+ "step": 105
176
+ },
177
+ {
178
+ "epoch": 0.19,
179
+ "learning_rate": 0.00029994461162662024,
180
+ "loss": 0.1972,
181
+ "step": 110
182
+ },
183
+ {
184
+ "epoch": 0.2,
185
+ "learning_rate": 0.00029993298093443246,
186
+ "loss": 0.1255,
187
+ "step": 115
188
+ },
189
+ {
190
+ "epoch": 0.21,
191
+ "learning_rate": 0.000299920242902251,
192
+ "loss": 0.0923,
193
+ "step": 120
194
+ },
195
+ {
196
+ "epoch": 0.21,
197
+ "eval_loss": 0.12546367943286896,
198
+ "eval_runtime": 222.0682,
199
+ "eval_samples_per_second": 7.844,
200
+ "eval_steps_per_second": 7.844,
201
+ "step": 120
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "learning_rate": 0.0002999063976241536,
206
+ "loss": 0.0504,
207
+ "step": 125
208
+ },
209
+ {
210
+ "epoch": 0.22,
211
+ "learning_rate": 0.0002998914452023953,
212
+ "loss": 0.1582,
213
+ "step": 130
214
+ },
215
+ {
216
+ "epoch": 0.23,
217
+ "learning_rate": 0.00029987538574740826,
218
+ "loss": 0.0452,
219
+ "step": 135
220
+ },
221
+ {
222
+ "epoch": 0.24,
223
+ "learning_rate": 0.0002998582193778006,
224
+ "loss": 0.0258,
225
+ "step": 140
226
+ },
227
+ {
228
+ "epoch": 0.24,
229
+ "eval_loss": 0.21805395185947418,
230
+ "eval_runtime": 224.118,
231
+ "eval_samples_per_second": 7.773,
232
+ "eval_steps_per_second": 7.773,
233
+ "step": 140
234
+ },
235
+ {
236
+ "epoch": 0.25,
237
+ "learning_rate": 0.00029983994622035585,
238
+ "loss": 0.032,
239
+ "step": 145
240
+ },
241
+ {
242
+ "epoch": 0.26,
243
+ "learning_rate": 0.00029982056641003147,
244
+ "loss": 0.0224,
245
+ "step": 150
246
+ },
247
+ {
248
+ "epoch": 0.27,
249
+ "learning_rate": 0.00029980008008995834,
250
+ "loss": 0.2454,
251
+ "step": 155
252
+ },
253
+ {
254
+ "epoch": 0.27,
255
+ "learning_rate": 0.00029977848741143966,
256
+ "loss": 0.1583,
257
+ "step": 160
258
+ },
259
+ {
260
+ "epoch": 0.27,
261
+ "eval_loss": 0.10049739480018616,
262
+ "eval_runtime": 224.1576,
263
+ "eval_samples_per_second": 7.771,
264
+ "eval_steps_per_second": 7.771,
265
+ "step": 160
266
+ },
267
+ {
268
+ "epoch": 0.28,
269
+ "learning_rate": 0.0002997557885339494,
270
+ "loss": 0.1388,
271
+ "step": 165
272
+ },
273
+ {
274
+ "epoch": 0.29,
275
+ "learning_rate": 0.0002997319836251319,
276
+ "loss": 0.0962,
277
+ "step": 170
278
+ },
279
+ {
280
+ "epoch": 0.3,
281
+ "learning_rate": 0.00029970707286079966,
282
+ "loss": 0.0602,
283
+ "step": 175
284
+ },
285
+ {
286
+ "epoch": 0.31,
287
+ "learning_rate": 0.00029968105642493286,
288
+ "loss": 0.0642,
289
+ "step": 180
290
+ },
291
+ {
292
+ "epoch": 0.31,
293
+ "eval_loss": 0.10171639919281006,
294
+ "eval_runtime": 223.682,
295
+ "eval_samples_per_second": 7.788,
296
+ "eval_steps_per_second": 7.788,
297
+ "step": 180
298
+ },
299
+ {
300
