Upload folder using huggingface_hub
Browse files- README.md +204 -0
- adapter_config.json +27 -0
- adapter_model.safetensors +3 -0
- checkpoint-420/README.md +204 -0
- checkpoint-420/adapter_config.json +27 -0
- checkpoint-420/adapter_model.safetensors +3 -0
- checkpoint-420/optimizer.pt +3 -0
- checkpoint-420/rng_state.pth +3 -0
- checkpoint-420/scheduler.pt +3 -0
- checkpoint-420/trainer_state.json +693 -0
- checkpoint-420/training_args.bin +3 -0
- checkpoint-520/README.md +204 -0
- checkpoint-520/adapter_config.json +27 -0
- checkpoint-520/adapter_model.safetensors +3 -0
- checkpoint-520/optimizer.pt +3 -0
- checkpoint-520/rng_state.pth +3 -0
- checkpoint-520/scheduler.pt +3 -0
- checkpoint-520/trainer_state.json +853 -0
- checkpoint-520/training_args.bin +3 -0
- training_configs.yml +44 -0
README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.1
|
adapter_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 8,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"q_proj",
|
23 |
+
"v_proj",
|
24 |
+
"k_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM"
|
27 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:031ce246a19a329e3cb9bdf5e3fc6afdd30f76ba134e50cb192e38a4ba0b1d08
|
3 |
+
size 9462656
|
checkpoint-420/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.1
|
checkpoint-420/adapter_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 8,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"q_proj",
|
23 |
+
"v_proj",
|
24 |
+
"k_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM"
|
27 |
+
}
|
checkpoint-420/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:031ce246a19a329e3cb9bdf5e3fc6afdd30f76ba134e50cb192e38a4ba0b1d08
|
3 |
+
size 9462656
|
checkpoint-420/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c51d057bd70fae940d78a535a56825788c26b0f5cb106ff387aaeba085dd76
|
3 |
+
size 19035578
|
checkpoint-420/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:702b4e425c61cce81cc0dcaa0fc047a76e0ab39434bd10a7b3f1d79d834f3c6f
|
3 |
+
size 14244
|
checkpoint-420/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f4b8b0cda23a3828a66220f9a9280c566890455294190f981aefd27a0c15d9d
|
3 |
+
size 1064
|
checkpoint-420/trainer_state.json
ADDED
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.07559170573949814,
|
3 |
+
"best_model_checkpoint": "./trained_models/Mistral-7B-Instruct-v0.2_-1pos_-1neg_perNE_top-1NEs_TrueDef-IT/checkpoint-420",
|
4 |
+
"epoch": 0.7190241814680077,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 420,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 2.4999999999999998e-05,
|
14 |
+
"loss": 6.4943,
|
15 |
+
"step": 5
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.9999999999999996e-05,
|
20 |
+
"loss": 3.9486,
|
21 |
+
"step": 10
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 7.5e-05,
|
26 |
+
"loss": 0.4566,
|
27 |
+
"step": 15
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 9.999999999999999e-05,
|
32 |
+
"loss": 0.3512,
|
33 |
+
"step": 20
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"eval_loss": 0.3139978051185608,
|
38 |
+
"eval_runtime": 222.18,
|
39 |
+
"eval_samples_per_second": 7.84,
|
40 |
+
"eval_steps_per_second": 7.84,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.04,
|
45 |
+
"learning_rate": 0.000125,
|
46 |
+
"loss": 0.1879,
|
47 |
+
"step": 25
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 0.05,
|
51 |
+
"learning_rate": 0.00015,
|
52 |
+
"loss": 0.1468,
|
53 |
+
"step": 30
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.06,
|
57 |
+
"learning_rate": 0.000175,
|
58 |
+
"loss": 0.152,
|
59 |
+
"step": 35
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.07,
|
63 |
+
"learning_rate": 0.00019999999999999998,
|
64 |
+
"loss": 0.1357,
|
65 |
+
"step": 40
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.07,
|
69 |
+
"eval_loss": 0.20455242693424225,
|
70 |
+
"eval_runtime": 222.1053,
|
71 |
+
"eval_samples_per_second": 7.843,
|
72 |
+
"eval_steps_per_second": 7.843,
|
73 |
+
"step": 40
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.08,
|
77 |
+
"learning_rate": 0.000225,
|
78 |
+
"loss": 0.1162,
|
79 |
+
"step": 45
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09,
|
83 |
+
"learning_rate": 0.00025,
|
84 |
+
"loss": 0.1099,
|
85 |
+
"step": 50
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 0.09,
|
89 |
+
"learning_rate": 0.00027499999999999996,
|
90 |
+
"loss": 0.3812,
|
91 |
+
"step": 55
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.1,
|
95 |
+
"learning_rate": 0.0003,
|
96 |
+
"loss": 0.2093,
|
97 |
+
"step": 60
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.1,
|
101 |
+
"eval_loss": 0.12376075983047485,
|
102 |
+
"eval_runtime": 222.1103,
|
103 |
+
"eval_samples_per_second": 7.843,
|
104 |
+
"eval_steps_per_second": 7.843,
|
105 |
+
"step": 60
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.11,
|
109 |
+
"learning_rate": 0.0002999994460825163,
|
110 |
+
"loss": 0.1396,
|
111 |
+
"step": 65
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.12,
|
115 |
+
"learning_rate": 0.0002999977843341562,
|
116 |
+
"loss": 0.1036,
|
117 |
+
"step": 70
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.13,
|
121 |
+
"learning_rate": 0.00029999501476719257,
|
122 |
+
"loss": 0.0634,
|
123 |
+
"step": 75
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.14,
|
127 |
+
"learning_rate": 0.0002999911374020804,
|
128 |
+
"loss": 0.0933,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.14,
|
133 |
+
"eval_loss": 0.1939181536436081,
|
134 |
+
"eval_runtime": 222.0528,
|
135 |
+
"eval_samples_per_second": 7.845,
|
136 |
+
"eval_steps_per_second": 7.845,
|
137 |
+
"step": 80
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.15,
|
141 |
+
"learning_rate": 0.00029998615226745605,
|
142 |
+
"loss": 0.0656,
|
143 |
+
"step": 85
