exploiter345
commited on
Commit
•
0897aec
1
Parent(s):
8915749
lunar lander V0 trained for 500k, n_steps=2048, batch_size=128
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ishan_ppo_lunar_lander.zip +3 -0
- ishan_ppo_lunar_lander/_stable_baselines3_version +1 -0
- ishan_ppo_lunar_lander/data +94 -0
- ishan_ppo_lunar_lander/policy.optimizer.pth +3 -0
- ishan_ppo_lunar_lander/policy.pth +3 -0
- ishan_ppo_lunar_lander/pytorch_variables.pth +3 -0
- ishan_ppo_lunar_lander/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 138.45 +/- 83.15
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc49c4584d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc49c458560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc49c4585f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc49c458680>", "_build": "<function ActorCriticPolicy._build at 0x7fc49c458710>", "forward": "<function ActorCriticPolicy.forward at 0x7fc49c4587a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc49c458830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc49c4588c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc49c458950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc49c4589e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc49c458a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc49c49ac30>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651991889.583015, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAATFz49mjc6p0qXuykxYLhOh3M8cSuuOgAAgD8AAIA/GhAWva4dh7qbDh06FS0KNXmxrbgiMjO5AACAPwAAgD99g4I+JIoMPN1pTrvr1bu4U3WbPTOLtLkAAIA/AACAP01Coj2Uj5Y/SpxIPn7YNL5jXAo9XHWaPAAAAAAAAAAAgH8nvtfTBbml1qM6HAoMtyrdA7zsBby5AACAPwAAgD+zAQ++UpiROG9kL7smOxM2HGWgus3OTzoAAIA/AACAP4M0nj40wbC8wQ0IPN/3RroRewq+AJ+EtQAAgD8AAIA/zf4HPez50bktTC28uqeNO/JRr7v2C+m6AACAPwAAgD8At3U9aD63PS4ntT11QO+9aXOVPUrLx70AAAAAAAAAAC1pcj69Bpg+A/5ePSW0Rr6YT8w8pdgbvQAAAAAAAAAAwP4BPsz4uz6lMcE7Rc4LvsNrIT0VT9Q7AAAAAAAAAACaM4o8zinjPTZyG73tARC+OpO7vPPJOj0AAAAAAAAAAIDRvD3hrJW6wZ7MOhXeczXxvg