+ "epoch": 0.32,
301
+ "learning_rate": 0.0002996539345096776,
302
+ "loss": 0.0499,
303
+ "step": 185
304
+ },
305
+ {
306
+ "epoch": 0.33,
307
+ "learning_rate": 0.0002996257073153446,
308
+ "loss": 0.0486,
309
+ "step": 190
310
+ },
311
+ {
312
+ "epoch": 0.33,
313
+ "learning_rate": 0.00029959637505040773,
314
+ "loss": 0.0198,
315
+ "step": 195
316
+ },
317
+ {
318
+ "epoch": 0.34,
319
+ "learning_rate": 0.00029956593793150233,
320
+ "loss": 0.0359,
321
+ "step": 200
322
+ },
323
+ {
324
+ "epoch": 0.34,
325
+ "eval_loss": 0.1516859233379364,
326
+ "eval_runtime": 228.4243,
327
+ "eval_samples_per_second": 7.626,
328
+ "eval_steps_per_second": 7.626,
329
+ "step": 200
330
+ },
331
+ {
332
+ "epoch": 0.35,
333
+ "learning_rate": 0.0002995343961834238,
334
+ "loss": 0.2612,
335
+ "step": 205
336
+ },
337
+ {
338
+ "epoch": 0.36,
339
+ "learning_rate": 0.00029950175003912573,
340
+ "loss": 0.1232,
341
+ "step": 210
342
+ },
343
+ {
344
+ "epoch": 0.37,
345
+ "learning_rate": 0.0002994679997397185,
346
+ "loss": 0.0861,
347
+ "step": 215
348
+ },
349
+ {
350
+ "epoch": 0.38,
351
+ "learning_rate": 0.00029943314553446706,
352
+ "loss": 0.0867,
353
+ "step": 220
354
+ },
355
+ {
356
+ "epoch": 0.38,
357
+ "eval_loss": 0.08929727226495743,
358
+ "eval_runtime": 229.1014,
359
+ "eval_samples_per_second": 7.604,
360
+ "eval_steps_per_second": 7.604,
361
+ "step": 220
362
+ },
363
+ {
364
+ "epoch": 0.39,
365
+ "learning_rate": 0.0002993971876807896,
366
+ "loss": 0.0485,
367
+ "step": 225
368
+ },
369
+ {
370
+ "epoch": 0.39,
371
+ "learning_rate": 0.00029936012644425517,
372
+ "loss": 0.0516,
373
+ "step": 230
374
+ },
375
+ {
376
+ "epoch": 0.4,
377
+ "learning_rate": 0.00029932196209858197,
378
+ "loss": 0.0583,
379
+ "step": 235
380
+ },
381
+ {
382
+ "epoch": 0.41,
383
+ "learning_rate": 0.00029928269492563537,
384
+ "loss": 0.0271,
385
+ "step": 240
386
+ },
387
+ {
388
+ "epoch": 0.41,
389
+ "eval_loss": 0.13832463324069977,
390
+ "eval_runtime": 227.2299,
391
+ "eval_samples_per_second": 7.666,
392
+ "eval_steps_per_second": 7.666,
393
+ "step": 240
394
+ },
395
+ {
396
+ "epoch": 0.42,
397
+ "learning_rate": 0.00029924232521542557,
398
+ "loss": 0.0213,
399
+ "step": 245
400
+ },
401
+ {
402
+ "epoch": 0.43,
403
+ "learning_rate": 0.00029920085326610595,
404
+ "loss": 0.0388,
405
+ "step": 250
406
+ },
407
+ {
408
+ "epoch": 0.44,
409
+ "learning_rate": 0.00029915827938397017,
410
+ "loss": 0.3212,
411
+ "step": 255
412
+ },
413
+ {
414
+ "epoch": 0.45,
415
+ "learning_rate": 0.0002991146038834505,
416
+ "loss": 0.1213,
417
+ "step": 260
418
+ },
419
+ {
420
+ "epoch": 0.45,
421
+ "eval_loss": 0.09067531675100327,
422
+ "eval_runtime": 228.6975,
423
+ "eval_samples_per_second": 7.617,
