End of training
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Wer
|
25 |
type: wer
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,9 +33,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Wer Ortho: 0.
|
38 |
-
- Wer: 0.
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -54,60 +54,30 @@ More information needed
|
|
54 |
### Training hyperparameters
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
-
- learning_rate:
|
58 |
- train_batch_size: 16
|
59 |
- eval_batch_size: 16
|
60 |
- seed: 42
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: constant_with_warmup
|
63 |
- lr_scheduler_warmup_steps: 50
|
64 |
-
- training_steps:
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
70 |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|
|
71 |
-
|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.0003 | 19.6429 | 550 | 0.8032 | 0.3436 | 0.3406 |
|
82 |
-
| 0.0002 | 21.4286 | 600 | 0.8200 | 0.3418 | 0.3400 |
|
83 |
-
| 0.001 | 23.2143 | 650 | 0.8118 | 0.3436 | 0.3406 |
|
84 |
-
| 0.0005 | 25.0 | 700 | 0.8278 | 0.3344 | 0.3323 |
|
85 |
-
| 0.0007 | 26.7857 | 750 | 0.8299 | 0.3356 | 0.3318 |
|
86 |
-
| 0.0006 | 28.5714 | 800 | 0.8390 | 0.3344 | 0.3318 |
|
87 |
-
| 0.0004 | 30.3571 | 850 | 0.8442 | 0.3350 | 0.3323 |
|
88 |
-
| 0.0002 | 32.1429 | 900 | 0.8444 | 0.3307 | 0.3294 |
|
89 |
-
| 0.0005 | 33.9286 | 950 | 0.8549 | 0.3344 | 0.3329 |
|
90 |
-
| 0.0007 | 35.7143 | 1000 | 0.8515 | 0.3331 | 0.3329 |
|
91 |
-
| 0.0003 | 37.5 | 1050 | 0.8571 | 0.3263 | 0.3264 |
|
92 |
-
| 0.0005 | 39.2857 | 1100 | 0.8504 | 0.3307 | 0.3294 |
|
93 |
-
| 0.0001 | 41.0714 | 1150 | 0.8654 | 0.3313 | 0.3318 |
|
94 |
-
| 0.0005 | 42.8571 | 1200 | 0.8724 | 0.3337 | 0.3347 |
|
95 |
-
| 0.0001 | 44.6429 | 1250 | 0.8806 | 0.3325 | 0.3341 |
|
96 |
-
| 0.0001 | 46.4286 | 1300 | 0.8901 | 0.3344 | 0.3359 |
|
97 |
-
| 0.0001 | 48.2143 | 1350 | 0.8941 | 0.3344 | 0.3359 |
|
98 |
-
| 0.0001 | 50.0 | 1400 | 0.8987 | 0.3337 | 0.3353 |
|
99 |
-
| 0.0 | 51.7857 | 1450 | 0.9018 | 0.3337 | 0.3359 |
|
100 |
-
| 0.0 | 53.5714 | 1500 | 0.9073 | 0.3325 | 0.3353 |
|
101 |
-
| 0.0 | 55.3571 | 1550 | 0.9106 | 0.3319 | 0.3347 |
|
102 |
-
| 0.0 | 57.1429 | 1600 | 0.9152 | 0.3319 | 0.3347 |
|
103 |
-
| 0.0 | 58.9286 | 1650 | 0.9198 | 0.4824 | 0.4917 |
|
104 |
-
| 0.0 | 60.7143 | 1700 | 0.9242 | 0.4824 | 0.4923 |
|
105 |
-
| 0.0 | 62.5 | 1750 | 0.9279 | 0.4849 | 0.4947 |
|
106 |
-
| 0.0 | 64.2857 | 1800 | 0.9327 | 0.4855 | 0.4953 |
|
107 |
-
| 0.0 | 66.0714 | 1850 | 0.9374 | 0.4849 | 0.4953 |
|
108 |
-
| 0.0 | 67.8571 | 1900 | 0.9417 | 0.4855 | 0.4965 |
|
109 |
-
| 0.0 | 69.6429 | 1950 | 0.9461 | 0.4855 | 0.4965 |
|
110 |
-
| 0.0 | 71.4286 | 2000 | 0.9507 | 0.4855 | 0.4965 |
|
111 |
|
112 |
|
113 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Wer
|
25 |
type: wer
|
26 |
+
value: 0.33116883116883117
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.7091
|
37 |
+
- Wer Ortho: 0.3282
|
38 |
+
- Wer: 0.3312
|
39 |
|
40 |
## Model description
|
41 |
|
|
|
54 |
### Training hyperparameters
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 2e-05
|
58 |
- train_batch_size: 16
|
59 |
- eval_batch_size: 16
|
60 |
- seed: 42
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: constant_with_warmup
|
63 |
- lr_scheduler_warmup_steps: 50
|
64 |
+
- training_steps: 500
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
70 |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|
|
71 |
+
| 1.1248 | 1.7857 | 50 | 0.5870 | 0.3868 | 0.3808 |
|
72 |
+
| 0.2048 | 3.5714 | 100 | 0.5389 | 0.3152 | 0.3129 |
|
73 |
+
| 0.0316 | 5.3571 | 150 | 0.6006 | 0.3233 | 0.3264 |
|
74 |
+
| 0.0083 | 7.1429 | 200 | 0.6418 | 0.3350 | 0.3359 |
|
75 |
+
| 0.0025 | 8.9286 | 250 | 0.6459 | 0.3276 | 0.3329 |
|
76 |
+
| 0.0012 | 10.7143 | 300 | 0.6761 | 0.3270 | 0.3294 |
|
77 |
+
| 0.0007 | 12.5 | 350 | 0.6790 | 0.3319 | 0.3335 |
|
78 |
+
| 0.0004 | 14.2857 | 400 | 0.6967 | 0.3313 | 0.3329 |
|
79 |
+
| 0.0008 | 16.0714 | 450 | 0.7005 | 0.3319 | 0.3347 |
|
80 |
+
| 0.0006 | 17.8571 | 500 | 0.7091 | 0.3282 | 0.3312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 151061672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6238ef4eb067ba2bc53d0f894781e353d812cecbd714588d538841b087774384
|
3 |
size 151061672
|
runs/Oct02_21-43-30_dfd2db00b841/events.out.tfevents.1727905411.dfd2db00b841.1583.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d15f887e3df26fc45311b8816c96477bae2ba65df98679b6797974faa011c45e
|
3 |
+
size 14966
|