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.15,
|
147 |
+
"learning_rate": 0.0002999800594001376,
|
148 |
+
"loss": 0.0519,
|
149 |
+
"step": 90
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.16,
|
153 |
+
"learning_rate": 0.0002999728588451245,
|
154 |
+
"loss": 0.0476,
|
155 |
+
"step": 95
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.17,
|
159 |
+
"learning_rate": 0.0002999645506555967,
|
160 |
+
"loss": 0.0098,
|
161 |
+
"step": 100
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.17,
|
165 |
+
"eval_loss": 0.24784570932388306,
|
166 |
+
"eval_runtime": 222.2602,
|
167 |
+
"eval_samples_per_second": 7.838,
|
168 |
+
"eval_steps_per_second": 7.838,
|
169 |
+
"step": 100
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.18,
|
173 |
+
"learning_rate": 0.00029995513489291506,
|
174 |
+
"loss": 0.356,
|
175 |
+
"step": 105
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.19,
|
179 |
+
"learning_rate": 0.00029994461162662024,
|
180 |
+
"loss": 0.1972,
|
181 |
+
"step": 110
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.2,
|
185 |
+
"learning_rate": 0.00029993298093443246,
|
186 |
+
"loss": 0.1255,
|
187 |
+
"step": 115
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.21,
|
191 |
+
"learning_rate": 0.000299920242902251,
|
192 |
+
"loss": 0.0923,
|
193 |
+
"step": 120
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.21,
|
197 |
+
"eval_loss": 0.12546367943286896,
|
198 |
+
"eval_runtime": 222.0682,
|
199 |
+
"eval_samples_per_second": 7.844,
|
200 |
+
"eval_steps_per_second": 7.844,
|
201 |
+
"step": 120
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.21,
|
205 |
+
"learning_rate": 0.0002999063976241536,
|
206 |
+
"loss": 0.0504,
|
207 |
+
"step": 125
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.22,
|
211 |
+
"learning_rate": 0.0002998914452023953,
|
212 |
+
"loss": 0.1582,
|
213 |
+
"step": 130
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.23,
|
217 |
+
"learning_rate": 0.00029987538574740826,
|
218 |
+
"loss": 0.0452,
|
219 |
+
"step": 135
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.24,
|
223 |
+
"learning_rate": 0.0002998582193778006,
|
224 |
+
"loss": 0.0258,
|
225 |
+
"step": 140
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.24,
|
229 |
+
"eval_loss": 0.21805395185947418,
|
230 |
+
"eval_runtime": 224.118,
|
231 |
+
"eval_samples_per_second": 7.773,
|
232 |
+
"eval_steps_per_second": 7.773,
|
233 |
+
"step": 140
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.25,
|
237 |
+
"learning_rate": 0.00029983994622035585,
|
238 |
+
"loss": 0.032,
|
239 |
+
"step": 145
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.26,
|
243 |
+
"learning_rate": 0.00029982056641003147,
|
244 |
+
"loss": 0.0224,
|
245 |
+
"step": 150
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.27,
|
249 |
+
"learning_rate": 0.00029980008008995834,
|
250 |
+
"loss": 0.2454,
|
251 |
+
"step": 155
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.27,
|
255 |
+
"learning_rate": 0.00029977848741143966,
|
256 |
+
"loss": 0.1583,
|
257 |
+
"step": 160
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.27,
|
261 |
+
"eval_loss": 0.10049739480018616,
|
262 |
+
"eval_runtime": 224.1576,
|
263 |
+
"eval_samples_per_second": 7.771,
|
264 |
+
"eval_steps_per_second": 7.771,
|
265 |
+
"step": 160
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.28,
|
269 |
+
"learning_rate": 0.0002997557885339494,
|
270 |
+
"loss": 0.1388,
|
271 |
+
"step": 165
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.29,
|
275 |
+
"learning_rate": 0.0002997319836251319,
|
276 |
+
"loss": 0.0962,
|
277 |
+
"step": 170
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.3,
|
281 |
+
"learning_rate": 0.00029970707286079966,
|
282 |
+
"loss": 0.0602,
|
283 |
+
"step": 175
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.31,
|
287 |
+
"learning_rate": 0.00029968105642493286,
|
288 |
+
"loss": 0.0642,
|
289 |
+
"step": 180
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.31,
|
293 |
+
"eval_loss": 0.10171639919281006,
|
294 |
+
"eval_runtime": 223.682,
|
295 |
+
"eval_samples_per_second": 7.788,
|
296 |
+
"eval_steps_per_second": 7.788,
|
297 |
+
"step": 180
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.32,
|
301 |
+
"learning_rate": 0.0002996539345096776,
|
302 |
+
"loss": 0.0499,
|
303 |
+
"step": 185
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.33,
|
307 |
+
"learning_rate": 0.0002996257073153446,
|
308 |
+
"loss": 0.0486,
|
309 |
+
"step": 190
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.33,
|
313 |
+
"learning_rate": 0.00029959637505040773,
|
314 |
+
"loss": 0.0198,
|
315 |
+
"step": 195
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.34,
|
319 |
+
"learning_rate": 0.00029956593793150233,
|
320 |
+
"loss": 0.0359,
|
321 |
+
"step": 200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.34,
|
325 |
+
"eval_loss": 0.1516859233379364,
|
326 |
+
"eval_runtime": 228.4243,
|
327 |
+
"eval_samples_per_second": 7.626,
|
328 |
+
"eval_steps_per_second": 7.626,
|
329 |
+
"step": 200
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.35,
|
333 |
+
"learning_rate": 0.0002995343961834238,
|
334 |
+
"loss": 0.2612,
|
335 |
+
"step": 205
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.36,
|
339 |
+
"learning_rate": 0.00029950175003912573,
|
340 |
+
"loss": 0.1232,
|
341 |
+
"step": 210
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.37,
|
345 |
+
"learning_rate": 0.0002994679997397185,
|
346 |
+
"loss": 0.0861,
|
347 |
+
"step": 215
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.38,
|
351 |
+
"learning_rate": 0.00029943314553446706,
|
352 |
+
"loss": 0.0867,
|
353 |
+
"step": 220
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.38,
|
357 |
+
"eval_loss": 0.08929727226495743,
|
358 |
+
"eval_runtime": 229.1014,
|
359 |
+
"eval_samples_per_second": 7.604,
|
360 |
+
"eval_steps_per_second": 7.604,
|
361 |
+
"step": 220
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.39,
|
365 |
+
"learning_rate": 0.0002993971876807896,
|
366 |
+
"loss": 0.0485,
|
367 |
+
"step": 225
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.39,
|
371 |
+
"learning_rate": 0.00029936012644425517,
|
372 |
+
"loss": 0.0516,
|
373 |
+
"step": 230
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.4,
|
377 |
+
"learning_rate": 0.00029932196209858197,
|
378 |
+
"loss": 0.0583,
|
379 |
+
"step": 235
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.41,
|
383 |
+
"learning_rate": 0.00029928269492563537,
|
384 |
+
"loss": 0.0271,
|
385 |
+
"step": 240
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.41,
|
389 |
+
"eval_loss": 0.13832463324069977,
|
390 |
+
"eval_runtime": 227.2299,
|
391 |
+
"eval_samples_per_second": 7.666,
|
392 |
+
"eval_steps_per_second": 7.666,
|
393 |
+
"step": 240
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.42,
|
397 |
+
"learning_rate": 0.00029924232521542557,
|
398 |
+
"loss": 0.0213,
|
399 |
+
"step": 245
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.43,
|
403 |
+
"learning_rate": 0.00029920085326610595,
|
404 |
+
"loss": 0.0388,
|
405 |
+
"step": 250
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.44,
|
409 |
+
"learning_rate": 0.00029915827938397017,
|
410 |
+
"loss": 0.3212,
|
411 |
+
"step": 255
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.45,
|
415 |
+
"learning_rate": 0.0002991146038834505,
|
416 |
+
"loss": 0.1213,
|
417 |
+
"step": 260
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.45,
|
421 |
+
"eval_loss": 0.09067531675100327,
|
422 |
+
"eval_runtime": 228.6975,
|
423 |
+
"eval_samples_per_second": 7.617,
|
424 |
+
"eval_steps_per_second": 7.617,
|
425 |
+
"step": 260
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.45,
|
429 |
+
"learning_rate": 0.00029906982708711533,
|
430 |
+
"loss": 0.0905,
|
431 |
+
"step": 265
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.46,
|
435 |
+
"learning_rate": 0.00029902394932566657,
|
436 |
+
"loss": 0.0397,
|
437 |
+
"step": 270
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.47,
|
441 |
+
"learning_rate": 0.00029897697093793753,
|
442 |
+
"loss": 0.0497,
|
443 |
+
"step": 275
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.48,
|
447 |
+
"learning_rate": 0.0002989288922708902,
|
448 |
+
"loss": 0.0549,
|
449 |
+
"step": 280
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.48,
|
453 |
+
"eval_loss": 0.10685621201992035,
|
454 |
+
"eval_runtime": 227.369,
|
455 |
+
"eval_samples_per_second": 7.662,
|
456 |
+
"eval_steps_per_second": 7.662,
|
457 |
+
"step": 280
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.49,
|
461 |
+
"learning_rate": 0.0002988797136796128,
|
462 |
+
"loss": 0.0281,
|
463 |
+
"step": 285
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 0.5,
|
467 |
+
"learning_rate": 0.00029882943552731703,
|
468 |
+
"loss": 0.0586,
|
469 |
+
"step": 290
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.51,
|
473 |
+
"learning_rate": 0.0002987780581853355,
|
474 |
+
"loss": 0.0284,
|
475 |
+
"step": 295
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 0.51,
|
479 |
+
"learning_rate": 0.00029872558203311914,
|
480 |
+
"loss": 0.0436,
|
481 |
+
"step": 300
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.51,
|
485 |
+
"eval_loss": 0.1119319349527359,
|
486 |
+
"eval_runtime": 221.5402,
|
487 |
+
"eval_samples_per_second": 7.863,
|
488 |
+
"eval_steps_per_second": 7.863,
|
489 |
+
"step": 300
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.52,
|
493 |
+
"learning_rate": 0.00029867200745823384,
|
494 |
+
"loss": 0.1798,
|
495 |
+
"step": 305
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.53,
|
499 |
+
"learning_rate": 0.00029861733485635834,
|
500 |
+
"loss": 0.1191,
|
501 |
+
"step": 310
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.54,
|
505 |
+
"learning_rate": 0.0002985615646312807,
|
506 |
+
"loss": 0.0841,
|
507 |
+
"step": 315
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.55,
|
511 |
+
"learning_rate": 0.00029850469719489573,
|
512 |
+
"loss": 0.1025,
|
513 |
+
"step": 320
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.55,
|
517 |
+
"eval_loss": 0.08742260932922363,
|
518 |
+
"eval_runtime": 221.4467,
|
519 |
+
"eval_samples_per_second": 7.866,
|
520 |
+
"eval_steps_per_second": 7.866,
|
521 |
+
"step": 320
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.56,
|
525 |
+
"learning_rate": 0.00029844673296720154,
|
526 |
+
"loss": 0.0457,
|
527 |
+
"step": 325
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.56,
|
531 |
+
"learning_rate": 0.00029838767237629684,
|
532 |
+
"loss": 0.0465,
|
533 |
+
"step": 330
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.57,
|
537 |
+
"learning_rate": 0.0002983275158583775,
|
538 |
+
"loss": 0.063,
|
539 |
+
"step": 335
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.58,
|
543 |
+
"learning_rate": 0.0002982662638577335,
|
544 |
+
"loss": 0.0238,
|
545 |
+
"step": 340
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.58,
|
549 |
+
"eval_loss": 0.14248833060264587,
|
550 |
+
"eval_runtime": 225.6871,
|
551 |
+
"eval_samples_per_second": 7.719,
|
552 |
+
"eval_steps_per_second": 7.719,
|
553 |
+
"step": 340
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.59,
|
557 |
+
"learning_rate": 0.00029820391682674563,
|
558 |
+
"loss": 0.0205,
|
559 |
+
"step": 345
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.6,
|
563 |
+
"learning_rate": 0.00029814047522588194,
|
564 |
+
"loss": 0.0218,
|
565 |
+
"step": 350
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.61,
|
569 |
+
"learning_rate": 0.00029807593952369465,
|
570 |
+
"loss": 0.2612,
|
571 |
+
