""" Standard Transformer baseline for comparison with DTAT Based on NanoGPT architecture with optimizations for enwik8 """ import math import torch import torch.nn as nn import torch.nn.functional as F class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout self.head_size = config.n_embd // config.n_head # Key, Query, Value projections self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # Regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) # Flash attention optimization if available self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if not self.flash: print("WARNING: Flash Attention not available, using manual attention") # Manual causal mask self.register_buffer( "bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size) ) def forward(self, x): B, T, C = x.size() # batch size, sequence length, embedding dimensionality # Calculate query, key, values q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # Causal self-attention with memory optimization if self.flash: # Use flash attention if available (faster and more memory efficient) with torch.backends.cuda.sdp_kernel(enable_flash=True): y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True ) else: # Manual attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # Reshape and project back y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.resid_dropout(self.c_proj(y)) return y class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.dropout), ) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class BaselineTransformer(nn.Module): def __init__(self, config): super().__init__() assert config.vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd) )) # Language modeling head self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights self.apply(self._init_weights) # Apply special scaled init to the residual projections, per GPT-2 paper for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) # Report number of parameters print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) # Gradient checkpointing flag self.gradient_checkpointing = False def gradient_checkpointing_enable(self): """Enable gradient checkpointing for memory efficiency""" self.gradient_checkpointing = True def gradient_checkpointing_disable(self): """Disable gradient checkpointing""" self.gradient_checkpointing = False def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() # Token and position embeddings tok_emb = self.transformer.wte(idx) pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) pos_emb = self.transformer.wpe(pos) # Add embeddings and apply dropout x = self.transformer.drop(tok_emb + pos_emb) # Apply transformer blocks with optional gradient checkpointing if self.gradient_checkpointing and self.training: for block in self.transformer.h: x = torch.utils.checkpoint.checkpoint(block, x) else: for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) # Language model head logits = self.lm_head(x) # Loss calculation (in BPC) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) loss = loss / math.log(2) # Convert to BPC return logits, loss @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) return idx def get_num_params(self, non_embedding=True): n_params = sum(p.numel() for p in self.parameters()) if non_embedding: n_params -= self.transformer.wpe.weight.numel() return n_params