File size: 1,897 Bytes
d8f8403 9e1ab43 53f89cc d8f8403 7a465c7 d8f8403 2799732 7a465c7 d8f8403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
language: en
license: cc-by-nc-4.0
pipeline_tag: image-segmentation
tags:
- sapiens
---
# Seg-Foreground-Background-Sapiens-1B-Torchscript
### Model Details
Sapiens is a family of vision transformers pretrained on 300 million human images at 1024 x 1024 image resolution. The pretrained models, when finetuned for human-centric vision tasks, generalize to in-the-wild conditions.
Sapiens-1B natively support 1K high-resolution inference. The resulting models exhibit remarkable generalization to in-the-wild data, even when labeled data is scarce or entirely synthetic.
- **Developed by:** Meta
- **Model type:** Vision Transformer
- **License:** Creative Commons Attribution-NonCommercial 4.0
- **Task:** seg
- **Format:** torchscript
- **File:** sapiens_1b_seg_foreground_epoch_8_torchscript.pt2
### Model Card
- **Image Size:** 1024 x 768 (H x W)
- **Num Parameters:** 1.169 B
- **FLOPs:** 4.647 TFLOPs
- **Patch Size:** 16 x 16
- **Embedding Dimensions:** 1536
- **Num Layers:** 40
- **Num Heads:** 24
- **Feedforward Channels:** 6144
### More Resources
- **Repository:** [https://github.com/facebookresearch/sapiens](https://github.com/facebookresearch/sapiens)
- **Paper:** [https://arxiv.org/abs/2408.12569](https://arxiv.org/abs/2408.12569)
- **Demo:** [https://huggingface.co/spaces/facebook/sapiens-seg](https://huggingface.co/spaces/facebook/sapiens-seg)
- **Project Page:** [https://about.meta.com/realitylabs/codecavatars/sapiens](https://about.meta.com/realitylabs/codecavatars/sapiens/)
- **Additional Results:** [https://rawalkhirodkar.github.io/sapiens](https://rawalkhirodkar.github.io/sapiens/)
- **HuggingFace Collection:** [https://huggingface.co/collections/facebook/sapiens-66d22047daa6402d565cb2fc](https://huggingface.co/collections/facebook/sapiens-66d22047daa6402d565cb2fc)
## Uses
Seg-Foreground 1B model can be used to segment foreground humans from images.
|