"step": 355
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.62,
|
575 |
+
"learning_rate": 0.00029801031019681645,
|
576 |
+
"loss": 0.1889,
|
577 |
+
"step": 360
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.62,
|
581 |
+
"eval_loss": 0.09468888491392136,
|
582 |
+
"eval_runtime": 228.9494,
|
583 |
+
"eval_samples_per_second": 7.609,
|
584 |
+
"eval_steps_per_second": 7.609,
|
585 |
+
"step": 360
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.62,
|
589 |
+
"learning_rate": 0.0002979435877299571,
|
590 |
+
"loss": 0.0905,
|
591 |
+
"step": 365
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.63,
|
595 |
+
"learning_rate": 0.0002978757726158998,
|
596 |
+
"loss": 0.0619,
|
597 |
+
"step": 370
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.64,
|
601 |
+
"learning_rate": 0.00029780686535549756,
|
602 |
+
"loss": 0.0625,
|
603 |
+
"step": 375
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.65,
|
607 |
+
"learning_rate": 0.0002977368664576696,
|
608 |
+
"loss": 0.0585,
|
609 |
+
"step": 380
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.65,
|
613 |
+
"eval_loss": 0.08509568870067596,
|
614 |
+
"eval_runtime": 227.8786,
|
615 |
+
"eval_samples_per_second": 7.644,
|
616 |
+
"eval_steps_per_second": 7.644,
|
617 |
+
"step": 380
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.66,
|
621 |
+
"learning_rate": 0.00029766577643939744,
|
622 |
+
"loss": 0.0327,
|
623 |
+
"step": 385
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 0.67,
|
627 |
+
"learning_rate": 0.00029759359582572103,
|
628 |
+
"loss": 0.043,
|
629 |
+
"step": 390
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.68,
|
633 |
+
"learning_rate": 0.00029752032514973516,
|
634 |
+
"loss": 0.0234,
|
635 |
+
"step": 395
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.68,
|
639 |
+
"learning_rate": 0.00029744596495258525,
|
640 |
+
"loss": 0.0119,
|
641 |
+
"step": 400
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.68,
|
645 |
+
"eval_loss": 0.09636981785297394,
|
646 |
+
"eval_runtime": 228.541,
|
647 |
+
"eval_samples_per_second": 7.622,
|
648 |
+
"eval_steps_per_second": 7.622,
|
649 |
+
"step": 400
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.69,
|
653 |
+
"learning_rate": 0.00029737051578346345,
|
654 |
+
"loss": 0.1557,
|
655 |
+
"step": 405
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.7,
|
659 |
+
"learning_rate": 0.0002972939781996047,
|
660 |
+
"loss": 0.1116,
|
661 |
+
"step": 410
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.71,
|
665 |
+
"learning_rate": 0.0002972163527662824,
|
666 |
+
"loss": 0.0638,
|
667 |
+
"step": 415
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.72,
|
671 |
+
"learning_rate": 0.00029713764005680427,
|
672 |
+
"loss": 0.0726,
|
673 |
+
"step": 420
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.72,
|
677 |
+
"eval_loss": 0.07559170573949814,
|
678 |
+
"eval_runtime": 228.1262,
|
679 |
+
"eval_samples_per_second": 7.636,
|
680 |
+
"eval_steps_per_second": 7.636,
|
681 |
+
"step": 420
|
682 |
+
}
|
683 |
+
],
|
684 |
+
"logging_steps": 5,
|
685 |
+
"max_steps": 5840,
|
686 |
+
"num_input_tokens_seen": 0,
|
687 |
+
"num_train_epochs": 10,
|
688 |
+
"save_steps": 20,
|
689 |
+
"total_flos": 2.1261537057551155e+17,
|
690 |
+
"train_batch_size": 1,
|
691 |
+
"trial_name": null,
|
692 |
+
"trial_params": null
|
693 |
+
}
|
checkpoint-420/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:790952d63dabcb27434d04a2ca79e0e8844ccfcd3124036a9abca65a2d24669b
|
3 |
+
size 4792
|
checkpoint-520/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.1
|
checkpoint-520/adapter_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 8,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"q_proj",
|
23 |
+
"v_proj",
|
24 |
+
"k_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM"
|
27 |
+
}
|
checkpoint-520/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b53ee7dcaeabf5cde29fbb85e1525e09e6ad2c18e60945f0e0ffe3b7921d960
|
3 |
+
size 9462656
|
checkpoint-520/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9370fd4be7d76a08c0b2c8f8848eefe47bd63a3d7bab937ed834b149ed32d9fd
|
3 |
+
size 19035578
|
checkpoint-520/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0776f9f5ebfe31f0df16f250abbeb2c11060eb7e2204e2f7911a5eb73f6b08b
|
3 |
+
size 14244
|
checkpoint-520/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69978fbe25427833c39316fa7fc29c20deed1ef3aa5af8275ccb6eef52a3c68c
|
3 |
+
size 1064
|
checkpoint-520/trainer_state.json
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.07559170573949814,
|
3 |
+
"best_model_checkpoint": "./trained_models/Mistral-7B-Instruct-v0.2_-1pos_-1neg_perNE_top-1NEs_TrueDef-IT/checkpoint-420",
|
4 |
+
"epoch": 0.8902204151508667,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 520,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 2.4999999999999998e-05,
|
14 |
+
"loss": 6.4943,
|
15 |
+
"step": 5
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.9999999999999996e-05,
|
20 |
+
"loss": 3.9486,
|
21 |
+
"step": 10
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 7.5e-05,
|
26 |
+
"loss": 0.4566,
|
27 |
+
"step": 15
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 9.999999999999999e-05,
|
32 |
+
"loss": 0.3512,
|
33 |
+
"step": 20
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"eval_loss": 0.3139978051185608,
|
38 |
+
"eval_runtime": 222.18,
|
39 |
+
"eval_samples_per_second": 7.84,
|
40 |
+
"eval_steps_per_second": 7.84,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.04,
|
45 |
+
"learning_rate": 0.000125,
|
46 |
+
"loss": 0.1879,
|
47 |
+
"step": 25
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 0.05,
|
51 |
+
"learning_rate": 0.00015,
|
52 |
+
"loss": 0.1468,
|
53 |
+
"step": 30
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.06,
|
57 |
+
"learning_rate": 0.000175,
|
58 |
+
"loss": 0.152,
|
59 |
+
"step": 35
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.07,
|
63 |
+
"learning_rate": 0.00019999999999999998,
|
64 |
+
"loss": 0.1357,
|
65 |
+
"step": 40
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.07,
|
69 |
+
"eval_loss": 0.20455242693424225,
|
70 |
+
"eval_runtime": 222.1053,
|
71 |
+
"eval_samples_per_second": 7.843,
|
72 |
+
"eval_steps_per_second": 7.843,
|
73 |
+
"step": 40
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.08,
|
77 |
+
"learning_rate": 0.000225,
|
78 |
+
"loss": 0.1162,
|
79 |
+
"step": 45
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.09,
|
83 |
+
"learning_rate": 0.00025,
|
84 |
+
"loss": 0.1099,
|
85 |
+
"step": 50
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 0.09,
|
89 |
+
"learning_rate": 0.00027499999999999996,
|
90 |
+
"loss": 0.3812,
|
91 |
+
"step": 55
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.1,
|
95 |
+
"learning_rate": 0.0003,
|
96 |
+
"loss": 0.2093,
|
97 |
+
"step": 60
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.1,
|
101 |
+
"eval_loss": 0.12376075983047485,
|
102 |
+
"eval_runtime": 222.1103,
|
103 |
+
"eval_samples_per_second": 7.843,
|
104 |
+
"eval_steps_per_second": 7.843,
|
105 |
+
"step": 60
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.11,
|
109 |
+
"learning_rate": 0.0002999994460825163,
|
110 |
+
"loss": 0.1396,
|
111 |
+
"step": 65
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.12,
|
115 |
+
"learning_rate": 0.0002999977843341562,
|
116 |
+
"loss": 0.1036,
|
117 |
+
"step": 70
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.13,
|
121 |
+
"learning_rate": 0.00029999501476719257,
|
122 |
+
"loss": 0.0634,
|
123 |
+
"step": 75
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.14,
|
127 |
+
"learning_rate": 0.0002999911374020804,
|
128 |
+
"loss": 0.0933,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.14,
|
133 |
+
"eval_loss": 0.1939181536436081,
|
134 |
+
"eval_runtime": 222.0528,
|
135 |
+
"eval_samples_per_second": 7.845,
|
136 |
+
"eval_steps_per_second": 7.845,
|
137 |
+
"step": 80
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.15,
|
141 |
+
"learning_rate": 0.00029998615226745605,
|
142 |
+
"loss": 0.0656,
|
143 |
+
"step": 85
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.15,
|
147 |
+
"learning_rate": 0.0002999800594001376,
|
148 |
+
"loss": 0.0519,
|
149 |
+
"step": 90
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.16,
|
153 |
+
"learning_rate": 0.0002999728588451245,
|
154 |
+
"loss": 0.0476,
|
155 |
+
"step": 95
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.17,
|
159 |
+
"learning_rate": 0.0002999645506555967,
|
160 |
+
"loss": 0.0098,
|
161 |
+
"step": 100
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.17,
|
165 |
+
"eval_loss": 0.24784570932388306,
|
166 |
+
"eval_runtime": 222.2602,
|
167 |
+
"eval_samples_per_second": 7.838,
|
168 |
+
"eval_steps_per_second": 7.838,
|
169 |
+
"step": 100
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.18,
|
173 |
+
"learning_rate": 0.00029995513489291506,
|
174 |
+
"loss": 0.356,
|
175 |
+
"step": 105
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.19,
|
179 |
+
"learning_rate": 0.00029994461162662024,
|
180 |
+
"loss": 0.1972,
|
181 |
+
"step": 110
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.2,
|
185 |
+
"learning_rate": 0.00029993298093443246,
|
186 |
+
"loss": 0.1255,
|
187 |
+
"step": 115
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.21,
|
191 |
+
"learning_rate": 0.000299920242902251,
|
192 |
+
"loss": 0.0923,
|
193 |
+
"step": 120
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.21,
|
197 |
+
"eval_loss": 0.12546367943286896,
|
198 |
+
"eval_runtime": 222.0682,
|
199 |
+
"eval_samples_per_second": 7.844,
|
200 |
+
"eval_steps_per_second": 7.844,
|
201 |
+
"step": 120
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.21,
|
205 |
+
"learning_rate": 0.0002999063976241536,
|
206 |
+
"loss": 0.0504,
|
207 |
+
"step": 125
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.22,
|
211 |
+
"learning_rate": 0.0002998914452023953,
|
212 |
+
"loss": 0.1582,
|
213 |
+
"step": 130
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.23,
|
217 |
+
"learning_rate": 0.00029987538574740826,
|
218 |
+
"loss": 0.0452,
|
219 |
+
"step": 135
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.24,
|
223 |
+
"learning_rate": 0.0002998582193778006,
|
224 |
+
"loss": 0.0258,
|
225 |
+
"step": 140
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.24,
|
229 |
+
"eval_loss": 0.21805395185947418,
|
230 |
+
"eval_runtime": 224.118,
|
231 |
+
"eval_samples_per_second": 7.773,
|
232 |
+
"eval_steps_per_second": 7.773,
|
233 |
+
"step": 140
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.25,
|
237 |
+
"learning_rate": 0.00029983994622035585,
|
238 |
+
"loss": 0.032,
|
239 |
+
"step": 145
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.26,
|
243 |
+
"learning_rate": 0.00029982056641003147,
|
244 |
+
"loss": 0.0224,
|
245 |
+
"step": 150
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.27,
|
249 |
+
"learning_rate": 0.00029980008008995834,
|
250 |
+
"loss": 0.2454,
|
251 |
+
"step": 155
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.27,
|
255 |
+
"learning_rate": 0.00029977848741143966,
|
256 |
+
"loss": 0.1583,
|
257 |
+
"step": 160
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.27,
|
261 |
+
"eval_loss": 0.10049739480018616,
|
262 |
+
"eval_runtime": 224.1576,
|
263 |
+
"eval_samples_per_second": 7.771,
|
264 |
+
"eval_steps_per_second": 7.771,
|
265 |
+
"step": 160
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.28,
|
269 |
+
"learning_rate": 0.0002997557885339494,
|
270 |
+
"loss": 0.1388,
|
271 |
+
"step": 165
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.29,
