--- language: - la metrics: - accuracy library_name: spacy pipeline_tag: token-classification --- # NER for Latin Trained using letters from the [Bullinger collection](http://www.bullinger-digital.ch/), based on mbert. # How to use ```python import spacy nlp = spacy.load('./enhg_pipeline') doc = nlp('Norimberga in proximum quoddam Ulmensibus oppidulum Leypphaim sese contulit, certa spe recuperandae sedis, e qua nuper est detrusus.') for ent in doc.ents: print(ent.text, ent.label_) # Output: # Norimberga GEO # Ulmensibus GEO ``` # Evaluation - F-Score: 0.8970679975 - Precision: 0.8860135551, - Recall: 0.9084017688,