--- license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-firdousahamed-nep-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ne-NP split: None args: ne-NP metrics: - name: Wer type: wer value: 1.0 --- # wav2vec2-large-xls-r-300m-firdousahamed-nep-colab This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 1.0 | 14 | nan | 1.0 | | No log | 2.0 | 28 | nan | 1.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2