adirik commited on
Commit
1b5279e
·
1 Parent(s): 4ff6a7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -16,7 +16,7 @@ widget:
16
 
17
  # ConvNeXt V2 (base-sized model)
18
 
19
- ConvNeXt V2 model pretrained using the FCMAE framework and fine-tuned on the ImageNet-22K dataset at resolution 224x224. It was introduced in the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Woo et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt-V2).
20
 
21
  Disclaimer: The team releasing ConvNeXT V2 did not write a model card for this model so this model card has been written by the Hugging Face team.
22
 
@@ -43,8 +43,8 @@ from datasets import load_dataset
43
  dataset = load_dataset("huggingface/cats-image")
44
  image = dataset["test"]["image"][0]
45
 
46
- preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-base-22k-224")
47
- model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-base-22k-224")
48
 
49
  inputs = preprocessor(image, return_tensors="pt")
50
 
 
16
 
17
  # ConvNeXt V2 (base-sized model)
18
 
19
+ ConvNeXt V2 model pretrained using the FCMAE framework and fine-tuned on the ImageNet-22K dataset at resolution 384x384. It was introduced in the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Woo et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt-V2).
20
 
21
  Disclaimer: The team releasing ConvNeXT V2 did not write a model card for this model so this model card has been written by the Hugging Face team.
22
 
 
43
  dataset = load_dataset("huggingface/cats-image")
44
  image = dataset["test"]["image"][0]
45
 
46
+ preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-base-22k-384")
47
+ model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-base-22k-384")
48
 
49
  inputs = preprocessor(image, return_tensors="pt")
50