04mDHruQAAgD8AAIA/My2cPZwKAz241P+8oHtAvmXZvj1KrJ06AAAAAAAAAACqHYo+JZuhPxawDz8fY8u9XUmEPnPF6T0AAAAAAAAAADN+1T7KDB88Jsydu6VNWbiqUcQ8/Z3XOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIImx4eqXBWECUhpRSlIwBbJRN6AOMAXSUR0B/RwEX+ERKdX2UKGgGaAloD0MIA3gLJCjlUUCUhpRSlGgVTegDaBZHQH9aHKKYRd11fZQoaAZoCWgPQwh2qRH6mVxDQJSGlFKUaBVN6ANoFkdAf63A8SwnpnV9lChoBmgJaA9DCBA9KZMa2EZAlIaUUpRoFU3oA2gWR0B/7xFXq7iAdX2UKGgGaAloD0MIk+S5vg+jVUCUhpRSlGgVTegDaBZHQH/3Nwzch1V1fZQoaAZoCWgPQwgX8Z2YdRdhQJSGlFKUaBVN6ANoFkdAf/32FFlTWHV9lChoBmgJaA9DCCdO7nconkVAlIaUUpRoFU3oA2gWR0CABANsFdLQdX2UKGgGaAloD0MI3nGKjuQHUUCUhpRSlGgVTegDaBZHQIAHXb9If8x1fZQoaAZoCWgPQwi+iSE5mQBHQJSGlFKUaBVN6ANoFkdAgAqVTaTOgXV9lChoBmgJaA9DCAQEc/T4t1FAlIaUUpRoFU3oA2gWR0CAEKzKs+3ZdX2UKGgGaAloD0MI6iXGMv0JYkCUhpRSlGgVTegDaBZHQIATigRK6Fx1fZQoaAZoCWgPQwjOcAM+P2RUwJSGlFKUaBVNMwJoFkdAgBccc+7lJnV9lChoBmgJaA9DCDYhrTHoJCXAlIaUUpRoFU1AAmgWR0CAGsG1x82KdX2UKGgGaAloD0MIptWQuMe2UUCUhpRSlGgVTegDaBZHQIAdksz2vjh1fZQoaAZoCWgPQwgjZ2FPO0lXQJSGlFKUaBVN6ANoFkdAgEfK0D2alXV9lChoBmgJaA9DCDIdOj3vMkdAlIaUUpRoFU3oA2gWR0CASar5qM3qdX2UKGgGaAloD0MIm1Wfq63BUECUhpRSlGgVTegDaBZHQIBrDps41gp1fZQoaAZoCWgPQwinCHB6Fx5XQJSGlFKUaBVN6ANoFkdAgHT0Zm7J4nV9lChoBmgJaA9DCPLvMy6cIWVAlIaUUpRoFU1aAmgWR0CAgxmoR7JGdX2UKGgGaAloD0MIV1pG6j0RUkCUhpRSlGgVTegDaBZHQICe+vyLAHp1fZQoaAZoCWgPQwj/sRAdAtBQQJSGlFKUaBVN6ANoFkdAgL8ByKekHnV9lChoBmgJaA9DCNqM0xBVbFJAlIaUUpRoFU3oA2gWR0CAwyXMQmNSdX2UKGgGaAloD0MI04bD0sAXVUCUhpRSlGgVTegDaBZHQIDGaVbA1vV1fZQoaAZoCWgPQwhlqIqp9J9XQJSGlFKUaBVN6ANoFkdAgMuBoVVPvnV9lChoBmgJaA9DCFLt0/GYN1pAlIaUUpRoFU3oA2gWR0CAzqktVaOhdX2UKGgGaAloD0MItwvNdRr5TECUhpRSlGgVTegDaBZHQIDR4pQUHpt1fZQoaAZoCWgPQwhpxw2/m11aQJSGlFKUaBVN6ANoFkdAgNq1MM7U5XV9lChoBmgJaA9DCIlEoWXdaVhAlIaUUpRoFU3oA2gWR0CA3nLXcxj8dX2UKGgGaAloD0MIVYZxN4iKS0CUhpRSlGgVTegDaBZHQIDiQs052hZ1fZQoaAZoCWgPQwg+Qs2QKm1bQJSGlFKUaBVN6ANoFkdAgOUWi1y/9HV9lChoBmgJaA9DCFd5AmGn7ldAlIaUUpRoFU3oA2gWR0CBUqzY287IdX2UKGgGaAloD0MIJxWNtb++VECUhpRSlGgVTegDaBZHQIFUfKwIMSd1fZQoaAZoCWgPQwi0yHa+n0ozwJSGlFKUaBVNywFoFkdAgWRio86mwnV9lChoBmgJaA9DCLq6Y7FNTVZAlIaUUpRoFU3oA2gWR0CBdJXXAdn1dX2UKGgGaAloD0MIEeULWki5U0CUhpRSlGgVTegDaBZHQIF+ABxPwd91fZQoaAZoCWgPQwgBhXr6CB9XQJSGlFKUaBVN6ANoFkdAgYq64c3l0nV9lChoBmgJaA9DCMRDGD+Nz1NAlIaUUpRoFU3oA2gWR0CBo6gwGnn/dX2UKGgGaAloD0MIwcWKGkzRWUCUhpRSlGgVTegDaBZHQIHAhGtp22Z1fZQoaAZoCWgPQwh+GCE82m9ZQJSGlFKUaBVN6ANoFkdAgcRYqgAZKnV9lChoBmgJaA9DCPD9Ddorg2BAlIaUUpRoFU3oA2gWR0CBx3bHIZIhdX2UKGgGaAloD0MIaXOc24QZWECUhpRSlGgVTegDaBZHQIHMaPS2H+J1fZQoaAZoCWgPQwgr3V1nwxNgQJSGlFKUaBVN6ANoFkdAgc+siKR+0HV9lChoBmgJaA9DCGVUGcbdGlhAlIaUUpRoFU3oA2gWR0CB3IjoIOYqdX2UKGgGaAloD0MI9u0kInxyYECUhpRSlGgVTegDaBZHQIHgxc3VCol1fZQoaAZoCWgPQwiflEkNbdFTQJSGlFKUaBVN6ANoFkdAgeUI3irDInV9lChoBmgJaA9DCKGfqdct8EdAlIaUUpRoFU3oA2gWR0CB6EccU/OddX2UKGgGaAloD0MILuV8sfd+T0CUhpRSlGgVTegDaBZHQIIYfmA9V3l1fZQoaAZoCWgPQwhAhSNIpTBJQJSGlFKUaBVN6ANoFkdAgho+wLVnVXV9lChoBmgJaA9DCIRKXMe45FtAlIaUUpRoFU3oA2gWR0CCKd1A7gbZdX2UKGgGaAloD0MIQrXBieguWcCUhpRSlGgVTRoCaBZHQII2Ivzvqkd1fZQoaAZoCWgPQwghBrr2BaNWQJSGlFKUaBVN6ANoFkdAgjjs/yGzr3V9lChoBmgJaA9DCH+IDRZOqEDAlIaUUpRoFU3MAWgWR0CCPqoR7JGOdX2UKGgGaAloD0MIM2spIO3NVkCUhpRSlGgVTegDaBZHQIJA8mnfl6t1fZQoaAZoCWgPQwhGzy10JSIUwJSGlFKUaBVN8wFoFkdAgkla4lQdj3V9lChoBmgJaA9DCA9+4gD6iFJAlIaUUpRoFU3oA2gWR0CCTCtkFwDOdX2UKGgGaAloD0MIEywOZ35OXECUhpRSlGgVTegDaBZHQIJiGHvc8DB1fZQoaAZoCWgPQwi6aMh4lJ9WQJSGlFKUaBVN6ANoFkdAgn3H4oJAuHV9lChoBmgJaA9DCKddTDPdT1tAlIaUUpRoFU3oA2gWR0CCgTRP420idX2UKGgGaAloD0MIf6ZetwhYVECUhpRSlGgVTegDaBZHQIKEOrKeTV51fZQoaAZoCWgPQwhcGyrG+ddQQJSGlFKUaBVN6ANoFkdAgoiqGUOd5XV9lChoBmgJaA9DCP8kPneCwVVAlIaUUpRoFU3oA2gWR0CCmaz41xbTdX2UKGgGaAloD0MIPJ8B9WacXECUhpRSlGgVTegDaBZHQIKeHlhgE2Z1fZQoaAZoCWgPQwjz4sRXO/5SQJSGlFKUaBVN6ANoFkdAgyEc6FM7EHV9lChoBmgJaA9DCPMbJhqkilFAlIaUUpRoFU3oA2gWR0CDI1p1RtP6dX2UKGgGaAloD0MIzEQRUrcmWECUhpRSlGgVTegDaBZHQIM2LfWMCLd1fZQoaAZoCWgPQwgtsTIa+YpUQJSGlFKUaBVN6ANoFkdAg0NpbdJrcnV9lChoBmgJaA9DCHJsPUM4F15AlIaUUpRoFU3oA2gWR0CDRoaBI4EPdX2UKGgGaAloD0MIbVhTWRSbXUCUhpRSlGgVTegDaBZHQINM3oLXtjV1fZQoaAZoCWgPQwgDzHwHPxBUQJSGlFKUaBVN6ANoFkdAg09DxLCemXV9lChoBmgJaA9DCPDAAMKHNGBAlIaUUpRoFU3oA2gWR0CDV4+i8FpxdX2UKGgGaAloD0MIjpCBPLtgTECUhpRSlGgVTegDaBZHQINaHxe9i+d1fZQoaAZoCWgPQwg2y2Wjc7ZOQJSGlFKUaBVN6ANoFkdAg26y5AhStXV9lChoBmgJaA9DCDnVWpiF/FVAlIaUUpRoFU3oA2gWR0CDiTIiC8ODdX2UKGgGaAloD0MIijxJumYgYkCUhpRSlGgVTegDaBZHQIOMrsSkCV91fZQoaAZoCWgPQwgZdhiT/kYoQJSGlFKUaBVN0QFoFkdAg40MsQNCq3V9lChoBmgJaA9DCE88ZwsIOlVAlIaUUpRoFU3oA2gWR0CDj1n4fwI/dX2UKGgGaAloD0MIOZuOAG4QT0CUhpRSlGgVTegDaBZHQIOTXxUedTZ1fZQoaAZoCWgPQwha2NMOf4JVQJSGlFKUaBVN6ANoFkdAg6JDtG/etXV9lChoBmgJaA9DCKw8gbBTd2BAlIaUUpRoFU3oA2gWR0CDpn0g8r7PdX2UKGgGaAloD0MIXcR3YtYMZUCUhpRSlGgVTTkCaBZHQIO8lUdaMaV1fZQoaAZoCWgPQwhgIt46/8ddQJSGlFKUaBVN6ANoFkdAg91RlpXZG3V9lChoBmgJaA9DCDl9PV+zrVpAlIaUUpRoFU3oA2gWR0CD3yrwvxpddX2UKGgGaAloD0MIOIHptG5wXUCUhpRSlGgVTegDaBZHQIP7hdY4hll1fZQoaAZoCWgPQwiUoL/QI8xZQJSGlFKUaBVN6ANoFkdAg/5VjRUm2XV9lChoBmgJaA9DCACOPXsuD1ZAlIaUUpRoFU3oA2gWR0CEBIDU3GXHdX2UKGgGaAloD0MI8mH2su1dXECUhpRSlGgVTegDaBZHQIQGv3i704B1fZQoaAZoCWgPQwj8q8d9q/RVQJSGlFKUaBVN6ANoFkdAhA7+yJKraXV9lChoBmgJaA9DCG7fo/56BQbAlIaUUpRoFU3BAWgWR0CEFG2Zy+6AdX2UKGgGaAloD0MIkNyadFsfX0CUhpRSlGgVTegDaBZHQIQmJDu0CzV1fZQoaAZoCWgPQwhIGtzWFtRgQJSGlFKUaBVN6ANoFkdAhED243FUAHV9lChoBmgJaA9DCMxiYvNxgVpAlIaUUpRoFU3oA2gWR0CERHuE25xzdX2UKGgGaAloD0MIdw/QfbmjYUCUhpRSlGgVTegDaBZHQIRE3xWkrPN1fZQoaAZoCWgPQwgk8l1K3UVgQJSGlFKUaBVN6ANoFkdAhEdHymQ8wHV9lChoBmgJaA9DCD9z1qcc31hAlIaUUpRoFU3oA2gWR0CES8FJxvNvdX2UKGgGaAloD0MIjgOvljvyVsCUhpRSlGgVTeABaBZHQIRUXr0J4Sp1fZQoaAZoCWgPQwijlXuBWTxVQJSGlFKUaBVN6ANoFkdAhFuw1R+BpnV9lChoBmgJaA9DCA/VlGQdqE5AlIaUUpRoFU3oA2gWR0CEX6C9RJmNdX2UKGgGaAloD0MI+glnt5ZRJcCUhpRSlGgVTdkBaBZHQIRiKuEEkjZ1fZQoaAZoCWgPQwjLSSh9IQNXQJSGlFKUaBVN6ANoFkdAhJIBmwqy4XV9lChoBmgJaA9DCBrerMH7bFZAlIaUUpRoFU3oA2gWR0CEk9bpu/DcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
ishan_ppo_lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:571446fd90002851956ebe57bd8c57946a8816b7955da016a5476906b4677003
|
3 |
+
size 144042
|
