File size: 5,414 Bytes
7f57c75 5eac93c 7f57c75 90d8235 7f57c75 e003600 7f57c75 be4a943 29a5f55 be4a943 29a5f55 be4a943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language:
- multilingual
- fr
- de
- es
- ca
- it
- ru
- zh
- pt
- fa
- et
- mn
- nl
- tr
- ar
- sv
- lv
- sl
- ta
- ja
- id
- cy
- en
datasets:
- common_voice
- multilingual_librispeech
- covost2
tags:
- speech
- xls_r
- automatic-speech-recognition
- xls_r_translation
pipeline_tag: automatic-speech-recognition
license: apache-2.0
widget:
- example_title: Swedish
src: https://cdn-media.huggingface.co/speech_samples/cv_swedish_1.mp3
- example_title: Arabic
src: https://cdn-media.huggingface.co/speech_samples/common_voice_ar_19058308.mp3
- example_title: Russian
src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3
- example_title: German
src: https://cdn-media.huggingface.co/speech_samples/common_voice_de_17284683.mp3
- example_title: French
src: https://cdn-media.huggingface.co/speech_samples/common_voice_fr_17299386.mp3
- example_title: Indonesian
src: https://cdn-media.huggingface.co/speech_samples/common_voice_id_19051309.mp3
- example_title: Italian
src: https://cdn-media.huggingface.co/speech_samples/common_voice_it_17415776.mp3
- example_title: Japanese
src: https://cdn-media.huggingface.co/speech_samples/common_voice_ja_19482488.mp3
- example_title: Mongolian
src: https://cdn-media.huggingface.co/speech_samples/common_voice_mn_18565396.mp3
- example_title: Dutch
src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3
- example_title: Russian
src: https://cdn-media.huggingface.co/speech_samples/common_voice_ru_18849022.mp3
- example_title: Turkish
src: https://cdn-media.huggingface.co/speech_samples/common_voice_tr_17341280.mp3
- example_title: Catalan
src: https://cdn-media.huggingface.co/speech_samples/common_voice_ca_17367522.mp3
- example_title: English
src: https://cdn-media.huggingface.co/speech_samples/common_voice_en_18301577.mp3
- example_title: Dutch
src: https://cdn-media.huggingface.co/speech_samples/common_voice_nl_17691471.mp3
---
# Wav2Vec2-XLS-R-2b-21-EN
Facebook's Wav2Vec2 XLS-R fine-tuned for **Speech Translation.**
![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xls_r.png)
This is a [SpeechEncoderDecoderModel](https://huggingface.co/transformers/model_doc/speechencoderdecoder.html) model.
The encoder was warm-started from the [**`facebook/wav2vec2-xls-r-2b`**](https://huggingface.co/facebook/wav2vec2-xls-r-2b) checkpoint and
the decoder from the [**`facebook/mbart-large-50`**](https://huggingface.co/facebook/mbart-large-50) checkpoint.
Consequently, the encoder-decoder model was fine-tuned on 21 `{lang}` -> `en` translation pairs of the [Covost2 dataset](https://huggingface.co/datasets/covost2).
The model can translate from the following spoken languages `{lang}` -> `en` (English):
{`fr`, `de`, `es`, `ca`, `it`, `ru`, `zh-CN`, `pt`, `fa`, `et`, `mn`, `nl`, `tr`, `ar`, `sv-SE`, `lv`, `sl`, `ta`, `ja`, `id`, `cy`} -> `en`
For more information, please refer to Section *5.1.2* of the [official XLS-R paper](https://arxiv.org/abs/2111.09296).
## Usage
### Demo
The model can be tested directly on the speech recognition widget on this model card!
Simple record some audio in one of the possible spoken languages or pick an example audio file to see how well the checkpoint can translate the input.
### Example
As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
transcripts by passing the speech features to the model.
You can use the model directly via the ASR pipeline
```python
from datasets import load_dataset
from transformers import pipeline
# replace following lines to load an audio file of your choice
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
audio_file = librispeech_en[0]["file"]
asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-2b-21-to-en", feature_extractor="facebook/wav2vec2-xls-r-2b-21-to-en")
translation = asr(audio_file)
```
or step-by-step as follows:
```python
import torch
from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
from datasets import load_dataset
model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-2b-21-to-en")
processor = Speech2Text2Processor.from_pretrained("facebook/wav2vec2-xls-r-2b-21-to-en")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["array"]["sampling_rate"], return_tensors="pt")
generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"])
transcription = processor.batch_decode(generated_ids)
```
## Results `{lang}` -> `en`
See the row of **XLS-R (2B)** for the performance on [Covost2](https://huggingface.co/datasets/covost2) for this model.
![results image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/X-%3EEnglish.png)
## More XLS-R models for `{lang}` -> `en` Speech Translation
- [Wav2Vec2-XLS-R-300M-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-300m-21-to-en)
- [Wav2Vec2-XLS-R-1B-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-1b-21-to-en)
- [Wav2Vec2-XLS-R-2B-21-EN](https://huggingface.co/facebook/wav2vec2-xls-r-2b-21-to-en)
- [Wav2Vec2-XLS-R-2B-22-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16)
|