--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment_bert results: [] --- # sentiment_bert This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7469 - Accuracy: 0.6802 - F1: 0.6332 - Precision: 0.6152 - Recall: 0.6942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.7975 | 1.0 | 94 | 0.9153 | 0.4158 | 0.4603 | 0.5512 | 0.5862 | | 0.7765 | 2.0 | 188 | 0.8220 | 0.6583 | 0.6023 | 0.5894 | 0.6461 | | 0.71 | 3.0 | 282 | 0.8345 | 0.6062 | 0.5908 | 0.5955 | 0.6858 | | 0.6439 | 4.0 | 376 | 0.7753 | 0.6568 | 0.6241 | 0.6133 | 0.7010 | | 0.6623 | 5.0 | 470 | 0.7469 | 0.6802 | 0.6332 | 0.6152 | 0.6942 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1