File size: 2,839 Bytes
16ebe37 955e5d5 16ebe37 46a205a 16ebe37 955e5d5 16ebe37 46a205a 16ebe37 a802057 16ebe37 51545d6 16ebe37 51545d6 16ebe37 51545d6 16ebe37 5794372 6542b2d 5794372 16ebe37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: other
tags:
- vision
- image-segmentation
datasets:
- scene_parse_150
widget:
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
example_title: House
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
example_title: Castle
---
# MaskFormer
MaskFormer model trained on ADE20k semantic segmentation (large-sized version, Swin backbone). It was introduced in the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) and first released in [this repository](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
Disclaimer: The team releasing MaskFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
MaskFormer addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png)
## Intended uses & limitations
You can use this particular checkpoint for semantic segmentation. See the [model hub](https://huggingface.co/models?search=maskformer) to look for other
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade")
inputs = feature_extractor(images=image, return_tensors="pt")
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-large-ade")
outputs = model(**inputs)
# model predicts class_queries_logits of shape `(batch_size, num_queries)`
# and masks_queries_logits of shape `(batch_size, num_queries, height, width)`
class_queries_logits = outputs.class_queries_logits
masks_queries_logits = outputs.masks_queries_logits
# you can pass them to feature_extractor for postprocessing
# we refer to the demo notebooks for visualization (see "Resources" section in the MaskFormer docs)
predicted_semantic_map = feature_extractor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/maskformer). |