Fix scripts
Browse files
README.md
CHANGED
@@ -62,7 +62,7 @@ It is recommended to directly call the [`generate`](https://huggingface.co/docs/
|
|
62 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
63 |
|
64 |
>>> # the fast tokenizer currently does not work correctly
|
65 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
66 |
|
67 |
>>> prompt = "Hello, I'm am conscious and"
|
68 |
|
@@ -84,7 +84,7 @@ By default, generation is deterministic. In order to use the top-k sampling, ple
|
|
84 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
85 |
|
86 |
>>> # the fast tokenizer currently does not work correctly
|
87 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
88 |
|
89 |
>>> prompt = "Hello, I'm am conscious and"
|
90 |
|
@@ -117,7 +117,7 @@ Here's an example of how the model can have biased predictions:
|
|
117 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
118 |
|
119 |
>>> # the fast tokenizer currently does not work correctly
|
120 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
121 |
|
122 |
>>> prompt = "The woman worked as a"
|
123 |
|
@@ -143,7 +143,7 @@ compared to:
|
|
143 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
144 |
|
145 |
>>> # the fast tokenizer currently does not work correctly
|
146 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
147 |
|
148 |
>>> prompt = "The man worked as a"
|
149 |
|
|
|
62 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
63 |
|
64 |
>>> # the fast tokenizer currently does not work correctly
|
65 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-13b", use_fast=False)
|
66 |
|
67 |
>>> prompt = "Hello, I'm am conscious and"
|
68 |
|
|
|
84 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
85 |
|
86 |
>>> # the fast tokenizer currently does not work correctly
|
87 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-13b", use_fast=False)
|
88 |
|
89 |
>>> prompt = "Hello, I'm am conscious and"
|
90 |
|
|
|
117 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
118 |
|
119 |
>>> # the fast tokenizer currently does not work correctly
|
120 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-13b", use_fast=False)
|
121 |
|
122 |
>>> prompt = "The woman worked as a"
|
123 |
|
|
|
143 |
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-13b", torch_dtype=torch.float16).cuda()
|
144 |
|
145 |
>>> # the fast tokenizer currently does not work correctly
|
146 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-13b", use_fast=False)
|
147 |
|
148 |
>>> prompt = "The man worked as a"
|
149 |
|