|
275 |
+
"learning_rate": 0.0002997319836251319,
|
276 |
+
"loss": 0.0962,
|
277 |
+
"step": 170
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.3,
|
281 |
+
"learning_rate": 0.00029970707286079966,
|
282 |
+
"loss": 0.0602,
|
283 |
+
"step": 175
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.31,
|
287 |
+
"learning_rate": 0.00029968105642493286,
|
288 |
+
"loss": 0.0642,
|
289 |
+
"step": 180
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.31,
|
293 |
+
"eval_loss": 0.10171639919281006,
|
294 |
+
"eval_runtime": 223.682,
|
295 |
+
"eval_samples_per_second": 7.788,
|
296 |
+
"eval_steps_per_second": 7.788,
|
297 |
+
"step": 180
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.32,
|
301 |
+
"learning_rate": 0.0002996539345096776,
|
302 |
+
"loss": 0.0499,
|
303 |
+
"step": 185
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.33,
|
307 |
+
"learning_rate": 0.0002996257073153446,
|
308 |
+
"loss": 0.0486,
|
309 |
+
"step": 190
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.33,
|
313 |
+
"learning_rate": 0.00029959637505040773,
|
314 |
+
"loss": 0.0198,
|
315 |
+
"step": 195
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.34,
|
319 |
+
"learning_rate": 0.00029956593793150233,
|
320 |
+
"loss": 0.0359,
|
321 |
+
"step": 200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.34,
|
325 |
+
"eval_loss": 0.1516859233379364,
|
326 |
+
"eval_runtime": 228.4243,
|
327 |
+
"eval_samples_per_second": 7.626,
|
328 |
+
"eval_steps_per_second": 7.626,
|
329 |
+
"step": 200
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.35,
|
333 |
+
"learning_rate": 0.0002995343961834238,
|
334 |
+
"loss": 0.2612,
|
335 |
+
"step": 205
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.36,
|
339 |
+
"learning_rate": 0.00029950175003912573,
|
340 |
+
"loss": 0.1232,
|
341 |
+
"step": 210
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.37,
|
345 |
+
"learning_rate": 0.0002994679997397185,
|
346 |
+
"loss": 0.0861,
|
347 |
+
"step": 215
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.38,
|
351 |
+
"learning_rate": 0.00029943314553446706,
|
352 |
+
"loss": 0.0867,
|
353 |
+
"step": 220
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.38,
|
357 |
+
"eval_loss": 0.08929727226495743,
|
358 |
+
"eval_runtime": 229.1014,
|
359 |
+
"eval_samples_per_second": 7.604,
|
360 |
+
"eval_steps_per_second": 7.604,
|
361 |
+
"step": 220
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.39,
|
365 |
+
"learning_rate": 0.0002993971876807896,
|
366 |
+
"loss": 0.0485,
|
367 |
+
"step": 225
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.39,
|
371 |
+
"learning_rate": 0.00029936012644425517,
|
372 |
+
"loss": 0.0516,
|
373 |
+
"step": 230
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.4,
|
377 |
+
"learning_rate": 0.00029932196209858197,
|
378 |
+
"loss": 0.0583,
|
379 |
+
"step": 235
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.41,
|
383 |
+
"learning_rate": 0.00029928269492563537,
|
384 |
+
"loss": 0.0271,
|
385 |
+
"step": 240
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.41,
|
389 |
+
"eval_loss": 0.13832463324069977,
|
390 |
+
"eval_runtime": 227.2299,
|
391 |
+
"eval_samples_per_second": 7.666,
|
392 |
+
"eval_steps_per_second": 7.666,
|
393 |
+
"step": 240
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.42,
|
397 |
+
"learning_rate": 0.00029924232521542557,
|
398 |
+
"loss": 0.0213,
|
399 |
+
"step": 245
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.43,
|
403 |
+
"learning_rate": 0.00029920085326610595,
|
404 |
+
"loss": 0.0388,
|
405 |
+
"step": 250
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.44,
|
409 |
+
"learning_rate": 0.00029915827938397017,
|
410 |
+
"loss": 0.3212,
|
411 |
+
"step": 255
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.45,
|
415 |
+
"learning_rate": 0.0002991146038834505,
|
416 |
+
"loss": 0.1213,
|
417 |
+
"step": 260
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.45,
|
421 |
+
"eval_loss": 0.09067531675100327,
|
422 |
+
"eval_runtime": 228.6975,
|
423 |
+
"eval_samples_per_second": 7.617,
|
424 |
+
"eval_steps_per_second": 7.617,
|
425 |
+
"step": 260
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.45,
|
429 |
+
"learning_rate": 0.00029906982708711533,
|
430 |
+
"loss": 0.0905,
|
431 |
+
"step": 265
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.46,
|
435 |
+
"learning_rate": 0.00029902394932566657,
|
436 |
+
"loss": 0.0397,
|
437 |
+
"step": 270
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.47,
|
441 |
+
"learning_rate": 0.00029897697093793753,
|
442 |
+
"loss": 0.0497,
|
443 |
+
"step": 275
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.48,
|
447 |
+
"learning_rate": 0.0002989288922708902,
|
448 |
+
"loss": 0.0549,
|
449 |
+
"step": 280
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.48,
|
453 |
+
"eval_loss": 0.10685621201992035,
|
454 |
+
"eval_runtime": 227.369,
|
455 |
+
"eval_samples_per_second": 7.662,
|
456 |
+
"eval_steps_per_second": 7.662,
|
457 |
+
"step": 280
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.49,
|
461 |
+
"learning_rate": 0.0002988797136796128,
|
462 |
+
"loss": 0.0281,
|
463 |
+
"step": 285
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 0.5,
|
467 |
+
"learning_rate": 0.00029882943552731703,
|
468 |
+
"loss": 0.0586,
|
469 |
+
"step": 290
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 0.51,
|
473 |
+
"learning_rate": 0.0002987780581853355,
|
474 |
+
"loss": 0.0284,
|
475 |
+
"step": 295
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 0.51,
|
479 |
+
"learning_rate": 0.00029872558203311914,
|
480 |
+
"loss": 0.0436,
|
481 |
+
"step": 300
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.51,
|
485 |
+
"eval_loss": 0.1119319349527359,
|
486 |
+
"eval_runtime": 221.5402,
|
487 |
+