424
+ "eval_steps_per_second": 7.617,
425
+ "step": 260
426
+ },
427
+ {
428
+ "epoch": 0.45,
429
+ "learning_rate": 0.00029906982708711533,
430
+ "loss": 0.0905,
431
+ "step": 265
432
+ },
433
+ {
434
+ "epoch": 0.46,
435
+ "learning_rate": 0.00029902394932566657,
436
+ "loss": 0.0397,
437
+ "step": 270
438
+ },
439
+ {
440
+ "epoch": 0.47,
441
+ "learning_rate": 0.00029897697093793753,
442
+ "loss": 0.0497,
443
+ "step": 275
444
+ },
445
+ {
446
+ "epoch": 0.48,
447
+ "learning_rate": 0.0002989288922708902,
448
+ "loss": 0.0549,
449
+ "step": 280
450
+ },
451
+ {
452
+ "epoch": 0.48,
453
+ "eval_loss": 0.10685621201992035,
454
+ "eval_runtime": 227.369,
455
+ "eval_samples_per_second": 7.662,
456
+ "eval_steps_per_second": 7.662,
457
+ "step": 280
458
+ },
459
+ {
460
+ "epoch": 0.49,
461
+ "learning_rate": 0.0002988797136796128,
462
+ "loss": 0.0281,
463
+ "step": 285
464
+ },
465
+ {
466
+ "epoch": 0.5,
467
+ "learning_rate": 0.00029882943552731703,
468
+ "loss": 0.0586,
469
+ "step": 290
470
+ },
471
+ {
472
+ "epoch": 0.51,
473
+ "learning_rate": 0.0002987780581853355,
474
+ "loss": 0.0284,
475
+ "step": 295
476
+ },
477
+ {
478
+ "epoch": 0.51,
479
+ "learning_rate": 0.00029872558203311914,
480
+ "loss": 0.0436,
481
+ "step": 300
482
+ },
483
+ {
484
+ "epoch": 0.51,
485
+ "eval_loss": 0.1119319349527359,
486
+ "eval_runtime": 221.5402,
487
+ "eval_samples_per_second": 7.863,
488
+ "eval_steps_per_second": 7.863,
489
+ "step": 300
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "learning_rate": 0.00029867200745823384,
494
+ "loss": 0.1798,
495
+ "step": 305
496
+ },
497
+ {
498
+ "epoch": 0.53,
499
+ "learning_rate": 0.00029861733485635834,
500
+ "loss": 0.1191,
501
+ "step": 310
502
+ },
503
+ {
504
+ "epoch": 0.54,
505
+ "learning_rate": 0.0002985615646312807,
506
+ "loss": 0.0841,
507
+ "step": 315
508
+ },
509
+ {
510
+ "epoch": 0.55,
511
+ "learning_rate": 0.00029850469719489573,
512
+ "loss": 0.1025,
513
+ "step": 320
514
+ },
515
+ {
516
+ "epoch": 0.55,
517
+ "eval_loss": 0.08742260932922363,
518
+ "eval_runtime": 221.4467,
519
+ "eval_samples_per_second": 7.866,
520
+ "eval_steps_per_second": 7.866,
521
+ "step": 320
522
+ },
523
+ {
524
+ "epoch": 0.56,
525
+ "learning_rate": 0.00029844673296720154,
526
+ "loss": 0.0457,
527
+ "step": 325
528
+ },
529
+ {
530
+ "epoch": 0.56,
531
+ "learning_rate": 0.00029838767237629684,
532
+ "loss": 0.0465,
533
+ "step": 330
534
+ },
535
+ {
536
+ "epoch": 0.57,
537
+ "learning_rate": 0.0002983275158583775,
538
+ "loss": 0.063,
539
+ "step": 335
540
+ },
541
+ {
542
+ "epoch": 0.58,
543
+ "learning_rate": 0.0002982662638577335,
544
+ "loss": 0.0238,
545
+ "step": 340
546
+ },
547
+ {
548
+ "epoch": 0.58,
549
+ "eval_loss": 0.14248833060264587,
