eyad-silx commited on
Commit
b9f2647
·
verified ·
1 Parent(s): 61afda7

Upload model_baseline.py

Browse files
Files changed (1) hide show
  1. model_baseline.py +169 -0
model_baseline.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Standard Transformer baseline for comparison with DTAT
3
+ Based on NanoGPT architecture with optimizations for enwik8
4
+ """
5
+
6
+ import math
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ class CausalSelfAttention(nn.Module):
12
+ def __init__(self, config):
13
+ super().__init__()
14
+ assert config.n_embd % config.n_head == 0
15
+
16
+ self.n_head = config.n_head
17
+ self.n_embd = config.n_embd
18
+ self.dropout = config.dropout
19
+ self.block_size = config.block_size
20
+
21
+ # Key, Query, Value projections
22
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
23
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
24
+
25
+ # Regularization
26
+ self.attn_dropout = nn.Dropout(config.dropout)
27
+ self.resid_dropout = nn.Dropout(config.dropout)
28
+
29
+ # Flash attention style computation
30
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
31
+ .view(1, 1, config.block_size, config.block_size))
32
+
33
+ def forward(self, x):
34
+ B, T, C = x.size()
35
+
36
+ # Calculate query, key, values
37
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
38
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
39
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
40
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
41
+
42
+ # Causal self-attention
43
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
44
+ att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
45
+ att = F.softmax(att, dim=-1)
46
+ att = self.attn_dropout(att)
47
+ y = att @ v
48
+
49
+ # Re-assemble all head outputs side by side
50
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
51
+
52
+ # Output projection
53
+ y = self.resid_dropout(self.c_proj(y))
54
+ return y
55
+
56
+ class Block(nn.Module):
57
+ def __init__(self, config):
58
+ super().__init__()
59
+ self.ln_1 = nn.LayerNorm(config.n_embd)
60
+ self.attn = CausalSelfAttention(config)
61
+ self.ln_2 = nn.LayerNorm(config.n_embd)
62
+ self.mlp = nn.Sequential(
63
+ nn.Linear(config.n_embd, 4 * config.n_embd),
64
+ nn.GELU(),
65
+ nn.Linear(4 * config.n_embd, config.n_embd),
66
+ nn.Dropout(config.dropout),
67
+ )
68
+
69
+ def forward(self, x):
70
+ x = x + self.attn(self.ln_1(x))
71
+ x = x + self.mlp(self.ln_2(x))
72
+ return x
73
+
74
+ class BaselineTransformer(nn.Module):
75
+ def __init__(self, config):
76
+ super().__init__()
77
+ assert config.vocab_size is not None
78
+ assert config.block_size is not None
79
+ self.config = config
80
+
81
+ self.transformer = nn.ModuleDict(dict(
82
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
83
+ wpe = nn.Embedding(config.block_size, config.n_embd),
84
+ drop = nn.Dropout(config.dropout),
85
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
86
+ ln_f = nn.LayerNorm(config.n_embd)
87
+ ))
88
+
89
+ # Language modeling head
90
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
91
+
92
+ # Initialize weights
93
+ self.apply(self._init_weights)
94
+ # Apply special scaled init to the residual projections, per GPT-2 paper
95
+ for pn, p in self.named_parameters():
96
+ if pn.endswith('c_proj.weight'):
97
+ torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
98
+
99
+ # Report number of parameters
100
+ print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
101
+
102
+ def get_num_params(self, non_embedding=True):
103
+ n_params = sum(p.numel() for p in self.parameters())
104
+ if non_embedding:
105
+ n_params -= self.transformer.wpe.weight.numel()
106
+ return n_params
107
+
108
+ def _init_weights(self, module):
109
+ if isinstance(module, nn.Linear):
110
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
111
+ if module.bias is not None:
112
+ torch.nn.init.zeros_(module.bias)
113
+ elif isinstance(module, nn.Embedding):
114
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
115
+
116
+ def forward(self, idx, targets=None):
117
+ device = idx.device
118
+ b, t = idx.size()
119
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
120
+ pos = torch.arange(0, t, dtype=torch.long, device=device)
121
+
122
+ # Forward the GPT model itself
123
+ tok_emb = self.transformer.wte(idx)
124
+ pos_emb = self.transformer.wpe(pos)
125
+ x = self.transformer.drop(tok_emb + pos_emb)
126
+
127
+ for block in self.transformer.h:
128
+ x = block(x)
129
+ x = self.transformer.ln_f(x)
130
+
131
+ # Get logits and compute loss
132
+ logits = self.lm_head(x)
133
+
134
+ loss = None
135
+ if targets is not None:
136
+ # Calculate loss directly in BPC
137
+ B, T, C = logits.shape
138
+ logits = logits.view(B*T, C)
139
+ targets = targets.view(B*T)
140
+ loss = F.cross_entropy(logits, targets) * math.log2(math.e)
141
+
142
+ return logits, loss
143
+
144
+ @torch.no_grad()
145
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
146
+ """
147
+ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
148
+ the sequence max_new_tokens times, feeding the predictions back into the model each time.
149
+ Most likely you'll want to make sure to be in model.eval() mode of operation for this.
150
+ """
151
+ for _ in range(max_new_tokens):
152
+ # if the sequence context is growing too long we must crop it at block_size
153
+ idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
154
+ # forward the model to get the logits for the index in the sequence
155
+ logits, _ = self(idx_cond)
156
+ # pluck the logits at the final step and scale by desired temperature
157
+ logits = logits[:, -1, :] / temperature
158
+ # optionally crop the logits to only the top k options
159
+ if top_k is not None:
160
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
161
+ logits[logits < v[:, [-1]]] = -float('Inf')
162
+ # apply softmax to convert logits to (normalized) probabilities
163
+ probs = F.softmax(logits, dim=-1)
164
+ # sample from the distribution
165
+ idx_next = torch.multinomial(probs, num_samples=1)
166
+ # append sampled index to the running sequence
167
+ idx = torch.cat((idx, idx_next), dim=1)
168
+
169
+ return idx