"eval_samples_per_second": 7.863,
|
488 |
+
"eval_steps_per_second": 7.863,
|
489 |
+
"step": 300
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.52,
|
493 |
+
"learning_rate": 0.00029867200745823384,
|
494 |
+
"loss": 0.1798,
|
495 |
+
"step": 305
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.53,
|
499 |
+
"learning_rate": 0.00029861733485635834,
|
500 |
+
"loss": 0.1191,
|
501 |
+
"step": 310
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.54,
|
505 |
+
"learning_rate": 0.0002985615646312807,
|
506 |
+
"loss": 0.0841,
|
507 |
+
"step": 315
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.55,
|
511 |
+
"learning_rate": 0.00029850469719489573,
|
512 |
+
"loss": 0.1025,
|
513 |
+
"step": 320
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.55,
|
517 |
+
"eval_loss": 0.08742260932922363,
|
518 |
+
"eval_runtime": 221.4467,
|
519 |
+
"eval_samples_per_second": 7.866,
|
520 |
+
"eval_steps_per_second": 7.866,
|
521 |
+
"step": 320
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.56,
|
525 |
+
"learning_rate": 0.00029844673296720154,
|
526 |
+
"loss": 0.0457,
|
527 |
+
"step": 325
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.56,
|
531 |
+
"learning_rate": 0.00029838767237629684,
|
532 |
+
"loss": 0.0465,
|
533 |
+
"step": 330
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.57,
|
537 |
+
"learning_rate": 0.0002983275158583775,
|
538 |
+
"loss": 0.063,
|
539 |
+
"step": 335
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.58,
|
543 |
+
"learning_rate": 0.0002982662638577335,
|
544 |
+
"loss": 0.0238,
|
545 |
+
"step": 340
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.58,
|
549 |
+
"eval_loss": 0.14248833060264587,
|
550 |
+
"eval_runtime": 225.6871,
|
551 |
+
"eval_samples_per_second": 7.719,
|
552 |
+
"eval_steps_per_second": 7.719,
|
553 |
+
"step": 340
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.59,
|
557 |
+
"learning_rate": 0.00029820391682674563,
|
558 |
+
"loss": 0.0205,
|
559 |
+
"step": 345
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.6,
|
563 |
+
"learning_rate": 0.00029814047522588194,
|
564 |
+
"loss": 0.0218,
|
565 |
+
"step": 350
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.61,
|
569 |
+
"learning_rate": 0.00029807593952369465,
|
570 |
+
"loss": 0.2612,
|
571 |
+
"step": 355
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.62,
|
575 |
+
"learning_rate": 0.00029801031019681645,
|
576 |
+
"loss": 0.1889,
|
577 |
+
"step": 360
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.62,
|
581 |
+
"eval_loss": 0.09468888491392136,
|
582 |
+
"eval_runtime": 228.9494,
|
583 |
+
"eval_samples_per_second": 7.609,
|
584 |
+
"eval_steps_per_second": 7.609,
|
585 |
+
"step": 360
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.62,
|
589 |
+
"learning_rate": 0.0002979435877299571,
|
590 |
+
"loss": 0.0905,
|
591 |
+
"step": 365
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.63,
|
595 |
+
"learning_rate": 0.0002978757726158998,
|
596 |
+
"loss": 0.0619,
|
597 |
+
"step": 370
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.64,
|
601 |
+
"learning_rate": 0.00029780686535549756,
|
602 |
+
"loss": 0.0625,
|
603 |
+
"step": 375
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.65,
|
607 |
+
"learning_rate": 0.0002977368664576696,
|
608 |
+
"loss": 0.0585,
|
609 |
+
"step": 380
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.65,
|
613 |
+
"eval_loss": 0.08509568870067596,
|
614 |
+
"eval_runtime": 227.8786,
|
615 |
+
"eval_samples_per_second": 7.644,
|
616 |
+
"eval_steps_per_second": 7.644,
|
617 |
+
"step": 380
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.66,
|
621 |
+
"learning_rate": 0.00029766577643939744,
|
622 |
+
"loss": 0.0327,
|
623 |
+
"step": 385
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 0.67,
|
627 |
+
"learning_rate": 0.00029759359582572103,
|
628 |
+
"loss": 0.043,
|
629 |
+
"step": 390
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.68,
|
633 |
+
"learning_rate": 0.00029752032514973516,
|
634 |
+
"loss": 0.0234,
|
635 |
+
"step": 395
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.68,
|
639 |
+
"learning_rate": 0.00029744596495258525,
|
640 |
+
"loss": 0.0119,
|
641 |
+
"step": 400
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.68,
|
645 |
+
"eval_loss": 0.09636981785297394,
|
646 |
+
"eval_runtime": 228.541,
|
647 |
+
"eval_samples_per_second": 7.622,
|
648 |
+
"eval_steps_per_second": 7.622,
|
649 |
+
"step": 400
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.69,
|
653 |
+
"learning_rate": 0.00029737051578346345,
|
654 |
+
"loss": 0.1557,
|
655 |
+
"step": 405
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.7,
|
659 |
+
"learning_rate": 0.0002972939781996047,
|
660 |
+
"loss": 0.1116,
|
661 |
+
"step": 410
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.71,
|
665 |
+
"learning_rate": 0.0002972163527662824,
|
666 |
+
"loss": 0.0638,
|
667 |
+
"step": 415
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.72,
|
671 |
+
"learning_rate": 0.00029713764005680427,
|
672 |
+
"loss": 0.0726,
|
673 |
+
"step": 420
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.72,
|
677 |
+
"eval_loss": 0.07559170573949814,
|
678 |
+
"eval_runtime": 228.1262,
|
679 |
+
"eval_samples_per_second": 7.636,
|
680 |
+
"eval_steps_per_second": 7.636,
|
681 |
+
"step": 420
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.73,
|
685 |
+
"learning_rate": 0.00029705784065250826,
|
686 |
+
"loss": 0.0598,
|
687 |
+
"step": 425
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.74,
|
691 |
+
"learning_rate": 0.00029697695514275824,
|
692 |
+
"loss": 0.0352,
|
693 |
+
"step": 430
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.74,
|
697 |
+
"learning_rate": 0.0002968949841249395,
|
698 |
+
"loss": 0.0284,
|
699 |
+
"step": 435
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.75,
|
703 |
+
"learning_rate": 0.00029681192820445445,
|
704 |
+
"loss": 0.0337,
|
705 |
+
"step": 440
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.75,
|
709 |
+
"eval_loss": 0.10360870510339737,
|
710 |
+
"eval_runtime": 227.1852,
|
711 |
+
"eval_samples_per_second": 7.668,
|
712 |
+
"eval_steps_per_second": 7.668,
|
713 |
+
"step": 440
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.76,
|
717 |
+
"learning_rate": 0.00029672778799471797,
|
718 |
+
"loss": 0.0068,
|
719 |
+
"step": 445
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.77,
|
723 |
+
"learning_rate": 0.0002966425641171534,
|
724 |
+
"loss": 0.0303,
|
725 |
+
"step": 450
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.78,
|
729 |
+
"learning_rate": 0.0002965562572011872,
|
730 |
+
"loss": 0.1159,
|
731 |
+
"step": 455
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.79,
|
735 |
+
"learning_rate": 0.00029646886788424487,
|
736 |
+
"loss": 0.1036,
|
737 |
+
"step": 460
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.79,
|
741 |
+
"eval_loss": 0.0761430412530899,
|
742 |
+
"eval_runtime": 228.7927,
|
743 |
+
"eval_samples_per_second": 7.614,
|
744 |
+
"eval_steps_per_second": 7.614,
|
745 |
+
"step": 460
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.8,
|
749 |
+
"learning_rate": 0.000296380396811746,
|
750 |
+
"loss": 0.0702,
|
751 |
+
"step": 465
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.8,
|
755 |
+
"learning_rate": 0.00029629084463709957,
|
756 |
+
"loss": 0.0893,
|
757 |
+
"step": 470
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 0.81,
|
761 |
+
"learning_rate": 0.0002962002120216992,
|
762 |
+
"loss": 0.0526,
|
763 |
+
"step": 475
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 0.82,
|
767 |
+
"learning_rate": 0.00029610849963491797,
|
768 |
+
"loss": 0.0314,
|
769 |
+
"step": 480
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.82,
|
773 |
+
"eval_loss": 0.08553514629602432,
|
774 |
+
"eval_runtime": 227.4129,
|
775 |
+
"eval_samples_per_second": 7.66,
|
776 |
+
"eval_steps_per_second": 7.66,
|
777 |
+
"step": 480
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.83,
|
781 |
+
"learning_rate": 0.0002960157081541039,
|
782 |
+
"loss": 0.0269,
|
783 |
+
"step": 485
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.84,
|
787 |
+
"learning_rate": 0.0002959218382645746,
|
788 |
+
"loss": 0.0281,
|
789 |
+
"step": 490
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.85,
|
793 |
+
"learning_rate": 0.00029582689065961237,
|
794 |
+
"loss": 0.0132,
|
795 |
+
"step": 495
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.86,
|
799 |
+
"learning_rate": 0.00029573086604045904,
|
800 |
+
"loss": 0.0151,
|
801 |
+
"step": 500
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.86,
|
805 |
+
"eval_loss": 0.09203532338142395,
|
806 |
+
"eval_runtime": 228.4081,
|
807 |
+
"eval_samples_per_second": 7.627,
|
808 |
+
"eval_steps_per_second": 7.627,
|
809 |
+
"step": 500
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.86,
|
813 |
+
"learning_rate": 0.0002956337651163109,
|
814 |
+
"loss": 0.1379,
|
815 |
+
"step": 505
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.87,
|
819 |
+
"learning_rate": 0.00029553558860431317,
|
820 |
+
"loss": 0.1116,
|
821 |
+
"step": 510
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.88,
|
825 |
+
"learning_rate": 0.0002954363372295551,
|
826 |
+
"loss": 0.0711,
|
827 |
+
"step": 515
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 0.89,
|
831 |
+
"learning_rate": 0.00029533601172506427,
|
832 |
+
"loss": 0.0606,
|
833 |
+
"step": 520
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 0.89,
|
837 |
+
"eval_loss": 0.086419016122818,
|
838 |
+
"eval_runtime": 228.0366,
|
839 |
+
"eval_samples_per_second": 7.639,
|
840 |
+
"eval_steps_per_second": 7.639,
|
841 |
+
"step": 520
|
842 |
+
}
|
843 |
+
],
|
844 |
+
"logging_steps": 5,
|
845 |
+
"max_steps": 5840,
|
846 |
+
"num_input_tokens_seen": 0,
|
847 |
+
"num_train_epochs": 10,
|
848 |
+
"save_steps": 20,
|
849 |
+
"total_flos": 2.6286417487016755e+17,
|
850 |
+
"train_batch_size": 1,
|
851 |
+
"trial_name": null,
|
852 |
+
"trial_params": null
|
853 |
+
}
|
checkpoint-520/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:790952d63dabcb27434d04a2ca79e0e8844ccfcd3124036a9abca65a2d24669b
|
3 |
+
size 4792
|
training_configs.yml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# fine-tuning Llama-3-8b instruct version on PileNER with topNE NEs and N samples per NE (N positive + N negative)
|
2 |
+
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
+
prompt_template_name: llama2_italian
|
5 |
+
# using dataset converted from MSEQA format to GenQA format (instruction, input, output) columns
|
6 |
+
data_path: None
|
7 |
+
val_data_path: None
|
8 |
+
select_train_portion: -1
|
9 |
+
val_set_size: -1 # if -1 use all validation data
|
10 |
+
output_dir: None
|
11 |
+
early_stopping_patience: 5
|
12 |
+
#training hyperparams
|
13 |
+
batch_size: 32
|
14 |
+
micro_batch_size: 1
|
15 |
+
num_epochs: 10
|
16 |
+
learning_rate: 3.0e-4
|
17 |
+
cutoff_len: 768
|
18 |
+
|
19 |
+
warmup_steps: 60
|
20 |
+
eval_steps: 20
|
21 |
+
logging_steps: 5
|
22 |
+
max_grad_norm: 1.0
|
23 |
+
#lora hyperparams
|
24 |
+
use_lora: True
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_r: 8
|
28 |
+
lora_target_modules:
|
29 |
+
- q_proj
|
30 |
+
- v_proj
|
31 |
+
- k_proj
|
32 |
+
- v_proj
|
33 |
+
#llm hyperparams
|
34 |
+
# NTP loss only on Response
|
35 |
+
train_on_inputs: False
|
36 |
+
group_by_length: True
|
37 |
+
#quant params
|
38 |
+
load_8bit: False
|
39 |
+
load_4bit: False
|
40 |
+
#general param
|
41 |
+
save_total_limit: 2
|
42 |
+
use_flash_attention: False
|
43 |
+
shuffle: True
|
44 |
+
gradient_checkpointing: False
|