550
+ "eval_runtime": 225.6871,
551
+ "eval_samples_per_second": 7.719,
552
+ "eval_steps_per_second": 7.719,
553
+ "step": 340
554
+ },
555
+ {
556
+ "epoch": 0.59,
557
+ "learning_rate": 0.00029820391682674563,
558
+ "loss": 0.0205,
559
+ "step": 345
560
+ },
561
+ {
562
+ "epoch": 0.6,
563
+ "learning_rate": 0.00029814047522588194,
564
+ "loss": 0.0218,
565
+ "step": 350
566
+ },
567
+ {
568
+ "epoch": 0.61,
569
+ "learning_rate": 0.00029807593952369465,
570
+ "loss": 0.2612,
571
+ "step": 355
572
+ },
573
+ {
574
+ "epoch": 0.62,
575
+ "learning_rate": 0.00029801031019681645,
576
+ "loss": 0.1889,
577
+ "step": 360
578
+ },
579
+ {
580
+ "epoch": 0.62,
581
+ "eval_loss": 0.09468888491392136,
582
+ "eval_runtime": 228.9494,
583
+ "eval_samples_per_second": 7.609,
584
+ "eval_steps_per_second": 7.609,
585
+ "step": 360
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "learning_rate": 0.0002979435877299571,
590
+ "loss": 0.0905,
591
+ "step": 365
592
+ },
593
+ {
594
+ "epoch": 0.63,
595
+ "learning_rate": 0.0002978757726158998,
596
+ "loss": 0.0619,
597
+ "step": 370
598
+ },
599
+ {
600
+ "epoch": 0.64,
601
+ "learning_rate": 0.00029780686535549756,
602
+ "loss": 0.0625,
603
+ "step": 375
604
+ },
605
+ {
606
+ "epoch": 0.65,
607
+ "learning_rate": 0.0002977368664576696,
608
+ "loss": 0.0585,
609
+ "step": 380
610
+ },
611
+ {
612
+ "epoch": 0.65,
613
+ "eval_loss": 0.08509568870067596,
614
+ "eval_runtime": 227.8786,
615
+ "eval_samples_per_second": 7.644,
616
+ "eval_steps_per_second": 7.644,
617
+ "step": 380
618
+ },
619
+ {
620
+ "epoch": 0.66,
621
+ "learning_rate": 0.00029766577643939744,
622
+ "loss": 0.0327,
623
+ "step": 385
624
+ },
625
+ {
626
+ "epoch": 0.67,
627
+ "learning_rate": 0.00029759359582572103,
628
+ "loss": 0.043,
629
+ "step": 390
630
+ },
631
+ {
632
+ "epoch": 0.68,
633
+ "learning_rate": 0.00029752032514973516,
634
+ "loss": 0.0234,
635
+ "step": 395
636
+ },
637
+ {
638
+ "epoch": 0.68,
639
+ "learning_rate": 0.00029744596495258525,
640
+ "loss": 0.0119,
641
+ "step": 400
642
+ },
643
+ {
644
+ "epoch": 0.68,
645
+ "eval_loss": 0.09636981785297394,
646
+ "eval_runtime": 228.541,
647
+ "eval_samples_per_second": 7.622,
648
+ "eval_steps_per_second": 7.622,
649
+ "step": 400
650
+ },
651
+ {
652
+ "epoch": 0.69,
653
+ "learning_rate": 0.00029737051578346345,
654
+ "loss": 0.1557,
655
+ "step": 405
656
+ },
657
+ {
658
+ "epoch": 0.7,
659
+ "learning_rate": 0.0002972939781996047,
660
+ "loss": 0.1116,
661
+ "step": 410
662
+ },
663
+ {
664
+ "epoch": 0.71,
665
+ "learning_rate": 0.0002972163527662824,
666
+ "loss": 0.0638,
667
+ "step": 415
668
+ },
669
+ {
670
+ "epoch": 0.72,
671
+ "learning_rate": 0.00029713764005680427,
672
