import math import torch import torch.nn as nn from torch.nn import functional as F class HierarchicalPositionEncoding(nn.Module): """ Hierarchical Position Encoding that captures position information at multiple scales: - Fine-grained local position (token level) - Medium-scale position (segment level) - Coarse-grained position (document level) """ def __init__(self, d_model, max_len=1024, base=10000): super().__init__() self.d_model = d_model self.max_len = max_len self.base = base # Split embedding dimensions for different scales self.local_dim = d_model // 2 self.segment_dim = d_model // 4 self.doc_dim = d_model - self.local_dim - self.segment_dim # Create position encodings for different scales self.register_buffer('local_pe', self._create_pe(max_len, self.local_dim)) self.register_buffer('segment_pe', self._create_pe(max_len//8, self.segment_dim)) self.register_buffer('doc_pe', self._create_pe(max_len//32, self.doc_dim)) def _create_pe(self, max_len, d_model): pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(self.base) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe.unsqueeze(0) def forward(self, x): B, T, C = x.shape # Get positional encodings at different scales local_pos = self.local_pe[:, :T, :] segment_pos = self.segment_pe[:, :(T//8), :].repeat_interleave(8, dim=1)[:, :T, :] doc_pos = self.doc_pe[:, :(T//32), :].repeat_interleave(32, dim=1)[:, :T, :] # Combine all scales pos_encoding = torch.cat([local_pos, segment_pos, doc_pos], dim=-1) return pos_encoding class MultiScaleAttention(nn.Module): """ Multi-scale attention mechanism that processes information at different temporal scales """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout def forward(self, x): B, T, C = x.shape # batch size, sequence length, embedding dimensionality # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = MultiScaleAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = nn.ModuleDict(dict( c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias), c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias), act = nn.GELU(), dropout = nn.Dropout(config.dropout), )) m = self.mlp self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlpf(self.ln_2(x)) return x class GPTModified(nn.Module): def __init__(self, config): super().__init__() assert config.vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), hpe = HierarchicalPositionEncoding(config.n_embd, config.block_size), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights self.apply(self._init_weights) # Apply special scaled init to the residual projections, per GPT-2 paper for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) # Report number of parameters print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) def get_num_params(self, non_embedding=True): n_params = sum(p.numel() for p in self.parameters()) if non_embedding: n_params -= self.transformer.wte.weight.numel() return n_params def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t) # Forward pass tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) pos_emb = self.transformer.hpe(tok_emb) # position embeddings of shape (b, t, n_embd) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_head(x) # If we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) return logits, loss @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): for _ in range(max_new_tokens): # If the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # Forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # Pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # Optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # Apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # Sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # Append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx