Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- la
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
library_name: spacy
|
7 |
+
pipeline_tag: token-classification
|
8 |
+
---
|
9 |
+
# NER for Latin
|
10 |
+
|
11 |
+
Trained using letters from the [Bullinger collection](http://www.bullinger-digital.ch/), based on mbert.
|
12 |
+
|
13 |
+
# How to use
|
14 |
+
```python
|
15 |
+
import spacy
|
16 |
+
nlp = spacy.load('./enhg_pipeline')
|
17 |
+
doc = nlp('Norimberga in proximum quoddam Ulmensibus oppidulum Leypphaim sese contulit, certa spe recuperandae sedis, e qua nuper est detrusus.')
|
18 |
+
for ent in doc.ents:
|
19 |
+
print(ent.text, ent.label_)
|
20 |
+
|
21 |
+
# Output:
|
22 |
+
# Norimberga GEO
|
23 |
+
# Ulmensibus GEO
|
24 |
+
```
|
25 |
+
|
26 |
+
# Evaluation
|
27 |
+
- F-Score: 0.8970679975
|
28 |
+
- Precision: 0.8860135551,
|
29 |
+
- Recall: 0.9084017688,
|