ishan_ppo_lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ishan_ppo_lunar_lander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc49c4584d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc49c458560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc49c4585f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc49c458680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc49c458710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc49c4587a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc49c458830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc49c4588c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc49c458950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc49c4589e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc49c458a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc49c49ac30>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651991889.583015,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAATFz49mjc6p0qXuykxYLhOh3M8cSuuOgAAgD8AAIA/GhAWva4dh7qbDh06FS0KNXmxrbgiMjO5AACAPwAAgD99g4I+JIoMPN1pTrvr1bu4U3WbPTOLtLkAAIA/AACAP01Coj2Uj5Y/SpxIPn7YNL5jXAo9XHWaPAAAAAAAAAAAgH8nvtfTBbml1qM6HAoMtyrdA7zsBby5AACAPwAAgD+zAQ++UpiROG9kL7smOxM2HGWgus3OTzoAAIA/AACAP4M0nj40wbC8wQ0IPN/3RroRewq+AJ+EtQAAgD8AAIA/zf4HPez50bktTC28uqeNO/JRr7v2C+m6AACAPwAAgD8At3U9aD63PS4ntT11QO+9aXOVPUrLx70AAAAAAAAAAC1pcj69Bpg+A/5ePSW0Rr6YT8w8pdgbvQAAAAAAAAAAwP4BPsz4uz6lMcE7Rc4LvsNrIT0VT9Q7AAAAAAAAAACaM4o8zinjPTZyG73tARC+OpO7vPPJOj0AAAAAAAAAAIDRvD3hrJW6wZ7MOhXeczXxvg04mDHruQAAgD8AAIA/My2cPZwKAz241P+8oHtAvmXZvj1KrJ06AAAAAAAAAACqHYo+JZuhPxawDz8fY8u9XUmEPnPF6T0AAAAAAAAAADN+1T7KDB88Jsydu6VNWbiqUcQ8/Z3XOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIImx4eqXBWECUhpRSlIwBbJRN6AOMAXSUR0B/RwEX+ERKdX2UKGgGaAloD0MIA3gLJCjlUUCUhpRSlGgVTegDaBZHQH9aHKKYRd11fZQoaAZoCWgPQwh2qRH6mVxDQJSGlFKUaBVN6ANoFkdAf63A8SwnpnV9lChoBmgJaA9DCBA9KZMa2EZAlIaUUpRoFU3oA2gWR0B/7xFXq7iAdX2UKGgGaAloD0MIk+S5vg+jVUCUhpRSlGgVTegDaBZHQH/3Nwzch1V1fZQoaAZoCWgPQwgX8Z2YdRdhQJSGlFKUaBVN6ANoFkdAf/32FFlTWHV9lChoBmgJaA9DCCdO7nconkVAlIaUUpRoFU3oA2gWR0CABANsFdLQdX2UKGgGaAloD0MI3nGKjuQHUUCUhpRSlGgVTegDaBZHQIAHXb9If8x1fZQoaAZoCWgPQwi+iSE5mQBHQJSGlFKUaBVN6ANoFkdAgAqVTaTOgXV9lChoBmgJaA9DCAQEc/T4t1FAlIaUUpRoFU3oA2gWR0CAEKzKs+3ZdX2UKGgGaAloD0MI6iXGMv0JYkCUhpRSlGgVTegDaBZHQIATigRK6Fx1fZQoaAZoCWgPQwjOcAM+P2RUwJSGlFKUaBVNMwJoFkdAgBccc+7lJnV9lChoBmgJaA9DCDYhrTHoJCXAlIaUUpRoFU1AAmgWR0CAGsG1x82KdX2UKGgGaAloD0MIptWQuMe2UUCUhpRSlGgVTegDaBZHQIAdksz2vjh1fZQoaAZoCWgPQwgjZ2FPO0lXQJSGlFKUaBVN6ANoFkdAgEfK0D2alXV9lChoBmgJaA9DCDIdOj3vMkdAlIaUUpRoFU3oA2gWR0CASar5qM3qdX2UKGgGaAloD0MIm1Wfq63BUECUhpRSlGgVTegDaBZHQIBrDps41gp1fZQoaAZoCWgPQwinCHB6Fx5XQJSGlFKUaBVN6ANoFkdAgHT0Zm7J4nV9lChoBmgJaA9DCPLvMy6cIWVAlIaUUpRoFU1aAmgWR0CAgxmoR7JGdX2UKGgGaAloD0MIV1pG6j0RUkCUhpRSlGgVTegDaBZHQICe+vyLAHp1fZQoaAZoCWgPQwj/sRAdAtBQQJSGlFKUaBVN6ANoFkdAgL8ByKekHnV9lChoBmgJaA9DCNqM0xBVbFJAlIaUUpRoFU3oA2gWR0CAwyXMQmNSdX2UKGgGaAloD0MI04bD0sAXVUCUhpRSlGgVTegDaBZHQIDGaVbA1vV1fZQoaAZoCWgPQwhlqIqp9J9XQJSGlFKUaBVN6ANoFkdAgMuBoVVPvnV9lChoBmgJaA9DCFLt0/GYN1pAlIaUUpRoFU3oA2gWR0CAzqktVaOhdX2UKGgGaAloD0MItwvNdRr5TECUhpRSlGgVTegDaBZHQIDR4pQUHpt1fZQoaAZoCWgPQwhpxw2/m11aQJSGlFKUaBVN6ANoFkdAgNq1MM7U5XV9lChoBmgJaA9DCIlEoWXdaVhAlIaUUpRoFU3oA2gWR0CA3nLXcxj8dX2UKGgGaAloD0MIVYZxN4iKS0CUhpRSlGgVTegDaBZHQIDiQs052hZ1fZQoaAZoCWgPQwg+Qs2QKm1bQJSGlFKUaBVN6ANoFkdAgOUWi1y/9HV9lChoBmgJaA9DCFd5AmGn7ldAlIaUUpRoFU3oA2gWR0CBUqzY287IdX2UKGgGaAloD0MIJxWNtb++VECUhpRSlGgVTegDaBZHQIFUfKwIMSd1fZQoaAZoCWgPQwi0yHa+n0ozwJSGlFKUaBVNywFoFkdAgWRio86mwnV9lChoBmgJaA9DCLq6Y7FNTVZAlIaUUpRoFU3oA2gWR0CBdJXXAdn1dX2UKGgGaAloD0MIEeULWki5U0CUhpRSlGgVTegDaBZHQIF+ABxPwd91fZQoaAZoCWgPQwgBhXr6CB9XQJSGlFKUaBVN6ANoFkdAgYq64c3l0nV9lChoBmgJaA9DCMRDGD+Nz1NAlIaUUpRoFU3oA2gWR0CBo6gwGnn/dX2UKGgGaAloD0MIwcWKGkzRWUCUhpRSlGgVTegDaBZHQIHAhGtp22Z1fZQoaAZoCWgPQwh+GCE82m9ZQJSGlFKUaBVN6ANoFkdAgcRYqgAZKnV9lChoBmgJaA9DCPD9Ddorg2BAlIaUUpRoFU3oA2gWR0CBx3bHIZIhdX2UKGgGaAloD0MIaXOc24QZWECUhpRSlGgVTegDaBZHQIHMaPS2H+J1fZQoaAZoCWgPQwgr3V1nwxNgQJSGlFKUaBVN6ANoFkdAgc+siKR+0HV9lChoBmgJaA9DCGVUGcbdGlhAlIaUUpRoFU3oA2gWR0CB3IjoIOYqdX2UKGgGaAloD0MI9u0kInxyYECUhpRSlGgVTegDaBZHQIHgxc3VCol1fZQoaAZoCWgPQwiflEkNbdFTQJSGlFKUaBVN6ANoFkdAgeUI3irDInV9lChoBmgJaA9DCKGfqdct8EdAlIaUUpRoFU3oA2gWR0CB6EccU/OddX2UKGgGaAloD0MILuV8sfd+T0CUhpRSlGgVTegDaBZHQIIYfmA9V3l1fZQoaAZoCWgPQwhAhSNIpTBJQJSGlFKUaBVN6ANoFkdAgho+wLVnVXV9lChoBmgJaA9DCIRKXMe45FtAlIaUUpRoFU3oA2gWR0CCKd1A7gbZdX2UKGgGaAloD0MIQrXBieguWcCUhpRSlGgVTRoCaBZHQII2Ivzvqkd1fZQoaAZoCWgPQwghBrr2BaNWQJSGlFKUaBVN6ANoFkdAgjjs/yGzr3V9lChoBmgJaA9DCH+IDRZOqEDAlIaUUpRoFU3MAWgWR0CCPqoR7JGOdX2UKGgGaAloD0MIM2spIO3NVkCUhpRSlGgVTegDaBZHQIJA8mnfl6t1fZQoaAZoCWgPQwhGzy10JSIUwJSGlFKUaBVN8wFoFkdAgkla4lQdj3V9lChoBmgJaA9DCA9+4gD6iFJAlIaUUpRoFU3oA2gWR0CCTCtkFwDOdX2UKGgGaAloD0MIEywOZ35OXECUhpRSlGgVTegDaBZHQIJiGHvc8DB1fZQoaAZoCWgPQwi6aMh4lJ9WQJSGlFKUaBVN6ANoFkdAgn3H4oJAuHV9lChoBmgJaA9DCKddTDPdT1tAlIaUUpRoFU3oA2gWR0CCgTRP420idX2UKGgGaAloD0MIf6ZetwhYVECUhpRSlGgVTegDaBZHQIKEOrKeTV51fZQoaAZoCWgPQwhcGyrG+ddQQJSGlFKUaBVN6ANoFkdAgoiqGUOd5XV9lChoBmgJaA9DCP8kPneCwVVAlIaUUpRoFU3oA2gWR0CCmaz41xbTdX2UKGgGaAloD0MIPJ8B9WacXECUhpRSlGgVTegDaBZHQIKeHlhgE2Z1fZQoaAZoCWgPQwjz4sRXO/5SQJSGlFKUaBVN6ANoFkdAgyEc6FM7EHV9lChoBmgJaA9DCPMbJhqkilFAlIaUUpRoFU3oA2gWR0CDI1p1RtP6dX2UKGgGaAloD0MIzEQRUrcmWECUhpRSlGgVTegDaBZHQIM2LfWMCLd1fZQoaAZoCWgPQwgtsTIa+YpUQJSGlFKUaBVN6ANoFkdAg0NpbdJrcnV9lChoBmgJaA9DCHJsPUM4F15AlIaUUpRoFU3oA2gWR0CDRoaBI4EPdX2UKGgGaAloD0MIbVhTWRSbXUCUhpRSlGgVTegDaBZHQINM3oLXtjV1fZQoaAZoCWgPQwgDzHwHPxBUQJSGlFKUaBVN6ANoFkdAg09DxLCemXV9lChoBmgJaA9DCPDAAMKHNGBAlIaUUpRoFU3oA2gWR0CDV4+i8FpxdX2UKGgGaAloD0MIjpCBPLtgTECUhpRSlGgVTegDaBZHQINaHxe9i+d1fZQoaAZoCWgPQwg2y2Wjc7ZOQJSGlFKUaBVN6ANoFkdAg26y5AhStXV9lChoBmgJaA9DCDnVWpiF/FVAlIaUUpRoFU3oA2gWR0CDiTIiC8ODdX2UKGgGaAloD0MIijxJumYgYkCUhpRSlGgVTegDaBZHQIOMrsSkCV91fZQoaAZoCWgPQwgZdhiT/kYoQJSGlFKUaBVN0QFoFkdAg40MsQNCq3V9lChoBmgJaA9DCE88ZwsIOlVAlIaUUpRoFU3oA2gWR0CDj1n4fwI/dX2UKGgGaAloD0MIOZuOAG4QT0CUhpRSlGgVTegDaBZHQIOTXxUedTZ1fZQoaAZoCWgPQwha2NMOf4JVQJSGlFKUaBVN6ANoFkdAg6JDtG/etXV9lChoBmgJaA9DCKw8gbBTd2BAlIaUUpRoFU3oA2gWR0CDpn0g8r7PdX2UKGgGaAloD0MIXcR3YtYMZUCUhpRSlGgVTTkCaBZHQIO8lUdaMaV1fZQoaAZoCWgPQwhgIt46/8ddQJSGlFKUaBVN6ANoFkdAg91RlpXZG3V9lChoBmgJaA9DCDl9PV+zrVpAlIaUUpRoFU3oA2gWR0CD3yrwvxpddX2UKGgGaAloD0MIOIHptG5wXUCUhpRSlGgVTegDaBZHQIP7hdY4hll1fZQoaAZoCWgPQwiUoL/QI8xZQJSGlFKUaBVN6ANoFkdAg/5VjRUm2XV9lChoBmgJaA9DCACOPXsuD1ZAlIaUUpRoFU3oA2gWR0CEBIDU3GXHdX2UKGgGaAloD0MI8mH2su1dXECUhpRSlGgVTegDaBZHQIQGv3i704B1fZQoaAZoCWgPQwj8q8d9q/RVQJSGlFKUaBVN6ANoFkdAhA7+yJKraXV9lChoBmgJaA9DCG7fo/56BQbAlIaUUpRoFU3BAWgWR0CEFG2Zy+6AdX2UKGgGaAloD0MIkNyadFsfX0CUhpRSlGgVTegDaBZHQIQmJDu0CzV1fZQoaAZoCWgPQwhIGtzWFtRgQJSGlFKUaBVN6ANoFkdAhED243FUAHV9lChoBmgJaA9DCMxiYvNxgVpAlIaUUpRoFU3oA2gWR0CERHuE25xzdX2UKGgGaAloD0MIdw/QfbmjYUCUhpRSlGgVTegDaBZHQIRE3xWkrPN1fZQoaAZoCWgPQwgk8l1K3UVgQJSGlFKUaBVN6ANoFkdAhEdHymQ8wHV9lChoBmgJaA9DCD9z1qcc31hAlIaUUpRoFU3oA2gWR0CES8FJxvNvdX2UKGgGaAloD0MIjgOvljvyVsCUhpRSlGgVTeABaBZHQIRUXr0J4Sp1fZQoaAZoCWgPQwijlXuBWTxVQJSGlFKUaBVN6ANoFkdAhFuw1R+BpnV9lChoBmgJaA9DCA/VlGQdqE5AlIaUUpRoFU3oA2gWR0CEX6C9RJmNdX2UKGgGaAloD0MI+glnt5ZRJcCUhpRSlGgVTdkBaBZHQIRiKuEEkjZ1fZQoaAZoCWgPQwjLSSh9IQNXQJSGlFKUaBVN6ANoFkdAhJIBmwqy4XV9lChoBmgJaA9DCBrerMH7bFZAlIaUUpRoFU3oA2gWR0CEk9bpu/DcdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 80,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ishan_ppo_lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e4807eab28190d10528993ceb2cea6d705520c31305856a22b1977ef72e6eb2
|
3 |
+
size 84829
|
ishan_ppo_lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4288b90b541cfbc5b90a50f687469d5f8e54693c1a17137cf7e1ab0449600310
|
3 |
+
size 43201
|
ishan_ppo_lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ishan_ppo_lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fb96650893afec230c13e5908f3c1d06bede9739c5a4b67b277358aa53dfeea
|
3 |
+
size 256956
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 138.45479627160063, "std_reward": 83.1480143465921, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T07:21:18.909136"}
|