+ "loss": 0.0726,
673
+ "step": 420
674
+ },
675
+ {
676
+ "epoch": 0.72,
677
+ "eval_loss": 0.07559170573949814,
678
+ "eval_runtime": 228.1262,
679
+ "eval_samples_per_second": 7.636,
680
+ "eval_steps_per_second": 7.636,
681
+ "step": 420
682
+ },
683
+ {
684
+ "epoch": 0.73,
685
+ "learning_rate": 0.00029705784065250826,
686
+ "loss": 0.0598,
687
+ "step": 425
688
+ },
689
+ {
690
+ "epoch": 0.74,
691
+ "learning_rate": 0.00029697695514275824,
692
+ "loss": 0.0352,
693
+ "step": 430
694
+ },
695
+ {
696
+ "epoch": 0.74,
697
+ "learning_rate": 0.0002968949841249395,
698
+ "loss": 0.0284,
699
+ "step": 435
700
+ },
701
+ {
702
+ "epoch": 0.75,
703
+ "learning_rate": 0.00029681192820445445,
704
+ "loss": 0.0337,
705
+ "step": 440
706
+ },
707
+ {
708
+ "epoch": 0.75,
709
+ "eval_loss": 0.10360870510339737,
710
+ "eval_runtime": 227.1852,
711
+ "eval_samples_per_second": 7.668,
712
+ "eval_steps_per_second": 7.668,
713
+ "step": 440
714
+ },
715
+ {
716
+ "epoch": 0.76,
717
+ "learning_rate": 0.00029672778799471797,
718
+ "loss": 0.0068,
719
+ "step": 445
720
+ },
721
+ {
722
+ "epoch": 0.77,
723
+ "learning_rate": 0.0002966425641171534,
724
+ "loss": 0.0303,
725
+ "step": 450
726
+ },
727
+ {
728
+ "epoch": 0.78,
729
+ "learning_rate": 0.0002965562572011872,
730
+ "loss": 0.1159,
731
+ "step": 455
732
+ },
733
+ {
734
+ "epoch": 0.79,
735
+ "learning_rate": 0.00029646886788424487,
736
+ "loss": 0.1036,
737
+ "step": 460
738
+ },
739
+ {
740
+ "epoch": 0.79,
741
+ "eval_loss": 0.0761430412530899,
742
+ "eval_runtime": 228.7927,
743
+ "eval_samples_per_second": 7.614,
744
+ "eval_steps_per_second": 7.614,
745
+ "step": 460
746
+ },
747
+ {
748
+ "epoch": 0.8,
749
+ "learning_rate": 0.000296380396811746,
750
+ "loss": 0.0702,
751
+ "step": 465
752
+ },
753
+ {
754
+ "epoch": 0.8,
755
+ "learning_rate": 0.00029629084463709957,
756
+ "loss": 0.0893,
757
+ "step": 470
758
+ },
759
+ {
760
+ "epoch": 0.81,
761
+ "learning_rate": 0.0002962002120216992,
762
+ "loss": 0.0526,
763
+ "step": 475
764
+ },
765
+ {
766
+ "epoch": 0.82,
767
+ "learning_rate": 0.00029610849963491797,
768
+ "loss": 0.0314,
769
+ "step": 480
770
+ },
771
+ {
772
+ "epoch": 0.82,
773
+ "eval_loss": 0.08553514629602432,
774
+ "eval_runtime": 227.4129,
775
+ "eval_samples_per_second": 7.66,
776
+ "eval_steps_per_second": 7.66,
777
+ "step": 480
778
+ },
779
+ {
780
+ "epoch": 0.83,
781
+ "learning_rate": 0.0002960157081541039,
782
+ "loss": 0.0269,
783
+ "step": 485
784
+ },
785
+ {
786
+ "epoch": 0.84,
787
+ "learning_rate": 0.0002959218382645746,
788
+ "loss": 0.0281,
789
+ "step": 490
790
+ },
791
+ {
792
+ "epoch": 0.85,
793
+ "learning_rate": 0.00029582689065961237,
794
+ "loss": 0.0132,
795
+ "step": 495
796
+ },
797
+ {
798
