--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: cyber_deberta results: [] --- # cyber_deberta This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4669 - Accuracy: 0.8315 - F1: 0.8135 - Precision: 0.8121 - Recall: 0.8150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5788 | 1.0 | 105 | 0.5623 | 0.6755 | 0.4813 | 0.6766 | 0.5352 | | 0.478 | 2.0 | 210 | 0.4430 | 0.7746 | 0.7444 | 0.7501 | 0.7401 | | 0.4087 | 3.0 | 315 | 0.3948 | 0.8096 | 0.7835 | 0.7911 | 0.7777 | | 0.4004 | 4.0 | 420 | 0.3868 | 0.8080 | 0.7917 | 0.7864 | 0.7998 | | 0.3216 | 5.0 | 525 | 0.4005 | 0.8106 | 0.7928 | 0.7888 | 0.7980 | | 0.3144 | 6.0 | 630 | 0.3878 | 0.8299 | 0.8062 | 0.8153 | 0.7994 | | 0.2598 | 7.0 | 735 | 0.4040 | 0.8258 | 0.8084 | 0.8053 | 0.8121 | | 0.2234 | 8.0 | 840 | 0.4280 | 0.8284 | 0.8108 | 0.8083 | 0.8137 | | 0.2088 | 9.0 | 945 | 0.4580 | 0.8320 | 0.8154 | 0.8121 | 0.8194 | | 0.1775 | 10.0 | 1050 | 0.4669 | 0.8315 | 0.8135 | 0.8121 | 0.8150 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1