+ "epoch": 0.86,
799
+ "learning_rate": 0.00029573086604045904,
800
+ "loss": 0.0151,
801
+ "step": 500
802
+ },
803
+ {
804
+ "epoch": 0.86,
805
+ "eval_loss": 0.09203532338142395,
806
+ "eval_runtime": 228.4081,
807
+ "eval_samples_per_second": 7.627,
808
+ "eval_steps_per_second": 7.627,
809
+ "step": 500
810
+ },
811
+ {
812
+ "epoch": 0.86,
813
+ "learning_rate": 0.0002956337651163109,
814
+ "loss": 0.1379,
815
+ "step": 505
816
+ },
817
+ {
818
+ "epoch": 0.87,
819
+ "learning_rate": 0.00029553558860431317,
820
+ "loss": 0.1116,
821
+ "step": 510
822
+ },
823
+ {
824
+ "epoch": 0.88,
825
+ "learning_rate": 0.0002954363372295551,
826
+ "loss": 0.0711,
827
+ "step": 515
828
+ },
829
+ {
830
+ "epoch": 0.89,
831
+ "learning_rate": 0.00029533601172506427,
832
+ "loss": 0.0606,
833
+ "step": 520
834
+ },
835
+ {
836
+ "epoch": 0.89,
837
+ "eval_loss": 0.086419016122818,
838
+ "eval_runtime": 228.0366,
839
+ "eval_samples_per_second": 7.639,
840
+ "eval_steps_per_second": 7.639,
841
+ "step": 520
842
+ }
843
+ ],
844
+ "logging_steps": 5,
845
+ "max_steps": 5840,
846
+ "num_input_tokens_seen": 0,
847
+ "num_train_epochs": 10,
848
+ "save_steps": 20,
849
+ "total_flos": 2.6286417487016755e+17,
850
+ "train_batch_size": 1,
851
+ "trial_name": null,
852
+ "trial_params": null
853
+ }
checkpoint-520/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:790952d63dabcb27434d04a2ca79e0e8844ccfcd3124036a9abca65a2d24669b
3
+ size 4792
training_configs.yml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # fine-tuning Llama-3-8b instruct version on PileNER with topNE NEs and N samples per NE (N positive + N negative)
2
+
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ prompt_template_name: llama2_italian
5
+ # using dataset converted from MSEQA format to GenQA format (instruction, input, output) columns
6
+ data_path: None
7
+ val_data_path: None
8
+ select_train_portion: -1
9
+ val_set_size: -1 # if -1 use all validation data
10
+ output_dir: None
11
+ early_stopping_patience: 5
12
+ #training hyperparams
13
+ batch_size: 32
14
+ micro_batch_size: 1
15
+ num_epochs: 10
16
+ learning_rate: 3.0e-4
17
+ cutoff_len: 768
18
+
19
+ warmup_steps: 60
20
+ eval_steps: 20
21
+ logging_steps: 5
22
+ max_grad_norm: 1.0
23
+ #lora hyperparams
24
+ use_lora: True
25
+ lora_alpha: 16
26
+ lora_dropout: 0.05
27
+ lora_r: 8
28
+ lora_target_modules:
29
+ - q_proj
30
+ - v_proj
31
+ - k_proj
32
+ - v_proj
33
+ #llm hyperparams
34
+ # NTP loss only on Response
35
+ train_on_inputs: False
36
+ group_by_length: True
37
+ #quant params
38
+ load_8bit: False
39
+ load_4bit: False
40
+ #general param
41
+ save_total_limit: 2
42
+ use_flash_attention: False
43
+ shuffle: True
44
+ gradient_checkpointing: False